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Problem 1

Let n ⩾ 2. Let Sn−1 ∶= {x ∈ Rn ∶ ∥x∥ = 1}. Let v be a random vector uniformly distributed in Sn−1. Prove that

for any t > 0 and any x ∈ Sn−1 fixed,

P(v ∈ Sn−1 ∶ ∣⟨v, x⟩∣ > t/
√
n) ⩽ 10

t
.

Proof. (The first half is identical to homework 1 problem 11.) We first provide an upper bound for E∣⟨x, v⟩∣ and

then use Markov’s inequality to conclude the proof.

Since the uniform distribution on Sn−1 is invariant under rotations about the origin, and since inner product is

also preserved under rotations, i.e., ⟨a, b⟩ = ⟨Ra,Rb⟩, we have, for any rotation R ∶ Sn−1 → Sn−1,

E∣⟨x, v⟩∣ = E∣⟨x,Rv⟩∣ = E∣⟨R−1x,R−1Rv⟩∣ = E∣⟨R−1x, v⟩∣.

Therefore we can WLOG assume x = (1,0, ...,0). Then

E∣⟨x, v⟩∣ = E∣⟨u, v⟩∣ = 1

Area(Sn−1) ∫Sn−1
∣v1∣ dV. (Q1.1)

Note that under spherical coordinates with parameters r,φ1, φ2, ..., φn−1, the first component v1 can be expressed

as r cosφ1, and the Jacobian is

rn−1
n−2
∏
i=1

sinn−1−i(φi) = rn−1 sinn−2(φ − 1) sinn−3(φ2)⋯ sin(φn−2).

In this case r ≡ 1 on Sn−1 so we get two simpler (n − 1)-fold integrals:

∫
Sn−1
∣v1∣ dV = ∫

2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0
∣cosφ1∣

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1 (Q1.2)

and

Area(Sn−1) = ∫
Sn−1

1 dV = ∫
2π

φn−1=0
∫

π

φn−2=0
⋯∫

π

φ1=0

n−2
∏
i=1

sinn−1−i(φi) dφ1⋯ dφn−2 dφn−1. (Q1.3)

Division gives E∣⟨x, v⟩∣ = (Q1.2)/(Q1.3) = ∫
π

0
∣cosφ∣ sinn−2 φ dφ/∫

π

0
sinn−2 φ dφ. Since both integrals satisfy

∫
π

0
= 2∫

π/2

0
, the ratio further equals ∫

π/2

0
cosφ sinn−2 φ dφ/∫

π/2

0
sinn−2 φ dφ.
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The numerator is 1/(n−1) < 1/n by a simple u-substitution with u ∶= sinφ. For n ⩾ 2, we bound the denominator

from below by noticing cosn−2 x ⩾ cosn x ⩾ e−nx
2

on [0,1], which implies

∫
π/2

0
sinn−2 φ dφ = ∫

π/2

0
cosn−2 φ dφ ⩾ ∫

1

0
cosn−2 φ dφ

⩾ ∫
1

0
e−nx

2

dx = 1√
n
∫
√
n

0
e−u

2

du ⩾ 1√
n
∫

1

0
e−u

2

du > 1

10
√
n
.

Combining both bounds, we obtain

E∣x, v∣ < 1/n
1/(10

√
n)
= 10√

n
.

Then the problem is simply an application of Markov’s inequality:

P(v ∶ ∣⟨x, v⟩∣ > t/
√
n) ⩽ E∣⟨v, x⟩∣

t/
√
n
< 10

t
.

Problem 2

Let X be uniformly distributed on [0,1]. Show that the location family of X is not an exponential family,

i.e., the corresponding densities {f(x + µ)}µ∈R cannot be written in the form

h(x) exp((w(µ)t(x) − a(w(µ))

where h ∶ R→ [0,∞),w ∶ R→ R, t ∶ R→ R, x ∈ R, and a(w(µ)) the appropriate scaling factor.

Proof. Note that for any give µ, the PDF is zero outside [µ,µ + 1]. Since exp(⋅) is nonzero, this means h ≡ 0 on

R/[µ,µ + 1]. Letting µ vary, we see h needs to be zero everywhere. Then the PDF is zero, which is absurd.

Problem 3

Suppose we have a k-parameter exponential family in canonical form so that

fw(x) ∶= h(x) exp (
k

∑
i=1

witi(x) − a(w)) for all w ∈ Rk, x ∈ Rn,

a(w) ∶= log∫
Rn

h(x) exp (
k

∑
i=1

witi(x)) dµ(x),

and

W ∶= {w ∈ Rk ∶ a(w) <∞}.

