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0 But What is a Fourier Transform?

A magical theorem in mathematical analysis says the following:

A suitably nice function f ∶R → R can be approximated nicely by a combination of basic
trigonometric polynomials of form sin(nx) and cos(nx) where n ∈ Z.

Heuristically, think of the sounds that our ears hear every day. We hear a wide range of pitches (frequencies of sound
waves) and levels of loudness (amplitudes). Among all these chaotic combinations of sounds, how can we even tell
what we are actually hearing? It turns out that our inner ears, in particular the basilar membrane, automatically
carry out Fourier transforms: the original sound wave, a function of time, is expressed as a “combination” of
a bunch of simpler, nicer sound waves that resemble the sine curves with different frequencies. Our brains then
receives the latter, i.e., the “frequency decomposition” of these sound waves. This explains why we are able to
identify musical chords consisting of multiple notes.

Time

Frequency

Magnitude

Our focus today, however, is on finite Fourier transforms on groups (this is 410 not 425 after all).

For the remainder of this presentation, we assume (G,+) is a finite cyclic group of order n where + denotes the
usual addition (so it can be identified with Z/nZ).
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1 Preliminaries and Basic Definitions

1.1 Complex Numbers

We begin by bringing up some basic definitions and properties, some of which hopefully you have seen elsewhere:

(1) For z = a + bi ∈ C, the modulus of z, written ∣z∣, is defined to be
√
a2 + b2 (the distance to origin).

(2) For z = a + bi ∈ C, the conjugate of z, written z, is defined to be a − bi.

(3) Let S1 be the unit circle in C, that is, S1 ∶= {z ∈ C ∶ ∣z∣ = 1}.

(4) Euler’s formula: eiθ = cos(θ) + i sin(θ). More importantly, each z ∈ S1 can be uniquely represented by eiθ

for some θ ∈ [0,2π).

1.2 Convolution (on Finite Groups): A ∗ is Born

Yes, it looks like a fancy multiplication symbol, and yes, it is an “upgraded” version of function multiplication
(which we’ll show very soon).

It is probably more intuitive to think of convolutions in probability theory. Suppose we are rolling two unfair (just
to make the idea clearer) six-sided dices. Let X be the outcome of the first dice and let Y that of the second. What
would be the distribution of the sum Z =X + Y ?
For example, what events would lead to Z = 7, given X,Y can output any integer in [1,6]? The answer is clear: 7

can be written as 1 + 6,2 + 5, ..., all the way till 6 + 1. Therefore the probability of Z = 7 is given by

P (Z = 7) =
6

∑
i=1

P (X = i)P (Y = 7 − i),

and more generally,

P (Z = z) =
6

∑
i=1

P (X = i)P (Y = z − i)

as long as both functions on the RHS make sense (e.g., to get Z = 8, both rolls must be at least 2 as 1 + 6 < 8).

Definition: Convolution (on finite group)

Let f, g be functions G→ C. We define the convolution of f, g written f ∗ g and read “f splat g”, by

(f ∗ g)(a) = 1

∣G∣ ∑b∈G
f(a − b)g(b) for any a ∈ G.

Definition: Indicator Function

For any a ∈ G, we define the indicator function δa ∶ G → {0,1} by δa(x) = 1 if x = a and δa ≡ 0 otherwise.
Relate this to the Dirac delta function if you have any Fourier background.

Convolution is extremely useful in a variety of fields. From the definitions above, we will be able to derive a list of
“nice” properties of convolutions (on finite groups):
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(1) ∣G∣δ0 is the identity for convolution (note that ∣G∣ is just a constant):

(f ∗ ∣G∣δ0)(a) =
1

∣G∣ ∑b∈G
f(a − b)(∣G∣δ0)(b) =

1

∣G∣
⋅ f(a)∣G∣ = f(a) for all a ∈ G

because (∣G∣δ0)(b) only evaluates to nonzero (to 1) when b = a.

(2) ∗ is commutative, i.e., f ∗ g = g ∗ f (a nice property to have in 410, right?):

(f ∗ g)(a) = 1

∣G∣ ∑b∈G
f(a − b)g(b) = 1

∣G∣ ∑a−b∈G
f(a − (a − b))g(a − b)

= 1

∣G∣ ∑b∈G
f(a − (a − b))g(a − b) ∑

a−b∈G
= ∑

b∈G
: they sum over the same elements

= 1

∣G∣ ∑b∈G
f(b)g(a − b) = (g ∗ f)(a).

