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3.4.1 First we enumerate the elements of D4 ∶ {e, r, r2, r3, f, fr, fr2, fr3}. One normal subgroup is immediate:
{e, r, r2, r3} (this is normal because it has index 2).

Before looking for other normal subgroups, first recall that D4 is represented by ⟨r, f ∣ r4 = f2 = e, frf = r−1 = r3⟩.
It follows that we immediately have the following properties:

frf = r3 = r3f2 Ô⇒ fr = r3f and fr2 = (fr)r = r3(fr) = r6f = r2f.

Now we find other normal subgroups of order 4. Suppose H ◁D4. Further assume f ∈H. Then

r−1fr = r3fr = r6f = r2f = fr2 ∈H

and so f ∈ H ⇐⇒ fr2 ∈ H. Notice that this also implies r2 ∈ H. Time to check that {e, r2, f, fr2} is a
subgroup; we use the two-step method.

(1) Closure: obvious as the product of any two elements of H still has even power of r.

(2) Inverse: e−1 = e, (r2)−1 = r2, f−1 = f , and (fr2)−1 = (r2)−1f−1 = r2f = fr2.

Indeed {e, r2, f, fr2} form a subgroup of H and since [G ∶H] = 2 it is normal.

Now, instead of assuming f ∈H we assume fr ∈H. Conjugating by r gives

r−1(fr)r = r3fr2 = rf = fr3

and so fr ∈ H ⇐⇒ fr3 ∈ H. This then automatically leads to r2 ∈ H as well. Now we check whether
{e, r2, fr, fr3} is a subgroup:

(1) Closure: trivial when involving e, so it suffices to check the remaining 9 terms: (f2)2 = e, r2(fr) =
fr3, r2(fr3) = fr, (fr)r2 = fr3, (fr)2 = e, (fr)(fr3) = r2, (fr3)(r2) = fr, (fr3)(fr) = r2, and (fr3)2 = e.

(2) Inverse: trivial for e and r2. (fr)−1 = r−1f−1 = r3f = fr and (fr3)−1 = (r3)−1f−1 = rf = fr3.

Indeed, {e, r2, fr, fr3} form a subgroup of H and since [G ∶H] = 2 it is normal.

Finally, time for normal subgroups of order 2, of which there is only one: {e, r2}. Indeed, r2 commutes with
any element in D4 so g−1(r2)g = r2(g−1g) = r2. Notice that the subgroup {e, f} is not normal: r−1fr = fr2.
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3.4.5 First notice that D4/ ⟨R2⟩ contains 4 elements, namely {e, r2} = ⟨r2⟩ ,{r, r3} = r ⟨r2⟩ ,{f, fr2} = f ⟨r2⟩, and
{fr, fr3} = fr ⟨r2⟩. We have ⟨r2⟩ = r2 ⟨r2⟩ , r ⟨r2⟩ = r3 ⟨r2⟩ , f ⟨r2⟩ = fr2 ⟨r2⟩, and fr ⟨r2⟩ = fr3 ⟨r2⟩. Therefore,
one way to produce the multiplication table for D4/ ⟨r2⟩ is as follows:

⋅ ⟨r2⟩ r ⟨r2⟩ f ⟨r2⟩ fr ⟨r2⟩

⟨r2⟩ ⟨r2⟩ r ⟨r2⟩ f ⟨r2⟩ fr ⟨r2⟩

r ⟨r2⟩ r ⟨r2⟩ ⟨r2⟩ fr ⟨r2⟩ f ⟨r2⟩

f ⟨r2⟩ f ⟨r2⟩ fr ⟨r2⟩ ⟨r2⟩ r ⟨r2⟩

fr ⟨r2⟩ fr ⟨r2⟩ f ⟨r2⟩ r ⟨r2⟩ ⟨r2⟩

3.4.8 Let H1,H2 be normal subgroups of G. Clearly this is a group: the identity is in both H1 and H2; if h ∈H1∩H2

then h−1 ∈ H1 and h−1 ∈ H2, i.e., h−1 ∈ H1 ∩H2. Closure is also clear as h1, h2 ∈ H1 ∩H2 Ô⇒ h1h2 ∈ H1 and
h1h2 ∈H2 and thus h1h2 ∈H1 ∩H2.

To see this intersection is normal, pick h ∈H1∩H2. Also pick arbitrary g ∈ G. Since H1 is normal, g−1hg ∈H1;
likewise, g−1hg ∈H2. Therefore g−1hg ∈H1 ∩H2.

3.4.9 For Ô⇒ , assume G/H is cyclic. Pick any e ≠ g ∈ G. It follows that gH ∈ G/H and gH is not the identity of
G/H (since H is). By assumption it generates G/H, so every g̃H ∈ G/H can be written as (gH)k, but

(gH)k = gkHk = gkH Ô⇒ g̃ = gk.

In other words, every g̃ ∈ G can be expressed as a power of g, i.e., G = ⟨g⟩.

