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Problem 3

† Two people take turns throwing darts at a board. Person A goes first, and each of their throws has a

probability of 1/4 of hitting the bullseye. Person B goes next, and each of their throws has a probability of

1/3 of hitting the bullseye. Then Person A goes, and so on. With what probability will Person A hit the

bullseye before Person B does?

Solution. Let Sn be the event in which the nth shot is the first to hit the bullseye. (For example, in the event S4,

A misses, then B misses, then A misses again, and finally B hits.) It is clear that the S′ns are pairwise disjoint

and that the events in which A hits the bullseye before B does is

S ∶=
∞
⋃
n=1

S2n−1.

Therefore,

P(S) =
∞
∑
n=1

P (S2n−1) =
∞
∑
n=1

1

4
(3
4
⋅ 2
3
)
n−1
= 1

2
.

Problem 4

† Two people are flipping fair coins. Let n be a positive integer. Person 1 flips n + 1 coins and person 2 flips

n coins. Prove that the following event has probability 1/2: "person 1 has more heads than person 2."

Proof. Let each person flip n flips first. Define

EA ∶ = {events where person 1 has more heads}

EB ∶ = {events where person 2 has more heads}

E0 ∶ = {event where both have same number of heads}.

Clearly P(EA) + P(EB) + P(E0) = 1. Note that if EA happens then person 1 is guaranteed to have more heads

after an additional flip; if E0 happens, person 1 has probability 0.5 to; and if EB happens, person 1 cannot have

*The solutions to questions marked with † are copied verbatim from MATH 408.
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more heads. Also, since the coin is fair, P(EA) = P(EB). Thus, after an additional flip,

P(person 1 has more heads) = P(EA) + P(E0)/2

= P(EA) +
1 − P(EA) − P(EB)

2

= P(EA) +
1 − 2P(EA)

2
= 1

2
.

Problem 5

† Suppose a test for a disease is 99.9% accurate. That is, if you have the disease, the test will be positive

with 99.9% probability. And if you do not have the disease, the test will be negative with 99.9% probability.

Suppose also the disease is fairly rare, so that roughly 1 in 20,000 people have the disease. If you test positive

for the disease, with what probability do you actually have the disease?

Solution. We apply Bayes’ Theorem.

Disease (D) No Disease (ND)

Positive (+) 0.999 ⋅ 1/20000 0.001 ⋅ 19999/20000

Negative (-) 0.001 ⋅ 1/20000 0.999 ⋅ 19999/20000

P (D∣+) = P (+∣D)P (D)
P (+)

= 0.999 ⋅ 1/20000
0.999/20000 + 0.001 ⋅ 19999/20000

≈ 0.048.

Problem 6: Inclusion-Exclusion Formula

Let Ω be a discrete sample space and let P be a probability law on Ω. Prove that if A1, ...,An ⊂ Ω then

P(
n

⋃
i=1

Ai) =
n

∑
i=1

P(Ai) −∑
i<j

P(Ai ∩Aj) + ∑
i<j<k

P(Ai ∩Aj ∩Ak) −⋯ + (−1)n+1P(A1 ∩⋯ ∩An).

Proof. Since Ω is discrete, it suffices to show that each x ∈ Ω is “counted” exactly once by the RHS, as it is by the

LHS. Suppose x ∈ Ω and WLOG assume x ∈ A1 ∩A2 ∩⋯∩Am but x ∉ Am+1 ∪⋯∪An, where 1 ⩽m ⩽ n. Then x is

counted exactly

1 − (m
2
) + (m

3
) −⋯ + (−1)m−1 = −

m

∑
k=1
(−1)k(m

k
)

times. Using binomial expansion on (1 − 1)m =
m

∑
k=0
(−1)k(m

k
) we see −

m

∑
k=1
(−1)k(m

k
) = 1, proving the claim.

Problem 7

† A community has m facilities. Each family has at least one child. The largest family has k > 0 children. For

each i ∈ {1,⋯, k}, there are ni families with i children so n1 + ⋯ + nk = m. Choose a child randomly in the

following ways.
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(1) First choose one of the families uniformly at random among all the families. Then, in the chosen family,

choose one of the children uniformly at random.

