MATH 410 Problem Set # 1

Qilin Ye

January 30, 2021

-oc

Ex.1.2.3 Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.
\n
$$
x \in A \cap (B \cup C) \iff x \in A \text{ and } x \in B \cup C
$$
\n
$$
\iff x \in A \text{ and } (x \in B \text{ or } x \in C)
$$
\n
$$
\iff (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)
$$
\n
$$
\iff x \in (A \cap B) \cup (A \cap C).
$$

Ex.1.3.4 (*Cancellation Laws*). Show that if $a, b, c \in \mathbb{Z}$ then we have the following laws.

(a) If $a + b = a + c$ then $b = c$.

Proof. By R4 there exists some additive inverse a, one (in fact, the only) of which we denote as $(-a)$. Then,

$$
a+b = a+c \implies -a + (a+b) = -a + (a+c)
$$

\n
$$
\implies (-a+a) + b = (-a+a) + c
$$
 (R2)
\n
$$
\implies 0+b = 0+c
$$
 (R4)
\n
$$
\implies b = c.
$$
 (R3)

(b) If $a \neq 0$ and $ab = ac$ then $b = c$.

Proof. By Ex.1.3.3 the additive inverse of x is denoted as $-x := (-1)x$ and by the previous part such $-x$ is unique once x is fixed. Hence, since $ab = ac$,

$$
ab + (-1)ab = ab + (-1)ac = 0 \implies ab + a(-c) = 0
$$
\n
$$
\implies a(b + (-c)) = 0
$$
\n(R2 & Ex.1.3.3)\n
\n(R5)

$$
\implies a \cdot (b + (-c)) = 0 \qquad (\text{R3 } \& \text{Ex.1.3.3})
$$

$$
\implies b + (-c) = 0. \tag{R6}
$$

Now if we simply apply part (a) to $b + (-c) = c + (-c) = 0$ we get $b = c$, as desired.

Ex.1.4.1 Use induction to show that n $\sum_{i=1}$ $i^2 = \frac{n(n+1)(2n+1)}{6}$ $\frac{1}{6}$. \Box

 \Box

n

 \Box

Proof. Let $\varphi(n)$ be the statement that the above equation holds true for n. Base case is clearly true as $1^2 = 1 = (1 \cdot 2 \cdot 3)/6$. Now for the inductive step we assume $\varphi(n)$ holds. Then,

$$
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^n i^2 + (n+1)^2 \stackrel{\varphi(n)}{=} \frac{n(n+1)(2n+1)}{6} + (n+1)^2
$$

$$
= \frac{n+1}{6} [n(2n+1) + 6(n+1)]
$$

$$
= \frac{(n+1)(n+2)(2n+3)}{6},
$$

from which we see $\varphi(n) \implies \varphi(n+1)$. Thus $\varphi(n)$ holds for all $n \in \mathbb{N}$ and we are done.

Ex.1.4.9 Prove for $n \geq 1$, 2^n $\sum_{k=1}$ 1 $\frac{1}{k} \geq 1 + \frac{n}{2}$ $\frac{1}{2}$.

> *Proof.* Let $\varphi(n)$ be the statement that the above equation holds true for n. Clearly $\varphi(1)$ the base case is true as $1 + 1/2 \ge 1 + 1/2$. For the inductive step, assuming $\varphi(n)$ is true. Then,

$$
\sum_{k=1}^{2^{n+1}} \frac{1}{k} = \sum_{k=1}^{2^n} \frac{1}{k} + \sum_{k=2^n+1}^{2^{n+1}} \frac{1}{k}
$$

\n
$$
\geq 1 + \frac{n}{2} + \sum_{k=2^n+1}^{2^{n+1}} \frac{1}{k}
$$

\n
$$
\geq 1 + \frac{n}{2} + \frac{2^n}{2^n + 1}
$$

\n
$$
\geq 1 + \frac{n}{2} + \frac{1}{2} = 1 + \frac{n+1}{2}.
$$

\n(bound by largest term)

Therefore $\varphi(n) \implies \varphi(n+1)$ and $\varphi(n)$ holds for all $n \in \mathbb{N}$. Done.

Ex.1.5.4 Show that there are infinitely many primes.

