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Problem 1

Let X1, ...,Xn be a random sample of size n.

(a) Suppose X is a discrete random variable and we order the values X takes as x1 < x2 < .... For i ⩾ 1

define pi ∶= P(X ⩽ xi). Show that

P(X(j) ⩽ xi) =
n

∑
k=j
(n
k
)pki (1 − pi)n−k.

(b) Let X be uniformly distributed on [0,1]. Show that X(j) is a beta distributed random variable with

parameters j and n − j + 1. Conclude that

EX(j) =
j

n + 1
.

(c) Let a < b. Let U be the number of indices 1 ⩽ j ⩽ n such that Xj ⩽ a. Let V be the number of indices

1 ⩽ j ⩽ n such that a <Xj < b. Show that the vector (U,V,n −U − V ) is a multinomial random variable

with

P((U,V,n −U − V ) = (u, v, n − u − v)) = n!

u!v!(n − u − v)!
FX(a)u(FX(b) − FX(a))v(1 − FX(v))n−u−v.

Proof. (a) X(j) ⩽ xi means that among X1, ...,Xn, at least j are ⩽ xi and at most n−j are ⩾ xi. For k ∈ [j, n],
the probability of exactly k less than xi and n − k greater than xi follows a binomial distribution:

(n
k
)P(X ⩽ xi)kP(xi > k)n−k = (

n

k
)pki (1 − pi)n−k.

Summing over all possible k’s we establish our claim.

(b) If X is uniformly distributed on [0,1] then fX ≡ 1 on [0,1] and F (x) = x. Therefore

fX(j) =
n!

(j − 1)!(n − j)!
xj−1(1 − x)n−j

which indeed is consistent with a (j, n − j + 1)-distributed beta distribution. Therefore

EX(j) = ∫
1

0
xfX(j) dx =

n!

(j − 1)!(n − j)! ∫
1

0
cj(1 − x)n−j dx

= n!

(j − 1)!(n − j)!
⋅ j!(n − j)!
(n + 1)!

= j

n + 1
.
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(c) This is because the events {Xj ⩽ a},{a < Xj < b},{otherwise} partition the event space and that the

Xi’s are i.i.d. Therefore the probability of getting u, v, n − u − v occurrences of each follows a multinomial

distribution.

Problem 2

Using Matlab, verify that its random number generator agrees with the LLN. For example, average 106

samples from the uniform distribution on [0,1] and check how close the sample average is to 1/2. Also make

a histogram and check how close the histogram is to a Gaussian.

Solution.

Problem 3

Let X ∶ Ω → R be a random variable on Ω equipped with P. For t ∈ R define F (t);= P(X ⩽ t). For s ∈ (0,1)
define

Y (s) ∶= sup{t ∈ R ∶ F (t) < s}.

Then Y is a random variable on (0,1) with uniform probability law on (0,1). Show that X and Y are equal

in distribution, i.e., P(Y ⩽ t) = F (t) for all t ∈ R.

Proof. Notice that we have another definition for Y (s):

Y (s) = sup{t ∈ R ∶ F (t) < s} = inf{t ∈ R ∶ F (t) ⩾ s}. (1)

Furthermore, by definition of supremum and infimum, whether or not the inequalities are strict impose no effect,

so ⩽ and <, ⩾ and > are freely interchangeable.

Now, given F ∶ R→ [0,1], the CDF of X, let Y ∶ Range(F )→ R be its generalized inverse. Then by (1) we have

Y (F (t)) = inf{t̃ ∈ R ∶ F (t̃) ⩾ F (t)} ⩽ t

2



MATH 541a Homework 3 YQL

since t is in the set of which the infimum is taken. A symmetric argument for F (Y (t)) can be obtained analo-

gously, and thus

Y (F (t)) ⩽ t and F (Y (s)) ⩾ s. (2)

Also observe that Y is monotone increasing: if a ⩽ b then

{x ∶ F (x) ⩾ b} ⊂ {x ∶ F (x) ⩾ a}

so

inf{x ∶ F (x) ⩾ b} = Y (b) ⩾ Y (a) = inf{x ∶ F (x) ⩾ a}. (3)

Now we prove P(Y ⩽ t) = F (t). This is true because on one hand

P(Y ⩽ t) = Punif({s ∈ [0,1] ∶ Y (s) ⩽ t})

= Punif({s ∈ [0,1] ∶ F (Y (s)) ⩽ F (t)})

⩽ Punif({x ∈ [0,1] ∶ s ⩽ F (t)}) [By (2)]

= ∫
F (t)

0
1 ds = F (t),

and on the other hand

F (t) = P(X ⩽ t) = Punif({s ∈ [0,1] ∶ s < F (t)})

= Punif({s ∈ [0,1] ∶ Y (s) < Y (F (t))})

⩽ Punif({s ∈ [0,1] ∶ Y (s) < t}) [By (2)]

= Punif({s ∈ [0,1] ∶ Y (s) ⩽ t}) [P(Y (s) = t) = 0]

= ∫
t

0
Y (s) ds = P(Y ⩽ t).

Problem 4: Box-Muller Algorithm

Let U1, U2 be independent variables uniformly distributed in (0,1). Define

R ∶=
√
−2 logU1,Φ ∶= 2πU2, X ∶= R cosΦ, Y ∶= R sinΦ.

