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Section 1.7

1.7.5 Done in HW1.

1.7.6 Draw the poset diagram for the set of all subsets of {1,2,3,4} under the relation ⊂.

Solution

{1,2,3,4}

{2,3,4} {1,3,4} {1,2,4} {1,2,3}

{3,4} {2,4}

{1,4}

{2,3}

{1,3} {1,2}

{4} {2} {3} {1}

∅

Section 1.8

1.8.1 State whether each of the following equations is true or false and explain.

(1) f(A ∪B) = f(A) ∪ f(B).
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Solution

True. Ô⇒ shows ⊂ and ⇐Ô shows ⊃.

y ∈ f(A ∪B) ⇐⇒ y = f(x) for some x ∈ A ∪B

⇐⇒ y = f(x) for some x ∈ A

or y = f(x) for some x ∈ B

⇐⇒ y ∈ f(A) or y ∈ f(B)

⇐⇒ y ∈ f(A) ∪ f(B).

(2) f(A ∩B) = f(A) ∩ f(B). True. Proof is analogous — simply replace ∪ and “or” above by ∩ and “and”.

1.8.18 Which of the following are binary operations on Z?

(1) a ○ b ∶= a/b. Nope because a/b may not be an integer while both a and b are.

(2) a ○ b ∶= a2b2. Yes. ○ is well defined and a2b2 ∈ Z whenever a, b ∈ Z.

(3) a ○ b =
√
ab. Nope; same as (1).

Section 2.1

2.1.7 Show that the identity element of a group is unique. Then show that, for a ∈ G, the element a−1 is unique.

Proof. Let e, e′ ∈ G be identities. Treating e as the identity and using it on e′ we have ee′ = e′e = e′. On

the other hand, treating e′ as the identity and using it on e we have ee′ = e′e = e. Therefore e = e′.

Now pick a ∈ G and suppose a−1, a−1
′

are inverses of a. Then aa−1 = a−1a = e and aa−1
′

= a−1
′

a = e. Since

a−1 = ea−1 = (a−1
′

a)a−1 = a−1
′

(aa−1) = a−1
′

we see that inverses are indeed unique.

2.1.10 Show that in a group G, if a, b ∈ G and (ab)2 = a2b2 then ab = ba.

Proof. Multiplying both sides by a−1 on the left and b−1 on the right, we have

a−1(abab)b−1 = a−1(aabb)b−1 Ô⇒ (a−1a)ba(bb−1) = (a−1a)ab(bb−1) Ô⇒ ba = ab.

2.1.13 Show that ∣Sn∣ = n! and ∣Dn∣ = 2n.

Proof. For Sn, notice that, for a permutation of {1,2, . . . , n}, we have n options to choose for what 1 gets

mapped to. Then we have n − 1 options to choose what 2 gets mapped to. So on and so forth, until for n

we only have one remaining spot to assign. Therefore we have n(n − 1) . . . (n − (n − 1))1 = n! options.

For Dn, notice that each “phase” of a regular n-gon is uniquely determined by the combination of its

orientation and the relative position of one vertex. We pick two adjacent vertices d1 and d2. Once their

positions are determined, so is the entire n-gon. Fixing d1 we have two options for d2. Staying with the

same orientation [?] (i.e., clockwise or counterclockwise) we both have n possible options for d1 and 2 as

the n-gon has n vertices. Hence ∣Dn∣ = 2n.
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Section 2.2

2.2.4 Prove that every multiplication for a finite group is a Latin square.

Proof. Suppose c, d are in the same row of a multiplication table such that c = d. Assume they are on

row a and that c = ax, d = ay. Multiplying both by a−1 on the left, we have x = y, i.e., c and d are in the

same entry.

Likewise, suppose e, f are both in the column corresponding to b. Then for some z,w we have zb = e and

wb = f . Multiplying both by b−1 on the right we obtain z = w, so e and f must be in the same entry as

well.

2.2.7 Consider the set SO(2) consisting of matrices

m(θ) =

⎡
⎢
⎢
⎢
⎢
⎣

cos θ − sin θ

sinθ cos θ

⎤
⎥
⎥
⎥
⎥
⎦

where θ ∈ R. Show that this is a group under matrix multiplication. What is the effect of m(θ) acting on

v = [1 0]T ? Is this group commutative?

Solution

Starting from the second question —m(θ) rotates the vector v by θ counterclockwise. To see that these

rotation matrices form a group: closure is guaranteed by the fact that compositions of rotations are

still rotations; associativity is trivial as rotating by θ1+(θ2+θ3) is the same as rotating by (θ1+θ2)+θ3;

identity is m(0) = I2×2, i.e., not rotating at all; and inverse of m(θ) is m(−θ), i.e., rotating backwards.

Indeed this group is commutative as m(θ1)m(θ2) means rotating (counterclockwise) by θ2 followed by

rotating by θ1, whereas m(θ2)m(θ1) means the other way around. Both of them produces the same

outcome of rotating by θ1 + θ2.

2.2.8 Suppose that G is a group with identity e. Show that if g2 = e for all g ∈ G then G is Abelian.

Proof. Since g2 = e for all g ∈ G we know g = g−1. Take a, b ∈ G. It follows that (ab)2 = abab = e. On the

other hand, so is aabb = a2b2. Then the claim follows from Ex.2.1.10 by applying a−1 to the left and b−1 to

the right on the equation (ab)2 = a2b2.
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