
Contents

1 Review of Probability 2

2 Modes of Convergence & the Limit Theorems 9

2.1 Modes of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Exponential Families 12

3.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Differential Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Random Samples 17

4.1 Random Samples of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Student’s t-distrubution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 The Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Data Reduction 23

5.1 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Minimal Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Ancillary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Point Estimation 32

6.1 Evaluating Estimators; UMVU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Rao-Blackwell & Lehman-Scheffé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Fisher Information & Cramér-Rao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Bayes Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Maximum Likelihood Esimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.7 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Resampling & Bias Reduction 49

7.1 Jackknife Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Concentration of Measure 51

1



Chapter 1

Review of Probability

Beginning of Jan.10, 2022

Some preliminaries first:

• Throughout this course, we will use Ω to denote the universal set.

• A probability law on ω is a function P ∶ Ω→ [0,1] satisfying the following axioms:

(1) (Nonnegativity) P(A) ⩾ 0 for all A ⊂X1.

(2) (Countable additivity) For {Ai}i⩾1 with Ai ∩Aj = ∅ whenever i ≠ j, P(⋃
i⩾1

Ai) =
∞
∑
i=1

P(Ai).

(3) (Normalization) P(Ω) = 1.

• The following are direct consequences of the definition of a probability law:

(1) If A ⊂ B then P(A) ⩽ P(B).

(2) P(A ∪B) = P(A) + P(B) − P(A ∩B).

(3) (Union bound) P(A ∪B) ⩽ P(A) + P(B) and more generally P(
∞
⋃
k=1

Ak) ⩽
∞
∑
k=1

P(Ak).

• Random variable definitions:

(1) A random variable is a function X ∶ Ω → R (or some different codomains). A random vector X is a

function X ∶ Ω→ Rn.

(2) A discrete random variable is a random variable with finite or countable range.

(3) A probability density function (PDF) is a function f ∶ R→ [0,∞) such that

∫
∞

−∞
f(x) dx = 1 and ∫

b

a
f(x) dx exists for all −∞ ⩽ a ⩽ b ⩽∞.

(4) A random variable X is continuous if there exists a PDF f with

P(a ⩽X ⩽ b) = ∫
b

a
f(x) dx for all −∞ ⩽ a ⩽ b ⩽∞.

If so we say f is the PDF of X.
1For technical reasons we avoid measure theories and assume all A ⊂ X are measurable.
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(5) Let X be a random variable. We define the cumulative distribution function (CDF) to be F ∶ R→ [0,1]
by

F (x) ∶= P(X ⩽ x) = ∫
x

−∞
f(t) dt.

• Examples of some distributions:

(1) Bernoulli: let 0 < p < 1 and define P(X = 1) = p,P(X = 0) = 1 − p and P ≡ 0 otherwise. “Flip one coin.

Count the number of heads.”

(2) Binomial: let n ∈ N and 0 < p < 1. For k ∈ {0, ..., n}, define P(X = k) = (n
k
) pk(1 − p)n−k and define P ≡ 0

otherwise. Can be thought of the sum of n independent Bernoulli with parameter p. “Flip n coins. Count

the number of heads.”

(3) Geometric: let 0 < p < 1 and define P(X = k) = (1 − p)k−1p for k ∈ N and 0 otherwise. “Flip a coin until

heads shows up. Count the number of flips.”

(4) Normal / Gaussian with mean µ and variance σ2: the PDF is given by

1√
2πσ

exp(−(x − µ)
2

2σ2
) .

(5) Poisson with parameter λ > 0:

P(X = k) = e−λλ
k

k!
for k ∈ N.

“Limit of binomial random variables subject to limpn = 0 and limnpn = λ.”

Definition: (1.17) Independent Sets

Let {Ai}i∈I ⊂ Ω equipped with probability law Ω. We say {Ai} are independent if, for all S ⊂ I we have

P(⋂
i∈S

Ai) =∏
i∈S

P(Ai).

Remark. This is stronger than pairwise independence, which only says P(Ai ∩Aj) = P(Ai)P(Aj) for i ≠ j.
An example can be found here.

Beginning of Jan.12, 2022

Expected Value and Variance

Notation: given A ⊂ Ω, we define the indicator function 1A ∶ Ω→ {0,1} by

1A(ω) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ω ∈ A

0 if ω ∉ A.

3
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Definition 1.0.1: (1.37) Expected Values

Let P be a probability law on Ω and let X ∶ Ω→ [0,∞]. Define the expected value of X denoted EX to be

EX ∶= ∫
∞

0
P(X > t) dt.

A simple application of Tonelli shows that if X is continuous then EX agrees with ∫
∞

−∞
xfX(x) dx which we are

more familiar with. If X is discrete, the analogous version is EX = ∑k∈R kP(X = k).

In particular, if X ∶ R→ R and if E∣X ∣ <∞, then we can define

EX ∶= EX+ −EX−

where

X+ ∶=max{X,0} and X− ∶=max{−X,0}.

Remark. If X ∶ Ω→ [0,∞), then for positive integer n,

EXn = ∫
∞

0
ntn−1P(X > t) dt.

More generally, if g ∶ [0,∞)→ [0,∞) continuous differentiable with g(0) = 0, then

Eg(X) = ∫
∞

0
g′(t)P(X > t) dt.

Proposition: (1.43) Linearity of E

Let X1, ...,Xn be random variables. Then E(
n

∑
i=1

Xi) =
n

∑
i=1

EXi.

Definition: (1.44) Variance

If E∣X ∣ <∞, define var(X) ∶= E(X −EX)2 = EX2 − (EX)2 to be the variance of X.

Remark. If X ∶ Ω→ C is complex valued, then if E∣X ∣ <∞, we can define

EX ∶= ERe(X) + iEIm(X)

and var(X) ∶= E(X −EX)2 as before.
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Joint Distributions

Definition: (1.47) Joint PDF

A joint PDF for two random variables is a function f ∶ R2 → [0,∞) with

∬
R2

f(x, y) dxdy = 1

and such that

∫
d

c
∫

b

a
fX,Y (X,Y ) dxdy

exists for all [a, b] × [c, d] ∈ R2
.

We say X,Y are jointly continuous with joint PDF fX,Y if

P((X,Y ) ∈ A) =∬
A
fX,Y (x, y) dxdy for “all” A ⊂ R2.

Definition: (1.48) Marginals

We define the marginal PDF fX of X to be

fX(x) ∶= ∫
∞

−∞
fX,Y (x, y) dy for all x ∈ R.

Similarly, if g ∶ R2 → R, we define

Eg(X,Y ) ∶=∬
R2

g(x, y)fX,Y (x, y) dxdy.

Definition: (1.55) Independence of RVs

Let X1, ...,Xn be r random variables on Ω. We say they are independent if

P(X1 ⩽ x1, ...,Xn ⩽ xn) =
n

∏
i=1

P(Xi ⩽ xi) for all (x1, ..., xn) ∈ Rn.

In particular if X1, ...,Xn are continuous, then the definition is equivalent to saying

fX1,...,Xn(x1, ..., xn) =
n

∏
i=1

fXi(xi) for all (x1, ..., xn) ∈ Rn.

Proposition: (1.59, 1.60)

If X1, ...,Xn are independent and EXi <∞, then

var(
n

∑
i=1

Xi) =
n

∑
i=1

var(Xi),

and

E(
n

∏
i=1

Xi) =
n

∏
i=1

E(Xi).
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Conditional Probability

Let A,B ⊂ Ω with P(B) > 0. We define

P(A ∣ B) ∶= P(A ∩B)
P(B)

and read the probability of A given B.

For a fixed B, we define

E(X ∣ B) ∶= EX ⋅ 1B
P(B)

.

Proposition: Laws of Total Probability & Expectation

If A ⊂ Ω and {Bi} partitions Ω, then

P(A) =
∞
∑
i=1

P(A ∩Bi) =
∞
∑
i=1

P(A ∣ Bi)P(Bi)

and

EX =
∞
∑
i=1

E(X1Bi) =
∞
∑
i=1

E(X ∣ Bi)P(Bi).

Definition: (1.75) Conditioning a RV

Let X,Y be continuous random variables with joint PDF fX,Y . Fix y ∈ R with fY (y) > 0. Then for any x ∈ R
we define the conditional PDF of X given Y = y by

fX ∣Y (x ∣ y) ∶=
fX,Y (x, y)
fY (y)

.

The conditional expectation is given by

E(X ∣ Y = y) = ∫
∞

−∞
xfX ∣Y (x ∣ y) dx.

Beginning of Jan.14, 2021

Theorem: (1.78) Total Expectation Theorem, Continuous

Let X,Y be continuous random variables and assume fX,Y ∶ R2 → R be continuous. Then

EX = ∫
∞

−∞
E(X ∣ Y = y)fY (y) dy.
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Some Useful Inequalities

Theorem: (1.91) Jensen’s Inequality

Let φ ∶ R→ R. We say φ is convex if for all x, y ∈ R and λ ∈ (0,1) we have

φ(λx + (1 − λ)y) ⩽ λφ(x) + (1 − λ)φ(y).

We say φ is strictly convex if the above inequality can be replaced by <.
Jensen’s inequality states that if E∣X ∣ <∞ and E∣φ(X)∣ <∞, and if φ is convex, then

φ(EX) ⩽ Eφ(X).

Theorem: (1.92) Markov’s Inequality

For all t > 0, we have

P(∣X ∣ > t) ⩽ E∣X ∣
t

.