(2) Among all n1 + 2n2 +⋯ + knk children, choose one uniformly at random.

what is the probability that the chosen child is the first-born in their family if you use method (1)? What

about (2)?

Solution. For method 1, there is a probability of ni/m to choose a family of i children. Then there is a probability

of 1/i that the children picked is the first-born. Thus, the total probability is m−1
k

∑
i=1

ni/i.

For the second method, we simply need to compute the number of first-born children and decide it by the total

number of children. Clearly m family correspond to m first-born children, and there are
k

∑
i=1

i ⋅ ni children. Thus

the total probability is m/
k

∑
i=1
(i ⋅ ni).

Problem 8

† You are trapped in a maze. Your starting point is a room with three doors. The first door will lead you

to a corridor which lets you exist the maze after 3 hours of walking. The second dour leads you through

a corridor which puts you back to the starting point of the maze after seven hours of walking. The third

door leads you through a corridor which puts you back to the starting point of the maze after nine hours of

walking. Each time at the starting point you choose one of the doors with equal probability. Let X be the

number of hours it takes for you to exist the maze and let Y be the number of door that you initially choose.

• Compute E(X ∣ Y = i), i ∈ {1,2,3}, in terms of EX.

• Compute EX.

Solution.

E(X ∣ Y = 1) = 3

E(X ∣ Y = 2) = 7 +EX

E(X ∣ Y = 3) = 9 +EX.

Then, since EX =
3

∑
i=1

P(Y = i)E(X ∣ Y = i), we obtain the function

3 + 7 +EX + 9 +EX
3

= EX Ô⇒ EX = 19.
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Problem 9: Stein Identity

Let X be a standard Gaussian random variable and let g ∶ R → R be continuously differentiable with g, g′

having polynomial volume growth, i.e., there exist a, b > 0 such that ∣g(x)∣, ∣g′(x)∣ ⩽ a(1 + ∣x∣)b. Prove the

Stein identity

EXg(X) = Eg′(X)

and use it to recursively compute EXk for any positive integer k.

Proof.

EXg(X) = 1√
2π
∫
R
xg(x)e−x

2/2 dx

= − 1√
2π
∫
R
g(x) ⋅ (−xe−x

2/2) dx = − 1√
2π
∫
R
g(x) d

dx
(e−x

2/2) dx

= −g(x)e−x
2/2∣∞

x=−∞ + ∫R
g′(x)e−x

2/2 dx = ∫
R
g′(x)e−x

2/2 dx = Eg′(X).

The first term vanishes: lim
x→±∞

g(x)e−x
2/2 = 0 as exponential growth dominates polynomial growth.

Using this identity recursively and the fact that EX1 = EX0 = E1 = 1,

EXk = EXXk−1 = (k − 1)EXk−2 = ⋯ = (k − 1)!!.

Problem 10

Let G = (V,E) be an undirected graph on the vertices V = {1, ..., n}. Using MAX-CUT, prove that there exists

a cut (S,Sc) of the graph such that the number of edges going between S and Sc is at least ∣E∣/2.

Hint: define a random S ⊂ V such that, for every i ∈ V , P(i ∈ S) = 1/2, and the events 1 ∈ S,2 ∈ S, ..., n ∈ S are

all independent.

Proof. Since the events of form i ∈ S are independent, P(i ∈ S, j ∉ S) = P(i ∈ S)P(j ∉ S) = (1/2)(1− 1/2) = 1/4 for

i ≠ j and in particular for {i, j} ∈ E. Since i, j are symmetric,

P(i ∈ S ⊕ j ∈ S) = P(i ∈ S, j ∉ S) + P(i ∉ S, j ∈ S) = 1

2
.

(⊕ denotes “exclusive or”.) Therefore, summing over all {i, j} ∈ S, the expected value of number of edges going

between S and Sc is ∣S∣/2, and the remainder of the claim follows from MAX-CUT.