Show that a(w) is convex and conclude that W is a convex set.

Hint: use Hölder’s inequality ∥fg∥1 ⩽ ∥f∥p∥g∥q where 1/p + 1/q = 1.

Proof. We begin by picking arbitrary u, v ∈ Rk. Also, pick λ ∈ (0,1) and consider the conjugate pair 1/λ and
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1/(1 − λ). Since h, exp ⩾ 0, we may drop the absolute values inside the integrals. From definition, we have

a(λu + (1 − λ)v) = log∫
Rn

h(x) exp (
k

∑
i=1
(λui + (1 − λ)vi)ti(x)) dµ(x)

= log∫
Rn

h(x)λ+(1−λ) exp (
k

∑
i=1

λuiti(x))(
k

∑
i=1
(1 − λ)viti(x)) dµ(x)

= log∫
Rn
[h(x) exp (

k

∑
i=1

uiti(x))]
λ

[h(x) exp (
k

∑
i=1

viti(x))]
1−λ

dµ(x)

[Hölder] ⩽ log (∫
Rn
([...]λ)

1/λ
dµ(x))

λ

(∫
Rn
([...]1−λ)

1/(1−λ)
dµ(x))

1−λ

= λ log∫
Rn

h(x) exp (
k

∑
i=1

uiti(x)) dµ(x) + (1 − λ) log∫
Rn

h(x) exp (
k

∑
i=1

viti(x)) dµ(x).

For convexity of W , if w1,w2 ∈W , and λ ∈ (0,1), then

a(λw1 + (1 − λ)w2) ⩽ λa(w1) + (1 − λ)a(w2) ⩽ a(w1) + a(w2) <∞.

This shows W is convex.

Problem 4

Using a two parameter exponential family for a Gaussian random variable (with mean µ and variance σ2),

compute both sides of the following identity in terms of µ and σ:

e−a(w)
∂2ea(w)

∂wi∂wj
= ∫

R
ti(x)tj(x)h(x) exp (

2

∑
i=1

witi(x) − a(w)) dµ(x)

where 1 ⩽ i, j ⩽ 2,

t1(x) ∶= x, t2(x) ∶= x2, w1 ∶=
µ

σ2
, w2 ∶= −

1

2σ2
,

and

a(w) ∶= − w2
1

4w2
− log(−2w2)

2
.

Solution. For the case i = j = 1:

e−a(w)
∂2

∂w2
1

ea(w) = e−a(w) ∂

∂w1
[∂a(w)

∂w1
ea(w)]

= ∂2a(w)
∂w2

1

+ (∂a(w)
∂w1

)
2

= − 1

2w2
+ w2

1

4w2
2

= σ2 + µ2/σ4

1/σ4
= σ2 + µ2

and

∫
R
t21(x)h(x) exp(...) dµ(x) = ∫R

x2fN (µ,σ)(x) dx = EX2.
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If i = j = 2, then

e−a(w)
∂2

∂w2
2

ea(w) = e−a(w) ∂

∂w2
[∂a(w)

∂w2
ea(w)] = ∂2a(w)

∂w2
2

+ (∂a(w)
∂w2

)
2

= − w2
1

2w3
2

+ 1

2w2
2

+ ( w2
1

4w2
2

− 1

2w1
)
2

= µ2/σ4

1/(4σ6)
+ 2σ4 + (µ

2/σ2

1/σ2
+ σ2)

2

= 4µ2σ2 + 2σ4 + (µ2 + σ2)2 = µ4 + 6µ2σ2 + 3σ4

and

∫
R
t22(x)h(x) exp(...) dµ(x) = ∫R

x4fN (µ,σ)(x) dx = EX4.

Finally, if i ≠ j, WLOG assume i = 1, j = 2. Then

e−a(w)
∂2

∂w1∂w2
ea(w) = e−a(w) ∂

∂w1
[∂a(w)

∂w2
ea(w)] = ∂2a(w)

∂w1∂w2
+ ∂a(w)

∂w1

∂a(w)
∂w2

= w1

2w2
2

− w1

2w2
( w2

1

4w2
2

− 1

2w2
)

= µ/σ2

1/2σ4
+ µ/σ2

1/σ2
(µ2 + σ2) = µ3 + 3µσ2,

and

∫
R
t1(x)t2(x) exp(...) dµ(x) = ∫

R
x3fN (µ,σ)(x) dx = EX3.

Problem 5

Let X ∶ Ω→ Rn be a random variable with

P(X ∈ A) ∶= ∫
A
exp ( −

n

∑
i=1

x2
i /2) dx(2π)−n/2 for all A ⊂ Rn measurable.

