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Solution: Problem 1

One thing to notice is that 172 = 289 = 2 ⋅ 144 + 1. Therefore,

x173 ≡ 17 (mod 144) Ô⇒ (x173)2 = x346 ≡ 172 ≡ 1 (mod 144).

This first shows that gcd(x,144) = 1 since otherwise x346 cannot be of form 144k+1, a number not divisible
by any divisor of 144 other than 1. Therefore x ∈ (Z/144Z)∗. Furthermore, by the congruence relation above
we have o(x) ∣ 364. On the other hand, the fact that x ∈ (Z/144Z)∗ implies o(x) ∣ φ(144) = 48. Therefore
o(x) ∣ gcd(364,144) = 2. Clearly o(x) ≠ 1 since 1 = e ∈ (Z/144Z)∗ will never become 17 when raised to some
power. Therefore o(x) = 2 and so x2 ≡ 1 (mod 144). Thus,

x173 = (x2)86 ⋅ x ≡ 1 ⋅ x ≡ 17 (mod 144) Ô⇒ x ≡ 17 (mod 144)

which gives our solution.

Solution: Problem 2

First we prime factorize 1104 = 24 ⋅ 69. Now, for convenience, we start by checking whether 2 is a witness:

269 ≡ 967 ≢ 1 (mod 1105) condition 1 met, proceed

269 ≡ 967 ≢ −1 (mod 1105) not failing condition 2, proceed

22⋅69 ≡ 259 ≢ −1 (mod 1105) not failing condition 2, proceed

24⋅69 ≡ 781 ≢ −1 (mod 1105) not failing condition 2, proceed

28⋅69 ≡ 1 ≢ −1 (mod 1105) condition 2 met, return true

Indeed 2 is a strong witness, and we conclude that 1105 is composite.
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Solution: Problem 3

(1) If m = 5 then m299 = 5299 ≡ 283 (mod 493) so the encrypted message is 283. Fast powering algorithm:
since 299 = 256 + 32 + 8 + 2 + 1 we need to compute 52

i

by using 52
i

= (52
i−1
)2 up to 5256 mod 493. In

modulo 493 we have 51 = 5,52 = 25,54 = 132,58 = 169,516 = 460,532 = 103,564 = 256,5128 = 460, and
5256 = 103. Then,

5299 = 5256+32+8+2+1

= 5256 ⋅ 532 ⋅ 58 ⋅ 52 ⋅ 5

= 103 ⋅ 103 ⋅ 169 ⋅ 25 ⋅ 5

≡ 283 (mod 493).

(2) Notice that gcd(283,493) = 1. Furthermore, φ(493) = 16 ⋅ 28 = 448 and gcd(299,448) = 1. Therefore we
may safely assume that the solution to

x299 ≡ 283 (mod 493)

is of form 283d. Then,

283299d ≡ 283 (mod 493) Ô⇒ 283299d−1 ≡ 1 (mod 493) Ô⇒ φ(493) = 448 ∣ 299d − 1.

Now it remains to solve the congruence relation 299d ≡ 1 (mod 448). “Inspection” suggests d = 3 is a
solution. Since gcd(299,448) = 1, this is going to be the only solution between 0 and 447. [Otherwise
we would have 448 ∣ 299(x′ − 3) which is clearly impossible.] Hence the decryption exponent d = 3.

(3) Here we want to find the number of x’s satisfying

x ∈ (Z/493Z)∗ and x299 ≡ x (mod 493).

With the conditions above, we may cancel one x on both sides and get

x298 = 1 (mod 493) Ô⇒ o(x) ∣ 298 in (Z/493Z)∗.

On the other hand, x ∈ (Z/493Z)∗ also implies o(x) ∣ φ(493) = 448. Hence o(x) ∣ gcd(298,448) = 2, and
thus either o(x) = 1 or o(x) = 2.

The first case is simple: o(x) = 1 Ô⇒ x = 1. Indeed 1299 ≡ 1 (mod 493).
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For the second case, we want to find all solutions to x2 ≡ 1 (mod 493) Ô⇒ 17 ⋅ 29 ∣ (x − 1)(x + 1). If
both 17 and 29 divide x − 1 then x = 1, same as above. If both divide x + 1 then x = 492. If one divides
(x−1) and the other (x+1) then we either have x = 86 or x = 407. [This was also a homework problem.]

Hence there are four distinct messages that have this property: 1,86,407, and 492.

Solution: Problem 4

(1) To ensure a2 ≡ b2 (mod 247), we just need to make sure 13 ⋅ 19 ∣ (a − b)(a + b). Below is one example:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a − b = 13

a + b = 19
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a = 16

b = 3

Then taking multiples of this pair gives even more pairs: (a, b) = (32,6), (48,9), and (64,12).