(3) ∗ is (left) distributive, i.e., f ∗ (g + h) = f ∗ g + f ∗ h:

[f ∗ (g + h)](a) = 1

∣G∣ ∑b∈G
f(a − b)[g(b) + h(b)]

= 1

∣G∣ ∑b∈G
f(a − b)g(b) + 1

∣G∣ ∑b∈G
f(a − b)h(b)

= (f ∗ g)(a) + (f ∗ h)(a).

(4) ∗ is associative, i.e., f ∗ (g ∗ h) = (f ∗ g) ∗ h (this is really just done by brutal computation along with some
slick ways to rewrite the summations; similar to (2)):

[(f ∗ g) ∗ h](a) = 1

∣G∣∑b
(f ∗ g)(a − b)h(b)

= 1

∣G∣∑b
[ 1

∣G∣∑c
f(a − b − c)g(c)]h(b)

= 1

∣G∣2∑b
∑
c

f(a − b − c)g(c)h(b)

= 1

∣G∣2∑b′
∑
c′
f(a − b)g(b − c)h(c) setting b′ ∶= b + c and c′ ∶= b

= 1

∣G∣2∑b
∑
c

f(a − b)g(b − c)h(c) ∑
b′
=∑

b

and ∑
c′
=∑

c

= 1

∣G∣∑b
f(a − b) [ 1

∣G∣∑c
g(b − c)h(c)]

= 1

∣G∣∑b
f(a − b)(g ∗ h)(b)

= [f ∗ (g ∗ h)](a).

1.3 Dual Groups

Consider the two groups (G,+) and (S1, ⋅) [notice that the latter is indeed a group by Euler’s formula]. Between
groups we have various morphisms, and this leads to the following definition:
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Definition: Dual Group

Let G be defined as above. We define Ĝ, the dual group of G, to be the group of homomorphisms χ∶G→ S1.
The group operation is simply defined to be function multiplication, i.e., for any χ1, χ2 ∈ Ĝ and g ∈ G, we
have (χ1χ2)(g) = χ1(g) ⋅ χ2(g). (These χs are called characters.)

Remark. It might help to simply not try to understand what an abstract homomorphism χ ∶ G → S1

looks like. We are more interested in the group itself, i.e., the collection of these homomorphisms and the
interactions among them. Not a big deal if this definition seems too abstract on first glance; hopefully it
will come along nicely later.

2 Fourier Transform of f ∶G→ C

2.1 Fourier Transform of f ∶G→ C

But why do we need to abruptly introduce the notion of a dual group?

Recall from the very beginning that, when our ears hear something, they decompose the sound waves, a function
f ∶R → C of time, i.e., f(t), into a function f̂ ∶ R̂ → C of frequencies, i.e., f̂(ξ). By doing so, our brain understands
what the decomposition of the sound looks like. The underlying magic here is that the Pontryagin dual R̂ of R
is in fact R itself, and this explains why f and f̂ are ultimately both functions R→ C.

The upshot of the above paragraph is that under Fourier transform, a function f ∶R→ C becomes a function f̂ ∶ R̂→ C.
Connecting this to our finite cyclic group G, the Fourier transform of a function f ∶G → C is, unsurprisingly, a
function f̂ ∶ Ĝ→ C (yeah it’s still abstract...). To put formally:

Definition: Fourier Transform

We define the Fourier transform f̂ ∶ Ĝ→ C of a function f ∶G→ C by

f̂(χ) = 1

∣G∣ ∑y∈G
f(y)χ(y).

(To wrap your head around it: χ is an element of Ĝ, i.e., a homomorphism χ ∶ G → S1, χ(y) a complex
number, and χ(y) the complex conjugate of χ(y).)

g0

g1

g2
g3

g4

g5

g6
g7

g8

In our case, since (G,+) can be identified with Z/nZ, we see Ĝ is in
fact the set of all homomorphisms from G to the multiplicative groups
of roots of unity in C.