Let v ∈ Rn. Show that ⟨X,v⟩ ∼ N (0, ∥v∥2).
Next, let v1, ..., vm ∈ Rn. Show that the random variables ⟨X,vi⟩ are independent if and only if the vectors

v1, ..., vn are pairwise orthogonal.

Proof. We first show the first claim. Since X is a multivariate standard Gaussian, component-wise, each com-

ponent independently follows a standard Gaussian. Thus, for a fixed v, ⟨X,v⟩ is merely a linear combination of

Gaussians and is therefore a Gaussian. Notation-wise, let v = (v(1), ..., v(n)). We have

E ⟨X,v⟩ =
n

∑
i=1

E(v(i)N (0,1)) = 0

and

var ⟨X,v⟩ =
n

∑
i=1

var(v(i)N (0,1)) =
n

∑
i=1
(v(i))2 = ∥v∥2.

For the second part, let Yi be the random variable denoting ⟨X,vi⟩ and let Y ∶= (Y1, ..., Yn) be a random vector.

We first prove that
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Y1, ..., Yn are independent if and only if the moment gen-

erating functions (MGFs) satisfy MY (t) =
n

∏
i=1

MYi(ti).

The⇒ is obvious, as

MY (t) = Eet
TY = ∫

Rn
exp (

n

∑
i=1

tiyi)
n

∏
i=1

fYi(yi) dy

=
n

∏
i=1
∫
R
exp(tiyi)fYi(yi) dyi =

n

∏
i=1

EetiYi =
n

∏
i=1

MY (ti).

Conversely, if MY (t) =
n

∏
i=1

MY (ti), the result follows from the (nontrivial) fact that joint MGF uniquely gives

joint distribution which, in turn, gives independence. END OF PROOF OF CLAIM.

With this claim, it suffices to prove that

MY (t) =
n

∏
i=1

MYi(ti) if and only if v1, ..., vn are pairwise orthogonal.

WLOG we can assume each vi has been normalized. Let t ∈ Rn be given. Let Σ be the covariance matrix

corresponding to Y . From the previous part, Y has mean 0. Thus Y ∼ Nn(0,Σ) and MY (t) = exp(tTΣt/2).
Expanding terms in Σ, we see

Σi,j = cov(⟨X,vi⟩ , ⟨X,vj⟩) = cov (
n

∑
k=1

Xkv
k
i ,

n

∑
ℓ=1

Xℓv
ℓ
j) =

n

∑
k,ℓ=1

vki v
ℓ
j cov(Xk,Xℓ) = ⟨vi, vj⟩ .

Therefore,

tTΣt =
n

∑
i=1

t2i ∥vi∥2 +∑
i≠j

titj ⟨vi, vj⟩ . (1)

If Yi’s are independent, the in particular they are pairwise independent, so for any i ≠ j, if we let Σ0 denote the

covariance matrix of Y0 ∶= (Yi, Yj), and let t0 ∶= (ti, tj) (i.e., we only consider the corresponding two compo-

nents), then from (1)
tT0 Σ0t0

2
= t2i

2
+
t2j

2
+ t2i t2j ⟨vi, vj⟩ .

By independence, MY0(t0) =MYi(ti)MYj(tj), so t2i t
2
j ⟨ui, vj⟩ = 0 for all ti, vj , which implies ui, vj are orthogonal.

Ranging over all i, j’s, we have that v1, ..., vm are pairwise orthogonal.

Conversely, if v1, ..., vm are pairwise orthogonal, then (1) implies

tTΣt =
n

∑
i=1

t2i ∥vi∥2 +∑
i≠j

titj ⋅ 0 =
n

∑
i=1

t2i ,

so MY (t) =
n

∏
i=1

MYi(ti), as expected. This finishes the proof.
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Problem 6

Show that a gamma distribution is a 2-parameter exponential family.

Then, verify its mean and variance by differentiating the exponential family.

Finally, find the moment generating function of a gamma distributed random variable and use it to find the

distribution of
n

∑
i=1

Xi where X1, ...,Xn are independent with parameters αi and β.

Proof. Recall that the Gamma distribution is given by

f(x) = xα−1 exp(−x/β)
βαΓ(α)

for x ⩾ 0.

