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Problem 1

† You want to complete a set of 100 baseball cards. Cards are sold in packs of ten. Assume that each

individual card in the pack has a uniformly random chance of being any element in the full set of 100

baseball cards. (In particular, there is a chance of getting identical cards in the same pack.) How many

packs of cards should you buy in order to get a complete set of cards? That is, what is the expected number

of cards you should buy in order to get a complete set of cards (rounded up to a multiple of ten)?

Solution. Let Ni and N be defined as suggested by the hint. Then N1 = 1. Also define N0 = 0. Now we compute

Ni −Ni−1. If our collection now contains i − 1 distinct cards, the probability of buying and getting a new card is

(100 − (i − 1))/100. Therefore the expected n Let Ni and N be defined as suggested by the hint. Then N1 = 1.

Also define N0 = 0. Now we compute Ni−Ni−1. If our collection now contains i−1 distinct cards, the probability

of buying and getting a new card is (100 − (i − 1))/100. Therefore the expected number of cards to buy in order

to get a new card is 100/(100 − i + 1). Thus,

EN = EN100 =
100

∑
i=1

E(Ni −Ni−1)

= 100
99

∑
k=0

1

100 − k
= 100

100

∑
k=1

1

k
≈ 518.7.

That is, we need to buy 51.87 ≈ 52 packs in order to get a complete set of cards. umber of cards to buy in order

to get a new card is 100/(100 − i + 1). Thus,

EN = EN100 =
100

∑
i=1

E(Ni −Ni−1)

= 100
99

∑
k=0

1

100 − k
= 100

100

∑
k=1

1

k
≈ 518.7.

That is, we need to buy 51.87 ≈ 52 packs in order to get a complete set of cards.

Problem 2

† You are trapped in a maze. Your starting point is a room with three doors. The first door will lead you

to a corridor which lets you exist the maze after 3 hours of walking. The second dour leads you through

a corridor which puts you back to the starting point of the maze after seven hours of walking. The third
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door leads you through a corridor which puts you back to the starting point of the maze after nine hours of

walking. Each time at the starting point you choose one of the doors with equal probability. Let X be the

number of hours it takes for you to exist the maze and let Y be the number of door that you initially choose.

• Compute E(X ∣ Y = i), i ∈ {1,2,3}, in terms of EX.

• Compute EX.

Solution.

E(X ∣ Y = 1) = 3

E(X ∣ Y = 2) = 7 +EX

E(X ∣ Y = 3) = 9 +EX.

Then, since EX =
3

∑
i=1

P(Y = i)E(X ∣ Y = i), we obtain the function

3 + 7 +EX + 9 +EX
3

= EX Ô⇒ EX = 19.

Problem 3

Let X1, ...,Xn be continuous random variables with joint PDF f ∶ Rn → [0,∞). Assume that

fX1,...,Xn(x1, ..., xn) =
n

∏
i=1

fXi(xi) for all x1, ..., xn ∈ R.

Show that X1, ...,Xn are independent.

Proof. Let (x1, ..., xn) ∈ Rn. Then

P(Xi ⩽ xi for all i) = ∫
x1

−∞
⋯∫

xn

−∞
fX1,...,Xn(s1, ..., sn) dsn⋯ ds1

= ∫
x1

−∞
⋯∫

xn

−∞

n

∏
i=1

fXi(si) dsn⋯ ds1 (assumption)

= (∫
x1

−∞
fX1(s1) ds1)⋯(∫

xn

−∞
fXn(sn) dsn) (Fubini)

=
n

∏
i=1

P(Xi ⩽ xi).

Therefore X1, ...,Xn are independent.

Problem 4

Let φ ∶ R → R. Show that φ is convex if and only if: for any y ∈ R, there exists a constant a and a function

L ∶ R→ R defined by L(x) = a(x − y) + φ(y) such that L(y) = φ(y) and L(x) ⩽ φ(x) for all x ∈ R.
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Proof. If φ is convex, then for any x ∈ R and h > 0,

φ(x) = φ((x − h) + (x + h)
2

) ⩽ φ(x − h) + φ(x + h)
2

,

so
φ(x) − φ(x − h)

h
⩽ φ(x + h) − φ(x)

h
. (1)

Furthermore, if 0 < h̃ < h, writing x − h̃ as (h̃/h)(x − h) + (1 − h̃/h)x, we have

φ(x − h̃) ⩽ (h̃/h)φ(x − h) + (1 − h̃/h)φ(x).

Multiplying both sides by h, rearranging, and then dividing by hh̃ gives

φ(x) − φ(x − h)
h

⩽ φ(x) − φ(x − h̃)
h̃

for 0 < h̃ < h.

