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Solution: Problem 1

One thing to notice is that 172 = 289 = 2144 + 1. Therefore,
2™ =17 (mod 144) = (2'™)?=235=172=1 (mod 144).

This first shows that ged(x,144) = 1 since otherwise 2346 cannot be of form 144k + 1, a number not divisible
by any divisor of 144 other than 1. Therefore x € (Z/1447Z)*. Furthermore, by the congruence relation above
we have o(z) | 364. On the other hand, the fact that = € (Z/144Z)* implies o(x) | ¢(144) = 48. Therefore
o(z) | ged(364,144) = 2. Clearly o(x) + 1 since 1 = e € (Z/144Z)* will never become 17 when raised to some
power. Therefore o(x) =2 and so #2 =1 (mod 144). Thus,

et = (2?)% .2 =1-2=217 (mod 144) = x =17 (mod 144)

which gives our solution.

Solution: Problem 2

First we prime factorize 1104 = 2*-69. Now, for convenience, we start by checking whether 2 is a witness:

269296721 (mod 1105) condition 1 met, proceed
2992967 -1 (mod 1105) not failing condition 2, proceed
220929592 -1 (mod 1105) not failing condition 2, proceed
2469 =781 £ -1 (mod 1105) not failing condition 2, proceed
2869 =121 (mod 1105) condition 2 met, return true

Indeed 2 is a strong witness, and we conclude that 1105 is composite.
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Solution: Problem 3

(1)

If m =5 then m?®° = 5299 = 283 (mod 493) so the encrypted message is 283. Fast powering algorithm:
since 299 = 256 + 32 + 8 + 2 + 1 we need to compute 52 by using 52 = (521‘71)2 up to 52°6 mod 493. In
modulo 493 we have 5' = 5,52 = 25,5% = 132,58 = 169, 5'6 = 460,532 = 103, 5% = 256,528 = 460, and
5256 = 103. Then,

5299 _ 5256+32+8+2+1

_ 5256 532 58 525
=103-103-169-25-5
=283 (mod 493).

Notice that ged(283,493) = 1. Furthermore, ¢(493) = 16 - 28 = 448 and gcd (299, 448) = 1. Therefore we

may safely assume that the solution to
2?99 2283 (mod 493)
is of form 283¢. Then,

283297 = 283 (mod 493) = 2837771 =1 (mod 493) = (493) = 448 299d - 1.

Now it remains to solve the congruence relation 299d = 1 (mod 448). “Inspection” suggests d = 3 is a
solution. Since gcd(299,448) = 1, this is going to be the only solution between 0 and 447. [Otherwise
we would have 448 | 299(z’ — 3) which is clearly impossible.] Hence the decryption exponent d = 3.

Here we want to find the number of z’s satisfying
x € (Z/493Z)* and 2°°° =z (mod 493).
With the conditions above, we may cancel one x on both sides and get
2 =1 (mod 493) = o(x) | 298 in (Z/493Z)*.

On the other hand, x € (Z/493Z)* also implies o(z) | ¢(493) = 448. Hence o(x) | ged(298,448) = 2, and
thus either o(z) =1 or o(z) = 2.

The first case is simple: o(z) =1 == x = 1. Indeed 1?°? =1 (mod 493).
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For the second case, we want to find all solutions to 22 = 1 (mod 493) == 17-29 | (z - 1)(x +1). If
both 17 and 29 divide xz — 1 then z = 1, same as above. If both divide z + 1 then x = 492. If one divides

(z-1) and the other (z+1) then we either have z = 86 or « = 407. [This was also a homework problem.]

Hence there are four distinct messages that have this property: 1,86,407, and 492.

Solution: Problem 4

(1) To ensure a® = b* (mod 247), we just need to make sure 13-19]| (a - b)(a +b). Below is one example:

a-b=13 a=16
a+b=19 b=3

Then taking multiples of this pair gives even more pairs: (a,b) = (32,6), (48,9), and (64,12).
(2) No he won’t. To succeed, Bob needs to somehow multiply some of the ¢’s and get a product — which
we call kK — that’s congruent to a square, i.e., the product of p’s, each raised to some even power.