Moreover, if n ⩾ 1 is a positive integer, then

P(∣X ∣ ⩾ t) ⩽ E∣X ∣n

tn
.

Theorem: (1.97) Chebyshev’s Inequality

Using n = 2 in Markov’s inequality applied to the random variable X −EX, we have

P(∣X −EX ∣ ⩾ t) ⩽ var(X)
t2

or equivalently

P(∣X − µ∣ ⩾ tσ) ⩽ 1

t2
.

Proposition: (1.107) Sum & Convolution

Let X,Y be continuous, independent random variables. Then

fX+Y (t) = (fX ∗ fY )(t)

where ∗ denotes the convolution:

fX+Y (t) = ∫
∞

−∞
fX(s)fY (t − s) ds.

Proof. We use independence and the fact that PDFs are derivatives of CDFs:

P(X + Y ⩽ t) = ∫
{x+y⩽t}

fX,Y (x, y) dxdy = ∫
∞

−∞
∫

t−x

−∞
fX(x)fY (y) dy dx = ∫

∞

−∞
fX(x)∫

t−x

−∞
fY (y) dy dx,

7
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so

fX+Y (t) =
d

dt
P(X + Y ⩽ t)

= dt

dx
∫
∞

−∞
fX(x)∫

t−x

−∞
fY (y) dy dx

= ∫
∞

−∞
fX(x)

d

dt
∫

t−x

−∞
fY (y) dy dx = ∫

∞

−∞
fX(x)fY (t − x) dx.

Of course, we have assumed once again that it is well-defined to differentiate w.r.t the integral.
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Chapter 2

Modes of Convergence & the Limit

Theorems

2.1 Modes of Convergence

Definition: (2.1) Almost Sure (a.s.) Convergence

We say {Yn} converges to Y almost surely if

P( lim
n→∞

Yn = Y ) = 1

or equivalently

P({ω ∈ Ω ∶ lim
n→∞

Yn(ω) = Y (ω)}) = 1.

Definition: (2.2) Convergence in Probability

We say {Yn} converges to Y in probability if for all ϵ > 0,

lim
n→∞

P(∣Yn − Y ∣ > ϵ) = 0,

or equivalently

lim
n→∞

P({ω ∈ Ω ∶ ∣Yn(ω) − Y (ω)∣ > ϵ}) = 0.

Definition: (2.3) Convergence in Distribution

We say {Yn} converges to Y in distribution in distribution if

lim
n→∞

P(Yn ⩽ t) = P(Y ⩽ t)

for all t ∈ R such that s↦ P(Y ⩽ s) is continuous at s = t.

9
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Remark. Since a Gaussian has continuous PDF, the CLT, to be stated right below, is indeed a statement

about convergence in distribution.

Definition: (2.4) Convergence in Lp

Let 0 < p ⩽∞. We say that {Yn} converges to Y in Lp if ∥Y ∥p <∞ and

lim
n→∞

∥Yn − Y ∥p = 0,

where

∥Y ∥p ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(E∣Y ∣p)1/p if 0 < p <∞

ess sup∣X ∣ = inf{c > 0 ∶ P(∣X ∣ ⩽ c} = 1) if p =∞.

Remark.

Convergence in distribution ⇐Ô Convergence in probability ⇐Ô

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a.s. convergence

convergence in Lp

The converses are all false.

2.2 The Limit Theorems

Theorem: (2.10) Weak Law of Large numbers, Weak LLN

Let X1, ...,Xn be i.i.d. (independent identically distributed) and assume that µ ∶= EX1 < ∞. Then Xn

converges to EX1 in probability, i.e., for ϵ > 0,

lim
n→∞

P(∣X1 + ... +Xn

n
− µ∣ > ϵ) = 0.

Theorem: (2.11) Strong Law of Large Numbers, Strong LLN

Let X1, ...,Xn be i.i.d. with µ ∶= EX1 <∞. Then Xn → µ almost surely, i.e.,

P( lim
n→∞

X1 + ... +Xn

n
= µ) = 1.

Beginning of Jan.19, 2021

Theorem: (2.13) Central Limit Theorem, CLT

Let X1, ...,Xn be i.i.d. with E∣X1∣ <∞ and 0 < var(X1) <∞. Then for any t ∈ R,

lim
n→∞

P(X1 + ... +Xn − nµ
σ
√
n

⩽ t) = P(Z ⩽ t) = 1√
2π
∫

t

−∞
e−s

2/2 ds,

10
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where µ ∶= EX1 and σ2 ∶= var(x1). In particular, each quotient (X1 + ... +Xn − nµ)/(σ
√
n) does have mean

0 and variance 1.

Theorem: (2.30) Berry-Esseén Theorem for CLT

Assume in addition that E∣X1∣3 <∞. Then

sup
t∈R
∣P(X1 + ... +Xn − nµ

σ
√
n

⩽ t) − P(Z ⩽ t)∣ ⩽ E∣X1∣3

σ3
√
n
,

so in particular if EX1 = 0 and var(X1) = 1, we have

sup
t∈R
∣P(X1 + ... +Xn√

n
⩽ t) − P(Z ⩽ t)∣ ⩽ E∣X1∣3√

n
.

11



Chapter 3

Exponential Families

3.1 Exponential Families

A general question in statistics is to fit a parameter to some given data, for example, to find the unknown mean of a

Gaussian sample.

An exponential family is some family of PDF or PMFs that depends on a parameter w ∈ Rk for some k ⩾ 1. More

formally,

Definition: (3.1) Exponential Families

Let n, k be positive integers and let µ be a measure on Rn. Let t1, ..., tk ∶ Rn → R, and let h ∶ Rn → [0,∞] not

identically zero. For any w = (w1, ...,wk) ∈ Rk, define

a(w) ∶= log∫
Rn

h(x) exp (
k

∑
i=1

witi(x)) dµ(x).

The set {w ∈ Rk ∶ a(w) <∞} is called the natural parameter space. On this set, the functions

fw(x) ∶= h(x) exp(
k

∑
i=1

witi(x) − a(w)) for all x ∈ Rn

satisfy

∫
Rn

fw(x) dx = ∫
Rn

h(x)
exp (∑k

i=1witi(x))

∫Rn h(x) exp(∑k
i=1witi(x)) dµ(x)

dµ(x)

= ∫Rn h(x) exp() dµ(x)
∫Rn h(x) exp() dµ(x)

= 1.

Informally, the fw ’s can be interpreted as probability density functions with respect to the measure µ. Then,

the set of functions {fw ∶ a(w) < ∞} is called a k-parameter exponential family in canonical form. (We

interpret fw as a PDF or PMF according to µ the measure.)

More generally, let Θ ⊂ Rk and let w ∶ Θ → Rk. We define a k-parameter exponential family to be the set

of functions {fθ ∶ θ ∈ Θ, a(w(θ)) <∞} where

fθ(x) ∶= h(x) exp(
k

∑
i=1

wi(θ)ti(x) − a(w(θ))) for all x ∈ Rn.

12
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Example: (3.3) Writing Gaussians as an Exponential Family. Consider Gaussians with mean µ <∞ and

standard deviation σ > 0. Then the PDF is given by

1√
2πσ

exp(−(x − µ)
2

2σ2
) = 1√

2π
exp(µx

σ2
− x2

2σ2
− ( µ2

2σ2
+ logσ)) . (1)

If we write θ = (θ1, θ2) ∶= (µ,σ2) ∈ R2 and define

t1(x) ∶= x, t2(x) ∶= x2,

w1(θ) ∶=
θ1
θ2
= µ

σ2
, w2(θ) ∶= −

1

2θ2
= − 1

2σ2
,

a(w(θ)) ∶= θ21
2θ2
+ 1

2
log θ2 =

µ2

2σ2
+ logσ,

and h(x) ∶= 1/
√
2π, then (1) becomes

h(x) exp (w1(θ)t1(x) +w2(θ)t2(x) − a(w(θ))) for all x ∈ R.

Let Θ ∶= R × (0,∞), and for θ ∈ Θ we define

fθ(x) ∶= h(x) exp(
2

∑
i=1

wi(θ)ti(x) − a(w(θ))) for all x ∈ R.

From this we see that {fθ ∶ θ ∈ Θ} is a two parameter exponential family and that the Gaussians can be

expressed by an exponential family.

Beginning of Jan.21, 2022

We can also rewrite the Gaussian familty has a two parameter exponential family in canonical form:

w1(θ) =
µ

σ2
and w2(θ) = −

1

2σ2

so we try to rewrite a(w) in terms of w1,w2 by

a(w) = µ2

2σ2
+ logσ = −( µ

σ2
)
2

⋅ (− 1

2σ2
)
−1
− 1

2
log (−2 ⋅ −1

2σ2
)

= − w2
1

4w2
− log(−2w2)

2
.

Originally we had the restriction µ ∈ R and σ2 > 0, so this is equivalent to the constraint {(w1,w2) ∈ R2 ∶ w2 < 0}.

Example: (3.4) Location Family. Let X be a random variable with continuous density f ∶ R → [0,∞).
Let µ ∈ R. Then the densities {f(x + µ)}µ∈R is called the location family of X. This may or may not be an

exponential family.

An example: Gaussian densities with a fixed variance — shifting the pdf simply results in a new Gaussian

pdf with shifted mean and same variance.

A non-example: if X is uniform on [0,1] then the location family 1[−µ,1−µ] do not form an exponential family.