(2) No he won’t. To succeed, Bob needs to somehow multiply some of the c’s and get a product — which
we call k — that’s congruent to a square, i.e., the product of p’s, each raised to some even power.

First look at the powers of p1. Since all c’s have p1 raised to odd powers, if k existed, it’s either the
product of two c’s or four c’s to ensure the even power of p1. However, k = c1c2c3c4 is impossible because
the powers of other p’s will be odd this way. Therefore k must be the product of two c’s.

Now look at powers of p2 which should also be even. Since c4 is the only one with even power, it cannot
be part of k. Hence we are now limited to choosing two c’s among {c1, c2, c3}.

Likewise, for powers of p3, we exclude the possibility of choosing c3 as it’s the only one with even power
of p3 among {c1, c2, c3}. Hence we are left with k = c1c2. This won’t work either because the power of
p4 is odd, contradicting to k ≡ a square mod N . Therefore Bob won’t succeed with these c’s.

Solution: Problem 5

Since ∣(Z/pZ)∗∣ = 2k, we want to show that every a ∈ (Z/pZ)∗ [which guarantees gcd(a, p) = 1] with

Legendre symbol (a
p
) = −1 has order 2k. By Euler’s Criterion, this means our targets of interest are any

a ∈ (Z/pZ)∗ such that
a(p−1)/2 = a2

k−1
≡ −1 (mod p).

This implies o(a) ∤ 2k−1. On the other hand, by Fermat’s little theorem,

ap−1 = a2
k

≡ 1 (mod p)
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which implies o(a) ∣ 2k. Therefore the only possibility is if o(a) = 2k itself. Hence o(a) = φ(p) and indeed a is
a primitive root mod p.

Solution: Problem 6

Let p be a prime of form 3k + 2. Clearly for any multiple of p, kp ≡ 0 = 03 (mod p) is trivial. Now suppose
we pick x ≢ 0 (mod p). By Fermat’s Little Theorem, we have

xp−1 = x3k+1 ≡ 1 (mod p).

Squaring both sides and then multiplying by x gives

x6k+3 ≡ x (mod p) Ô⇒ x ≡ (x2k+1)3 (mod p), a cube.

Having shown both cases, we conclude that every integer is a cube mod p.

Solution: Problem 7

First of all, when a = 1, the statement aN ≡ a ≡ aN−φ(N) is trivial.
We will now look at the case where a ≠ 1 is a prime. It follows that, either gcd(a,N) = 1 or N is a multiple

of a. For the former, all we need to do is to apply Fermat’s little theorem (or maybe just Euler’s):

aφ(N) ≡ 1 (mod N) Ô⇒ aφ(N)+[N−φ(N)] = aN ≡ aN−φ(N) (mod N).

If N is a multiple of a, then we can write N as aik where a ∤ k. It follows that gcd(ai, k) = 1, and so

N − φ(N) = aik − φ(aik)

= aik − φ(ai)φ(k)

= aik − ai−1(a − 1)φ(k).

Again, since φ(k) < k always holds and k is some nontrvial factor of N that’s at least 2, we have

N − φ(N) > aik − ai−1(a − 1)k = ai−1k > ai−1.

Furthermore, we claim that ai−1 ⩾ i for all prime a and positive integer i,

ai−1 ⩾ 2i−1 ⩾ i

because 21−1 = 1 and, for larger i’s, the LHS exponentially outgrows the RHS. Also, since ai ∣ N we also have
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aN ≡ 0 (mod ai). Therefore N − φ(N) ⩾ i and we have

aN−φ(N) ≡ 0 ≡ aN (mod ai).

On the other hand, since we have constructed k to be coprime with a, we get

aφ(k) ≡ 1 (mod k).

Recall that φ(N) = φ(ai)φ(k) so φ(k) ∣ φ(N), and thus

aφ(N) ≡ 1 (mod k) Ô⇒ aφ(N)+[N−φ(N)] = aN ≡ aN−φ(N) (mod k).

Therefore,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

aN ≡ aN−φ(N) (mod ai)

aN ≡ aN−φ(N) (mod k)
Ô⇒ aN ≡ aN−φ(N) (mod aik), i.e., (mod N).

Now, for the seemingly more complicated case where a can be a composite, we only need to notice that if

xN ≡ xN−φ(N) (mod N) and yN ≡ yN−φ(N) (mod N)

then so does their product xy, i.e., (xy)N ≡ (xy)N−φ(N) (mod N). If a composite a =∏pi
ei is coprime to N ,

then all its prime factors, i.e., all the pi’s, are also coprime to N . Then the congruence relation holds for each
pi’s, and from what we’ve shown above, we are able to conclude that aN ≡ aN−φ(N) (mod N) as well.
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