MATH 541a Homework 3

Qilin Ye

February 18, 2022

Problem 1

Letn > 2. Let S"!:= {x e R" : |z| = 1}. Let v be a random vector uniformly distributed in S"~!. Prove that

for any ¢ > 0 and any = € S™* fixed,

P(v e S : (v, )| > t//) < %

Proof. (The first half is identical to homework 1 problem 11.) We first provide an upper bound for E[(z,v)| and
then use Markov’s inequality to conclude the proof.
Since the uniform distribution on S™! is invariant under rotations about the origin, and since inner product is

also preserved under rotations, i.e., {(a,b) = (Ra, Rb), we have, for any rotation R: S"™1 — §"71,
E|(z,v)| = E|(z, Rv)| = E|(R™'2, R"' Rv)| = E[(R"z,v)|.

Therefore we can WLOG assume z = (1,0, ...,0). Then

1
]E|<$,’U)| = EKU,’UH = W Sn—1|vl| dVv. (Q]..].)

Note that under spherical coordinates with parameters r, ©1, 2, ..., ¥, _1, the first component v; can be expressed

as r cos ¢1, and the Jacobian is

n—2 )
ot I1 sin" 1 () = 7"t sin™ 2 (0 — 1) sin” (g )+ sin(@p_2)-
i=1

In this case r = 1 on S"! so we get two simpler (n — 1)-fold integrals:

27 T T n—2 .
[ vt dV = [ f f |cos ¢ | H sin 17 () dey-- dpp_g dn_y (01.2)
Sn—1 Yn-1=0 Jpn_2=0 ©1=0 i=1
and
27 T T n-2 )
Area(S") = f 14V = / f f TT sin™ () depy - dpp_s dgp_i. Q1.3)
Sn-1 Yn-1=0 Jp,_2=0 ©1=0 i=1

Division gives E[(z,v)| = (Q1.2)/(Q1.3) = f |cos @|sin™ 2 ¢ dgo/[ sin""2 ¢y dyp. Since both integrals satisfy
0 0

™ w/2 /2 /2
f =2 f , the ratio further equals f cos psin™ 2 ¢ dyp / [ sin" 2 o dep.
0 0 0 0
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The numerator is 1/(n-1) < 1/n by a simple u-substitution with « := sin . For n > 2, we bound the denominator

. . 2 . . .
from below by noticing cos" 2z > cos™ x > e on [0, 1], which implies

/2 /2 1 ’
[0 sin" 2o dp = fo cos" 2 dp > —/0 cos" % o dp
1

>/1 e’ g 1[ﬁ_1‘2d> 1f1 !
z = — z = > .
oe . Vvn Jo € Y vn oe Y 10v/n

Combining both bounds, we obtain

Ejz, o] < —17 _ 10
RSV
Then the problem is simply an application of Markov’s inequality:
E[{v,2z)| 10

NG <7. O

P(v: |z, v)] > t/v/n) <

Problem 2

Let X be uniformly distributed on [0,1]. Show that the location family of X is not an exponential family,

i.e., the corresponding densities { f(x + 1) } ,cr cannot be written in the form
h(z) exp((w(p)t(z) - a(w(p))

where h: R - [0,00),w:R >R, ¢: R —> R,z €R, and a(w(p)) the appropriate scaling factor.

Proof. Note that for any give u, the PDF is zero outside [p, u + 1]. Since exp(-) is nonzero, this means i = 0 on

R\[x, pt + 1]. Letting p vary, we see h needs to be zero everywhere. Then the PDF is zero, which is absurd. O

Problem 3

Suppose we have a k-parameter exponential family in canonical form so that

fw(x) = h(xz)exp ( Zk: wit;(z) - a(w)) for all w e R*, z ¢ R™,
i=1

olw) =1og [ ha)exp( 3 wnti(e)) dua),

and
W= {w e R : a(w) < oo}

Show that a(w) is convex and conclude that W is a convex set.

Hint: use Holder’s inequality | fg|.1 < | flplglq where 1/p+1/q = 1.

Proof. We begin by picking arbitrary u,v € R*. Also, pick A € (0,1) and consider the conjugate pair 1/\ and

2
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1/(1 - X). Since h,exp > 0, we may drop the absolute values inside the integrals. From definition, we have
k
a(hu+ (1= \)v) = log fR h(x)exp (3 (i + (1~ Nw)ti(z)) du(z)
" i=1

=log /Rn h(z)M N exp ( Zk; )\uiti(:v))( gk: 1= XNvst; x)) du(z)
1-A

~ log fR [h(m) exp ( il uiti(m))]/\ [h(x) exp ( izlmi(m))] dp(z)
[Hlder] Slog(fw .M" du(x))/\(fw (L) du(x))l_)\
:Mongn h(a:)exp(i ti()) dpa) + (1 - /\)logf x)exp(szt () du(z). O
For convexity of W, if wy, ws € W, and A € (0,1), then
aQwr + (1= Nws) < Aa(wr) + (1 - Na(ws) < a(wy) + a(ws) < oo.