Heuristically, suppose G = ⟨g⟩ and χ(g) corresponds to the vertex labeled
g1 in the diagram (by Euler’s formula, this point is e2πi/n). Traversing
through the list (g, g2, . . . , gn−1, gn) under multiplication by g is equiva-
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lent to traversing through the list of vertices of the polygon since e2kπi/n is precisely the vertex gk. (Similar to how
gn is the identity of the group G of order n, we define gn ∶= g0 = 1, the identity element of the multiplicative group
of roots of unity in C.) To put this into mathematical language:

Definition

Suppose a, b ∈ G = Z/nZ. We define χa ∈ Ĝ by χa(b) = e2πiab/n. Note that since e2πi = e2πin/n = 1, the
exponent already takes care of the “modulo n” part.

2.2 The Space L2(Z/nZ)

Now we consider the space of functions L2(Z/nZ) ∶= {f ∶Z/nZ → C}. Notice that our previously discussed χas are
all in this space. In fact, this is an inner product space (a vector space equipped with an inner product) where
the inner product is given by

⟨f, g⟩ ∶= ∑
x∈Z/nZ

f(x)g(x).

In addition, L2(Z/nZ) is n-dimensional and — you might have guessed — a basis is naturally given by χas where
a ∈ G. Even better, they don’t just form a basis — they are an orthogonal basis.

Theorem: {χa} is Orthogonal

For a, b ∈ Z/nZ, define χa(b) = e2πiab/n (as above). Then {χa∶a ∈ Z/nZ} forms an orthogonal set, i.e.,

⟨χa, χb⟩ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n a ≡ b (mod n)

0 otherwise.

Proof. The inner product gives ⟨χa, χb⟩ =∑
x∈Z/nZ

χa(x)χb(x) =∑
x∈Z/nZ

e2πiax/ne−2πibx/n =∑
x∈Z/nZ

χa−b(x). If n ∣ a − b then we

are immediately done since there are n elements in Z/nZ and each χa−b(x) is e2πi(a−b)/n = 1.

On the other hand, if n ∣ a − b, for convenience write c = a − b and S =∑
x∈Z/nZ

χx(x) the RHS. Notice that

{χc(0), χc(1), . . . , χc(n − 1)} = {χc(1), χc(2), . . . , χc(n)},

i.e., the set is invariant under right shift x↦ x + 1. Therefore,

χc(1)S = χc(1)∑
x∈Z/nZ

χc(x) =∑
x∈Z/nZ

χc(1)χc(x) =∑
x∈Z/nZ

χc(x + 1) = S,

which can happen only if χc(1) = 1 or S = 0. Note that χc(1) = χa−b(1) = e2πi(a−b)/n. Since n ∣ a − b by
assumption, this expression cannot be 1, and therefore S = 0, as desired.

2.3 Properties of the Fourier Transform

One of the best things about Fourier transform is that it reduces the complicated convolution to a much simpler
form.
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Theorem

Let G = Z/nZ and let χ ∈ Ĝ. Then:

(1) The Fourier transform of the convolution of f, g∶G → C is equal to the element-wise product of their
Fourier transforms:

f̂ ∗ g(χ) = f̂(χ) ⋅ ĝ(χ).

(2) Given all the Fourier transforms f̂(χ), we can recover f via the Fourier inversion formula

f(x) = ∑
χ∈Ĝ

f̂(χ)χ(x).

Proof of (1). Hopefully, by now you are fairly comfortable with the notion of convolution (so I won’t need to
use different colors on different variables).

f̂ ∗ g(χ) = 1

∣G∣ ∑z∈G
(f ∗ g)(z)χ(z)

= 1

∣G∣ ∑z∈G

⎡⎢⎢⎢⎢⎣

1

∣G∣ ∑y∈G
f(z − y)g(y)

⎤⎥⎥⎥⎥⎦
χ(z)

= 1

∣G∣2 ∑z∈G
∑
y∈G

f(z − y)g(y)χ(z)

= 1

∣G∣2 ∑y∈G
g(y) ∑

w∈G
f(w)χ(w + y) setting w ∶= z − y

=
⎡⎢⎢⎢⎢⎣

1

∣G∣ ∑y∈G
g(y)χ(y)

⎤⎥⎥⎥⎥⎦
[ 1

∣G∣ ∑w∈G
f(w)χ(w)]

= f̂(χ) ⋅ ĝ(χ).