A similar argument shows

φ(x + h) − φ(x)
h

⩾ φ(x + h̃) − φ(x)
h̃

for 0 < h̃ < h.

A bounded monotone sequence has a limit, so it is well-defined to take lim
h↘0

of (1) and obtain

lim
h↘0

φ(x) − φ(x − h)
h

⩽ lim
h↘0

φ(x + h) − φ(x)
h

. (2)

Pick any value a in-between these two limits in (2) and we have obtained our linear “tangent” function bounding

φ from below.

Conversely, let x, y ∈ R and let λ ∈ (0,1). Define p ∶= λx + (1 − λ)y. By assumption there exists constant a such

that L(x) ∶= a(x − p) + φ(p) is “tangent” to φ at p and bounds φ from below. Thus

a(x − p) + φ(p) ⩽ φ(x) and a(y − p) + φ(p) ⩽ φ(y). (3)

Now we apply the convex combination of φ(x) and φ(y):

λφ(x) + (1 − λ)φ(y) ⩾ λ(a(x − p) + φ(p)) + (1 − λ)(a(y − p) + φ(p))

= λa(1 − λ)(x − y) + λφ(p) − (1 − λ)aλ(x − y) + (1 − λ)φ(p)

= φ(p) = φ(λx + (1 − λy)).

Problem 5

Prove Jensen’s inequality: if φ is convex and E∣X ∣ < ∞,E∣φ(X)∣ < ∞, then φ(EX) ⩽ Eφ(X). Deduce the

triangle inequality ∣EX ∣ ⩽ E∣X ∣.

Proof. By the previous problem there exists a constant c and a linear function L(x) = c(x − EX) + φ(EX) that

bounds φ from below. Then

Eφ(X) ⩾ EL(X) = E(c(X −EX) + φ(EX)) = φ(EX).

Applying Jensen’s inequality to φ(x) ∶= ∣x∣ gives ∣EX ∣ ⩽ E∣X ∣.
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Problem 6

Prove Markov’s inequality P(∣X ∣ ⩾ t) ⩽ E∣X ∣/t for all t ⩾ 0.

Proof. This follows from decomposing ∣X ∣ into ∣X ∣1{∣X ∣⩾t} and ∣X ∣1{∣X ∣<t}:

E∣X ∣ = P(∣X ∣ ⩾ t)E∣X ∣1{∣X ∣⩾t} + P(∣X ∣ < t)1{∣X ∣⩽t} ⩾ tP(∣X ∣ ⩾ t) + 0.

Problem 7

Let X be a random variable and let r > 0. Define MX(t) ∶= EetX for t ∈ R. Prove the Chernoff bound: for

any t > 0,

P(X > r) ⩽ e−trMX(t).

Proof. Since the exponential function is monotone, X > r if and only if etX > etr. Then Markov’s inequality

applied to etX implies

P(X > r) = P(etX > etr) ⩽ e−trMX(t).

Problem 8

† Among 625 members of a bank chosen uniformly at random among all bank members, it was found that 25

had a savings account. Give an interval of form [a, b] where a, b ∈ Z such that with about 95% certainty, if we

sample 625 bank members independently and uniformly at random (from a very large bank membership),

then the number of these people with savings accounts lies in the interval [a, b].

Solution. Let Xi denote the status of whether the ith person has a savings. Let Xi = 1 if yes and = 0 otherwise.

Then given the assumptions each Xi should follow a Bernoulli distribution with parameter 25/625 = 1/25 and

variance 24/625. Using the CLT we see that ∑625
i=1 Xi roughly follows a Gaussian with mean 625 ⋅ 1/25 = 25 and

standard deviating
√
625 ⋅

√
24/625 =

√
24. To have a 95% confidence interval, we want Z ∈ [−2,2], which

corresponds to [25 − 2
√
24,25 + 2

√
24] ≈ [15,35].

Problem 9

† Suppose we run a casino and we want to test whether a particular roulette wheel is biased. Let p be the

probability that red results from a spin. Let the null hypothesis be p = 18/38 and let p ≠ 18/38 be the alternate

hypothesis. For i ⩾ 1, let Xi = 1 if the ith spin is red and = 0 otherwise. Let µ ∶= EX1 and σ ∶=
√
var(X1).

To test the null hypothesis we spin the wheel n times. In our test, we reject the null hypothesis if ∣X + ... +
Xn − nµ∣ > 2σ

√
n. We set the type I error (false positive) to be 5%.

Suppose we spin the wheel n = 3800 times and get red 1868 times. Is the wheel biased?