For ⇐Ô , assume G is cyclic. Let g be a generator. Pick any g̃H ∈ G/H. It follows that g̃ = gk for some k.
Then,

g̃H = gkH = gkHk = (gH)k.

Therefore gH generates G/H, and we are done.

3.4.11 If G is cyclic then we are immediately done since G = ⟨g⟩ Ô⇒ o(g5) = 3.

Actually, it doesn’t matter. By Lagrange’s theorem, any g ∈ G can have order 1,3,5,15. Suppose for contra-
diction that no g ∈ G has order 3. It follows that no g ∈ G can have order of multiples of 3, i.e., 15, either.
Clearly if g ≠ e then o(g) ≠ 1 so the only remaining possibility is if all 14 non-identity g ∈ G have order 5.
Pick g1 ∈ G and consider ⟨g1⟩. Clearly there exist g2 ∈ G ∖ ⟨g1⟩. Now we consider ⟨g2⟩. Notice that the
intersection of two subgroups is also a subgroup (easy to check closure, identity, inverse). Of course this is
a proper subgroup, and since 5 is prime, ∣⟨g1⟩ ∩ ⟨g2⟩∣ = 1, i.e., the intersection is simply {e}. This tells us
∣⟨g1⟩ ∪ ⟨g2⟩∣ = 9, and thus we have 5 unused elements from G. Take such g3 and consider ⟨g3⟩. It becomes
clear that the pairwise intersection of ⟨g1⟩ , ⟨g2⟩, and ⟨g3⟩ is {3}, so inclusion-exclusion gives

∣⟨g1⟩ ∪ ⟨g2⟩ ∪ ⟨g3⟩∣ = 13.

Now there exists just one unused element in G that has order 5. But we do not have enough room for another
cyclic group of order 5. Contradiction! Thus at least one element of G has order 3.

Maybe it does matter — it is also possible to prove the much stronger claim that if ∣G∣ = 15 then G is cyclic,
in which case the claim follows from the first sentence.
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3.4.14 If gH ∈ G/H has order n, then

(gH)n = gnH = eH Ô⇒ gn = e Ô⇒ o(g) = e.

3.5.1 Indeed, ϕ(x + y) = ϕ(x)ϕ(y) as ex+y = exey. This is indeed an isomorphism as shown in the previous HW.

3.5.5 We have shown that GL(n,R) is a group in class already: closure is guaranteed as det(AB) = det(A)det(B);
identity is simply I2×2, and inverse is just the inverse of a matrix. To show that the determinant operator
defines a homomorphism, we again use the fact that det(AB) = det(A)det(B). The claim follows.

3.5.8 (1) No, this is not: (1 + 1)3 = 8 ≠ 13 + 13.

(2) Yes. Notice that f actually has the same effect as the identity map: f([0]) = [0], f([1]) = [1], and
f([2]) = [8] = [2]. Therefore it follows naturally that f(ab) = ab = f(a)f(b).

3.5.13 Second Isomorphism Theorem. We first show that the notions of K/(N∩K) and KN/N are well-defined.

(1) K/(N ∩K): it suffices to show that N ∩K is a normal subgroup of K. The intersection of two groups
is clearly a group. To show it is normal, pick any x ∈ N ∩K and k ∈K. Then

x ∈ N Ô⇒ k−1xk ∈ N and x, k ∈K Ô⇒ k−1xk ∈K.

Therefore k−1(N ∩K)k ⊂ N ∩K for all k ∈K. To show the other inclusion, simply notice that

k−1(N ∩K)k ⊂ N ∩K Ô⇒ k [k−1(N ∩K)k]k−1 = (N ∩K) ⊂ k(N ∩K)k−1. (∆)

This result is enough because k is chosen arbitrarily; in other words, for any k̃ ∈K, we always have

(N ∩K) ⊂ k̃−1(N ∩K)k̃

if we simply apply the result from (∆), which holds for all elements of G, including k̃−1.

(2) KN/N : we need to first show that KN is a subgroup of G and then N ◁KN . Indeed, KN has closure
because, for k1n1, k2n2 ∈KN , we have

(k1n1)(k2n2) = k1(k2ñ1)n2 = (k1k2)(ñ1n2) ∈KN

where the existence of ñ1 satisfying n1k2 = k2ñ1 is guaranteed since N is normal. Identity is simply
ee = e and (kn)−1 = n−1k−1 = k−1n̂−1 ∈KN , where the existence of n̂−1 is once again guaranteed since N

is normal.

N ◁KN is trivial as N ◁G and KN ⊂ G.

Proof of the S.I.T. By the hint, consider T ∶K →KN/N by k ↦ kN . Indeed this is a homomorphism:

T (k1k2) = k1k2N = k1k2N2 = k1Nk2N = T (k1)T (k2).

Suppose x ∈ ker(T ) ⊂ N . Then xN = N so x ∈ N . Therefore x ∈ N ∩K. By the F.I.T., we indeed have the
desired isomorphism relation

K/ker(T ) =K/(N ∩K) ≅ (KN)/N.

End of HW6
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