MATH 430 Homework 4

Qilin Ye

September 30,2020

Problem 1

Let *p* be an odd prime and $g \neq 0 \pmod{p}$. Let $q = (p-1)/2$.

- (1) What are the possible values that g^q can take?
- (2) Suppose further that *q* is prime. Show that *g* is a generator of $(\mathbb{Z}/p\mathbb{Z})^*$ unless $g \equiv \pm 1 \pmod{p}$ or $g^q \equiv 1$ (mod *p*).

Solution

(1) By Fermat's little theorem, we know that (in the group $(\mathbb{Z}/p\mathbb{Z})^*$)

$$
(g^q)^2 = g^{p-1} = 1.
$$

It immediately follows that g^q can be ± 1 since $(1)^2 = (-1)^2 = 1$. For a more rigorous proof, suppose we have $x^2 \equiv 1 \pmod{p}$, then $x^2 - 1 = (x+1)(x-1) \equiv 0 \pmod{p}$, namely $p \mid (x+1)(x-1)$. It's obvious that, since *p* is a prime, it either divides $x + 1$ or $x - 1$, so the only options for x are ± 1 in $\mathbb{Z}/p\mathbb{Z}$. Hence g^q is either 1 or -1.

(2) We already know that $|(\mathbb{Z}/p\mathbb{Z})^*| = p-1 = 2q$. By Lagrange's theorem, we know that the order of *g*, *o*(*g*), must divide 2*q*. Since *q* is prime, the only divisors — and thus the possible orders of g — are 1, 2, *q*, 2*q*. Since $g \neq 1 \pmod{p}$ we know $g \neq e$ and $o(g) \neq 1$. From part (1) we know that the only possibilities for *o*(*g*) to be 2 is if $g = -1$, and this is negated by the problem. We also know $g^q ≠ e$ which means *o*(*g*) does not divide *q*; hence it cannot be *q*. Thus we are left with $o(g) = 2q$, i.e., $\{g, g^2, \ldots, g^{p-1}\}\)$ contains *p* − 1 distinct elements. Since all of these elements need to be in $(\mathbb{Z}/p\mathbb{Z})^*$, and the group has exactly *p* − 1 elements, we deduce that $\langle g \rangle = (\mathbb{Z}/p\mathbb{Z})^*$, i.e., *g* generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Problem 2

Let *p* be an odd prime and $b \neq 0 \pmod{p}$. Show that the congruence $x^2 \equiv b \pmod{p}$ has 0 solution or 2 solutions mod *p* (for $0 \le x \le p-1$).

Solution

Notice that if *x* is a solution to $x^2 \equiv b \pmod{p}$, so is $(-x)$, and they must be distinct because *p* is odd and $p - x = x$ cannot happen. If we have another *y* satisfying $y^2 \equiv x^2 \equiv b \pmod{p}$, then $p | x^2 - y^2 = (x + y)(x - y)$, and it divides either $x+y$ or $x-y$. Note that since $b \neq 0$ we have $0 \lt x, y \leq p-1$. This means $-(p-1) \leq x-y \leq p-1$ and $0 < x + y \le 2p - 2$. Therefore either $x + y = p$, i.e., $y = -x$, or $x - y = 0$, i.e., $y = x$. We conclude that if $x^2 \equiv b$ (mod *p*) has solutions, it has precisely two solutions. One example is provided in the problem 1 (1).

On the other hand, it is entirely possible that $x^2 = b \pmod{p}$ has no solution: consider the congruence relation $x^2 \equiv 2 \pmod{3}$. A quick test by brute force suggests $1^2 = 1, 2^2 = 1$, and $0^2 = 0$, so no square modulo 3 equals 2.

Problem 3

Let *p* be an odd prime and let $b \neq 0 \pmod{p}$. Let *g* be a generator of $(\mathbb{Z}/p\mathbb{Z})^*$. Let $b \equiv g^k$ for some 1 ≤ *k* ≤ *p* − 1. What necessary and sufficient condition can you impose on *k* so that the congruence $x^2 \equiv b$ (mod *p*) has 2 solutions mod *p*?

Solution

Since *g* generates $(\mathbb{Z}/p\mathbb{Z})^*$, if $x^2 \equiv b \pmod{p}$ has solutions, they are of form g^{ℓ} and $g^{(p-1)-\ell}$ for some ℓ . Then, the original congruence relation becomes (in $\mathbb{Z}/p\mathbb{Z}$)^{*})

$$
g^{2\ell} = g^{2p-2-2\ell} = g^k
$$

from which we see 2ℓ , plus or minus any multiples of $(p-1)$, is even. Therefore *k* being even is a necessary condition in order to make $x^2 \equiv b \pmod{p}$ solvable.

On the other hand, it is sufficient: if k is even then it can be written as $k = 2m$ for some integer m . Then $g^k = (g^m)^2$ and we have found a solution g^m already. The other one will simply be $g^{(p-1)-m}$.

Problem 4

Given 2 is a generator of $(\mathbb{Z}/29\mathbb{Z})^*$, how many generators does this group have? Given 7 is a generator of $(\mathbb{Z}/229\mathbb{Z})^*$, how many generators does this group have?