13
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Example: (3.6) Scale Family. Let X be a random variable. The densities {σ−1f(x/σ)}σ>0 are called the

scale family of X. (Divide by 1/σ because we need to ensure the integral is 1.) This family may or may not

be an exponential family.

Example: (3.7) Location and Scale Family. Combining the two examples above, {σ−1f((x + µ)/σ)} is

caled the location and scale family of X. Again, this may or may not be an exponential family.

3.2 Differential Identities

Sometimes exponential families make certain computations easier. One obvious example is via differentiation.

Let X be a standard Gaussian. Then its moment generating function (MGF) is

EetX = et
2/2 for al t ∈ R.

Using this we have
dm

dtm
∣
t=0

EetX = EXm,

so for example

EX2 = d2

dt2
∣
t=0

et
2/2 = 1.

We can do similar things for exponential families. If

a(w) = log∫
Rn

h(x) exp (
k

∑
i=1

witi(x)) dµ(x),

and let W be the natural parameter space (i.e., where a(w) <∞), then we claim that

Lemma: (3.8)

a(w) is continuous and has continuous partial derivatives on the interior of W (i.e. where a(⋅) is finite).

Moreover, the derivative can be obtained by differentiating under the integral sign.

Proof. We prove the existence of first order partial derivative with respect to w1 and the rest follows by iteration.

Let e1 ∶= (1,0, ...,0) ∈ Rk. Exponential is analytic so it suffices to show that exp(a(w)) has continuous partial

derivative along e1. The difference quotient is

exp(a(w + ϵe1)) − exp(a(w))
ϵ

= 1

ϵ
∫
Rn

h(x) [exp (ϵt1(x) +
k

∑
i=1

witi(x)) − exp (
k

∑
i=1

witi(x))] dµ(x)

= ∫
Rn

h(x)exp(ϵt1(x)) − 1
ϵ

exp (witi(x)) dµ(x).

By the MVT, for any α ∈ (0,1) and for all β ∈ R,

∣eαβ−1∣ ⩽ ∣αβ∣e∣β∣ ⩽ ∣α∣e2∣β∣ ⩽ ∣α∣(e2β + e−2β). (*)

Beginning of Jan.24, 2022
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Therefore, for δ > 0, α ∶= ϵ/δ and β ∶= δt1(x),

∣h(x)exp(ϵt1(x)) − 1
ϵ

exp (
k

∑
i=1

witi(x))∣ ⩽ h(x)∣
exp(ϵt1(x)) − 1

ϵ
∣ exp (

k

∑
i=1

witi(x)) (1)

⩽ 1

δ
h(x)[exp(2δt1(x) + exp(−2δt1(x))] exp (

k

∑
i=1

witi(x)). (2)

Note that we have gotten rid of the dependence of ϵ.

If we define Xϵ ∶= the LHS of (1) and Y ∶= (2), then ∣Xϵ∣ ⩽ Y for 0 < ϵ < δ < 1.Letting ϵ→ 0 and using DCT,

∂

∂w1
exp(a(w)) = lim

ϵ→0
∫
Rn
∣h(x)exp(ϵt1(x)) − 1

ϵ
exp (

k

∑
i=1

witi(x))∣ dµ(x)

= ∫
Rn

lim
ϵ→0

h(x)∣exp(ϵt1(x)) − 1
ϵ

exp (
k

∑
i=1

witi(x))∣ dµ(x)

= ∫
Rn

h(x)t1(x) exp (
k

∑
i=1

witi(x)) dµ(x),

where the dominance of an integrable function is given by the fact that w is in the interior of W , so there exists

δ > 0 such that

a(w + 2δe1) <∞ and a(w − 2δe1) <∞.

Remark. We can rewrite the above formula, using definition of e−a(w), as

exp(−a(w)) ∂

∂w1
exp(a(w)) = ∫

Rn
t1(x)h(x) exp (

k

∑
i=1

witi(x) − a(w)) dµ(x) = ∫
Rn

t1(x)fw(x) dµ(x).

That is, differentiating a(w) gives moment information for the exponential family {fw(x)}.
Since fw(x) can be thought of as a PDF with respect to the measure µ, i.e. ∫

Rn
tifw(x) dµ(x) = 1, for

convenience we define

Eθti ∶= ∫
Rn

tifw(x) dµ(x).

Remark. We proved the lemma for canonical exponential families. For non-canonical exponential families,

a similar argument holds:

e−a(w(θ))
∂

∂θ1
ea(w(θ)) = e−a(w(θ))

k

∑
i=1

∂ea(w)

∂wi

∂wi

∂θ1
=

k

∑
i=1

∂wi

∂θ1
Eθti = Eθ(

k

∑
i=1

∂wi

∂θ1
ti).

We will often use this version of the differential identity.

We can take more derivatives of a(w(θ)) and obtain more moment information.

Example: (3.13) Gaussian revisited. Recall that, for Gaussians with µ ∈ R and σ2 > 0, we have k = 2, n =
1, and we defined θ = (θ1, θ2) ∶= (µ,σ2) ∈ R2, t1(x) ∶= x, t2(x) ∶= x2,

w1(θ) ∶=
θ1
θ2
= µ

σ2
, w2(θ) ∶= −

1

2θ2
= − 1

2σ2
,

15
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and finally

a(w(θ)) ∶= θ21
2θ2
+ log θ2

2
= µ2

2σ2
+ logσ.

Then,

e−a(w(θ))
∂

∂θ1
ea(w(θ)) = e−a(w(θ)) d

dθ1
exp [ θ

2
1

2θ2
+ log θ2

2
]

= (2θ1)/(2θ2) = µ/σ2,

whereas the previous remark gives

Eθ(
2

∑
i=1

∂wi

∂θ1
ti) = Eθ(

∂w1

∂θ1
t1 + 0)Eθ(x/θ2) = Eθ(x)/σ2.

That is,

Eθ(x)/σ2 = µ/σ2 Ô⇒ Eθ(x) = µ.

In totality, we’ve shown that expected value of a Gaussian with mean µ is indeed µ!

Beginning of Jan.26, 2022

Example: (3.15) Binomial (n,p) has expected value np. Since

P(X = x) = (n
x
)px(1 − p)n−x = (n

x
)(1 − p)n ( p

1 − p
)
x

= (n
x
) exp(x log ( p

1 − p
) − (−1)n log(1 − p)) ,

we define a one-parameter exponential family using h(x) ∶= (n
x
) on N, θ ∶= p, Θ ∶= (0,1),

t(x) ∶= x, w(θ) ∶= log(θ/(1 − θ)), and a(w(θ)) ∶= −n log(1 − θ).

In doing so we have fθ(x) = h(x) exp(w(θ)t(x) − a(w(θ)), so the differential identity gives

e−a(w(θ))
d

dθ
ea(w(θ)) = d

dθ
a(w(θ)) = Eθ (

d

dθ
w(θ)t) .

Therefore,
n

1 − θ
= Eθ(x)
θ(1 − θ)

which, upon rearranging, leads to

Eθ(x) =
nθ(1 − θ)
1 − θ

= nθ = np,

i.e., the expected value of a Binomial (n,p) has expected np. How surprising.

16



Chapter 4

Random Samples

4.1 Random Samples of Gaussians

Definition: (4.1) Random Samples

A random sample of size n is a sequence X1, ...,Xn of independent identically distributed (i.i.d.) (real-

valued) random variables.

Definition: (4.2) Statistic

Let n, k be positive integers. Let X1, ...,Xn be a random sample and let f ∶ Rn → Rk. A statistic is a random

variable of form Y ∶= f(X1, ...,Xn) and its distribution is called a sampling distribution.

Most common examples include the sample mean

X ∶= 1

n

n

∑
i=1

Xi

and the sample variance

S2 ∶= 1

n − 1

n

∑
i=1
(Xi −X)2.

(We divide by n − 1 because this makes S2 unbiased to estimate σ2; this will be discussed later.)

Proposition: (4.7)

Let n ⩾ 2 and let X1, ...,Xn be a random sample from a Gaussian distribution with µ ∈ R and σ2 > 0. Then:

(1) X and S are independent,

(2) X ∼ N (µ,σ2/n), and

(3) (n − 1)S2/σ2 ∼ χ2
n−1. (A chi-squared random variable with n degrees of freedom, χ2

n, has the PDF

obtained from adding n independent squared standard Gaussians, i.e., χ2
n ∼ Z2

1 + ... +Z2
n.)

17
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Proof of (1). WLOG assume µ = 0 and σ = 1 since the claim is invariant under shifting and scaling.

We first show that X is independent of X2 −X, ...,Xn −X (i.e., pairwise independent between X2 and any one

of these). To see this, note that (1, ...,1) ∈ Rn is orthogonal to the span of

e2 −
(1, ...,1)

n
, ... , en −

(1, ...,1)
n

(where ei has the ith component 1 and zero for all other components).

Exercise 3.16 shows that if X = (X1, ...,Xn), then ⟨X,v1⟩ , ⟨X,v2⟩ , ..., ⟨X,vn⟩ are independent (random vari-

ables) if and only if v1, ..., vn are pairwise orthogonal (vectors). Hence the result above shows that

⟨X, (1, ...,1)⟩ =X1 + ... +Xn

is independent of the span of

⟨X,e2 − (1, ...,1)/n⟩ =X2 −X, ... , ⟨X, (en − (1, ...,1)/n⟩ =Xn −X.

