MATH 410 Homework 8

Qilin Ye

April 29, 2021

3.7.18 Find the number of tiny bracelets of four beads that can be made with two colors of beads.

Solution. Like the example shown in class, here we consider how D_4 acts on the bracelets — in particular, we say that two color patterns are essentially the same if one can be obtained by the other via reflection or rotation. Since there are 4 beads, these actions naturally identity with group actions under D_4 . The number of different necklaces, therefore, is the number of orbits under such action. By Burnside's lemma,

$$#\text{Orbits} = \frac{1}{|D_4|} \sum_{\sigma \in D_4} |\text{Fix}(\sigma)|$$

Now we just need to find the size of $Fix(\sigma)$ for each $\sigma \in D_4$.

Action	Corresponding σ	Number of σ 's	$ \operatorname{Fix}(\sigma) $	Total
Reflection across diagonal	fr, fr^3	2	$2^3 = 8$	16
Reflection over sides	f, fr^2	2	$2^2 = 4$	8
Rotation of 90°	r, r^3	2	2	4
Rotation of $180^{(\circ)}$	r^2	1	$2^2 = 4$	4
Nothing	e	1	$2^4 = 16$	16

It follows that

$$\#\text{Orbits} = \frac{16 + 8 + 4 + 4 + 16}{8} = 6$$

i.e., there are six *different* bracelets consisting of four beads, each with two color options.

3.7.19 In how many ways can we paint a square floor made of of nine square tiles using purple and orange paint?

Solution. Similar to above, but here we have R_4 (the rotation group) acting on the floor, and we easily obtain the following diagram:

Action	Corresponding σ	Number of σ 's	$ \operatorname{Fix}(\sigma) $	Total
Rotation by 90°	r, r^3	2	$2^3 = 8$	16
Rotation by 180°	r^2	1	$2^5 = 32$	32
Identity	e	1	$2^9 = 512$	512

It follows that the total number of ways is (16 + 32 + 512)/4 = 140.

4.7.20 In how many ways can we color a cube's faces with four colors?

Solution. The key is to notice that the symmetry group of a cube is isomorphic to S_4 . To see this, we name the vertices of the top face of a cube 1-2-3-4 and also name the other four 1-2-3-4, each corresponding to the <u>opposite</u> of its counterpart (i.e., if we draw a line between the two 1's, it should go through the center. Then we can identify all actions on the cube by the following:

Action	Corresponding σ	Number of σ 's	$ \operatorname{Fix}(\sigma) $	Total
Identity	e	1	$2^6 = 64$	64
Edge-midpoint rotation	(ab)	6	$2^3 = 8$	48
Face-midpoint rotation	(abcd)	6	$2^3 = 8$	48
Face-midpoint rotation, twice	(ab)(cd)	3	$2^4 = 16$	48
Diagonal	(abc)	8	$2^2 = 4$	32

Therefore the total number of ways to paint a cube using two colors is

$$\frac{64 + 48 + 48 + 48 + 32}{24} = 10$$

- 5.2.5 (1) $2\mathbb{Z} \cup 5\mathbb{Z}$ is not a subring of \mathbb{Z} it is not even closed under addition: $2 + 5 = 7 \notin 2\mathbb{Z} \cup 5\mathbb{Z}$.
 - (2) 2ℤ+5ℤ = ℤ because 2, 5 are co-prime and Bézout's identity guarantees that any integer can be represented by a ℤ-combination of 2 and 5.
 - (3) $2\mathbb{Z} \cap 5\mathbb{Z} = 10\mathbb{Z}$ because a number is both a multiple of 2 and of 5 if and only if it is a multiple of 10.
- 5.2.9 Just like in $\mathbb{Z}[x]$, all units must have degree 0 because it must not exceed that of 1, a degree 0 polynomial. What's different is that any nonzero constant coefficient is a unit in $\mathbb{R}[x]$ because any nonzero number in \mathbb{R} has a multiplicative inverse.
- 5.3.3 (1) It is an integral domain because two nonzero polynomials can never multiply to get zero, but it is not a field because x^2 has no multiplicative inverse (namely $1/x^2$ is not a polynomial), for example.
 - (2) This is not an integral domain: consider, for example, $f \coloneqq \chi_{[0,1]}$ and $g \coloneqq \chi_{[2,3]}$. Their product is zero pointwise but clearly neither is the zero function.
- 5.3.9 (1) This is an integral and also a field. Every nonzero a + bi can be written as $re^{i\theta}$ so it always has an inverse $r^{-1}e^{-i\theta}$. (It follows that if $r_1e^{i\theta 1}r_2e^{i\theta 2} = 0$ then $r_1r_2 = 0$, i.e., either $r_1e^{i\theta 1} = 0$ or $r_2e^{i\theta 2} = 0$.)
 - (2) Not an integral domain: [2][6] = [12] = [0].
 - (3) Not an integral domain:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 0.$$

