
Math 541a Homework 5

Qilin Ye

September 22, 2022

Problem 1

Let X,Y,Z ∶ Ω → R be discrete or continuous random variables. Let A be the range of Y . Define g ∶ A → R

by g(y) ∶= E(X ∣ Y = y) for any y ∈ A. We then define the conditional expectation of X given Y , denoted

E(X ∣ Y ), to be the random variable g(Y ).

(i) Let X,Y be random variables such that (X,Y ) is uniform distributed on the triangle given by {(x, y) ∈
R2 ∶ x ⩾ 0, y ⩾ 0, x + y ⩽ 1}. Show that E(X ∣ Y ) = (1 − Y )/2.

(ii) Prove the following version of the Total Expectation Theorem:

E(E(X ∣ Y )) = E(X).

(iii) Show the following

E(X ∣X) =X and E(X + Y ∣ Z) = E(X ∣ Z) +E(Y ∣ Z).

(iv) If Z is independent of X and Y , show that

E(X ∣ Y,Z) = E(X ∣ Y ).

(v) If Z is independent of X and Y , show that

E(X ∣ Y, z) = E(X ∣ Y ).

Proof. (i) For y ∈ [0,1], note that X ∣ Y = y is uniformly distributed on [0,1−y], so E(X ∣ Y = y) = (1−y)/2.

Therefore by definition E(X ∣ Y ) = (1 − Y )/2.
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(ii) For the continuous case:

E(E(X ∣ Y )) = ∫
∞

−∞
fY (y)E(X ∣ Y = y) dy

= ∫
∞

−∞
fY (y) [∫

∞

−∞
xfX ∣Y (x ∣ y) dx] dy

= ∫
∞

−∞
∫
∞

−∞
xfX ∣Y (x, y)fY (y) dx dy

= ∫
∞

−∞
x∫

∞

−∞
fX,Y (x, y) dy dx

= ∫
∞

−∞
xfX(x) dx = EX.

For the discrete case:

E(E(X ∣ Y )) = E(∑
x

xP(X = x ∣ Y = y)) =∑
y

(∑
x

xP(X = x ∣ Y = y))P(Y = y)

=∑
x
∑
y

xP(X = x ∣ Y = y)P(Y = y)

=∑
x

x(∑
y

P(X = x,Y = y)) =∑
x

xP(X = x) = EX.

(iii) The first claim is trivial, as E(X ∣X = x) = x. The continuous case for the second equation:

E(X + Y ∣ Z = z) = ∫
∞

−∞
∫
∞

−∞
(x + y)fX+Y ∣Z(x + y ∣ z) dx dy

=∬
R2

xfX+Y ∣Z(x + y ∣ z) dxdy +∬
R2

yfX+Y ∣Z(x + y ∣ z) dxdy

= ∫
∞

−∞
x∫

∞

−∞
fX+Y ∣Z(x + y ∣ z)dy dx + ∫

∞

−∞
y∫

∞

−∞
fX+Y ∣Z(x + y ∣ z) dxdy

= ∫
∞

−∞
xfX ∣Z(x ∣ z) dx + ∫

∞

−∞
yfY ∣Z(y ∣ z) dy = E(X ∣ Z = z) +E(Y ∣ Z = z).

The discrete case for the second equation:

E(X + Y ∣ Z = z) =∑
x
∑
y

(x + y)P(X = x,Y = y ∣ Z = z)

=∑
x

x∑
y

P(X = x,Y = y ∣ Z = z) +∑
y

y∑
x

P(X = x,Y = y ∣ Z = z)

=∑
x

P(X = x ∣ Z = z) +∑
y

yP(Y = y ∣ Z = z) = E(X ∣ Z = z) +E(Y ∣ Z = z).

(iv) If Z is independent of X and Y then (assuming they are continuous)

fX ∣(Y,Z)(x ∣ (y, z)) =
fX,Y,Z(x, y, z)
fY,Z(y, z)

=
fX,Y (x, y)
fY (y)

,

so

E(X ∣ (Y,Z) = (y, z)) = ∫
∞

−∞
xfX ∣(Y,Z)(x ∣ (y, z) dx = ∫

∞

−∞
xfX ∣Y (x ∣ y) dx = E(X ∣ Y = y).

(v) If Y,Z are independent, then (assuming all variables are continuous),

E(X ∣ (Y,Z) = (y, z)) = ∫
∞

−∞
xfX ∣Y,Z(x ∣ y, z) dx

= ∫
∞

−∞
x ⋅

fX,Y,Z(x, y, z)
fY,Z(y, z)

dx

= ∫
∞

−∞
x ⋅

fX,Y (x, y)
fY (y)

dx = E(X ∣ Y = y).
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Problem 2

Prove Jensen’s inequality for the conditional expectation. Let X,Y ∶ Ω → R be random variables that are

either both discrete or both continuous. Let φ ∶ R→ R be convex. Show that

φ(E(X ∣ Y )) ⩽ E(φ(X) ∣ Y )

and that the equality can be attained if and only if X is constant on any set where Y is constant.

Proof. Since φ is convex, there exists constant c and a linear function L(x) = c(x −EX) + φ(EX). Then L(X) ⩽
φ(X) implies E(L(X) ∣ Y ) ⩽ E(φ(X) ∣ Y ) by the very definition of expectation. Then

supE(L(X) ∣ Y ) = supL(E(X ∣ Y )) ⩽ φ(E(X ∣ Y )) ⩽ E(φ(X) ∣ Y )

where the supremum is taken over all linear functions with LL(X) ⩽ φ(X).