It remains to notice that

(n − 1)S2 =
n

∑
i=1
(Xi −X)2 = (X1 −X)2 +

n

∑
i=2
(Xi −X)2

= (nX −X −
n

∑
i=2

Xi)2 +
n

∑
i=2
(Xi −X)2 = (

n

∑
i=2
(Xi −X))

2

+
n

∑
i=2
(Xi −X)2.

That is, S2 can be written as a function of X2 −X, ...,Xn −X only, all of which are independent to nX. This

proves the claim.

Beginning of Jan.28, 2022

Proof of (3). Notation-wise, redefine Xn ∶
n

∑
i=1

Xi/n and S2
n ∶= ∑

n
i=1(Xi −Xn)2/(n − 1). We use induction on n.

In the case n = 2, we have

S2
2 = (X1 − (X1 +X2)/2)2 + (X2 − (X1 +X2)/2)2 =

(X1 −X2)2

4
+ (X2 −X1)2

4
= (X1 −X2)2

2

Since X1 −X2 is a Gaussian with mean 0 and variance 2σ2 (by independence), (X1 −X2)/(
√
2σ) is a standard

Gaussian. Therefore S2
2/σ2 ∼ χ2

1. Base case complete.

Now we induct on n. Some simple algebraic manipulation shows that

nS2
n+1 = (n − 1)S2

n +
n

n + 1
(Xn+1 −Xn)2 for all n ⩾ 2.

From part (1), Sn is independent of Xn; also, Xn+1 is independent of Sn, which is a function of X1, ...,Xn only.

Therefore Sn is independent of their difference squared, i.e., (Xn+1−Xn)2. By inductive hypothesis, (n−1)S2
n/σ2

is χ2
n. Also, (Xn+1 −Xn)2 is a Gaussian with mean 0 and variance σ2 + σ2/n = σ2n/(n + 1). Therefore,

nS2
n+1
σ2

= (n − 1)S
2
n

σ2
+ n(Xn+1 −Xn)2

(n + 1)σ2
∼ χ2

n +Z2 ∼ χ2
n+1,

which finishes the inductive step.
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4.2 Student’s t-distrubution

Recall that if X1,X2, ... are a random sample from a Gaussian random variable with known parameters µ,σ, then

X1 + ... +Xn

σ
√
n

= X − µ
σ/
√
n
∼ Z.

In practice, however, σ and/or µ are often times unknown. In this case, we can replace σ by S and instead examine

X − µ
S/
√
n

where µ becomes the only unknown quantity. By examine µ and plugging in different values, we might be able to

determine the actual µ. However, it is not immediately clear what distribution (X − µ)/(S/
√
n) follows, since it is

no longer a Gaussian —

Proposition: (4.9) Student’s t-distribution

Let X be a standard Gaussian. Let Y ∼ χ2
p and assume that X,Y are independent. Then X/

√
Y /p has the

student’s t-distribution with p degrees of freedom, characterized by the PDF

f
X/(
√

Y /p)(t) ∶=
Γ((p + 1)/2)
√
πpΓ(p/2)

(1 + t2

p
)
−(p+1)/2

where t ∈ R.

Proof. For convenience let Z ∶=
√
Y /p, and our goal is find the PDF of Z. We compute CDF and the differentiate:

fZ(y) =
d

dy
P(Z ⩽ y) = d

dy
P(Y ⩽ y2p) = d

dy
∫

y2p

0
fχ2

p
(x) dx

= d

dy
∫

y2p

0

xp/2−1e−x/2

2p/2Γ(p/2)
dx = (2yp)fχ2

p
(y2/p)

= 2yp

2p/2Γ(p/2)
(y2p)p/2−1e−y

2p/2 = pp/2yp−1e−y
2p/2

2p/2−1Γ(p/2)
.

Now we compute the CDF of X/Z. Let φ ∶ R2 → R2 be defined by (b, a/b) ↦ (a, b). (By doing so, the region

below with constraint x ⩽ ty becomes x/y ⩽ t, which makes things simpler.) The Jacobian determinant is ∣a∣ for

all (a, b) ∈ R2. Then,

P(X/Z ⩽ t) = P(X ⩽ tZ) = ∫
{(x,y)∶x⩽ty,y>0}

fX(x)fZ(y) dxdy

= ∫
{(a,b)∶b⩽t,a>0}

∣a∣fX(ab)fZ(a) dadb

= ∫
t

−∞
∫
∞

0
∣a∣fX(ab)fZ(a) da db.

Differentiating with respect to t gives

fX/Z(t) = ∫
∞

0
∣a∣fX(at)fZ(a) da =

pp/2√
2π2p/2−1Γ(p/2) ∫

∞

0
ape−(p+t

2)a2/2 da

= pp/2√
2π2p/2Γ(p/2) ∫

∞

0
x(p−1)/2e−(p+t

2)x/2 dx.

Recall that a Gamma distributed random variable has PDF 1, i.e.,

1

βαΓ(α) ∫
∞

0
xα−1e−x/β dx = 1 Ô⇒ ∫

∞

0
xα−1e−x/β dx = βαΓ(α).
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Substituting with α − 1 ∶= (p − 1)/2 and β ∶= 2/(p + t2), we have

fX/Z(t) =
pp/2√

2π2p/2Γ(p/2)
βαΓ(α)

= pp/2√
2π2p/2Γ(p/2)

Γ((p + 1)/2) ( 2

p + t2
)
(p+1)/2

= pp/2Γ((p + 1)/2)√
π2(p+1)/2Γ(p/2)

(p(1 + t
2/p)

2
)
−(p+1)/2

= Γ((p + 1)/2)
√
πpΓ(p/2)

(1 + t2

p
)
−(p+1)/2

which concludes the proof.

4.3 The Delta Method

Beginning of Jan.31, 2022

Recall that if X1,X2, ... are i.i.d. with mean µ and variance σ2 ∈ R, then the CLT states that

X1 + ... +Xn − nµ√
n

=
√
n(X1 + ... +Xn

n
− µ)

converges in distribution to a mean zero Gaussian with variance σ2. That is, we have a “good” way of estimating

the mean µ. The next question is, what about functions of µ, for example 1/µ or µ2?

Theorem: (4.14) Delta Method

Let θ ∈ R. Let Y1, Y2, ... be random variables such that
√
n(Yn − θ) converges in distribution to N (0, σ2)

(assume σ2 > 0). Let f ∶ R→ R and assume f ′(θ) exists. Then

√
n(f(Yn) − f(θ))

converges in distribution to a mean zero Gaussian with variance σ2(f ′(θ))2 as n→∞.

Since f(θ) is just a constant, we have

σ2(f ′(θ))′ ≈ var(
√
n(f(Yn) − f(θ))) = nvar(f(Yn));

that is, the Delta method an approximation var(f(Yn)) ≈
σ2(f ′(θ))2

n
(convergence in distribution is strictly weaker

than that in L2 so this limits might not equal; approximations, however, still makes sense).

Proof. Suppose f ′(θ) exists, i.e., lim
y→θ

f(y) − f(θ)
y − θ

exists. By definition there exists a sublinear h ∶ R→ R satisfying

f(y) = f(θ) + f ′(θ)(y − θ) + h(y − θ).

(That is, h satisfies lim
z→0

h(z)/z = 0.) Some algebraic manipulation gives

√
n(f(Yn) − f(θ)) =

√
nf ′(θ)(Yn − θ) +

√
nh(Yn − θ). (1)

It remains to justify that the last term “doesn’t matter” as n→∞.
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By convergence in distribution, for all s, t > 0,

lim
n→∞

P(∣Yn − θ∣ > st/
√
n) = 2√

2π
∫
∞

st
e−y

2/(2σ2) dy. (2)

Therefore, splitting the case
√
n∣h(Yn − θ)∣ > t by whether ∣Yn − θ∣ is small, we have

P(
√
n∣h(Yn − θ)∣ > t) = P(

√
n∣h(Yn − θ)∣ > t, ∣Yn − θ∣ > st/

√
n) + P(

√
n∣h(Yn − θ)∣ > t, ∣Yn − θ∣ ⩽ st/

√
n)

⩽ P(∣Yn − θ∣ > st/
√
n) + P(

√
n∣h(Yn − θ)∣ > t, ∣Yn − θ∣ ⩽ st/

√
n). (3)

Let n→∞. The first term in (3) converges to
2√
2π
∫
∞

st
e−y

2/(2σ2) dy by (2). For the second term, since

√
n∣h(Yn − θ)∣ =

∣h(Yn − θ)∣
∣Yn − θ∣

⋅
√
n∣Yn − θ∣ ⩽ st

∣h(Yn − θ)∣
∣Yn − θ∣

→ 0,

the entire probability tends to 0. Therefore, for any s, t > 0,

lim
n→∞

P(
√
n∣h(Yn − θ)∣ > t) ⩽

2√
2π
∫
∞

st
e−y

2/(2σ2) dy. (4)

Note that the LHS of (4) is independent of s, so we can let s→∞ for any fixed t and obtain

lim
n→∞

P(
√
n∣h(Yn − θ)∣ > t) = 0, (5)

i.e.,
√
nh(Yn − θ) converges to the zero constant random variable in probability.

By Slutsky’s Theorem (Xn →X in probability and Yn → a constant c in distribution together imply Xn+Yn →X+c
in distribution),

√
n(f(Yn) − f(θ)) =

√
nh(Yn − θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

conv. in prob.