- (4) Assuming the textbook has made a typo (i.e., mod 12 not mod 11), Z/11Z is indeed an integral domain and a field, as 11 is prime and everything besides 0 in Z/11Z has a multiplicative inverse.
- (5) Not an integral domain: $(0,1) \cdot (1,0) = (0,0)$.
- (6) Both an integral domain and a field; clear enough.

- (7) Not necessarily an integral domain. (It is an integral domain iff R itself is.) For nonexample, consider $R := \mathbb{Z}/6\mathbb{Z}$ where $(2x) \cdot (3x) = 0$.
- 5.3.10 (1) Not an integral domain. Consider f whose graph connects (0,1), (1/2,0), and (1,0) (points in R²) and g whose graph connects (0,0), (1/2,0), and (1,0). It follows that, for every x ∈ [0,1], either f(x) = 0 or g(x) = 0 so fg ≡ 0, but it is clear that neither of them is the zero function.

To <u>not</u> be a unit, f has to be zero at some $x \in [0,1]$. To <u>not</u> be a zero divisor, the level set of f at level 0 must be totally disconnected for example f(x) = 1/2 - x. If $fg \equiv 0$ then clearly $g \equiv 0$ on $[0,1] \setminus \{0.5\}$ but by continuity we also have g(0.5) = 0, i.e., $g \equiv 0$.

(2) This is also not an integral domain. Consider $f, g \in C(\mathbb{Z}/2\mathbb{Z})$ defined by

$$f(x) = \begin{cases} 1 & x = [0] \\ -1 & x = [1] \end{cases} \quad g(x) = 1 \text{ for all } x \in \mathbb{Z}/2\mathbb{Z}.$$

It follows that

$$(f * g)([0]) = f([0])g([0]) + f([1])g([1]) = 1 + -1 = 0$$

and

$$(f * g)([1]) = f([1])(g[0]) + f([0])g([1]) = -1 + 1 = 0.$$

However it is clear that $f, g \neq 0$. Functions like f([0]) = 0, f([1]) = 1 is neither a unit nor a zero divisor.

- 5.3.11 (a) (1) None.
 - (2) [2], [3], [4], [6].
 - (3) Checking by brute force suggests that the only zero divisors are the "one matrix" above and four more, each with one [1] and three [0]'s.
 - (4) None.
 - (5) (n,0) and (0,m) where $n,m \in \mathbb{Z}$.
 - (6) None.
 - (7) Clearly all the polynomials of x with zero divisors of R as coefficients are zero divisors of R[x], but I am not sure if there are other zero divisors of R[x]. After all R is just an arbitrary ring.
 - (b) (1) Every nonzero complex number.
 - (2) Every nonzero element besides [2], [3], [4], and [6].
 - (3) Every other nonzero matrix in the ring.
 - (4) Every nonzero element.
 - (5) Everything (x, y) with both x, y nonzero.
 - (6) Every nonzero rational number.
 - (7) Hmmm. Every polynomial with at least one coefficient not being a zero divisor of R??
 - (c) At least for (1) to (6), the relation is that they together constitutes all nonzero elements of R.
- 5.4.4 Notice that we have $[x^2 2] = [0]$, i.e., $[x]^2 [2] = [0]$. Therefore anything in $\mathbb{Q}[x]/\langle x^2 2 \rangle$ can be idenfitied with a something whose power of x does not exceed 1. Heuristically this means [x] behaves like $\sqrt{2}$ and we identify $\mathbb{Q}[x]/\langle x^2 2 \rangle$ with $\mathbb{Q}[\sqrt{2}]$.

5.4.5 Since A is an ideal, for any $s \in R$, $us \in A$. Oh the other hand, rxs is clearly a product of r times something in R, so this set is at least a one-sided ideal. For the other side, we need to use the fact that R is commutative and obtain the result that srx = r(sx). This would show that the set is a two-sided ideal, as claimed.