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Ex.1.2.3 Prove that An(BuC)=(AnB)u(AnQ).

Proof. reAn(BuC) <= reAandzeBuC
<~ zeAand (zeBorzeC)
< (reAandzeB)or (zeAandze(C)
<~ zxe(AnB)u(An(C). O

Ex.1.3.4 (Cancellation Laws). Show that if a,b,c € Z then we have the following laws.

(a) Ifa+b=a+cthenb=c.

Proof. By R4 there exists some additive inverse a, one (in fact, the only) of which we denote as (-a).
Then,

a+b=a+c = -a+(a+b)=-a+(a+c)

= (-a+a)+b=(-a+a)+c (R2)
— 0+b=0+c (R4)
= b=c. (R3) O

(b) If a # 0 and ab = ac then b = c.

Proof. By Ex.1.3.3 the additive inverse of z is denoted as —x := (-1)x and by the previous part such

—z is unique once x is fixed. Hence, since ab = ac,

ab+ (-1)ab=ab+ (-1)ac=0 = ab+a(-¢c)=0 (R2 & Ex.1.3.3)
= a(b+(-¢))=0 (R5)
= a-(b+(-¢))=0 (R3 & Ex.1.3.3)
= b+ (-c) =0. (R6)
Now if we simply apply part (a) to b+ (—¢) = c+ (—¢) =0 we get b = ¢, as desired. O

n +1)2n+1
Ex.1.4.1 Use induction to show that Y i° = w
=1
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Proof. Let ¢(n) be the statement that the above equation holds true for n. Base case is clearly true as

12=1=(1-2-3)/6. Now for the inductive step we assume ((n) holds. Then,

n+1 n

it =Y i+ (n+1)? et n(n+ )(@n+ 1) +(n+1)>2
i=1 i=1 6
1
= %[n(?n +1)+6(n+1)]
_(n+1)(n+2)(2n+3)
= : ,
from which we see p(n) = @(n+1). Thus ¢(n) holds for all n € N and we are done. O

on
1

Ex.1.4.9 Prove forn > 1, Z —21+ E.

sk 2

Proof. Let ¢(n) be the statement that the above equation holds true for n. Clearly ¢(1) the base case is

true as 1+1/2 > 1+ 1/2. For the inductive step, assuming ¢(n) is true. Then,

2n+1 n 2n+1

1 1 1
Tk

=1 k=2m+1

(p(n))

(bound by largest term)

Therefore p(n) = p(n+1) and ¢(n) holds for all n € N. Done. O
Ex.1.5.4 Show that there are infinitely many primes.

n
Proof. Suppose not, then we may enumerate all the primes P := {p;}I~;. Now consider M := 1+ Hpi.
i=1
n
It follows that M — Hpi = 1. If M is composite then it has some prime factor py. Since {p;}I, is an
i=1
n
enumeration of all primes, px € P. Hence p | M Ap | H p; implies p divides the LHS, and so it also divides
i=1
the RHS, i.e., py | 1, which is absurd. Hence this contradiction tells us there are infinitely many primes. O
Ex.1.6.3 Prove that a =b (mod m) if and only if a and b have the same remainder upon division by m.
Proof. There exists a1, b1, a,, b, € Z with 0 < a,., b, < m such that a = ma; + a, and b = mby + b,
= : ifa=bthen m|a-b=m(a;—b1)+ (ar —b.). It follows that m | a, — b.. By construction
-m < a, — b, <m so the only possibility is if a, = b, i.e., a and b have the same remainder.
«——: if a, = b, then m |m(a; —b1) -0=m(a; —b1) + (a, —b.) =a-b, i.e., a=b (mod m). O

Ex.1.6.4 Create addition and multiplication tables of Z/7Z and Z/8Z.
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Solution

See below. Z/TZ on the right and Z/8Z on the left.
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| O | O | O AN |M 10415263
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AN ||| 0| OO 10123456
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[eo i B B B B~ T B (N Yoo RN I S| = | AN || F |0 O |-

gcd(83,38) using the Euclidean algorithm.

(a) Compute d:

Ex.1.6.8

Solution

2-38+7

83 =

38=5-7T+3

2-3+1

7

3-1 = gcd(83,38) =1.

3=

83m + 38n for integers m,n.

(b) Use the result of (a) to write d

Solution

83+ (-2)(38)
38+ (=5)(7)

2:38+7 = 7=

83 =

(=5)(83) + (11)(38)

5:7+3 = 3=

38 =

2.3+1 = 1=7+(-2)(3) = (11)(83) + (~24)(38).

7=

11 and n = -24.

Hence m
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(¢) Use (b) to solve 38z =1 (mod 83).

Solution

This is immediate from (b): 38-(-24) = 11-(-83) + 1. Since gcd(38,83) =1, the general solution
is 83k — 24, where k € Z.

Ex.1.7.5 Define a relation on a,b € R by a ~b <= a —b e Z. Show that this is an equivalence relation on R. Find a

nice set of representatives for the equivalence classes.
Solution
First we show ~ is indeed an equivalence relation:
(1) Reflexivity: YVaeR,a—a=0€Z so a~a.
(2) Symmetry: if a ~b then a—b e Z. Clearly b-a €Z too. Thus b~ a.

(3) Transitivity: if a ~bAb~cthen a-bb—ceZ. Hence a-—c=(a-b)+ (b-c¢)€Z and so a ~ c.

Yy

[(-3.0)]

[(-2.0)]

[(-1,0)]
[{(0,0)]
[(-8,0)] [(1,0)]
[{=7.0)] [(2,0)]
({-6.0)] [(3,0)]
[{-5.0)] / [(4,0)]
> T

A nice representation of the collection of equivalence classes: {[{z0,0)]:xz¢ € Z}. A nice representative
for these equivalence classes? I'd go with the set of lattice points on the z-axis.

Geometric interpretation of these equivalence classes: each line (more formally put, a collection of
points on R?) is the equivalence class [{xg,0)] where zq is the z-intercept. Their slopes are all 1. The

z-intercepts are all lattice points, i.e., with integer coordinates.