Therefore,

f(x) = 1{x>0} exp((α − 1) logx −
x

β
− α logβ − log Γ(α))

= 1{x>0} exp(−
1

b
⋅ x + (α − 1) ⋅ logx − (α logβ + log(Γ(α))))

= h(x) exp(
2

∑
i=1

wi(α,β)ti(x) − a(w(α,β)))

where

h(x) = 1{x>0}
w1(α,β) = −1/β
w2(α,β) = α − 1

t1(x) = x
t2(x) = logx

a(w(α,β)) = α logβ + log Γ(α). (1)

We now verify the mean and variance using exponential family. Using the non-canonical form differential

identity on β, we have

e−a(w(α,β))
∂

∂β
ea(w(α,β)) = Eα,β (

2

∑
i=1

∂wi

∂β
ti) .

The RHS is simply Eα,β(x/β2) = Eα,βX/β2. The LHS is

e−a(w(α,β))ea(w(α,β))
∂

∂β
[a(w(α,β))] = α/β.

Therefore we have

Eα,βX = β2 ⋅ α/β = αβ, (Expected Value)

as expected. We now compute the second moment by differentiating twice. First note that

exp(−a(w)) ∂2

∂w2
i

exp(a(w)) = exp(−a(w)) ∂

∂wi
( ∂

∂wi
exp(a(w)))

= exp(−a(w)) ∂

∂wi
(a(w) ∂

∂wi
a(w))

= exp(−a(w)) ∂

∂wi
(a(w)Eti)

= Eti exp(−a(w))
∂

∂wi
a(w) = (Eti)2
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where we have used the canonical differential identity exp(−a(w)) ∂

∂wi
exp(a(w)) = Eti twice. Then

e−a(w(α,β))
∂2

∂β2
ea(w(α,β)) = e−a(w(α,β)) ∂

∂β
[ ∂

∂β
ea(w(α,β))]

= e−a(w(α,β)) ∂

∂β
[∂e

a(w)

∂w1

∂w1

∂β
+ ∂ea(w)

∂w2

∂w2

∂β
]

= e−a(w(α,β)) [∂
2ea(w)

∂w2
1

(∂w1

∂β
)
2

+ ∂ea(w)

∂w1

∂2w1

∂2β
+ ∂2ea(w)

∂w2
2

(∂w2

∂β
)
2

+ ∂ea(w)

∂w2

∂2w2

∂β
]

= Eα,β (
2

∑
i=1
(ti ⋅

∂wi

∂β
)
2

+
2

∑
i=1

ti ⋅
∂2wi

∂β2
)

= Eα,βX
2/β4 − 2Eα,βX/β3 = Eα,βX

2/β4 − 2α/β2. (2)

The original term, on the other hand, also satisfies

e−a(w(α,β))
∂2

∂β2
ea(w(α,β)) = e−a(w(α,β)) ∂

∂β
(ea(w(α,β)) ∂

∂β
a(w(α,β)))

= e−a(w(α,β)) (ea(w(α,β)) ∂2

∂β2
a(w(α,β)) + ea(w(α,β)) ( ∂

∂β
a(w(α,β)))

2

)

= ∂2

∂β2
a(w(α,β)) + ( ∂

∂β
a(w(α,β)))

2

= − α

β2
+ α2

β2
. (3)

Combining (2) and (3) we see

Eα,βX
2 = β4β2(α + α2 + 2α) = αβ2 + α2β2,

so

varα,β(X) = αβ2 + α2β2 − α2β2 = αβ2, (Variance)

also as expected.

Finally we compute the MGF MX,α,β(t) for t < β−1:

MX,α,β(t) = Eα,βe
tX = ∫

∞

0

etxxα−1e−x/β

βαΓ(α)
dx = ∫

∞

0

xα−1e−x(β
−1−t)

βαΓ(α)
dx

= ∫
∞

0

(u/(β−1 − t))α−1e−u

βαΓ(α)
1

β−1 − t
du

= 1

(β−1 − t)αβαΓ(α) ∫
∞

0
uα−1e−u du = 1

(β−1 − t)αβα
= (1 − βt)−α. (MGF)

If X1, ...,Xn are independent with Xi ∼ Gamma(αi, β), then the MGF at t becomes

n

∏
i=1
(1 − βt)αi = (1 − βt)−∑

n
i=1 αi.

By uniqueness, this implies that
n

∑
i=1

Xi is a (
n

∑
i=1

αi, β)−distributed Gamma random variable.
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Problem 7

† Let n ⩾ 2 be an integer. Let X1, ...,Xn be a random sample of size n (that is, X1, ...,Xn are i.i.d. random

variables). Assume that µ ∶= EX1 ∈ R and σ ∶=
√
var(X1) < ∞. Let X be the sample mean and let S be the

sample standard deviation of the random sample. Show that var(X) = σ2/n and ES2 = σ2.