This shows W is convex.

Problem 4

Using a two parameter exponential family for a Gaussian random variable (with mean y and variance o),

compute both sides of the following identity in terms of 1 and o

e T 32 ) ft (2)t; (m)h(x)exp(zwt () - a(w)) du(=)

where 1<4,5<2,

ti1(z) ==z, ta(x) = 22, wy = wy = ———

and
wi  log(=2ws)

(W) =~ 1, 2

Solution. For the casei=j=1:

2
e—a(w) 0 euz(w) _ e—a(w)i [aa(w)ea(w)]

ow? owy | Own
82a(w) da(w) 2 1 . wff
C ow? Ow 2wy 4w?
2/ 4
:02+/“L1/<‘O; =%+ 12

and

Ati(x)h(z)exp(...)du(z):fo?fN(u,(,)(z) dz = EX2.
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If i = j = 2, then

2
o) P o) _ atwy _0_[0a(w) o] _ Palw) | (da(w)
aw% 8’[02 5‘w2 8w§ awg
2 2 2 2/ 4 2/ 2 2
wi 1 (w1 1 ) 1o +2U4+(M/0 +02)

= — + —+| —= — =
2w 2wi  \dw? 2w, 1/(409) 1/o?

=4p%0? + 200 + (PP + 0%)% =t + 64702 + 30
and
fR £2(2)h(z) exp(...) du(z) = fR 2 oy (x) do = EXY.
Finally, if 7 + j, WLOG assume i = 1,5 = 2. Then
2 2
e—a(w) 0 ea(w) _ e—a(w)i [8a(w) ea(u)):| _ 0 CL(U)) i 6&(10) 6&(10)

Owy0ws owy | Ows "~ Ow,Ows ow; Owsg

v w fwy L

N 2w 2wy \4w3 2wy

_ M/UQ H/U2 2 2y _ 3 2

- 1/20_4 + 1/0_2(lu to )_M +3/U‘U ]
and

A tl(l')tg(l') exp() du(m) = ‘/]R ‘rSfN(H,O’)(w) dr = EX&

Problem 5

Let X : QQ - R"™ be a random variable with

P(XeA):= fA exp ( -> xf/?) dz(2m) ™"/ for all A ¢ R™ measurable.
i=1

Let v € R™. Show that (X,v) ~ N(0, |v|?).
Next, let vy, ..., v, € R™. Show that the random variables (X, v;) are independent if and only if the vectors

v1, ..., Uy are pairwise orthogonal.

Proof. We first show the first claim. Since X is a multivariate standard Gaussian, component-wise, each com-
ponent independently follows a standard Gaussian. Thus, for a fixed v, (X, v) is merely a linear combination of

Gaussians and is therefore a Gaussian. Notation-wise, let v = (v(1), ..., »(™)). We have
E(X,v) =Y E@w®DN(0,1))=0
i=1

and

var (X,v) = 3 var(@A(0,1)) = 3 (0®)? = o],
i=1 i=1

For the second part, let Y; be the random variable denoting (X, v;) and let Y := (Y7,...,Y},) be a random vector.

We first prove that
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Y1,...,Y, are independent if and only if the moment gen-

erating functions (MGFs) satisfy My (t) = [ [ My, ().
i=1

The = is obvious, as
T n n
My (t) = Ee!' Y = [Rn exp( thyz) ny(yz) dy
) =1 i=1
=TT [ exp(tiys) fvi () dys = [TB = [T My (t:).
=1 i=1 i=1

Conversely, if My (t) = [] My (t;), the result follows from the (nontrivial) fact that joint MGF uniquely gives
i=1
joint distribution which, in turn, gives independence. END OF PROOF OF CLAIM.

With this claim, it suffices to prove that

My (t) = [ ] My, (t;) if and only if v, ..., v, are pairwise orthogonal.
i=1

WLOG we can assume each v; has been normalized. Let ¢t € R™ be given. Let X be the covariance matrix
corresponding to Y. From the previous part, Y has mean 0. Thus Y ~ N,(0,%) and My (t) = exp(tTt/2).