Solution

(1) Since 2 generates $(\mathbb{Z}/29\mathbb{Z})^*$, we know that

$$
\langle 2 \rangle = \{ \ldots, 2^{-2}, 2^{-1}, 1, 2, 2^{2}, \ldots \} = \{ 1, 2, \ldots, 28 \},
$$

i.e., the set on the LHS permutes the set on the RHS.

First, we claim that $o(2) = 28$. On the one hand, by Lagrange's theorem we immediately know *o*(2) | |(Z/29Z)^{*}| = 28. On the other hand, if *o*(2) < 28, then the LHS can have at most 27 distinct elements and the equation cannot hold. Hence $o(2) = 28$, i.e., $2^{28} = e$.

Also note that

$$
\begin{cases} 2^{i}2^{j} = 2^{i+j} \\ 2^{i}2^{28-i} = 2^{28} = e \implies (2^{i})^{-1} = 2^{28-i} \end{cases}
$$

Now if we only look at the exponents, the two equations give nothing else but the group $(\mathbb{Z}/28\mathbb{Z}, +)$, and the bijective map $f : \mathbb{Z}/28\mathbb{Z} \to (\mathbb{Z}/29\mathbb{Z})^*$ defined by $f(x) = 2^x$ shows that the two groups are isomorphic. Clearly, as 2 generates $(\mathbb{Z}/29\mathbb{Z})^*$, any other generator (and non-generator) has the form 2^n , and to be a generator, 2^n has to satisfy that, given any *b* with $0 \le b \le 27$, we can always find an *a* such that $(2^n)^a = 2^b$ in $\mathbb{Z}/28\mathbb{Z}$. Alternatively, we can write this as

$$
an \equiv b \pmod{28}
$$

which will always have a solution if and only if $gcd(n, 28) = 1$. (The "if" part is immediate by applying Euclid's algorithm and solving the equation $b(an) + b(28c) = b(1)$. The "only if" part can be proven by taking the contrapositive: suppose $gcd(n, 28) = m > 1$, then any Z-combination of *n* and 28 is still a multiple of *m*. Hence if $m \nmid b$, it is impossible to find a solution for $an \equiv b \pmod{28}$.

Therefore, *x* needs to be coprime with 28 to be a generator of $(\mathbb{Z}/29\mathbb{Z})^*$. Hence there are $\varphi(28)$ = $28 \cdot (1/2) \cdot (6/7) = 12^{\dagger}$ such generators.

(2) Likewise, for $(\mathbb{Z}/229\mathbb{Z})^*$, we know it is isomorphic to $(\mathbb{Z}/228\mathbb{Z}, +)$, and the number of generators is $\varphi(228) = 228 \cdot (1/2) \cdot (2/3) \cdot (18/19) = 72^{\dagger}.$

Remark

In general, $(\mathbb{Z}/m\mathbb{Z})^*$ has $\varphi(m-1)$ generators.

Remark: on Euler's Totient Function

I computed $\varphi(28)$ and $\varphi(228)$ using the following proposition. The screenshot is taken from one of my previous notes.

4.6 Isomorphism and Euler's Totient Function

YQL's Notes: Intro to Abstract Algebra

which completes the proof.

Future reference: theorem $4.6.1$

Problem 4.6.1 (4.6.11). Suppose $n \in \mathbb{Z}^+$ has prime factorization $n = \prod_{i=1}^s p_i^{e_i} = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$. Show that

$$
\varphi(n) = n \cdot \prod_{i=1}^{s} \left(1 - \frac{1}{p_i}\right)
$$

Solution 4.6.1. Notice that after being prime factorized, n is now expressed as the product of s pairwise co-prime positive integers, each equaling to a prime raised to some positive power. Therefore,

$$
\varphi(n) = \prod_{i=1}^{s} \varphi(p_i^{e_i}) = \varphi(p_1^{e_1}) \cdot \varphi(p_2^{e_2}) \cdots \varphi(p_s^{e_s})
$$

\n
$$
= \prod_{i=1}^{s} (p_i^{e_i} - p_i^{e_i - 1}) = (p_1^{e_1} - p_1^{e_1 - 1})(p_2^{e_2} - p_2^{e_2 - 1}) \cdots (p_s^{e_s} - p_s^{e_s - 1})
$$
 (by proposition 4.6.10)
\n
$$
= \prod_{i=1}^{s} (p_i^{e_i} (1 - \frac{1}{p_i})) = (p_1^{e_1} (1 - \frac{1}{p_1})) (p_2^{e_1 2} (1 - \frac{1}{p_2})) \cdots (p_s^{e_s} (1 - \frac{1}{p_s}))
$$

\n
$$
= (\prod_{i=1}^{s} p_i^{e_i}) \cdot \prod_{i=1}^{s} (1 - \frac{1}{p_i}) = n \cdot \prod_{i=1}^{s} (1 - \frac{1}{p_i})
$$

Hence proven.

 \Box

 \Box