Show that X,Y are independent standard Gaussians.

Then, let X ∶= (X1, ...,Xn) be a vector of i.i.d. standard Gaussians. Let A be an n × n symmetric positive

semidefinite matrix and let A = RRT be its Cholesky decomposition. Let e(i) be the ith row of R. For 1 ⩽ i ⩽ n
define Zi ∶= ⟨X,ei⟩. Show that E(ZiZj) = aij .

Proof. Notice that the inverse transformations are given by

U1 = exp(−
X2 + Y 2

2
) and U2 =

1

2π
arctan(Y /X).

(The first is obtained by taking X2 + Y 2 to cancel out U2 and the second is by taking Y /X to cancel out U1.)
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Then, the Jacobian for the transformation (X,Y )↦ (U1, U2) is

RRRRRRRRRRRRR

∂U1/∂X ∂U1/∂Y
∂U2/∂X ∂U2/∂Y

RRRRRRRRRRRRR
=

RRRRRRRRRRRRRRR

− exp()X − exp()Y

− 1

2π

1

1 + Y 2/X2

Y

X2

1

2π

1

1 + Y 2/X2

1

X

RRRRRRRRRRRRRRR

=
RRRRRRRRRRR
− exp(−X

2 + Y 2

2
) 1

2π

1

1 + Y 2/X2
(1 + Y 2

X2
)
RRRRRRRRRRR

= 1

2π
exp(−X

2 + Y 2

2
) .

Therefore,

fX,Y (x, y) = fU1,U2(u1, u2)J (u1, u2)

= 1 ⋅ 1
2π

exp(−x
2 + y2

2
) = 1√

2π
e−x

2/2 ⋅ 1√
2π

e−y
2/2.

A simple calculation shows that the X-marginal and Y -marginal indeed have the PDFs of a Gaussian, and the

claim therefore follows as fX,Y (x, y) = fX(x)fY (y).
Code and output for X below:

1 U1 = rand(1,10^7);

2 U2 = rand(1,10^7);

3 X = sqrt((-2 * log(U1))) .* sin(2*pi*U2);

4 Y = sqrt((-2 * log(U1))) .* cos(2*pi*U2);

5

6 histogram(X,100);
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Finally,

E(ZiZj) = E ⟨X,ei⟩ ⟨X,ej⟩ = E
n

∑
k,ℓ=1

Xke
i
k ⋅Xℓe

j
ℓ = E

n

∑
k,ℓ=1

eike
j
ℓXkXℓ = E

n

∑
k=1

e
(i)
k ejk = aij .
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Problem 6

Let A,B,Ω be sets. Let u ∶ Ω → A and t ∶ Ω → B. Assume that for every x, y ∈ Ω, if u(x) = u(y) then

t(x) = t(y). Show that there exists a function s ∶ A→ B such that t = s(u).

Proof. Let X ⊂ A be the range of u. Then, for x ∈X there exists some ω ∈ Ω such that x = u(ω). Define s ∶ A→ B

by s(x) ∶= t(ω). Then t(w) = s(u(ω)) so the claim is met. Next, if ω1 = ω2, i.e., if u(ω1) = u(ω2), then by

assumption t(ω1) = t(ω2), so our mapping is well-defined.

Problem 7

Let {fθ ∶ θ ∈ Θ} be a k-parameter exponential family {fθ ∶ θ ∈ Θ, a(w(θ)) <∞} of PDFs or PMFs where

fθ(x) ∶= h(x) exp (
k

∑
i=1

wi(θ)ti(x) − a(w(θ))), for all x ∈ R.

For θ ∈ Θ, let w(θ) ∶= (w1(θ), ...,wk(θ)). Assume that the following subset of Rk is k-dimensional:

{w(θ) −w(θ′) ∈ Rk ∶ θ, θ′ ∈ Θ}.

Let X = (X1, ...,Xn) be a random sample of size n from fθ and define t ∶ Rn → Rn by t(X) ∶=
n

∑
i=1
(t1(Xi), ..., tk(Xi)). Show that t(X) is minimal sufficient for θ.

Proof. We recall the characterization of MSS: a MSS satisfies

if fθ(x) = c(x, y)fθ(y) for c not depending on θ, then t(x) = t(y).

