MATH 541a Homework 4

Qilin Ye

March 10, 2022

Problem 1

Let X_1, \ldots, X_n be a random sample of size *n*.

(a) Suppose *X* is a discrete random variable and we order the values *X* takes as $x_1 < x_2 < ...$ For $i \ge 1$ define $p_i \coloneqq \mathbb{P}(X \leq x_i)$. Show that

$$
\mathbb{P}(X_{(j)} \leq x_i) = \sum_{k=j}^{n} {n \choose k} p_i^{k} (1-p_i)^{n-k}.
$$

(b) Let *X* be uniformly distributed on [0,1]. Show that $X_{(j)}$ is a beta distributed random variable with parameters *j* and $n - j + 1$. Conclude that

$$
\mathbb{E}X_{(j)} = \frac{j}{n+1}.
$$

(c) Let $a < b$. Let *U* be the number of indices $1 \leq j \leq n$ such that $X_j \leq a$. Let *V* be the number of indices 1 ≤ *j* ≤ *n* such that *a* < *X*_{*j*} < *b*. Show that the vector (*U*, *V*, *n* − *U* − *V*) is a multinomial random variable with

$$
\mathbb{P}((U, V, n-U-V) = (u, v, n-u-v)) = \frac{n!}{u!v!(n-u-v)!} F_X(a)^u (F_X(b) - F_X(a))^v (1 - F_X(v))^{n-u-v}.
$$

Proof. (a) $X_{(j)} \le x_i$ means that among $X_1, ..., X_n$, at least j are $\le x_i$ and at most $n-j$ are $\ge x_i$. For $k \in [j, n]$, the probability of exactly *k* less than x_i and $n - k$ greater than x_i follows a binomial distribution:

$$
\binom{n}{k} \mathbb{P}(X \leq x_i)^k \mathbb{P}(x_i > k)^{n-k} = \binom{n}{k} p_i^k (1 - p_i)^{n-k}.
$$

Summing over all possible *k*'s we establish our claim.

(b) If *X* is uniformly distributed on [0, 1] then $f_X \equiv 1$ on [0, 1] and $F(x) = x$. Therefore

$$
f_{X_{(j)}} = \frac{n!}{(j-1)!(n-j)!}x^{j-1}(1-x)^{n-j}
$$

which indeed is consistent with a $(j, n-j+1)$ -distributed beta distribution. Therefore

$$
\mathbb{E}X_{(j)} = \int_0^1 x f_{X_{(j)}} dx = \frac{n!}{(j-1)!(n-j)!} \int_0^1 c^j (1-x)^{n-j} dx
$$

$$
= \frac{n!}{(j-1)!(n-j)!} \cdot \frac{j!(n-j)!}{(n+1)!} = \frac{j}{n+1}.
$$

(c) This is because the events $\{X_j \le a\}, \{a < X_j < b\}, \{otherwise\}$ partition the event space and that the *X*^{*i*}'s are i.i.d. Therefore the probability of getting *u*, *v*, *n* − *u* − *v* occurrences of each follows a multinomial distribution.

Problem 2

Using Matlab, verify that its random number generator agrees with the LLN. For example, average 10⁶ samples from the uniform distribution on [0*,* 1] and check how close the sample average is to 1/2. Also make a histogram and check how close the histogram is to a Gaussian.

Solution.

Problem 3

Let $X : \Omega \to \mathbb{R}$ be a random variable on Ω equipped with \mathbb{P} . For $t \in \mathbb{R}$ define $F(t) := \mathbb{P}(X \le t)$. For $s \in (0,1)$ define

$$
Y(s) \coloneqq \sup\{t \in \mathbb{R} : F(t) < s\}.
$$

Then *Y* is a random variable on (0*,* 1) with uniform probability law on (0*,* 1). Show that *X* and *Y* are equal in distribution, i.e., $\mathbb{P}(Y \le t) = F(t)$ for all $t \in \mathbb{R}$.

Proof. Notice that we have another definition for *Y* (*s*):

$$
Y(s) = \sup\{t \in \mathbb{R} : F(t) < s\} = \inf\{t \in \mathbb{R} : F(t) \geq s\}.\tag{1}
$$

Furthermore, by definition of supremum and infimum, whether or not the inequalities are strict impose no effect, so \le and \lt , \ge and $>$ are freely interchangeable.