Problem 3

Let Y,Z be statistics and suppose Z is sufficient for {fθ ∶ θ ∈ Θ}. Show that W ∶= Eθ(Y ∣ Z) does not depend

on θ. That is, there is a function t ∶ Rn → R that does not depend on θ such that W = t(X).

Proof. Let W ∶= g(Z) where g(z) ∶= E(Y ∣ Z = z) = ∫
∞

−∞
yfθ(y ∣ Z = z) dy. By sufficiency fθ(x ∣ Z = z) does not

depend on θ, so W does not depend on θ either.

Problem 4

Let X1, ...,Xn be a random sample of size n so that X1 is a sample from the uniform distribution on [θ −
1/2, θ + 1/2] where θ ∈ R is unknown.

(1) Show that (X(1),X(n)) is minimal sufficient but not complete.

(2) The sample mean X might seem to be a reasonable estimator for θ but it is not a function of the

minimal sufficient statistic so it is not so good. Find an unbiased estimator for θ with smaller variance

than X . Examine the ratio of variances for X and your estimator.

Proof. (1) Sufficiency follows from factorization because the joint likelihood is 1θ−1/2⩽X(1)⩽X(n)⩽θ+1/2. Min-

imal sufficiency follows from the characterization since for x1, ..., xn, y1, ..., yn,

f(x1, ..., xn) = f(y1, ..., yn) for all θ ∈ R

if and only if x(1) = y(1) and x(n) = y(n) .

(2) The variance of sample mean is 1/3 − 1/4 = 1/12.

We consider Y ∶= ((X(1) +X(2))/2 which is unbiased for θ due to symmetry. This estimator certainly has

smaller variance than X because both X(1),X(n) are part of X whereas X contains more random data for

n > 2, thereby increasing its variance.
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Problem 5

Let X1, ...,Xn be a random sample of size n from an exponential distribution with unknown parameter θ > 0,

i.e., the PDF of X1 is θe−xθχx>0. Suppose we want to estimate the mean

g(θ) ∶= 1

θ
.

(1) Find the UMVU for g(θ). (Hint: Cramér-Rao.)

(2) Show that
√
X1X2 has smaller mean squared error than the UMVU, i.e.,

E(
√
X1X2 − 1/θ)2

is less than that of the UMVU.

(3) Find an estimator with even smaller mean square error than
√
X1X2 for all θ ∈ Θ.

Solution. (1) Claim: the sample mean
1

n

n

∑
i=1

Xi is the UMVU. In this case the UMVU is simply X ∶= (X1 +

X2)/2. The variance of X is var(X1)/n = 1/(nθ2). (In this case it’s just 1/(2θ2).) We now compute the

Fisher information IX(1/θ). Let λ ∶= 1/θ. Assuming xi > 0,

d2

dλ2
log fλ(X) =

d2

dλ2
log(

n

∏
i=1

λ−1e−xi/λ) = d2

dλ2
(

n

∑
i=1

log(1/λ) − xi/λ)

= d

dλ
[−n

λ
+ nx

λ2
] = n

λ2
− 2nx

λ3
.

Therefore Iλ(1/θ) = −E[n/λ2 − (2nX)/λ3] = n/λ2 = nθ2. Indeed we have

varλ(1/θ) =
1

IX(1/θ)
,

so Cramér-Rao shows the sample mean is the UMVU.

(2) Note that by independence

E(
√
X1X2 − 1/θ)2 = EX1X2 −

2

θ
E
√
X1X2 +

1

θ2
= (EX1)2 −

2

θ
(E
√
X1)2 +

1

θ2
= 2

θ2
− 2

θ
(E
√
X1)2. (1)

It remains to compute E
√
X1 = ∫

∞

0

√
xθe−xθ dx = θ∫

∞

0

√
xe−xθ dx. Let

u =
√
x dv = e−xθdx

du = dx/(2
√
x) v = −e−xθ/θ.

Then

∫
∞

0

√
xe−xθ dx = −

√
xe−xθ

θ
∣
∞

x=0
+ ∫

∞

0

e−xθ

2θ
√
x
dx. (2)

Letting s ∶=
√
θ
√
x so that ds =

√
θ

2
√
x
dx, we have

∫
∞

0

e−xθ

2θ
√
x
dx = ∫

x=∞

x=0

e−xθ

2θ
√
x

2
√
x√
θ

ds = θ−3/2 ∫
∞

0
e−s

2

ds. (3)
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By a well-known result that ∫
∞

−∞
e−s

2/2 ds =
√
2π we know ∫

∞

0
e−s

2/2 ds =
√
π/2 (this is related to a

Gaussian PDF; for proof, see here). Another simple u-substitution suggests ∫
∞

0
e−s

2

ds =
√
π/2. Thus (3)

becomes θ−3/2
√
π/2, and putting this back to (2) we obtain

∫
∞

0

√
xe−xθ dx = 0 + θ−3/2

√
π

2
.

Therefore,

E
√
X1 = θ∫

∞

0

√
xe−xθ dx =

√
π

2
√
θ
.

Finally, putting everything into (1), we have

E(
√
X1X2 − 1/θ)2 =

2

θ2
− 2

θ
⋅ (
√
π

2
√
θ
)
2

= 2

θ2
− π

2θ2
= 4 − π

2θ2
< 1

2θ2
= var(X).

(3) To replace
√
X1X2 by t

√
X1X2, the MSE becomes

t2

θ2
− 2t

θ

π

4θ
+ 1

θ2
= 1

θ2
(t2 − t(π/2) + 1)

which can be minimized when t = π/4. Hence π
√
X1X2/4 is a better estimator in terms of MSE.
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