+
√
nf ′(θ)(Yn − θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

con. in dist.

converges in distribution to a Gaussian random variable with mean 0 and variance σ2(f ′(θ))2.

Beginning of Feb.2, 2022

Example: (4.15). Let Xn be the sample mean for X1, ...,Xn. We assume var(X1) <∞. Let µ ∶= EX1 ≠ 0.

By CLT,
√
n(Xn − µ) converges in distribution to a mean zero Gaussian with variance σ2 ∶= var(X1).

If we let f(x) ∶= 1/x for nonzero x, then by the Delta method

√
n(f(Xn) − f(µ)) =

√
n( 1

Xn

− 1

µ
)

converges in distribution to a mean zero Gaussian with variance σ2(f ′(µ))2 = σ2/µ4. Put informally, we

have the approximation var(1/Xn) ≈ σ2/(nµ4).
The last approximation is not rigorous – convergence in distribution does not necessarily imply converges in

variance. In order to make this rigorous, we need to assume that there exist ϵ, c > 0 such that

E∣
√
n(f(Xn) −

1

µ
) ∣

2+ϵ

⩽ c

for all c > 0.
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Theorem: (4.16) Convergence Theorem with Bounded Moment

Let X1,X2, ... be random variables that converge in distribution X. Assume that there exist 0 < ϵ, c <∞ such

that E∣Xn∣1+ϵ ⩽ c for all n ⩾ 1. Then

EX = E lim
n→∞

Xn = lim
n→∞

EXn.

Remark. If f ′(θ) = 0 then the Delta method simply says that
√
n(f(Yn) − f(θ)) converges in distribution

to the zero random variable. This kills the purpose of analyzing the variance alongside convergence. We fix

this issue by introducing the second-order Delta method.

Theorem: (4.17) Second Order Delta Method

Let the above assumptions hold. Let f ′(θ) = 0 and f ′′(θ) exist and be nonzero. Then

n(f(Yn) − f(θ))

converges in distribution to σ2/2 ⋅f ′′(θ) times χ2
1. More generally, if f ′(θ) = ⋯ = f (m−1)(θ) = 0 and if f (m)(θ)

exists and is nonzero, then
√
nm(f(Yn) − f(θ))

converges in distribution to σ2/m! ⋅ f (m)(θ) times (N (0,1))m.
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Chapter 5

Data Reduction

Question. How to find a parameter that fits data well using as little information as possible? One way is by using a

sufficient statistic.

5.1 Sufficient Statistics

Definition: (5.1) Sufficient Statistic

Let X = (X1, ...,Xn) be a random sample from a distribution f ∈ {fθ ∶ θ ∈ Θ}. Let t ∶ Rn → Rk so that

Y ∶= t(X1, ...,Xn) is a statistic. We say Y is sufficient for θ if, for every y ∈ Rk and every θ ∈ Θ, the

conditional distribution of X = (X1, ...,Xn) given Y = y does not depend on θ. In other words, Y provides

sufficient information to estimate θ from X1, ...,Xn.

As we shall see from the next example, Y being sufficient does not mean Y allows us to exactly determine θ. All it

says is that we have sufficient information to guess or give a good estimate for the unknown θ.

Beginning of Feb.4, 2022

Example: (5.5) Sufficient statistics always exist. Though trivial, the statistic (X1, ...,Xn) is always

sufficient, for the distribution of (X1, ...,Xn) ∣ (X1, ...,Xn) clearly does not depend on θ.

We now look at two nontrivial, more succinct sufficient statistics, and later we will determine if there exists a

sufficient statistic with “minimal amount of information”, i.e., a “most useful” sufficient statistic.

Example: (5.2). Let X1, ...,Xn be i.i.d. Bernoulli distributions with parameter θ ∈ (0,1). Then Y ∶=
X1 + ... +Xn is sufficient for θ.

Proof. Let (x1, ..., xn) ∈ {0,1} and let 0 ⩽ y ⩽ n. Then Y is a binomial distribution with parameters (n, θ).
Then

P((X1, ...,Xn) = (x1, ..., xn) ∣ Y = y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 (trivial) if ∑xi ≠ y

something nontrivial if ∑xi = y.
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For this reason, we assume that y = x1 + ... + xn. Then,

P((X1, ...,Xn) = (x1, ..., xn) ∣ Y = y) =
P((X1, ...,Xn) = (x1, ..., xn)), Y = y

P(Y = y)

= P((X1, ...,Xn) = (x1, ..., xn))
P(Y = y)

= ∏
n
i=1 P(Xi = xi)
P(Y = y)

= ∏
n
i=1 θ

xi(1 − θ)1−xi

(n
y
)θy(1 − θ)n−y

= θy(1 − θ)n−y

(n
y
)θy(1 − θ)n−y

= (n
y
)
−1
,

indeed an expression not depending on θ.

Again, it is clear that Y alone cannot determine exactly what θ is; it however provides enough information for us to

estimate θ.

Also, more formally, we should say Yn is sufficient for θ given a random sample of size n. However, since dependency

on n is clear, we tend to drop the cumbersome subscript and simply say Y is sufficient.

Example: (5.3). Let X1, ...,Xn be i.i.d. Gaussians with unknown µ ∈ R and known σ2 > 0. We claim that

the sample mean Y ∶= (X1 + ... +Xn)/n is sufficient for µ.

Proof. Let (x1, ..., xn) ∈ R and y ∈ R. Like above, we can assume that y = (x1 + ... + xn)/n. Then Y is a

Gaussian with mean µ and variance σ2/n, and

fX1,...,Xn∣Y (x1, ..., xn ∣ y) =
fX1,...,Xn,Y (x1, ..., xn, y)

fY (y)
=
fX1,...,Xn(x1, ..., xn)

fY (y)

= ∏n
i=1(σ

√
2π)−1 exp(−(x − µ)2/(2σ2))

exp(−((x1 + ... + xn)/n − µ)2

2σ2/n
) /
√
2πσ/

√
n

= σ−n(2π)−n/2

n1/2σ−1(2π)−1/2
exp(−(x2

1 + ... + x2
n)/(2σ2) − nµ2/(2σ2) +∑ xiµ/σ2)

exp(−y2n/(2σ2) − nµ2/(2σ2) + nµy/σ2)

= σ−n(2π)−n/2

n1/2σ−1(2π)1/2
exp((−∑x2

i )/(2σ2))
exp(−y2n/(2σ2))

.

The last expression does not depend on µ, so Y is indeed sufficient for µ.

We now provide an “easy” way to find and/or identify sufficient statistics. Later on, we will further draw connections

with exponential families, which would make things even nicer.

Theorem: (4.12) Factorization Theorem

Suppose X1, ...,Xn is a random sample from {fθ ∶ θ ∈ Θ}. Suppose Y = t(X1, ...,Xn) is a statistic where

t ∶ Rn → Rk. Then Y is sufficient for θ if and only if there exist h ∶ Rn → [0,∞) and gθ ∶ Rk → [0,∞) such that

fθ(x1, ..., xn) = fθ(x) = gθ(t(x)) ⋅ h(x) for all θ ∈ Θ.

A technical remark: in the PMF case, we assume that ⋃θ∈Θ{x ∈ Rn ∶ fθ(x) > 0} is at most countable and require

24



YQL - MATH 541A Notes 5.2 - Minimal Sufficient Statistics Current file: 2-7.tex

the above equation to hold on this set; in the PDF case, we require the above equality to hold almost everywhere.

Beginning of Feb.8, 2022

Proof of Factorization Theorem, PMF Case. We first show that (sufficient)⇒ (factorization). Let x ∈ Rn. Then

fθ(x) = Pθ(X = x) = Pθ(X = x and Y = t(x))

= Pθ(Y = t(x))Pθ(X = x ∣ Y = y) = Pθ(Y = t(x))P(X = x).

where the last step is by the sufficiency of Y . Thus we have obtained a factorization.

Conversely, suppose fθ(x) admits a factorization fθ(x) = gθ(t(x))h(x). Some definitions first: we define

rθ(z) ∶= Pθ(t(X) = z) = Pθ(Y = z) where z ∈ Rk,

t̃(t(x)) ∶= {y ∈ Rn ∶ t(y) = t(x)} where x ∈ Rn.

Now we expand the conditional probability:

Pθ(X = x ∣ Y = t(x)) =
Pθ(X = x and Y = t(x))

Pθ(Y = t(x))
= Pθ(X = x)
Pθ(Y = t(x))

= gθ(t(x)) ⋅ h(x)
Pθ(Y = t(x))

= gθ(t(x)) ⋅ h(x)
∑z∈t̃t(x) Pθ(X = z)

(total probability law)

= gθ(t(x)) ⋅ h(x)
∑z∈t̃t(x) gθ(t(z)) ⋅ h(z)

(factorization assumption)

= gθ(t(x)) ⋅ h(x)
∑z∈t̃t(x) gθ(t(x)) ⋅ h(z)

(since z ∈ t̃t(x)⇒ t(z) = t(x))

= gθ(t(x))
gθ(t(x))

h(x)
∑z∈t̃t(x) h(z)

= h(x)
∑z∈t̃t(x) h(z)

,

which is indeed independent of θ.

We now move on to address the question of whether there exists a “more succinct” sufficient statistic, as mentioned

before.