Now, given $F : \mathbb{R} \to [0,1]$, the CDF of *X*, let *Y* ∶ Range(*F*) $\to \mathbb{R}$ be its generalized inverse. Then by (1) we have

$$
Y(F(t)) = \inf{\tilde{t} \in \mathbb{R} : F(\tilde{t}) \ge F(t)} \le t
$$

 \Box

 \Box

since *t* is in the set of which the infimum is taken. A symmetric argument for $F(Y(t))$ can be obtained analogously, and thus

$$
Y(F(t)) \leq t \quad \text{and} \quad F(Y(s)) \geq s. \tag{2}
$$

Also observe that *Y* is monotone increasing: if $a \le b$ then

$$
\{x: F(x) \geq b\} \subset \{x: F(x) \geq a\}
$$

so

$$
\inf\{x : F(x) \ge b\} = Y(b) \ge Y(a) = \inf\{x : F(x) \ge a\}.
$$
 (3)

Now we prove $\mathbb{P}(Y \le t) = F(t)$. This is true because on one hand

$$
\mathbb{P}(Y \le t) = \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : Y(s) \le t\})
$$
\n
$$
= \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : F(Y(s)) \le F(t)\})
$$
\n
$$
\le \mathbb{P}_{\text{unif}}(\{x \in [0, 1] : s \le F(t)\})
$$
\n
$$
= \int_0^{F(t)} 1 \, \mathrm{d}s = F(t),
$$
\n[By (2)]

and on the other hand

$$
F(t) = \mathbb{P}(X \le t) = \mathbb{P}_{\text{unif}}(\{s \in [0,1]: s < F(t)\})
$$
\n
$$
= \mathbb{P}_{\text{unif}}(\{s \in [0,1]: Y(s) < Y(F(t))\})
$$
\n
$$
\le \mathbb{P}_{\text{unif}}(\{s \in [0,1]: Y(s) < t\})
$$
\n
$$
= \mathbb{P}_{\text{unif}}(\{s \in [0,1]: Y(s) \le t\})
$$
\n
$$
= \int_{0}^{t} Y(s) \, ds = \mathbb{P}(Y \le t).
$$
\n(E)

Problem 4: Box-Muller Algorithm

Let U_1, U_2 be independent variables uniformly distributed in $(0, 1)$. Define

$$
R\coloneqq\sqrt{-2\log U_1}, \Phi\coloneqq 2\pi U_2, \qquad X\coloneqq R\cos\Phi, Y\coloneqq R\sin\Phi.
$$

Show that *X, Y* are independent standard Gaussians.

Then, let $X = (X_1, ..., X_n)$ be a vector of i.i.d. standard Gaussians. Let *A* be an $n \times n$ symmetric positive semidefinite matrix and let $A = RR^T$ be its Cholesky decomposition. Let $e^{(i)}$ be the i^{th} row of R . For $1 \leq i \leq n$ define $Z_i \coloneqq \left\langle X, e^i \right\rangle$. Show that $\mathbb{E}(Z_i Z_j) = a_{ij}$.

Proof. Notice that the inverse transformations are given by

$$
U_1 = \exp\left(-\frac{X^2 + Y^2}{2}\right) \qquad \text{and} \qquad U_2 = \frac{1}{2\pi} \arctan(Y/X).
$$

(The first is obtained by taking $X^2 + Y^2$ to cancel out U_2 and the second is by taking Y/X to cancel out U_1 .)

Then, the Jacobian for the transformation $(X, Y) \mapsto (U_1, U_2)$ is

$$
\begin{vmatrix} \frac{\partial U_1}{\partial X} & \frac{\partial U_1}{\partial Y} \\ \frac{\partial U_2}{\partial X} & \frac{\partial U_2}{\partial Y} \end{vmatrix} = \begin{vmatrix} -\exp(X) & -\exp(Y) \\ -\frac{1}{2\pi} \frac{1}{1 + Y^2 / X^2} \frac{Y}{X^2} & \frac{1}{2\pi} \frac{1}{1 + Y^2 / X^2} \frac{1}{X} \end{vmatrix}
$$

$$
= \begin{vmatrix} -\exp\left(-\frac{X^2 + Y^2}{2}\right) & \frac{1}{2\pi} \frac{1}{1 + Y^2 / X^2} \left(1 + \frac{Y^2}{X^2}\right) \\ = \frac{1}{2\pi} \exp\left(-\frac{X^2 + Y^2}{2}\right). \end{vmatrix}
$$

Therefore,

$$
f_{X,Y}(x,y) = f_{U_1,U_2}(u_1, u_2) \mathcal{J}(u_1, u_2)
$$

= $1 \cdot \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.$

A simple calculation shows that the *X*-marginal and *Y* -marginal indeed have the PDFs of a Gaussian, and the claim therefore follows as $f_{X,Y}(x,y) = f_X(x) f_Y(y)$. \Box Code and output for *X* below:

```
1 UI = rand(1, 10^7);2 U2 = rand(1, 10^7);3 X = sqrt((-2 * log(U1))) * sin(2*pi*U2);
4 Y = sqrt((-2 * log(U1))) .* cos(2*pi*U2);
5
6 histogram(X,100);
```