First look at the powers of p;. Since all ¢’s have p; raised to odd powers, if k existed, it’s either the
product of two ¢’s or four ¢’s to ensure the even power of p;. However, k = ¢1cac3c4 is impossible because

the powers of other p’s will be odd this way. Therefore k£ must be the product of two ¢’s.

Now look at powers of ps which should also be even. Since ¢4 is the only one with even power, it cannot

be part of k. Hence we are now limited to choosing two ¢’s among {¢1,¢o,c3}.

Likewise, for powers of p3, we exclude the possibility of choosing c3 as it’s the only one with even power
of p3 among {c1,¢a,c3}. Hence we are left with k = ¢;co. This won’t work either because the power of

P4 is odd, contradicting to k = a square mod N. Therefore Bob won’t succeed with these ¢’s.

Solution: Problem 5

Since |(Z/pZ)*| = 2¥, we want to show that every a € (Z/pZ)* [which guarantees gcd(a,p) = 1] with
Legendre symbol (ﬁ) = -1 has order 2¢. By Euler’s Criterion, this means our targets of interest are any
p

a € (Z[pZ)* such that
a2 2 2 (mod p).

This implies o(a) + 2871, On the other hand, by Fermat’s little theorem,

a?l=a® =1 (mod p)
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which implies o(a) | 2¥. Therefore the only possibility is if o(a) = 2¥ itself. Hence o(a) = ¢(p) and indeed a is

a primitive root mod p.

Solution: Problem 6

Let p be a prime of form 3k + 2. Clearly for any multiple of p, kp =0 =03 (mod p) is trivial. Now suppose
we pick z #0 (mod p). By Fermat’s Little Theorem, we have

2P =23 =1 (mod p).
Squaring both sides and then multiplying by = gives
x6k+3 =

z (modp) = z = (*1)® (mod p), a cube.

Having shown both cases, we conclude that every integer is a cube mod p.

Solution: Problem 7

First of all, when a = 1, the statement a” = a = a™V~"?®) is trivial.
We will now look at the case where a # 1 is a prime. It follows that, either gcd(a, N) =1 or N is a multiple

of a. For the former, all we need to do is to apply Fermat’s little theorem (or maybe just Euler’s):
a?™ =1 (mod N) = W IN=¢(N] _ oN = (N=¢(N) " (mod N).
If N is a multiple of a, then we can write N as a’k where a + k. It follows that ged(a?, k) = 1, and so

N - @(N) =a'k - p(a'k)
=a'k~p(a")p(k)
=a'k-a"(a-1)p(k).

Again, since @(k) < k always holds and k is some nontrvial factor of N that’s at least 2, we have
N-o(N)>d'k-a" a-Dk=a""k>ad".
Furthermore, we claim that a*~! > i for all prime a and positive integer i,
@l 9t 5

because 2'7! = 1 and, for larger i’s, the LHS exponentially outgrows the RHS. Also, since a’ | N we also have
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a” =0 (mod a'). Therefore N —¢(N) > i and we have

VPN =0=6"  (mod a?).
On the other hand, since we have constructed k to be coprime with a, we get
a?® =1 (mod k).
Recall that ¢(N) = ¢(a’)p(k) so ¢(k) | ¢(NN), and thus
a?@™ =1 (mod k) = a#WHN=eMI_ (N = (N=¢(N) (mod k).
Therefore,

aN = gN-¢(N) (mod a®)

— oV =aV*W) (mod a’k), i.e., (mod N).
aV = aV*WN) (mod k)

Now, for the seemingly more complicated case where a can be a composite, we only need to notice that if
oV = gN-e(V) (mod N) and yN = yN_W(N) (mod N)

then so does their product zy, i.e., (zy)N = (zy)V ™) (mod N). If a composite a = []p;* is coprime to N,
then all its prime factors, i.e., all the p;’s, are also coprime to N. Then the congruence relation holds for each

p;’s, and from what we’ve shown above, we are able to conclude that a™ = ¢V -¢(V) (mod N) as well.



