MATH 410 PROBLEM SET # 1

Qilin Ye

January 30, 2021

Ex.1.2.3 Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.
$$x \in A \cap (B \cup C) \iff x \in A \text{ and } x \in B \cup C$$

 $\iff x \in A \text{ and } (x \in B \text{ or } x \in C)$
 $\iff (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)$
 $\iff x \in (A \cap B) \cup (A \cap C).$

Ex.1.3.4 (*Cancellation Laws*). Show that if $a, b, c \in \mathbb{Z}$ then we have the following laws.

(a) If a + b = a + c then b = c.

Proof. By R4 there exists some additive inverse a, one (in fact, the only) of which we denote as (-a). Then,

$$a + b = a + c \implies -a + (a + b) = -a + (a + c)$$
$$\implies (-a + a) + b = (-a + a) + c \qquad (R2)$$
$$\implies 0 + b = 0 + c \qquad (R4)$$
$$\implies b = c. \qquad (R3)$$

(b) If $a \neq 0$ and ab = ac then b = c.

Proof. By Ex.1.3.3 the additive inverse of x is denoted as -x := (-1)x and by the previous part such -x is unique once x is fixed. Hence, since ab = ac,

$$ab + (-1)ab = ab + (-1)ac = 0 \implies ab + a(-c) = 0$$

$$\implies a(b + (-c)) = 0$$
(R2 & Ex.1.3.3)
(R5)

$$\implies a \cdot (b + (-c)) = 0 \qquad (R3 \ \mathcal{C} Ex.1.3.3)$$

$$\implies b + (-c) = 0. \tag{R6}$$

Now if we simply apply part (a) to b + (-c) = c + (-c) = 0 we get b = c, as desired.

Ex.1.4.1 Use induction to show that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.

Proof. Let $\varphi(n)$ be the statement that the above equation holds true for n. Base case is clearly true as $1^2 = 1 = (1 \cdot 2 \cdot 3)/6$. Now for the inductive step we assume $\varphi(n)$ holds. Then,

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^n i^2 + (n+1)^2 \stackrel{\varphi(n)}{=} \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$
$$= \frac{n+1}{6} [n(2n+1) + 6(n+1)]$$
$$= \frac{(n+1)(n+2)(2n+3)}{6},$$

from which we see $\varphi(n) \implies \varphi(n+1)$. Thus $\varphi(n)$ holds for all $n \in \mathbb{N}$ and we are done.

Ex.1.4.9 Prove for $n \ge 1$, $\sum_{k=1}^{2^n} \frac{1}{k} \ge 1 + \frac{n}{2}$.

Proof. Let $\varphi(n)$ be the statement that the above equation holds true for n. Clearly $\varphi(1)$ the base case is true as $1 + 1/2 \ge 1 + 1/2$. For the inductive step, assuming $\varphi(n)$ is true. Then,

$$\sum_{k=1}^{2^{n+1}} \frac{1}{k} = \sum_{k=1}^{2^{n}} \frac{1}{k} + \sum_{k=2^{n+1}+1}^{2^{n+1}} \frac{1}{k}$$

$$\geqslant 1 + \frac{n}{2} + \sum_{k=2^{n+1}+1}^{2^{n+1}} \frac{1}{k} \qquad (\varphi(n))$$

$$\geqslant 1 + \frac{n}{2} + \frac{2^{n}}{2^{n} + 1} \qquad (\text{bound by largest term})$$

$$\geqslant 1 + \frac{n}{2} + \frac{1}{2} = 1 + \frac{n+1}{2}.$$

Therefore $\varphi(n) \implies \varphi(n+1)$ and $\varphi(n)$ holds for all $n \in \mathbb{N}$. Done.

Ex.1.5.4 Show that there are infinitely many primes.

Proof. Suppose not, then we may enumerate all the primes $\mathcal{P} \coloneqq \{p_i\}_{i=1}^n$. Now consider $M \coloneqq 1 + \prod_{i=1}^n p_i$. It follows that $M - \prod_{i=1}^n p_i = 1$. If M is composite then it has some prime factor p_k . Since $\{p_i\}_{i=1}^n$ is an enumeration of all primes, $p_k \in \mathcal{P}$. Hence $p \mid M \land p \mid \prod_{i=1}^n p_i$ implies p divides the LHS, and so it also divides the RHS, i.e., $p_k \mid 1$, which is absurd. Hence this contradiction tells us there are infinitely many primes. \Box Ex.1.6.3 Prove that $a \equiv b \pmod{m}$ if and only if a and b have the same remainder upon division by m.