Solution. Assuming the null hypothesis, each Xi is a Bernoulli trial with mean 18/38 and variance

(18/38)(20/38). CLT states that ∑3800
i=1 Xi roughly follows a Gaussian with mean 3800 ⋅18/38 = 1800 and standard
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deviation
√
3800

√
(18/38)(20/38). Our observed value is 1868 and it corersponds to

Z = ∣ 1868 − 1800
√
3800

√
(18/38)(20/38)

∣ ≈ 2.21 > 2

so we reject the null hypothesis with > 95% certainty.

Problem 10

† A community has m facilities. Each family has at least one child. The largest family has k > 0 children. For

each i ∈ {1,⋯, k}, there are ni families with i children so n1 + ⋯ + nk = m. Choose a child randomly in the

following ways.

(1) First choose one of the families uniformly at random among all the families. Then, in the chosen family,

choose one of the children uniformly at random.

(2) Among all n1 + 2n2 +⋯ + knk children, choose one uniformly at random.

What is the probability that the chosen child is the first-born in their family if you use method (1)? What

about (2)?

Solution. For method 1, there is a probability of ni/m to choose a family of i children. Then there is a probability

of 1/i that the children picked is the first-born. Thus, the total probability is m−1
k

∑
i=1

ni/i.

For the second method, we simply need to compute the number of first-born children and decide it by the total

number of children. Clearly m family correspond to m first-born children, and there are
k

∑
i=1

i ⋅ ni children. Thus

the total probability is m/
k

∑
i=1
(i ⋅ ni).

Problem 11

Let 0 < p ⩽∞. Show that if Y1, Y2, ... ∶ Ω → R converge to Y ∶ Ω → R in Lp then Yn → Y in probability. Then

show that the converse is false.

Proof. Let ϵ > 0 be given. For p <∞, we have

∥Yn − Y ∥pp = ∫
Ω
∣Yn − Y ∣p dP

= ∫
{∣Yn−Y ∣⩽ϵ}

∣Yn − Y ∣p dP + ∫
{∣Yn−Y ∣>ϵ}

∣Yn − Y ∣p dP

⩾ ∫
{∣Yn−Y ∣>ϵ}

∣Yn − Y ∣p dP.

This shows that

P({Yn − Y } > ϵ) <
∥Yn − Y ∥pp

ϵp
.

Taking n→∞ finishes the proof.

(I could’ve used Markov’s and said P(∣Yn −Y ∣ > ϵ) = P(∣Yn −Y ∣p > ϵp) ⩽ ϵ−pE∣Yn −Y ∣p = ϵ−p∥Yn −Y ∥pp, a one-liner.)

If p = ∞, simple note that whenever ∥Yn − Y ∥∞ ⩽ ϵ we have P({ω ∶ ∣Yn(ω) − Y (ω)∣ > ϵ}) = 0. Then the claim

follows from the assumption that ∥Yn − Y ∥∞ → 0.
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For a counterexample, let Yn ∶= n1/p1(0,1/n). See below.

Problem 12

Show that (almost sure convergence)⇏ (convergence in Lp) and also show (convergence in Lp)⇏ (almost

sure convergence).

Solution. Consider Yn ∶= n1/p1(0,1/n). Clearly Yn → Y , the constant random variable taking value zero, for all

x ∈ R, whereas

∥Yn − Y ∥p = (∫
R
∣n1/p1(0,1/n)∣p dP)

1/p
= 11/p = 1 for all n.

Conversely, consider the following sequence of random variables:

Y1 ∶= 1[0,1]

Y2 ∶= 1[0,1/2] Y3 ∶= 1[1/2,1]

Y4 ∶= 1[0,1/3] Y5 ∶= 1[1/3,2/3] Y6 ∶= 1[2/3,1]

⋯

Since any Yj on the kth line is the indicator variable on an interval of length 1/k, we have ∥Yj∥p = (1/k)1/p = k−1/p.

As k →∞ we have ∥Yn∥p → 0, so Yn → the zero variable in Lp. However, Yn does not converge almost surely to

Y — in fact it converges nowhere on [0,1]. Given any x ∈ [0,1], on each line, at least one of the Yj ’s will have

Yj(x) = 1, so the sequence {Yn(x)}n⩾1 cannot possibly converge to 0.

Problem 13

† Estimate the probability that a million coin flips of fair coins will result in more than 501,000 heads using

the CLT.

Solution. Each coin flip can be viewed as a Bernoulli random variable with p = 0.5. Thus the mean is 0.5, the

variance 0.25, and the standard deviation 0.5. Adding a million i.i.d. copies of them, we roughly have a Gaussian

with mean 0.5 million and standard deviation
√
106 ⋅ 0.5 = 500. Thus having > 501,000 heads corresponds to > 2

standard deviations, i.e., Z > 2, which has the probability

P(Z > 2) = 1√
2π
∫
∞

2
exp(−s2/2) ds ≈ 0.0228.
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