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Ex.1.2.3 Prove that A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).

Proof. x ∈ A ∩ (B ∪C) ⇐⇒ x ∈ A and x ∈ B ∪C

⇐⇒ x ∈ A and (x ∈ B or x ∈ C)

⇐⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)

⇐⇒ x ∈ (A ∩B) ∪ (A ∩C).

Ex.1.3.4 (Cancellation Laws). Show that if a, b, c ∈ Z then we have the following laws.

(a) If a + b = a + c then b = c.

Proof. By R4 there exists some additive inverse a, one (in fact, the only) of which we denote as (−a).
Then,

a + b = a + c Ô⇒ −a + (a + b) = −a + (a + c)

Ô⇒ (−a + a) + b = (−a + a) + c (R2)

Ô⇒ 0 + b = 0 + c (R4)

Ô⇒ b = c. (R3)

(b) If a ≠ 0 and ab = ac then b = c.

Proof. By Ex.1.3.3 the additive inverse of x is denoted as −x ∶= (−1)x and by the previous part such

−x is unique once x is fixed. Hence, since ab = ac,

ab + (−1)ab = ab + (−1)ac = 0 Ô⇒ ab + a(−c) = 0 (R2 & Ex.1.3.3)

Ô⇒ a(b + (−c)) = 0 (R5)

Ô⇒ a ⋅ (b + (−c)) = 0 (R3 & Ex.1.3.3)

Ô⇒ b + (−c) = 0. (R6)

Now if we simply apply part (a) to b + (−c) = c + (−c) = 0 we get b = c, as desired.

Ex.1.4.1 Use induction to show that
n

∑
i=1

i2 = n(n + 1)(2n + 1)
6

.
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Proof. Let ϕ(n) be the statement that the above equation holds true for n. Base case is clearly true as

12 = 1 = (1 ⋅ 2 ⋅ 3)/6. Now for the inductive step we assume ϕ(n) holds. Then,

n+1
∑
i=1

i2 =
n

∑
i=1

i2 + (n + 1)2 ϕ(n)=== n(n + 1)(2n + 1)
6

+ (n + 1)2

= n + 1

6
[n(2n + 1) + 6(n + 1)]

= (n + 1)(n + 2)(2n + 3)
6

,

from which we see ϕ(n) Ô⇒ ϕ(n + 1). Thus ϕ(n) holds for all n ∈ N and we are done.

Ex.1.4.9 Prove for n ⩾ 1,
2n

∑
k=1

1

k
⩾ 1 + n

2
.

Proof. Let ϕ(n) be the statement that the above equation holds true for n. Clearly ϕ(1) the base case is

true as 1 + 1/2 ⩾ 1 + 1/2. For the inductive step, assuming ϕ(n) is true. Then,

2n+1

∑
k=1

1

k
=

2n

∑
k=1

1

k
+

2n+1

∑
k=2n+1

1

k

⩾ 1 + n

2
+

2n+1

∑
k=2n+1

1

k
(ϕ(n))

⩾ 1 + n

2
+ 2n

2n + 1
(bound by largest term)

⩾ 1 + n

2
+ 1

2
= 1 + n + 1

2
.

Therefore ϕ(n) Ô⇒ ϕ(n + 1) and ϕ(n) holds for all n ∈ N. Done.

Ex.1.5.4 Show that there are infinitely many primes.

Proof. Suppose not, then we may enumerate all the primes P ∶= {pi}ni=1. Now consider M ∶= 1 +
n

∏
i=1

pi.

It follows that M −
n

∏
i=1

pi = 1. If M is composite then it has some prime factor pk. Since {pi}ni=1 is an

enumeration of all primes, pk ∈ P. Hence p ∣ M ∧ p ∣
n

∏
i=1

pi implies p divides the LHS, and so it also divides

the RHS, i.e., pk ∣ 1, which is absurd. Hence this contradiction tells us there are infinitely many primes.

Ex.1.6.3 Prove that a ≡ b (mod m) if and only if a and b have the same remainder upon division by m.

Proof. There exists a1, b1, ar, br ∈ Z with 0 ⩽ ar, br <m such that a =ma1 + ar and b =mb1 + br.

Ô⇒ : if a ≡ b then m ∣ a − b = m(a1 − b1) + (ar − br). It follows that m ∣ ar − br. By construction

−m < ar − br <m so the only possibility is if ar = br, i.e., a and b have the same remainder.

⇐Ô : if ar = br then m ∣ m(a1 − b1) − 0 =m(a1 − b1) + (ar − br) = a − b, i.e., a ≡ b (mod m).

Ex.1.6.4 Create addition and multiplication tables of Z/7Z and Z/8Z.
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Solution

See below. Z/7Z on the right and Z/8Z on the left.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

× 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Ex.1.6.8 (a) Compute d ∶= gcd(83,38) using the Euclidean algorithm.

Solution

83 = 2 ⋅ 38 + 7

38 = 5 ⋅ 7 + 3

7 = 2 ⋅ 3 + 1

3 = 3 ⋅ 1 Ô⇒ gcd(83,38) = 1.

(b) Use the result of (a) to write d = 83m + 38n for integers m,n.

Solution
83 = 2 ⋅ 38 + 7 Ô⇒ 7 = 83 + (−2)(38)

38 = 5 ⋅ 7 + 3 Ô⇒ 3 = 38 + (−5)(7) = (−5)(83) + (11)(38)

7 = 2 ⋅ 3 + 1 Ô⇒ 1 = 7 + (−2)(3) = (11)(83) + (−24)(38).

Hence m = 11 and n = −24.
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(c) Use (b) to solve 38x ≡ 1 (mod 83).

Solution

This is immediate from (b): 38 ⋅ (−24) = 11 ⋅ (−83) + 1. Since gcd(38,83) = 1, the general solution

is 83k − 24, where k ∈ Z.

Ex.1.7.5 Define a relation on a, b ∈ R by a ∼ b ⇐⇒ a − b ∈ Z. Show that this is an equivalence relation on R. Find a

nice set of representatives for the equivalence classes.

Solution

First we show ∼ is indeed an equivalence relation:

(1) Reflexivity: ∀a ∈ R, a − a = 0 ∈ Z so a ∼ a.

(2) Symmetry: if a ∼ b then a − b ∈ Z. Clearly b − a ∈ Z too. Thus b ∼ a.

(3) Transitivity: if a ∼ b ∧ b ∼ c then a − b, b − c ∈ Z. Hence a − c = (a − b) + (b − c) ∈ Z and so a ∼ c.

x

y

[⟨−8,0⟩]

[⟨−7,0⟩]

[⟨−6,0⟩]

[⟨−5,0⟩]

[⟨−4,0⟩]

[⟨−3,0⟩]

[⟨−2,0⟩]

[⟨−1,0⟩]

[⟨0,0⟩]

[⟨1,0⟩]

[⟨2,0⟩]

[⟨3,0⟩]

[⟨4,0⟩]

A nice representation of the collection of equivalence classes: {[⟨x0,0⟩] ∶ x0 ∈ Z}. A nice representative

for these equivalence classes? I’d go with the set of lattice points on the x-axis.

Geometric interpretation of these equivalence classes: each line (more formally put, a collection of

points on R2) is the equivalence class [⟨x0,0⟩] where x0 is the x-intercept. Their slopes are all 1. The

x-intercepts are all lattice points, i.e., with integer coordinates.
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