5.2 Minimal Sufficient Statistics

Suppose t ∶ Rn → Rk and Y = t(X1, ..,Xn) is sufficient for θ. Suppose s ∶ Rn → Rm so Z ∶= s(X1, ...,Xn) is another

statistic. If there exists a function φ ∶ Rm → Rk such that φ ○ s = t, i.e., Y = φ(Z), then from the factorization above,

Z is also sufficient, in the sense that

fθ(x) = gθ(t(x))h(x) = gθ(φ(s(x)))h(x) = (g ○ φ)θ(s(x))h(x).

That is, if Y is sufficient and Y is a function of Z, then Z is automatically sufficient.

Now we present the minimal sufficient statistics, as promised.
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Definition: (5.6) Minimal Sufficient Statistic (MSS)

Suppose X = (X1, ...,Xn) is a random sample of size n following a distribution in {fθ ∶ θ ∈ Θ}. Let Y =
t(X1, ...,Xn) where t ∶ Rn → Rk and assume Y is sufficient for θ. Then we say Y is minimal sufficient if, for

every other sufficient Z ∶ Ω→ Rm, there exists some function r ∶ Rm → Rk such that Y = r(Z).
Connecting to our introduction of MSS, this implies Y is the “most succint” sufficient statistic, as any other

sufficient statistic requires more information.

Beginning of Feb.9, 2022

Example: (5.7). Let X1, ...,Xn be a random Gaussian sample with (known) variance 1 but unknown mean

µ ∈ R. We previous showed that the sample mean X is sufficient; in fact, it is minimal sufficient.

Connecting to another previous example, if we define Y = t(X) ∶= (X1, ...,Xn), then Y is trivially sufficient,

since X can be expressed as the average of components of Y . Unless n = 1, it is not minimal sufficient — for

n ⩾ 2, we cannot write Y = (X1, ...,Xn) as a function of X.

We will not prove that X is minimal sufficient; the proof is rather hard.

Theorem: (5.8) Characterization of Minimal Sufficiency

Let X1, ...,Xn is a random sample with joint PDF/PMF from {fθ ∶ θ ∈ Θ}. (If it is from a family of PMFs,

assume the set E ∶= ⋃
θ∈Θ
{x ∈ Rn ∶ fθ(x) > 0} is at most countable.) Let t ∶ Rn → Rm and Y = t(X1, ...,Xn) be a

statistic. If the following holds (a.e.) on Rn for PDFs or on E for PMFs, then Y is minimal sufficient:

There exists c(x, y) ∈ R, dependent on x, y but not on θ, such that

fθ(x) = c(x, y)fθ(y) for all θ ∈ Θ if and only if t(x) = t(y).

Proof. To avoid technical issues arising in measure theory, we again only consider the PMF case.

We first show that Y is sufficient. For any z ∈ t(Rn), let yz be any element of t−1(z) so that t(yz) = z. Then, for

x ∈ Rn, t(yt(x)) = t(x) so by assumption

fθ(x) = c(x, yt(x))fθ(yt(x)).

Therefore, for all z ∈ Rm and all x ∈ E, if we define

gθ(z) ∶= fθ(yz) and h(x) ∶= c(x, yt(x)),

then we admit a factorization which completes the proof of sufficiency.

fθ(x) = gθ(t(x))h(x),

Now we show that Y is minimal sufficient. Let Z be any other sufficient statistic with Z = u(X1, ...,Xn). We

need to show that t is a function of u.

By factorization theorem on Z, we can can write

fθ(x) = g̃θ(u(x)) ⋅ h̃(x) for all θ ∈ Θ and all x ∈ E.
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Let y ∈ Rn. WLOG assume h̃(y) ≠ 0; otherwise fθ(y) = 0 for all θ, so by definition y ∉ E and we can simply ignore

the case. Suppose for u, y ∈ Rn we have u(x) = u(y). Then

fθ(x) = g̃θ(u(x)) ⋅ h̃(x) = g̃θ(u(y)) ⋅ h̃(x) = g̃θ(u(y)) ⋅ h̃(y) ⋅
h̃(x)
h̃(y)

.

Using the converse of factorization theorem again,

fθ(x) = fθ(y)
h̃(x)
h̃(y)

, for all θ ∈ Θ.

Define c(x, y) ∶= h̃(x)/h̃(y), which is independent of θ indeed. We have shown that fθ(x) = c(x, y)fθ(y) for all

θ ∈ Θ. By the Theorem’s assumption, this implies t(x) = t(y). In other words, u(x) = u(y) implies t(x) = t(y).
This implies that there exists a function φ with t = φ ○ u (Exercise 5.9), which concludes the proof.

Example: (5.10) Exponential Families Gives MSS. Let {fθ ∶ θ ∈ Θ} be a k-parameter exponential family

in canonical form

fw(x) = h(x) exp (
k

∑
i=1

witi(x) − a(w(θ))).

Let X1, ...,Xn be i.i.d. from fw. Define

Y ∶= t(X) ∶=
n

∑
i=1
(ti(Xj), ..., tk(Xj)).

Then Y is MSS for θ. Upshot: we can easily construct MSS from exponential families.

For example, if we sample from a Gaussian with unknown µ and σ2 > 0, then X is minimal sufficient for θ and

(X,S2) is minimal sufficient for (µ,σ2).

Existence and Uniqueness of MSS

Beginning of Feb.11, 2022

Observe that since X is MSS for µ where X1, ...,Xn are i.i.d. Gaussians wit known variance, then so is cX for any

constant c. It turns out this uniqueness is “up to invertible transformations”.

Remark: (5.11) Uniqueness of MSS up to Invertible Transformation. If Y ∶ Ω → Rn, Z ∶ Ω → Rm are

both MSS, then by definition there exist r ∶ Rm → Rn with Y = r(Z) and s ∶ Rn → Rm with Z = s(Y ).
Composing gives r ○ s = idY and s ○ r = idZ . Hence Y and Z are invertible images of each other.

Note that this also connects to the characterization of MSS in some sense. In particular, if Y is MSS, then the

condition

fθ(x) = c(x, y)fθ(y) ⇐⇒ t(x) = t(y)

should hold.

We now show existence of MSS.
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Theorem: (5.12) Existence of MSS

Suppose X1, ...,Xn is a random sample of size n from {fθ ∶ θ ∈ Θ}. In the case of PMFs, assume ⋃
θ∈Θ
{x ∈ Rn ∶

fθ(x) > 0} is countable. Then there exists a MSS Y for θ.

Proof for countable Θ. We label elements of {fθ ∶ θ ∈ Θ} as {fn}n⩾1. We define an equivalence relation on RN

by x ∼ y if x is a scalar multiple of y. Consider t ∶ Rn → RN/ ∼ by

t(x) ∶= (f1(x), f2(x), ...)

Define Y ∶= t(X1, ...,Xn). We now check that such Y satisfies the condition in the MSS characterization theorem.

On one hand, if t(x) = t(y), then fk(x) = αfk(y) for some constant α that works for all k. Conversely, if for each

θ, the corresponding fk(x) is some fixed α times fk(y), then again t(x) = t(y) modulo ∼.
Therefore, the characterization theorem applies and Y , despite its weird appearance, is sufficient.

From above, MSS sometimes might still contain “excess information”. After all (f1(x), f2(x), ...) is an infinite

sequence. Though this is minimal sufficient, it is more interesting to come up with a way to get rid of the excess

information of a statistic.

5.3 Ancillary Statistics

Definition: (5.14) Ancillary Statistic

Suppose X1, ...,Xn is a random sample of size n from {fθ ∶ θ ∈ Θ}. A statistic Y = t(X1, ...,Xn) is ancillary

for θ if the distribution of Y does not depend on θ.

Example: (5.15). Let X1, ...,Xn be a random sample from the location family for the Cauchy distribu-

tion. The joint PDF is

fθ(x) ∶=
n

∏
i=1

1

π

1

1 + (xi − θ)2
, x ∈ Rn, θ ∈ R.

The order statistics (X(1), ...,X(n)), all put together, are minimal sufficient for θ. For sufficiency, we have

fθ(X) =
n

∏
i=1

1

π

1

1 + (Xi − θ)2
=

n

∏
i=1

1

π

1

1 + (X(i) − θ)2
⋅ 1.

For minimal sufficiency, if x, y ∈ Rn are fixed, then

fθ(x)
fθ(y)

= ∏
n
i=1(1 + (yi − θ)2)
∏n

i=1(1 + (xi − θ)2)

only when t(x) = t(y). (Both top and bottom are polynomials of θ and their ratio is constant if and only if they

share the same roots. Ordering them gives the same result, so t(x) = t(y).) Then using the characterization

theroem, we see (X(1), ...,X(n)) is indeed MSS.

However, we began with a vector (X1, ...,Xn) ∈ Rn and we ended up with another vector in Rn. Something

should be excess here.
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For example, X(n) −X(1) is ancillary for θ. If we let Z1, ..., Zn be i.i.d. Cauchy random variables with pdf

π−11/(1 + x2), then Xi = Zi + θ and X(n) −X(1) = Z(n) − Z(1), which is indeed independent of θ. Because

(X(1), ...,X(n)) contains such ancillary statistic, it has “excess information” for θ.

5.4 Complete Statistics

Beginning of Feb.14, 2022

Continuing the above example, since X(n) −X(1) is ancillary, its distribution does not rely on θ. Hence there exists

a constant c such that, for all θ ∈ Θ,

Eθ(X(n) −X(1))1{−1⩽X(1)⩽X(n)⩽c} = c.

(The indicator function only serves to ensure that the above expression is well-defined, i.e., finite.)