Expanding terms in 3, we see

Xeof) = 33 ebof con(Xe, X0) = ()

M=

Y =cov({X,v;),(X,v,)) = cov( Z Xpok,
k=1 ‘

-1 k=1
Therefore,
n
tTEt: thHvZ\F +Ztitj <’Ui,1)j>. (1)
i=1 %)

If Y;’s are independent, the in particular they are pairwise independent, so for any ¢ + j, if we let 3y denote the
covariance matrix of Yy := (¥;,Y;), and let ¢, := (¢;,t;) (i.e., we only consider the corresponding two compo-
nents), then from (1) ,
t(:)FZToto = g + %] + 1315 (vi,05) .

By independence, My, (to) = My, (t;) My, (t;), s0 t3t5 (ui, v;) = 0 for all ¢;, v;, which implies u;, v; are orthogonal.
Ranging over all , j’s, we have that vy, ..., v, are pairwise orthogonal.
Conversely, if vy, ..., v, are pairwise orthogonal, then (1) implies

n n

tTSt =S vi|? + D tit; 0= 17,
i=1 i=1

i#]

so My (t) = [ My, (t;), as expected. This finishes the proof. O

i=1
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Problem 6

Show that a gamma distribution is a 2-parameter exponential family.

Then, verify its mean and variance by differentiating the exponential family:.

Finally, find the moment generating function of a gamma distributed random variable and use it to find the
n

distribution of Z X; where X1, ..., X,, are independent with parameters «; and .
i=1

Proof. Recall that the Gamma distribution is given by

x* ' exp(-2/B)

@)= for « > 0.
Therefore,
(@) = 1ips0y exp ((a “1logz - % —alogh - logF(a))
1o exp(—% 2+ (a—-1)-logz - (alogﬁ+log(F(a))))
- o) exp 3 e £)s(0) - (e )
where

wi (e, B) = -1/p t(z) =

) =al logT" . 1
wQ(Oé,,B) =a-1 t2($) - logz a(w(()é B)) alog 8+ log (a) (1)

h((ﬂ) = 1{w>0}

We now verify the mean and variance using exponential family. Using the non-canonical form differential
identity on 3, we have

0 2 dw,
—a(w(ep)) 9 a(w(e.f) _ | owi,
‘ 28" op (Z 0B )

The RHS is simply E, s(2/3%) = E, s X /3% The LHS is

e 2 L a(u(a, 5))] = af 5

Therefore we have
EasX = 8% /B =ap, (Expected Value)

as expected. We now compute the second moment by differentiating twice. First note that

2
exp(-a(w) 5 exp(a(w)) = exp(-a(w)) 5~ (5 exp(a(w)
= exp(-a(w) 5 (a(w) 5o —a(w))

0
8’LUZ‘

(a(w)Et;)

9 )
5ro-a(w) = (Er)

- exp(-a(w))

~ Bt; exp(-a(w))
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where we have used the canonical differential identity exp(—a(w)) 8i exp(a(w)) = Et; twice. Then
w;

ma(w(@8) P a(u(a.8)) _ gatw(@s) 9 [ieaw(a,m)]
92 a5 Lop
_ matulapy O [0e8) Qwn 9t dw,
98| ouwr 0B " ow, 0B

—a(w(a 8)) |:8 e? a(w) (awl )2 8ea(w) 82’11}1 826‘1(“’) (811}2 )2 86a(w) 821112]
= —_— - +

ow? \ B ow, 023 0wl \ 08 dws 0P
2 Ow; 2 0w,
= ]Ea (tz . 2) + tz . l)
’5(2; o5 ) &' o
:EavﬂXQ/ﬁ4_2Ea,BX/ﬁ3 :Ea,BXQ/ﬁ4_2a/62- (2)

The original term, on the other hand, also satisfies

0? 0 0
—a(w(a,f)) 2 ga(w(a,f)) 2 g-a(w(«,p)) e(w(a,B))
‘ e 35 (e Fatua.0))

2
= em(w(e:h) ( a(w(esn O 952 a(w(a B3)) + el (;ﬂa(w(a,ﬁ))) )

ammmwtﬂMMﬁm oL @)

" op? Bz p?

Combining (2) and (3) we see
Eo X2 = 6% (a+a® +2a) = af® + 52,
)
vara g(X) = af? + a*8% - o?B% = af?, (Variance)

also as expected.