Proof. By definition we have X = (X1 + ... +Xn)/n and S2 =
n

∑
i=1
(Xi −X)2/(n − 1). Then,

var(X) = 1

n2

n

∑
i=1

var(Xi) =
nσ2

n2
= σ2

n
.

To show that ES2 = σ2,

ES2 = 1

n − 1
E

n

∑
i=1
(Xi −X)2

= 1

n − 1
E

n

∑
i=1
(X2

i − 2XiX +X
2)

= 1

n − 1
[nEX2

1 − 2E(X
n

∑
i=1

Xi) + nEX
2]

= 1

n − 1
[nEX2

1 − 2EnX
2 + nEX2]

= 1

n − 1
[nEX2

1 − nEX
2] . (1)

Since

var(X1) = E(X −EX)2 = EX2 − (EX)2,

we obtain

EX2
1 = σ2 + µ2 and likewise EX = var(X) + µ2 = σ2

n
+ µ2.

Substituting these values back into (1), we obtain ES2 = (nσ2 + nµ2 − σ2 − nµ2)/(n − 1) = σ2, as claimed.

Problem 8

Let X ∶ Ω → R be a random variable with EX2 < ∞. Show that E(X − t)2 is uniquely minimized when

t = EX.

Proof. By linearity,

E(X − t)2 = EX2 − 2tEX +Et2 = EX2 − 2tEX + t2.

This is the sum of a constant, a linear, and a strictly convex function. Therefore it is strictly convex. Since t = EX
is a critical point with second derivative 2, it is the unique global minimum.
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Problem 9

† Let X be a chi squared random variables with p degrees of freedom. Let Y be a chi squared random

variable with q degrees of freedom. Assume that X and Y are independent. Show that (X/p)/(Y /q) has the

following density, known as the Snedecor’s f-distribution with p and q degrees of freedom

f(X/p)/(Y /q)(t) ∶=
tp/2−1(p/q)p/2Γ((p + q)/2)

Γ(p/2)Γ(q/2)
(1 + t(p/q))−(p+q)/2 for all t > 0.

Proof. Let X and Y be as stated. By definition, we have the PDFs

fX(x) =
xp/2−1e−x/2

2p/2Γ(p/2)
and fY (y) =

yq/2−1e−y/2

2q/2Γ(q/2)
. (1)

By independence, we also have the JPDF

fX,Y (x, y) = fX(x)fY (y) =
xp/2−1yq/2−1e−(x+y)/2

2(p+q)/2Γ(p/2)Γ(q/2)
. (2)

Note that (X/p)/(Y /q) = (X/Y )(q/p) and q/p is a constant, so the important part is to compute X/Y . We begin

by computing its CDF. Let t > 0. Then

FX/Y (t) = P (X/Y ⩽ t) = P (X ⩽ tY )

= ∫
∞

0
∫

yt

0
fX,Y (x, y) dx dy

= 1

2(p+q)/2Γ(p/2)Γ(q/2) ∫
∞

0
[∫

yt

0
xp/2−1e−x/2 dx] yq/2−1e−y/2 dy. (3)

We can recover the PDF of X/Y by differentiating (3) with respect to t:

fX/Y (t) =
d

dt
(3) = 1

2(p+q)/2Γ(p/2)Γ(q/2) ∫
∞

0
[(yt)p/2−1e−yt/2 ⋅ y]yq/2−1e−y/2 dy

= tp/2−1

2(p+q)/2Γ(p/2)Γ(q/2)∫
∞

0
y(p+q)/2−1 ⋅ e−y(t+1)/2 dy

(∆) = tp/2−1

2(p+q)/2Γ(p/2)Γ(q/2)
⋅ Γ(p/2 + q/2) ( 2

t + 1
)
(p+q)/2

= Γ((p + q)/2)
Γ(p/2)Γ(q/2)

⋅ tp/2−1

(t + 1)(p+q)/2
, (4)

where (∆) is because

g(y) ∶= y(p+q)/2−1 ⋅ e−y(t+1)/2

(2/(t + 1))(p+q)/2 ⋅ Γ((p + q)/2

is the PDF of a (p + q
2

,
2

t + 1
)−distributed Gamma random variable and thus has integral 1. Finally,

f(X/p)(Y /q)(t) = f(X/Y )(q/p)(t) =
p

q
⋅ fX/Y (t(p/q))

[by (4)] = p

q
⋅ Γ((p + q)/2)
Γ(p/2)Γ(q/2)

⋅ (t(p/q))p/2−1

(1 + t(p/q))(p+q)/2

= tp/2−1(p/q)p/2

(1 + t(p/q))(p+q)/2
⋅ Γ((p + q)/2)
Γ(p/2)Γ(q/2)

,

as claimed.
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