Let Y ∶= (X(1), ...,X(n)) and let

f(x1, ..., xn) ∶= (xn − x1)1{−1⩽x1,xn⩽1} − c for (x1, ..., xn) ∈ Rn.

Then as stated above, Eθf(Y ) = 0 for all θ ∈ Θ with f(Y ) ≠ 0. We claim that this implies Y contains extraneous

information, and we turn the negation into a definition:

Definition: (5.16) Complete Statistic

Suppose X1, ...,Xn is a random sample with distribution from {fθ ∶ θ ∈ Θ}. Let t ∶ Rn → Rm. We say a

statistic Y = t(X1, ...,Xn) is complete for {fθ ∶ θ ∈ Θ} if, for any f ∶ Rm → R with Eθf(Y ) = 0 for all θ ∈ Θ,

we have f(Y ) = 0.

(We implicitly assume Eθf(Y ) is well-defined and Eθ ∣f(Y )∣ <∞ for all θ ∈ Θ.)

Intuition: being complete means we have no excess information about θ.

Remark: Nonconstant Complete ⇒ Not Ancillary. Let Y be nonconstant and complete. If Y is ancillary

then there exists c ∈ R with EθY = c or Eθ(Y − c) = 0 for all θ ∈ Θ. By completeness this forces us to have

Y = c, a contradiction.

Remark: Complete and Ancillary ⇏ Sufficient. Consider a constant statistic.

Remark. We always have trivial complete statistics (like the constant one above), but unfortunately com-

plete sufficient statistics might not exist. When they do, they are “good.”

Example: (5.21) Binomial Revisited. Let X = (X1, ...,Xn) be a random sample from a Bernoulli distri-

bution with parameter 0 < θ < 1. We showed that Y =
n

∑
i=1

Xi is sufficient for θ. We now show that Y is also

complete.
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Proof. Let f ∶ R→ R be such that Eθf(Y ) = 0 for all θ ∈ (0,1). Writing this explicitly,

0 = Eθf(Y ) =
n

∑
k=0

f(k)(n
k
)θk(1 − θ)n−k θ ∈ (0,1).

Since

0 =
n

∑
k=0

f(k)(n
k
)αk

where α ∶= θ/(1 − θ), we see the above is a polynomial that equals zero for all α > 0. That is, the polynomial

itself must be identically 0. Since binomial coefficients are not, we must have f(k) = 0 for k ∈ {0,1, ..., n},
which completes our proof showing Y is complete.

Example: (5.22) Gaussians Revisited. Recall that if X1, ...,Xn are i.i.d. Gaussians with known variance

σ2 > 0 and unknown µ ∈ R, then Y =X is (minimal) sufficient. We now claim that Y is also complete.

For simplicity we assume n = σ = 1 so Y is simply a standard Gaussian. Let f ∶ R → R and assume

Eµ∣f(Y )∣ <∞ for all µ. We further assume that

0 = Eµf(Y ) =
1√
2π
∫
∞

−∞
f(t) exp(−(t − µ)2/2) dt, for all µ ∈ R.

Equivalently, after expansion and getting rid of the constants,

∫
R
f(t) exp(−t2/2)etµ dt = 0 for all µ ∈ R.

If f ⩾ 0 then clearly f needs to be identically 0. Otherwise we split f into positive and negative parts and

will also obtain the result after some algebra.
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Theorem: (5.25) Bahadur’s Theorem

If Y is complete and sufficient for {fθ ∶ θ ∈ Θ} then Y is minimal sufficient.

(For PMFs we assume ⋃
θ∈Θ
{x ∈ Rn ∶ fθ(x) > 0} is countable.)

Proof. By a previous remark, there exists a MSS Z, so it suffices to show that there exists a function r with

Y = r(Z) (because any sufficient statistic is a function of Z, so Y is a composite function of that sufficient

statistic).

Define r(Z) ∶= Eθ(Y ∣ Z). We will show that r(Z) = Y . Since Z is MSS and Y sufficient, Z can be written as a

function of Y , say Z = u(Y ). Therefore, using properties of conditionals,

Eθ(r(u(Y ))) = Eθ(r(Z))

= Eθ[Eθ(Y ∣ Z)] (definition of r(Z))

= Eθ(Y ). (total expected value)

Therefore Eθ(r(u(Y )) − Y ) = 0 for all θ ∈ Θ. By completeness this means r(u(Y )) = Y , i.e., r(Z) = Y .
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Theorem: (5.27) Basu’s Theorem

Let Y be complete and sufficient for {fθ ∶ θ ∈ Θ}. If Z is ancillary for θ, then Y and Z are independent with

respect to fθ.

“Complete sufficient statistics are very nice since they do not contain ancillary data.”

Proof. Let Y ∶ Ω→ Rk and Z ∶ Ω→ Rm. Let A ⊂ Rk and B ⊂ Rm. To show independence, we need to verify that

Pθ(Y ∈ A,Z ∈ B) = Pθ(Y ∈ A)Pθ(Z ∈ B) for all θ ∈ Θ.

That is,

Pθ(Y ∈ A,Z ∈ B) = Eθ1Y ∈A1Z∈B = Eθ[Eθ(θ(1Y ∈A1Z∈B) ∣ Y ] = Eθ[1Y ∈AEθ(1Z∈B ∣ Y )]

where the last = is by the tower property (i.e., E[E(Xh(Y ) ∣ Y )] = h(Y )E(X ∣ Y )). Since Y is sufficient,

the conditional distribution does not depend on θ, so (check) g(Y ) ∶= Eθ(1Z∈B ∣ Y ) should not depend on θ.

Therefore

Eθg(Y ) = Eθ[Eθ(1Z∈B ∣ Y )] = Eθ(1Z∈B) = Pθ(Z ∈ B).

Since Z is ancillary we see Eθg(Y ) does not depend on θ. Define this quantity to be c. Then

Eθ(g(Y ) − c) = 0

for all θ ∈ Θ. By completeness this implies g(Y ) = c, i.e., g(Y ) is constant. Therefore,

Pθ(Y ∈ A,Z ∈ B) = Eθ(1Y ∈A ⋅ c) = Eθ(1Y ∈A)Pθ(Z ∈ B) = Pθ(Y ∈ A)Pθ(Z ∈ B).
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Chapter 6

Point Estimation

Goal in a nutshell: estimate some known θ ∈ Θ using a function / statistic of a random sample X1, ...,Xn. Such

statistic Y = t(X1, ...,Xn) is called an estimator or point estimator. Unless otherwise specified, we assume

X1, ...,Xn are i.i.d. from {fθ ∶ θ ∈ Θ}. We also assume Y is a statistic of X1, ...,Xn.

6.1 Evaluating Estimators; UMVU

Definition: (6.1) Likelihood Function

If x ∈ Rn, then the function ℓ ∶ Θ→ [0,∞) defined by ℓ(θ) ∶= fθ(x) is the likelihood function.

Beginning of Feb.23, 2022

Definition: (6.2) Unbiased Estimator

Let Y be an estimator for g(θ) where g ∶ Θ→ Rk. We say Y is unbiased for g(θ) if

EθY = g(θ) for all θ ∈ Θ.

(Unbiased estimators always exist; for example consider the trivial constant statistic.)

For example, we have shown that the sample mean and variance are unbiased for a Gaussian’s mean and variance,

respectively.

However, it should be clear that just being unbiased doesn’t necessarily guarantee a “good” estimator. For example,

any statistic taking value +r with probability 1/2 and −r with 1/2 has expected value 0. If the quantity it estimates

has expected value 0 then all such estimators are unbiased, but clearly as r gets large, this estimator gets “bad”

since its distribution gets spread more widely. A workaround is to examing the mean-squared error (or L2 norm):

Eθ(Y − g(θ))2.

For unbiased estimators, the above quantity equals var(Y ).
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Definition: (6.3) Uniformly Minimum Variance Unbiased Estimators, UMVU

Let g ∶ Θ→ R. Assume Y is unbiased. We say Y is (an) uniformly minimum variance unbiased (estimator),

UMVU, for g(θ) if for any other unbiased estimator Z for g(θ),

varθ(Y ) ⩽ varθ(Z) for all θ ∈ Θ.

(UMVU might not exist a priori. See below.)

Definition: (6.4) Uniformly Minimum Risk Unbiased Estimators, UMRU

This generalizes the notion of UMVU. Suppose we are given a loss function

L ∶ Θ ×Rk → R

(for example, consider L(θ, y) ∶= (y − g(θ))2, in which case the UMRU defined below is simply UMVU; also,

we often assume that L(θ, y) is strictly convex in y) and we define the risk function to be

r(θ, Y ) = EθL(θ, Y ) for all θ ∈ Θ.

Again, assume Y is unbiased for g(θ). We say Y is (an) uniformly minimum risk unbiased (estimator),

UMRU, for g(θ) if for any other unbiased estimator Z for g(θ),

r(θ, Y ) ⩽ r(θ,Z) for all θ ∈ Θ.

Example: (6.5) UMVU might not exist. Suppose X is a binomial random variable with parameter n

(known) and θ ∈ (0,1) (unknown), and we want to estimate θ/(1 − θ). It turns out there is no unbiased

estimator for g(θ) (which implies there is no UMVU): for any estimator Y = t(X),

EθY = Eθt(X) =
n

∑
j=0
(n
i
)t(i)θi(1 − θ)i,

a polynomial of θ, whereas θ/(1 − θ) is not.