Finally we compute the MGF My , g(t) for t < 37*:

B X o eta:xa 1 —x/ﬁ B oo xa’lefz(ﬁilft)
Vixas®) = Base™ = | gy o= J, ey
_ e /(BT =) e 1
= f FoT(a) 5o du
1 a1 —u 1 .
= (ﬂ_l—t)aﬁar(a) ,/()‘ u 16 d’LL: m :(1—ﬂt) . (MGF)

If Xy,..., X, are independent with X; ~ Gamma(c;, 5), then the MGF at ¢t becomes

ﬁ(l —Bt)% = (1- Bt)—zfﬂ ;.
=1

By uniqueness, this implies that ) X, is a ( > ay, B)—distributed Gamma random variable. O
=1 =1
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Problem 7

T Let n > 2 be an integer. Let X1, ..., X,, be a random sample of size n (that is, X1,..., X,, are i.i.d. random
variables). Assume that y:= EX; € R and o := \/var(X;) < co. Let X be the sample mean and let S be the

sample standard deviation of the random sample. Show that var(X) = 0?/n and ES? = o2.

n

Proof. By definition we have X = (X + ...+ X,,)/n and S* = " (X; - X)*/(n - 1). Then,
i1

— 1 & no? o2
ar(X) = — > var(X;) = 2= =T,
var(X) nzi;vr( i) R
To show that ES? = o2,

1 n —
ES?= —EY(X; - X)?
— Z;( )

1

- E)(X2-2X,X +X)
n-1 =

1 9 — < —2
- — [nIEXl - 21E(XZ_=21XZ-) +nEX ]

. % [nEX? - 2En X" + nEX]

o
1 9 —2
—E[EXl—n]EX]. )
Since
var(X;) = E(X -EX)? = EX? - (EX)?,
we obtain

2
EX?=0%+ 1 and likewise EX = var(X) + p2 = 2 + 2.
n

2

Substituting these values back into (1), we obtain ES? = (no? + nu® - 6% - npu?)/(n - 1) = 02, as claimed. O

Problem 8

Let X : Q — R be a random variable with EX? < co. Show that E(X - ¢)? is uniquely minimized when
t=EX.

Proof. By linearity,
E(X -t)? =EX? - 2tEX + Et* = EX? - 2tEX + t*.

This is the sum of a constant, a linear, and a strictly convex function. Therefore it is strictly convex. Since ¢t = EX

is a critical point with second derivative 2, it is the unique global minimum. O
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Problem 9

T Let X be a chi squared random variables with p degrees of freedom. Let Y be a chi squared random
variable with ¢ degrees of freedom. Assume that X and Y are independent. Show that (X /p)/(Y /q) has the

following density, known as the Snedecor’s f-distribution with p and ¢ degrees of freedom

p/2-1 /2
fostmioin@) = (ﬁfzqo}z)rré(/g; D (1 t(p)) ** forall 50

Proof. Let X and Y be as stated. By definition, we have the PDFs

LP/2-1 /2 d yq/2—1e—y/2
= = ) 1
By independence, we also have the JPDF
xp/Z—lyq/Q—le—(ﬂy)/?
fxy(z,y) = fx(2)fy(y) = (2)

2+ )20 (p/2)I(q/2)

Note that (X /p)/(Y/q) = (X/Y)(q/p) and ¢/p is a constant, so the important part is to compute X /Y. We begin
by computing its CDF. Let ¢ > 0. Then

Fxpy(t) = P(X/Y <t) = P(X <tY)
:fwfytfx,y(l',y) dx dy
0 0
1 (o)

~ 20 02T (p/2)I (g/2) h

yt
[/0 a2 1eml2 daz] qu_le_y/z dy. 3

We can recover the PDF of X /Y by differentiating (3) with respect to ¢:

Fxpy () = %(3) gt ey lyel2 2 dy

1 oo

= 2+ 020 (p/2)T(q/2) /(: [(

p/2-1 o ‘ N

= 2(p+q)/217i(p/2)F(q/2) /(; y(pw)/z—l e u(t+1)/2 dy

tp/2-1

= 20+)/2T (p/2) (q/2) -T(p/2+q/2) (t_’_i1

_T(p+g)/2) ! )
L(p/2)I(q/2) (t+1)@rar2’

(A)

)(P+Q)/2

where (A) is because

y(pw)/‘zf] e y(t+1)/2

(2/(t+1)) P2 T((p +)/2

) —distributed Gamma random variable and thus has integral 1. Finally,

9(y) =
Feem o () = fooyyam (1) = g fx v (t(p/qa))
by (4)] = 2. L+ D)/2) | (t(p/q))P/> !

q T(p/2)T(q/2) (1+t(p/q))wra)
2 Y (plg)??  T((p+q)/2)

(L +t(p/@) 2 T(p/2)l(q/2)’

as claimed. O