Suppose the LHS is satisfied. Looking at the exponential family we see that ⟨w(θ), t(y)⟩− ⟨w(θ), t(x)⟩ must then

be a constant c depending solely on x, y. Therefore, for these fixed x, y, for any θ1, θ2 ∈ Θ, we have

⟨w(θ1), t(y)⟩ − ⟨w(θ1), t(x)⟩ = ⟨w(θ2), t(y)⟩ − ⟨w(θ2), t(x)⟩

so

⟨w(θ1) −w(θ2), t(y) − t(x)⟩ = 0.

Since by assumption {w(θ1) − w(θ2) ∶ θ1, θ2 ∈ Θ} is assumed to be k-dimensional, its orthogonal complement

is {0}, meaning that t(x) = t(y). This proves that t(X) is an MSS (sufficiency is immediate following the

exponential form).

Problem 8

Let P1,P2 be two probability laws on Ω = R. Suppose they induce PDFs f1, f2. Show that

sup
A⊂R
∣P1(A) − P2(A)∣ =

1

2
∫
R
∣f1(x) − f2(x)∣ dx.
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Similarly, if Ω = Z, show that

sup
A⊂Z
∣P1(A) − P2(A)∣ =

1

2
∑
z∈Z
∣P1(z) − P2(z)∣.

Proof. Define S ∶= {x ∶ f1(x) > f2(x)}. On one hand

0 = ∫
R
f1(x) − f2(x) dx = ∫

S
f1(x) − f2(x) dx + ∫

Sc
f1(x) − f2(x) dx,

so

∫
S
f1(x) − f2(x) dx = ∫

Sc
f2(x) − f1(x) dx.

On the other hand,

∫
R
∣f1(x) − f2(x)∣ dx = ∫

S
f1(x) − f2(x) dx + ∫

Sc
f2(x) − f1(x) dx

= 2∫
S
∣f1(x) − f2(x)∣ dx ⩾ 2∣∫

S
f1(x) − f2(x) dx∣.

It is clear that if B ⊂ R and B ≠ S then either B contains extra parts on which f1 ⩽ f2 or misses parts on which

f1 > f2 (or both). This would lead to the integral having even smaller (absolute) value. Therefore

sup
A⊂R
∣P1(A) − P2(A)∣ ⩽

1

2
∫
R
∣f1(x) − f2(x)∣ dx

whereas the supremum is attained by E. The second case follows by replacing dx by a counting measure.

Problem 9

Find a statistic Y that is complete and nonconstant but not sufficient.

Solution. Consider t(X1, ...,Xn) ∶= X1 where Xi are i.i.d. Bernoulli with 0 < p < 1. It is complete because if

Epf(X1) = 0 for all p, then pf(0) + (1 − p)f(1) = 0 for all p ∈ (0,1). This means f(0) = f(1) = 0. However it is

not sufficient since

P((X1, ...,Xn) = (x1, ..., xn) ∣X1 = x1) = P((X2, ...,Xn) = (x2, ..., xn)) =
n

∏
i=2

pxi(1 − p)1−xi

which still depends on p.

Problem 10

This exercise shows that a complete sufficient statistic might not exist.

Let X1, ...,Xn be a random sample of size n from the uniform distribution on {θ, θ + 1, θ + 2} where θ ∈ Z.

(1) Show that Y ∶= (X(1),X(n)) is minimal sufficient for θ.

(2) Show that Y is not complete by considering X(n) −X(1).

(3) Using minimal sufficiency that any sufficient statistic for θ is not complete.
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Proof. (1) We use the proportion coefficient characterization of a MSS. Suppose that for all θ ∈ Z we have

x1, ..., xn, y1, ..., yn such that fθ(x) = c(x, y)fθ(y) where x ∶= (x1, ..., xn), y ∶= (y1, ..., yn), and c(x, y) does

not depend on θ.

For such x ∈ Zn, there exist exactly 3 − (maxxi −minxi) solutions of θ for which fθ(x) is nonzero. (For

example if maxxi = minxi + 1 then θ can only be minxi − 1 or minxi.) Letting x, y vary, we must have

maxxi −minxi = max yi = min yi if the equation holds for all θ: for example if maxxi < max yi, then if

θ ∶=max yi we see fθ(y) > 0 = fθ(x). This shows that (X(n),X(1)) = (Y(n), Y(1)) under such assumptions.

Conversely, if (X(n),X(1)) = (Y(n), Y(1)) then we simply reverse the argument. Hence (X(n),X(1)) is MSS.

(2) X(n) −X(1) cancels out the θ when making subtraction so its distribution does not depend on θ. That

means Eθ(X(n) − X(1)) is just some constant, which we call c. Then Eθ(X(n) − X(1) − c) = 0 whereas

X(n) −X(1) is not identically zero, showing that X(n) −X(1) is not complete.

(3) If Z is sufficient for θ, then by MSS there exists a function φ with (X(n),X(1)) = φ(Z). To use (2) we

define f(x, y) ∶= y − x. Then Eθ(f(φ(Z)) − c) = 0 whereas f ○ φ is not identically 0. This shows that there

does not exist a complete sufficient statistic for θ, thus completing our proof.
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