Proof. There exists
$$a_1, b_1, a_r, b_r \in \mathbb{Z}$$
 with $0 \le a_r, b_r < m$ such that $a = ma_1 + a_r$ and $b = mb_1 + b_r$.
 \implies : if $a \equiv b$ then $m \mid a - b = m(a_1 - b_1) + (a_r - b_r)$. It follows that $m \mid a_r - b_r$. By construction $-m < a_r - b_r < m$ so the only possibility is if $a_r = b_r$, i.e., a and b have the same remainder.
 \iff : if $a_r = b_r$ then $m \mid m(a_1 - b_1) - 0 = m(a_1 - b_1) + (a_r - b_r) = a - b$, i.e., $a \equiv b \pmod{m}$.

Ex.1.6.4 Create addition and multiplication tables of $\mathbb{Z}/7\mathbb{Z}$ and $\mathbb{Z}/8\mathbb{Z}$.

5 6

 $3 \mid 4$

4 5

5 6

0 0

5 6

3 5

 $\begin{array}{cccc}
1 & 4 \\
6 & 3 \\
4 & 2 \\
2 & 1 \\
\end{array}$

Solution

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
	2	3	4	5	6	7	0	1
;	3	4	5	6	7	0	1	2
	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
3	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6
			-					
×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
5 6	0	6	4	$\frac{1}{2}$	$\frac{4}{0}$	6	4	$\frac{3}{2}$
-	-	-			-	-		
7	0	7	6	5	4	3	2	1

See below. $\mathbb{Z}/7\mathbb{Z}$ on the right and $\mathbb{Z}/8\mathbb{Z}$ on the left.

Ex.1.6.8 (a) Compute $d \coloneqq \gcd(83, 38)$ using the Euclidean algorithm.

Solution	
	$83 = 2 \cdot 38 + 7$
	$38 = 5 \cdot 7 + 3$
	$7 = 2 \cdot 3 + 1$
	$3 = 3 \cdot 1 \implies \gcd(83, 38) = 1.$

(b) Use the result of (a) to write d = 83m + 38n for integers m, n.

Solution $83 = 2 \cdot 38 + 7 \implies 7 = 83 + (-2)(38)$ $38 = 5 \cdot 7 + 3 \implies 3 = 38 + (-5)(7) = (-5)(83) + (11)(38)$ $7 = 2 \cdot 3 + 1 \implies 1 = 7 + (-2)(3) = (11)(83) + (-24)(38).$ Hence m = 11 and n = -24. (c) Use (b) to solve $38x \equiv 1 \pmod{83}$.

Solution	
This is im	mediate from (b): $38 \cdot (-24) = 11 \cdot (-83) + 1$. Since $gcd(38, 83) = 1$, the general solution
	1, where $k \in \mathbb{Z}$.
	This is im

Ex.1.7.5 Define a relation on $a, b \in \mathbb{R}$ by $a \sim b \iff a - b \in \mathbb{Z}$. Show that this is an equivalence relation on \mathbb{R} . Find a nice set of representatives for the equivalence classes.

Solution

First we show \sim is indeed an equivalence relation:

- (1) Reflexivity: $\forall a \in \mathbb{R}, a a = 0 \in \mathbb{Z}$ so $a \sim a$.
- (2) Symmetry: if $a \sim b$ then $a b \in \mathbb{Z}$. Clearly $b a \in \mathbb{Z}$ too. Thus $b \sim a$.
- (3) Transitivity: if $a \sim b \wedge b \sim c$ then $a b, b c \in \mathbb{Z}$. Hence $a c = (a b) + (b c) \in \mathbb{Z}$ and so $a \sim c$.

A nice representation of the collection of equivalence classes: $\{[\langle x_0, 0 \rangle] : x_0 \in \mathbb{Z}\}$. A nice representative for these equivalence classes? I'd go with the set of lattice points on the x-axis.

Geometric interpretation of these equivalence classes: each line (more formally put, a collection of points on \mathbb{R}^2) is the equivalence class $[\langle x_0, 0 \rangle]$ where x_0 is the *x*-intercept. Their slopes are all 1. The *x*-intercepts are all lattice points, i.e., with integer coordinates.