Problem 11

Let n ⩾ 2 and let Sn−1 be the boundary of the n-dimensional ball. Let x ∈ Sn−1 be fixed and let v be a random

vector uniformly distributed in Sn−1. Prove that

E∣⟨x, v⟩∣ ⩾ 1

10
√
n
.
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Proof. First we reduce the claim to a much simpler case. Since the uniform distribution on Sn−1 is invariant

under rotations about the origin, and since inner product is also preserved under rotations, i.e., ⟨a, b⟩ = ⟨Ra,Rb⟩,
we have, for any rotation R ∶ Sn−1 → Sn−1,

E∣⟨x, v⟩∣ = E∣⟨x,Rv⟩∣ = E∣⟨R−1x,R−1Rv⟩∣ = E∣⟨R−1x, v⟩∣.

For any x ∈ Sn−1, letting R be such that R−1x = u ∶= (1,0,⋯,0), we have

E∣⟨x, v⟩∣ = E∣⟨u, v⟩∣ = 1

Area(Sn−1) ∫Sn−1
∣v1∣ dV. (Q9.1)

Note that, under spherical coordinates with parameters r,φ1, φ2, ..., φn−1, the first component v1 can be ex-

pressed as r cosφ1, and the Jacobian is

rn−1
n−2
∏
i=1

sinn−1−i(φi) = rn−1 sinn−2(φ − 1) sinn−3(φ2)⋯ sin(φn−2).

In this case r ≡ 1 on Sn−1 so we get two simpler (n − 1)-fold integrals:

∫
Sn−1
∣v1∣ dV = ∫

2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0
∣cosφ1∣

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1 (Q9.2)

and

Area(Sn−1) = ∫
Sn−1

1 dV = ∫
2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1. (Q9.3)

Division gives E∣⟨x, v⟩∣ = (Q9.2)/(Q9.3) = ∫
π

0
∣cosφ∣ sinn−2 φ dφ/∫

π

0
sinn−2 φ dφ. Since both integrals satisfy

∫
π

0
= 2∫

π/2

0
, the ratio further equals ∫

π/2

0
cosφ sinn−2 φ dφ/∫

π/2

0
sinn−2 φ dφ. The numerator is 1/(n−1) by

a simple u-substitution with u ∶= sinφ, and for n ⩾ 3, the denominator is bounded by 0 and
√
π/2(n − 2) since

cosx ⩽ exp(−x2/2) on [0, π/2] and1

∫
π/2

0
sinn−2 φ dφ = ∫

π/2

0
cosn−2 φ dφ ⩽ ∫

π/2

0
exp(−(n − 2)x2/2) dx

< ∫
∞

0
exp(−(n − 2)x2/2) dx = 1

2
⋅
√
2π/(n − 2).

For n = 2, it is immediate that

∫
π/2

0
sin2 φ dφ = 1

2
∫

π/2

0
sin0 φ dφ = π/4

using the well-known reduction formula

∫
π/2

0
sink φ dφ = k − 1

k
∫

π/2

0
sink−2 φ dφ.

Therefore, for n = 2, E∣⟨x, v⟩∣ = 4/π > 1/(10
√
2) and for n ⩾ 3,

10
√
n ⋅E∣⟨x, v⟩∣ ⩾ 20√

π
⋅ ( n2 − 2n

n2 − 2n + 1
)
1/2

⩾
20
√
3/4
√
π
> 1.

(Note that (n2 − 2n)/(n2 − 2n + 1) is monotone on [3,∞) and equals 3/4 at 3.) This proves the claim.

1Without dominating cosx by exp(−x2/2) on [0, π/2], I was quite stuck. But one day when browsing Zhihu, a Chinese version of Quora, I
accidentally stumbled into a related question (hyperlinked in PDF), providing me with exactly what I need.

5
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Problem 12: The Power Method

Let A be an n × n real symmetric matrix. Let λ1 ⩾ λ2 ⩾ ⋯ ⩾ λn be the unknown eigenvalues of A and let

v1, ..., vn ∈ Rn be the corresponding normalized unknown eigenvectors of A.

Given A, our first goal is to first find λ1 and v1. For simplicity assume 1/2 < λ1 < 1 and 0 ⩽ λn ⩽ ⋯ ⩽ λ2 < 1/4.