Proof. Suppose not, then we may enumerate all the primes $P = \{p_i\}_{i=1}^n$. Now consider $M = 1 +$ $\prod_{i=1}$ p_i . It follows that M n $\prod_{i=1} p_i = 1$. If M is composite then it has some prime factor p_k . Since $\{p_i\}_{i=1}^n$ is an enumeration of all primes, $p_k \in \mathcal{P}$. Hence $p | M \wedge p |$ n $\prod_{i=1}$ p_i implies p divides the LHS, and so it also divides the RHS, i.e., $p_k | 1$, which is absurd. Hence this contradiction tells us there are infinitely many primes. \Box

Ex.1.6.3 Prove that $a \equiv b \pmod{m}$ if and only if a and b have the same remainder upon division by m.

Proof. There exists $a_1, b_1, a_r, b_r \in \mathbb{Z}$ with $0 \le a_r, b_r \le m$ such that $a = ma_1 + a_r$ and $b = mb_1 + b_r$. \Rightarrow : if $a \equiv b$ then $m | a - b = m(a_1 - b_1) + (a_r - b_r)$. It follows that $m | a_r - b_r$. By construction $-m < a_r - b_r < m$ so the only possibility is if $a_r = b_r$, i.e., a and b have the same remainder. \Longleftarrow : if $a_r = b_r$ then $m \mid m(a_1 - b_1) - 0 = m(a_1 - b_1) + (a_r - b_r) = a - b$, i.e., $a \equiv b \pmod{m}$. \Box

Ex.1.6.4 Create addition and multiplication tables of $\mathbb{Z}/7\mathbb{Z}$ and $\mathbb{Z}/8\mathbb{Z}$.

 $1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6$ $2 | 3 | 4 | 5 | 6 | 0$ $3 | 4 | 5 | 6 | 0 | 1$

 $5 | 6 | 0 | 1 | 2 | 3$

 $2 | 4 | 6 | 1 | 3 | 5$ $3 | 6 | 2 | 5 | 1 | 4$ $4 | 1 | 5 | 2 | 6 | 3$

Solution

See below. $\mathbb{Z}/7\mathbb{Z}$ on the right and $\mathbb{Z}/8\mathbb{Z}$ on the left.

Ex.1.6.8 (a) Compute $d := \gcd(83, 38)$ using the Euclidean algorithm.

Solution	
	$83 = 2 \cdot 38 + 7$
	$38 = 5 \cdot 7 + 3$
	$7 = 2 \cdot 3 + 1$
	$3 = 3 \cdot 1 \implies \gcd(83, 38) = 1.$

(b) Use the result of (a) to write $d = 83m + 38n$ for integers m, n.

Solution $83 = 2 \cdot 38 + 7 \implies 7 = 83 + (-2)(38)$ $38 = 5 \cdot 7 + 3 \implies 3 = 38 + (-5)(7) = (-5)(83) + (11)(38)$ $7 = 2 \cdot 3 + 1 \implies 1 = 7 + (-2)(3) = (11)(83) + (-24)(38).$ Hence $m = 11$ and $n = -24$.

(c) Use (b) to solve $38x \equiv 1 \pmod{83}$.

Ex.1.7.5 Define a relation on $a, b \in \mathbb{R}$ by $a \sim b \iff a - b \in \mathbb{Z}$. Show that this is an equivalence relation on \mathbb{R} . Find a nice set of representatives for the equivalence classes.

```
Solution
```
First we show ∼ is indeed an equivalence relation:

- (1) Reflexivity: $\forall a \in \mathbb{R}, a a = 0 \in \mathbb{Z}$ so $a \sim a$.
- (2) Symmetry: if $a \sim b$ then $a b \in \mathbb{Z}$. Clearly $b a \in \mathbb{Z}$ too. Thus $b \sim a$.
- (3) Transitivity: if $a \sim b \land b \sim c$ then $a b$, $b c \in \mathbb{Z}$. Hence $a c = (a b) + (b c) \in \mathbb{Z}$ and so $a \sim c$.

A nice representation of the collection of equivalence classes: $\{[\langle x_0, 0 \rangle] : x_0 \in \mathbb{Z}\}\.$ A nice representative for these equivalence classes? I'd go with the set of lattice points on the x -axis.

Geometric interpretation of these equivalence classes: each line (more formally put, a collection of points on \mathbb{R}^2) is the equivalence class $[\langle x_0, 0 \rangle]$ where x_0 is the x-intercept. Their slopes are all 1. The x-intercepts are all lattice points, i.e., with integer coordinates.