Proof of (2). First recall that χa(y) = e−2πiay/n = e2πi(−ay)/n = χa(−y) for all a, y ∈ Z/nZ. Then,

∑
χ∈Ĝ

f̂(χ)χ(x) = ∑
χ∈Ĝ

χ(x)
⎡⎢⎢⎢⎢⎣

1

∣G∣ ∑y∈G
f(y)χ(y)

⎤⎥⎥⎥⎥⎦

= ∑
y∈G

f(y)
⎡⎢⎢⎢⎢⎣

1

∣G∣ ∑
χ∈Ĝ

χ(x)χ(y)
⎤⎥⎥⎥⎥⎦

= ∑
y∈G

f(y) [ 1

∣G∣
⟨χx, χy⟩] .

By the orthogonality theorem previously proven, ⟨χx, χy⟩ /∣G∣ is 1 if y = x and 0 otherwise, so indeed the RHS
evaluates to f(x), and we recover the Fourier inversion formula.
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3 Application: Stability of Benzene

3.1 Benzene & Some Black Boxes

In chemistry, Benzene, C6H6, is known to be very stable due to its delocalized π-electrons. The most notable feature
of its structure (diagram on the left) is its hexagonal ring, which highly resembles the Cayley graph X(Z/6Z, S)
(middle) where S ∶= {±1 (mod 6)}.

C

H C

H

C

H

C

HC

H

C

H

[1][2]

[3]

[4] [5]

[0] A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 1

1 0 1

1 0 1

1 0 1

1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With a few black boxes (which you need to take for granted...), we are able to show why is Benzene stable. The
adjacency matrix of this Cayley graph is the matrix A on the right.

Black box #1 : we can view this adjacency matrix as a matrix of the adjacency operator acting on complex-valued
functions f(x) for x in the Cayley graph X(Z/6Z, S). If we generalize the notion of indicator function by defining

δS(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x ∈ S

0 otherwise,

then the action of this adjacency operator is given by

Af(x) = ∑
s∈S

f(x + s) = f(x − 1) + f(x + 1) = ∑
s∈S

δS(x − s)f(s) = n(δS ∗ f)(x).

Black box #2 (or not) : the Spectral Theorem says that L2(Z/nZ) has an orthonormal basis of eigenfunctions
(generalizations of eigenvectors) of A.

Upshot. In fact, we know what these eigenfunctions are: by linearity of χb for any b ∈ Z/6Z, we have

Aχb(x) = χb(x + 1) + χb(x − 1) = (χb(1) + χb(−1))χb(x).

Therefore χb’s are the eigenfunctions and (χb(1) + χb(−1)) the eigenvalues. Recall from Euler’s formula

χb(1) + χb(−1) = e2πib/6 + e−2πib/6

= cos(2πb/6) + i sin(2πb/6) + cos(−2πb/6) + i sin(−2πb/6)

= 2 cos(2πb/6).

Letting b vary in Z/6Z we obtain the spectrum of A, written Λ(A), i.e., the set of eigenvalues of A:

Λ(A) = {2 cos(2πb/6) ∣ b ∈ Z/6Z} = {2 cos(0),2 cos(2π/6), . . . ,2 cos(10π/6)}

= {2,1,−1,−2,−1,1}.
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Black box #3 : [Hückel, 1932] the stability of a chemical compound is determined by its rest mass energy

E ∶= ( ∑
top n/2
λ∈Λ(A)

λ) ⋅ 2
n
,

where the summation is taken over the larger half of Λ(A). The larger the value E, the more stable the compound.

Upshot. Applying this theorem to the adjacency matrix of Benzene, we see that E(C6H6) = (2 + 1 + 1)/3 ≈ 1.33.

3.2 Benzene C6H6 is More Stable than Cyclobutadiene C4H4

To wrap this presentation up, we present one more highly analogous example and show that cyclobutadiene, C4H4,
is less stable than benzene is. Below from left to right are (1) the structure diagram of cyclobutadiene, (2) the
Cayley graph X(Z/4Z,{±[1]}) that (1) resembles, and (3) the corresponding adjacency matrix.

C

H

C

H

C

H

C

H [1][2]

[3] [0]

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Analogously, we have Bf(x) = f(x − 1) + f(x + 1) and the eigenfunctions are χb, b ∈ Z/4Z. Hence the spectrum is

{2 cos(2πb/4) ∣ b ∈ Z/4Z} = {2 cos(0),2 cos(π/2),2 cos(π),2 cos(3π/2)} = {2,0,−2,0},

and by Hückel,
E(C4H4) =

2

4
(2 + 0) = 1,

indeed smaller than E(C6H6). Therefore cyclobutadiene is less stable, as claimed.

End of Project
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