Suppose we have found a vector v ∈ Rn with ∥v∥ = 1 and ∣⟨v, v1⟩∣ > 1/n. Show that Akv approximates v1 as k

becomes large. More specifically, show that for k ⩾ 1,

∥Akv − ⟨v, v1⟩λk
1v1∥2 ⩽

n − 1
16k

.

Hint: the spectral theorem.

Since ∣⟨v, v1⟩λk
1 ∣ > 2−k/n, the inequality implies Akv is approximate an eigenvector with eigenvalue λ1. That

is, by the triangle inequality

∥A(Akv) − λ1(Akv)∥ ⩽ ∥Ak+1v − ⟨v, v1⟩λk+1
1 v1∥ + λ1∥ ⟨v, v1⟩λk

1v1 −Akv∥ ⩽ 2
√
n − 1
4k

and by reverse triangle inequality

∥Akv∥ = ∥Akv − ⟨v, v1⟩λk
1v1 + ⟨v, v1⟩λk

1v1∥ ⩾ n−12−k − 4−k
√
n − 1.

In conclusion, if we take k large, say k > 10 logn, and if we define z ∶= (Akv)/∥Akv∥, then

∥Az − λ1z∥ ⩽ 4n3/22−k < 4n−4,

and the corresponding λ1 is simply zTAz/zT z.

Proof. By the spectral theorem, A admits n eigenvalues λ1,⋯, λn corresponding to n independent eigenvectors

v1,⋯, vn. Let v be given as stated; we can express it as a linear combination v =
n

∑
i=1
⟨v, vi⟩ vi. Then,

Akv =
n

∑
i=1

Ak ⟨v, vi⟩ vi =
n

∑
i=1
⟨v, vi⟩λk

i vi.

Therefore,

∥Akv − ⟨v, v1⟩λk
1v1∥2 = ∥

n

∑
i=1
⟨v, vi⟩λk

i vi − ⟨v, v1⟩λk
1v1∥

2

= ∥
n

∑
i=2
⟨v, vi⟩λk

i vi∥
2

=
n

∑
i=2
(∣⟨v, vi⟩∣∣λi∣k)2

⩽
n

∑
i=2
∥v∥∥vi∥∣λi∣2k = 2−2k(n − 2) < 16−k(n − 1).

Problem 13

† Let X1, Y1 be random variables with joint PDF fX1,Y1 . Let X2, Y2 be random variables with joint PDF

fX2,Y2 . Let T ∶ R2 → R2 and S ∶ R2 → R2 be inverses of each other. Let J(x, y) denote the determinant of the
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Jacobian of S at (x, y). Assume that (X2, Y2) = T (X1, Y1). Show that

fX2,Y2(x, y) = fX1,Y1(S(x, y))∣J(x, y)∣.

Proof. Using change of variable formula,

∫
U
fX2,Y2(x, y) dxdy = P((X2, Y2) ∈ U)

= P((X1, Y1) ∈ S(U))

= ∫
S(U)

fX1,Y1(x, y) dxdy

= ∫
U
fX1,Y1(S(x, y))∣J(x, y)∣ dxdy

for all measurable U . The equality stated in the problem follows.

Problem 14

† Problems 11 and 12 skipped. One possible way is to use sample mean and variance.

Problem 16

† n people are about to be interviewed, each having a distinct rank 1 ⩽ ai ⩽ n, 1 ⩽ i ⩽ n. For each 1 ⩽ i ⩽ n,

upon interviewing the ith person, if ai > aj for all 1 ⩽ j < i then the ith person is hired. That is, if the person

currently being interviewed is better than all previous candidates, they will be hired. What is the expected

number of hiring that will be made?

Hint: let Xi = 1 if the ith person to arrive is hired and let Xi = 0 otherwise. Consider
n

∑
i=1

Xi.

Solution. Let Xi be the indicator variable that evaluates to 1 if the ith person to arrive is hired. Then, among the

first i people to arrive, since each permutation is equally likely to occur, EXi = 1/i. Clearly
n

∑
i=1

Xi is the random

variable whose output represents the number of people hired, so it remains to compute its expectation:

E(
n

∑
i=1

Xi) =
n

∑
i=1

EXi =
n

∑
i=1

1

i
.
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