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Problem 1

Solution. We first proof a lemma: “Xn → X in probability if and only if for every subsequence Xnk
there exists

a further subseqeuence converging almost surely to X.”

To prove⇒, let Xnk
be given. By assumption it converges in probability. For each k ∈ N, there exists nk such that

P(∣Xnk
−X ∣ ⩾ 1/k) ⩽ 2−k.

Therefore
∞
∑
k=1

P(∣Xnk
−X ∣ ⩾ 1/k) <∞ so

P(∣Xnk
−X ∣ ⩾ 1/k i.o.) = 0 Ô⇒ P(∣Xnk

−X ∣ < 1/k for sufficiently large k) = 1.

This shows Xnk
converges to X a.e.

Conversely, it is clear that convergence a.e. implies convergence in probability, so every subsequence of Xn

has a further subsequence converging to X in probability. This shows Xn → X in probability, for if not, there

exists ϵ > 0 and δ > 0 and a sequence Xnk
with P(∣Xnk

−X ∣ ⩾ ϵ) ⩾ δ, and this sequence cannot have convergent

subsequence.

Moving back to the original question, the arguments converge in probability individually, so every subsequence

of every argument has a further subsequence converging a.e. Continuity of f implies that every subsequence of

the image has a further subsequence converging a.e., which by the iff condition implies that h(M1,n, ...,Mj,n)
also converges in probability.

Problem 2

Solution. (1) The CDF of X1 is

P(X1 ⩽ x) = P(γ + eZ ⩽ x) = P(Z ⩽ log(x − γ)) =
1√
2πσ
∫

log(x−γ)

−∞
exp(−(−t − µ)2/2σ2) dt

so differentiating gives

fX1(x) =
1

x − γ
1

σ
√
2π

exp(−(log(x − γ) − µ)
2

2σ2
) .

(2) The log-likelihood is

−
n

∑
i=1

log(Xi − γ) − n log(σ) −
n

2
log(2π) −

n

∑
i=1

(log(Xi − γ) − µ)2

2σ2
.

With γ known, the µ and σ partials are
n

∑
i=1

log(Xi − γ) − µ
σ2

and − n

σ
+

n

∑
i=1

(log(Xi − γ) − µ)2

σ3

1



MATH 541a Homework 7 YQL

Setting them to zero we have

µ = 1

n

n

∑
i=1

log(Xi − γ) and σ2 = 1

n

n

∑
i=1
(log(Xi − γ) − µ)2.

(3) As γ →X(1), we have M → −∞ and T →∞. In this case Θ is not compact.

Problem 3

Proof. The function f(w) ∶=
n

∑
i=1
(Xi − ⟨x(i),w⟩)2 + c

n

∑
i=1
∣wi∣ = ∥X − Aw∥2 + c∥w∥1, a sum of convex and linear

functions and is therefore convex. The derivative is AT (Aw − b) + cw. Therefore, the function indeed attains a

global minimum at w = (ATA + cI)−1ATX.

Problem 4

Proof. This is simply brute force computation.

EZn =
n2

2
EYn −

(n − 1)2

n

n

∑
i=1

Etn−1(...) +
(n − 2)2

n(n − 1)∑i≠j
Etn−2(...)

= n2θ

2
+ na

2
+ b

2
+ c

2n
+ d

2n2
+O(n−5)

− (n − 1)2 (θ + a

n − 1
+ b

(n − 1)2
+ c

(n − 1)3
+ d

(n − 1)4
+O(n−5))

+ (n − 2)
2

2
(θ + a

n − 2
+ b

(n − 2)2
+ c

(n − 2)3
+ d

(n − 2)4
+O(n−5))

= θ + c( 1

2n
− 1

n − 1
+ 1

2(n − 2)
) + d( 1

2n2
− 1

(n − 1)2
+ 1

2(n − 2)2
) +O(n−3)

= θ + c

n3 − 3n2 + 2n
+ d ⋅ 3n2 − 6n + 2

(n − 2)2(n − 1)2n2
+O(n−3) = θ +O(n−3).

It is also clear from above that if the additional assumptions are met then Zn is unbiased.
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Solution. (1) Using linearity,

EY = 1

n

n

∑
i=1

EYi = EY1 = ∫
θ

0
y ⋅ 2y/θ2 dy = 2θ

3
.

Ont he other hand,

EY 2
1 = ∫

θ

0
y2 ⋅ 2y/θ2 dy = θ2

2
.

Therefore

var(Y ) = 1

n2

n

∑
i=1

var(Yi) =
1

n
(EY 2

1 − (EY1)2) =
1

n
(θ2/2 − 4θ2/9) = θ2/(18n).
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Problem 1

(1) Let X1, ...,Xn be i.i.d. Poisson with parameter λ. Find the MOM estimator and the MLE of λ.

(2) Is MLE unbiased? Is it efficient?

(3) Given an example of a distribution where the MOM and MLE are different.

Solution. (1) It is well-known that Poisson(λ) has expected value λ. This gives the MOM estimator. For

MLE, the likelihood is given by

ℓ(λ) =
n

∏
i=1

e−λ
λxi

xi!
= e−nλλ∑xi

n

∏
i=1
(xi!)−1

so the log-likelihood is

−nλ +
n

∑
i=1

xi logλ +C.

Taking first derivative gives −n+∑xi/λ which gives the critical point λ = ∑xi/n. Since the second derivative

is negative, the sample mean is indeed the MLE.

(2) It is certainly unbiased as shown in (1). The Fisher information for Poisson is

IX(λ) = −E(
d2

dλ2
fλ(X)) = −E (−X/λ2) = 1

λ

so

IX1,...,Xn(λ) =
n

λ
.

Comparing this with

var( 1
n

n

∑
i=1

Xi) =
n

n2
var(X1) =

λ

n
.

We see that the MLE indeed achieves the Cramér-Rao lower bound.

(3) Let X1, ...,Xn be i.i.d. from uniform [θ, θ + 1] where θ is unknown and the parameter to estimate. The

likelihood is 1θ⩽X(1)⩽X(n)⩽θ+1 so the MLE can be anything in [X(n) −1,X(1) +1]. On the other hand the first

moment is θ + 0.5 so the MOM estimator is ∑Xi/n − 0.5.

Problem 2

(1) Prove that for any collection of random varaibles X1, ...,Xk,

var(
k

∑
i=1

Xi) ⩽ k
k

∑
i=1

var(Xi).

(2) Construct an example with ⩾ 2 where equality holds.
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Proof. (1)

var(
k

∑
i=1

Xi) =
k

∑
i,j=1

cov(Xi,Xj) ⩽
k

∑
i,j=1

√
var(Xi)

√
var(Xj)

= (
k

∑
i=1

√
var(Xi))

2

= (
k

∑
i=1

1 ⋅
√
var(Xi))

2

⩽ k
k

∑
i=1

var(Xi).

Note that both ⩽ are given by Cauchy-Schwarz.

(2) For equality to hold we want both ⩽ to be =. For the first one, we need cov(Xi,Xj) = var(Xi)var(Xj),
which implies Xi’s need to be multiples of each other. The second = then requires that the coefficients

must agree with (1,1, ...,1), i.e., X1 =X2 = ... =Xk.
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