Finally,

$$
\mathbb{E}\big(Z_iZ_j\big)=\mathbb{E}\left\langle X,e^i\right\rangle\left\langle X,e^j\right\rangle=\mathbb{E}\sum_{k,\ell=1}^n X_ke^i_k\cdot X_\ell e^j_\ell=\mathbb{E}\sum_{k,\ell=1}^n e^i_ke^j_\ell X_kX_\ell=\mathbb{E}\sum_{k=1}^n e^{(i)}_ke^j_k=a_{ij}.
$$

Problem 6

Let A, B, Ω be sets. Let $u : \Omega \to A$ and $t : \Omega \to B$. Assume that for every $x, y \in \Omega$, if $u(x) = u(y)$ then *t*(*x*) = *t*(*y*). Show that there exists a function *s* ∶ *A* → *B* such that *t* = *s*(*u*).

Proof. Let $X \subset A$ be the range of *u*. Then, for $x \in X$ there exists some $\omega \in \Omega$ such that $x = u(\omega)$. Define $s : A \to B$ by $s(x) := t(\omega)$. Then $t(w) = s(u(\omega))$ so the claim is met. Next, if $\omega_1 = \omega_2$, i.e., if $u(\omega_1) = u(\omega_2)$, then by assumption $t(\omega_1) = t(\omega_2)$, so our mapping is well-defined. \Box

Problem 7

Let {*f*^{*θ*} ⋅ *θ* ∈ Θ} be a *k*-parameter exponential family {*f*^{*θ*} ⋅ *θ* ∈ Θ, $a(w(θ)) < ∞$ } of PDFs or PMFs where

$$
f_{\theta}(x) \coloneqq h(x) \exp\Big(\sum_{i=1}^k w_i(\theta) t_i(x) - a(w(\theta))\Big), \quad \text{for all } x \in \mathbb{R}.
$$

For $\theta \in \Theta$, let $w(\theta) \coloneqq (w_1(\theta), ..., w_k(\theta))$. Assume that the following subset of \mathbb{R}^k is *k*-dimensional:

$$
\{w(\theta)-w(\theta')\in\mathbb{R}^k:\theta,\theta'\in\Theta\}.
$$

Let $X = (X_1, ..., X_n)$ be a random sample of size *n* from f_θ and define $t : \mathbb{R}^n \to \mathbb{R}^n$ by $t(X) :=$ *n* $\sum_{i=1}^{n} (t_1(X_i),...,t_k(X_i))$. Show that $t(X)$ is minimal sufficient for θ .

Proof. We recall the characterization of MSS: a MSS satisfies

if $f_{\theta}(x) = c(x, y) f_{\theta}(y)$ for *c* not depending on θ , then $t(x) = t(y)$.

Suppose the LHS is satisfied. Looking at the exponential family we see that $\langle w(\theta), t(y) \rangle - \langle w(\theta), t(x) \rangle$ must then be a constant *c* depending solely on *x, y*. Therefore, for these fixed *x, y,* for any $\theta_1, \theta_2 \in \Theta$, we have

 $\langle w(\theta_1), t(y) \rangle - \langle w(\theta_1), t(x) \rangle = \langle w(\theta_2), t(y) \rangle - \langle w(\theta_2), t(x) \rangle$

so

 $\langle w(\theta_1) - w(\theta_2), t(y) - t(x) \rangle = 0.$

Since by assumption $\{w(\theta_1) - w(\theta_2) : \theta_1, \theta_2 \in \Theta\}$ is assumed to be *k*-dimensional, its orthogonal complement is $\{0\}$, meaning that $t(x) = t(y)$. This proves that $t(X)$ is an MSS (sufficiency is immediate following the exponential form). \Box

Problem 8

Let \mathbb{P}_1 , \mathbb{P}_2 be two probability laws on $\Omega = \mathbb{R}$. Suppose they induce PDFs f_1, f_2 . Show that

$$
\sup_{A \subset \mathbb{R}} |\mathbb{P}_1(A) - \mathbb{P}_2(A)| = \frac{1}{2} \int_{\mathbb{R}} |f_1(x) - f_2(x)| dx.
$$

Similarly, if $\Omega = \mathbb{Z}$, show that

$$
\sup_{A\in\mathbb{Z}}|\mathbb{P}_1(A)-\mathbb{P}_2(A)|=\frac{1}{2}\sum_{z\in\mathbb{Z}}|\mathbb{P}_1(z)-\mathbb{P}_2(z)|.
$$

Proof. Define *S* := {*x* : $f_1(x) > f_2(x)$ }. On one hand

$$
0 = \int_{\mathbb{R}} f_1(x) - f_2(x) \, dx = \int_S f_1(x) - f_2(x) \, dx + \int_{S^c} f_1(x) - f_2(x) \, dx,
$$

so

$$
\int_{S} f_1(x) - f_2(x) \, dx = \int_{S^c} f_2(x) - f_1(x) \, dx.
$$

On the other hand,

$$
\int_{\mathbb{R}} |f_1(x) - f_2(x)| dx = \int_{S} f_1(x) - f_2(x) dx + \int_{S^c} f_2(x) - f_1(x) dx
$$

= $2 \int_{S} |f_1(x) - f_2(x)| dx \ge 2 \left| \int_{S} f_1(x) - f_2(x) dx \right|.$

It is clear that if $B \subset \mathbb{R}$ and $B \neq S$ then either *B* contains extra parts on which $f_1 \leq f_2$ or misses parts on which f_1 > f_2 (or both). This would lead to the integral having even smaller (absolute) value. Therefore

$$
\sup_{A \subset \mathbb{R}} |\mathbb{P}_1(A) - \mathbb{P}_2(A)| \leq \frac{1}{2} \int_{\mathbb{R}} |f_1(x) - f_2(x)| dx
$$

whereas the supremum is attained by *E*. The second case follows by replacing d*x* by a counting measure. \Box

Problem 9

Find a statistic *Y* that is complete and nonconstant but not sufficient.

Solution. Consider $t(X_1, ..., X_n) := X_1$ where X_i are i.i.d. Bernoulli with $0 < p < 1$. It is complete because if $\mathbb{E}_p f(X_1) = 0$ for all *p*, then $pf(0) + (1 - p)f(1) = 0$ for all $p \in (0, 1)$. This means $f(0) = f(1) = 0$. However it is not sufficient since

$$
\mathbb{P}((X_1,...,X_n)=(x_1,...,x_n)\mid X_1=x_1)=\mathbb{P}((X_2,...,X_n)=(x_2,...,x_n))=\prod_{i=2}^n p^{x_i}(1-p)^{1-x_i}
$$

which still depends on *p*.

Problem 10

This exercise shows that a complete sufficient statistic might not exist.

Let $X_1, ..., X_n$ be a random sample of size *n* from the uniform distribution on $\{\theta, \theta + 1, \theta + 2\}$ where $\theta \in \mathbb{Z}$.

(1) Show that *Y* := $(X_{(1)}, X_{(n)})$ is minimal sufficient for θ .

(2) Show that *Y* is not complete by considering $X_{(n)} - X_{(1)}$.

(3) Using minimal sufficiency that any sufficient statistic for *θ* is not complete.

Proof. (1) We use the proportion coefficient characterization of a MSS. Suppose that for all $\theta \in \mathbb{Z}$ we have $x_1, ..., x_n, y_1, ..., y_n$ such that $f_\theta(x) = c(x, y) f_\theta(y)$ where $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, and $c(x, y)$ does not depend on *θ*.

For such $x \in \mathbb{Z}^n$, there exist exactly $3 - (\max x_i - \min x_i)$ solutions of θ for which $f_\theta(x)$ is nonzero. (For example if $\max x_i = \min x_i + 1$ then θ can only be $\min x_i - 1$ or $\min x_i$.) Letting x, y vary, we must have $\max x_i - \min x_i = \max y_i = \min y_i$ if the equation holds for all θ : for example if $\max x_i < \max y_i$, then if *θ* := max *y_i* we see $f_{\theta}(y) > 0 = f_{\theta}(x)$. This shows that $(X_{(n)}, X_{(1)}) = (Y_{(n)}, Y_{(1)})$ under such assumptions.

Conversely, if $(X_{(n)}, X_{(1)}) = (Y_{(n)}, Y_{(1)})$ then we simply reverse the argument. Hence $(X_{(n)}, X_{(1)})$ is MSS.

- (2) $X_{(n)} X_{(1)}$ cancels out the θ when making subtraction so its distribution does not depend on θ . That means $\mathbb{E}_{\theta}(X_{(n)} - X_{(1)})$ is just some constant, which we call *c*. Then $\mathbb{E}_{\theta}(X_{(n)} - X_{(1)} - c) = 0$ whereas *X*_(*n*) − *X*₍₁₎ is not identically zero, showing that *X*_(*n*) − *X*₍₁₎ is not complete.
- (3) If *Z* is sufficient for θ , then by MSS there exists a function φ with $(X_{(n)}, X_{(1)}) = \varphi(Z)$. To use (2) we define $f(x, y) \coloneqq y - x$. Then $\mathbb{E}_{\theta}(f(\varphi(Z)) - c) = 0$ whereas $f \circ \varphi$ is not identically 0. This shows that there does not exist a complete sufficient statistic for θ , thus completing our proof. \Box