6.2 Rao-Blackwell & Lehman-Scheffé

Theorem: (6.7) Rao-Blackwell Theorem

If L(θ, y) is convex in y, then conditioning an unbiased on a sufficient one will only improve it. More formally,

if Z is sufficient for {fθ ∶ θ ∈ Θ} and Y unbiased for g(θ). Let θ ∈ Θ with r(θ, Y ) <∞ and such that L(θ, y) is

convex in y. Then W ∶= Eθ(Y ∣ Z) is unbiased and

r(θ,W ) ⩽ r(θ, Y ).

If in addition the risk function is strictly convex in y, then the inequality is strict unless W = Y .
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Proof. First note that since Z is sufficient, the distribution of W does not depend on θ, so W is indeed well-

defined. Also, since Y is unbiased, so is W , since EθW = EθEθ(Y ∣ Z) = EθY .

By definition L(θ,W ) = L(θ,Eθ(Y ∣ Z)). By Jensen’s inequality we have

L(θ,W ) = L(θ,Eθ(Y ∣ Z)) ⩽ Eθ(L(θ, Y ) ∣ Z). (*)

Taking expectation on both sides again,

r(θ,W ) = EθL(θ,W ) ⩽ EθEθ(L(θ, Y ) ∣ Z) = EθL(θ, Y ) = r(θ, Y ).

Finally, if L is strictly convex, then the above inequality is strict unless (*) is attains equality; this happens when

Y is a function of Z. If so, W = Eθ(Y ∣ Z) = Y .

Remark. We will later show that if Y is unbiased and Z is sufficient and complete, then the corresponding

W automatically gives the UMRU.

Example: (6.12). Let X1, ...,Xn be i.i.d. with unknown mean µ ∈ R. Let Y ∶= t(X1, ...,Xn) ∶= X1, a bad

yet unbiased estimator.

A bad example of Rao-Blackwell: condition Y on the trivially sufficient (X1, ...,Xn), which gives

W = E(X1 ∣X1, ...,Xn) = E(X1 ∣X1) =X1.

A better example: we now condition Y on
n

∑
i=1

Xi (no guarantee if this is sufficient, but we condition it

anyways). Then

n

∑
j=1

E(Xj ∣
n

∑
i=1

Xi) = nE(X1 ∣
n

∑
i=1

Xi) Ô⇒ W ∶= E(X1 ∣
n

∑
i=1

Xi) =
1

n

n

∑
i=1

Xi,

so (whether or not) Rao-Blackwell gives a much better unbiased estimator.
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Example: Order statistics and sufficiency. If X1, ...,Xn are i.i.d. from {fθ ∶ θ ∈ Θ}, then (X(1), ...,X(n))
is always sufficient.

On the other hand, suppose also that Y1, ..., Yn are i.i.d. from {gθ ∶ θ ∈ Θ}. Suppose we want to esti-

mate var(X1, Y1) = E[(X1 − EX1)(Y1 − EY1)]. By reordering Xi into X(1), ...,X(n) and Yi into Y(1), ..., Y(n)

separately, there is no guarantee that Xi, Yi still share the same index after using order statistics. Hence

X(1), ...,X(n), Y(1), ..., Y(n) might not be sufficient for the covariance.
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Theorem: (6.13) Lehmann-Scheffé

Conditioning an unbiased statistic on a complete sufficient one gives the UMRU/UMVU.

Let Z be a complete sufficient statistic for {fθ ∶ θ ∈ Θ}, let Y be unbiased for g(θ), let L(θ, y) be convex in y,

and define W ∶= Eθ(Y ∣ Z). Then W is UMRU for g(θ).
Moreover, if L(θ, y) is strictly convex, then W is unique. (In particular, UMVU is unique.)

Proof. Since Y is unbiased, so is W . We first show that W does not depend on Y . (Intuitively, given a strictly

convex loss function, the unique UMRU should not depend on what Y on which we conditioned.) Let Y ′ be another

unbiased estimator for g(θ). Then

Eθ[Eθ(Y ∣ Z) −Eθ(Y ′ ∣ Z)] = EθY −EθY
′ = g(θ) − g(θ) = 0 for all θ ∈ Θ

so by completeness

Eθ(Y ∣ Z) = Eθ(Y ′ ∣ Z) for all θ ∈ Θ.

Therefore W does not depend on the choice of Y . Using Rao-Blackwell,

r(θ,W ) = r(θ,Eθ(Y ∣ Z)) = r(θ,Eθ(Y ′ ∣ Z)) ⩽ r(θ, Y ′) for all θ ∈ Θ.

for all unbiased Y ′. That is, W is a UMRU. Uniqueness when L is convex follows from Rao-Blackwell as well.

Remark: (6.14). Here is a method to think backwards on obtaining a UMVU via Lehmann-Scheffé.

Let Z ∶ Ω → Rk be complete sufficient for {fθ ∶ θ ∈ Θ}. Let h ∶ Rk → Rm and let g(θ) ∶= Eθh(Z). Then

W ∶= Eθ(h(Z) ∣ Z) = h(Z) is unbiased for g(θ). That is, h(Z) is UMVU for g(θ).
If we can guess or solve a function h such that g(θ) = Eθh(Z), then we are done.

Beginning of March 4, 2022

Example: (6.15) Gaussian and UMVU (backward thinking). Suppose we are sampling from a Gaussian

with unknown µ ∈ R and unknown σ2 > 0. We take it for granted that (X,S2) is complete for (µ,σ2). So X

is UMVU for µ:

h(x, y) ∶= x and g(µ,σ2) ∶= µ Ô⇒ g(µ,σ2) = Eθh(Z).

Similarly, S2 is UMVU for σ2:

h(x, y) ∶= y and g(µ,σ2) ∶= σ2 Ô⇒ g(µ,σ2) = Eθh(Z).

Finally, to find the UMVU for µ2, we try to express it in terms of X and S2:

EX
2 = var(X) + (EX)2 = σ2

n
+ µ2

so

µ2 = E(X2 − S2/n).

That is, X
2 − S2/n is UMVU for µ2.
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Example: (6.16) Binomial and UMVU (backward thinking). Consider a binomial random variable with

parametrs n and θ ∈ (0,1). Suppose we want to estimate g(θ) ∶= θ(1−θ), the variance of X. Using “backward

thinking”, we want to find h ∶ R→ R such that

θ(1 − θ) = Eθh(X) =
n

∑
j=0

h(j)(n
j
)θj(1 − θ)n−j .

Let a ∶= θ/(1 − θ) so
n

∑
j=0

h(j)(n
j
)aj = (1 − θ)−nEθh(X) = θ(1 − θ)1−n. (1)

Since θ = a/(1 + a) and so 1 − θ = 1/(1 + a), binomial theorem gives

(1 − θ)−nEθh(X) = (1 + a)−1a(1 + a)n−1 = a(1 + a)n−2 = a
n−2
∑
j=0
(n − 2

j
)aj =

n−1
∑
j=1
(n − 2
j − 1

)aj . (2)

Comparing the LHS of (1) and the RHS of (2) we see that the polynomials are equal on (0,1), so their

coefficients must be identical. Therefore

h(j) = (n − 2
j − 1

)(n
j
)
−1
= (n − 2)!
(j − 1)!(n − j − 1)!

j!(n − j)!
n!

= (n − j)j
n(n − 1)

,

i.e., the UMVU for θ(1 − θ) is
X(n −X)
n(n − 1)

(assuming n ⩾ 2).

Example: (6.17) Bernoulli and UMVU (Lehman-Scheffé). Let X1, ...,Xn be i.i.d. Bernoulli with θ ∈
(0,1). We have shown previosuly that Z ∶=

n

∑
i=1

Xi is complete and sufficient and X is unbiased for θ.

Therefore X is UMVU for θ.

Suppose we want to estimate θ2. Since Y ∶=X1X2 is unbiased, E(Y ∣ Z) will be the UMVU.

Let 2 ⩽ z ⩽ n. Since Y = 1 if and only if X1 =X2 = 1,

Eθ(Y ∣ Z = z) = Eθ(1X1=X2=1 ∣ Z = z) = Pθ(X1 =X2 = 1 ∣ Z = z)

= Pθ(X1 =X2 = 1 ∣
n

∑
i=1

Xi = z) =
Pθ(X1 =X2 = 1,∑n

i=1Xi = z)
Pθ(∑n

i=1Xi = z)

= Pθ(X1 =X2 = 1,∑n
i=3Xi = z − 2)

Pθ(∑n
i=1Xi = z)

=
θ2(n−2

z−2)θ
z−2(1 − θ)n−z

(n
z
)θz(1 − θ)n−z

= (n − 2
z − 2

)(n
z
)
−1

= (n − 2)!
(z − 2)!(n − z)!

z!(n − z)!
n!

= z(z − 1)
n(n − 1)

.

We check that the cases z = 1, z = 2 still satisfy this relation. Hence the UMVU for θ2 is Eθ(Y ∣ Z) =
Z(Z − 1)
n(n − 1)

.

Beginning of March 7, 2022
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One More Remark on UMVU

Question. if W1 is UMVU for g1(θ) and W2 UMVU for g2(θ), does it follow that W1 +W2 is UMVU for g1(θ)+g2(θ)?
By Lehman-Scheffé, if Y is unbiased for g1(θ) and Y2 unbiased for g2(θ), and if Z is complete and sufficient, then

by uniqueness Wi = Eθ(Yi ∣ Z), and by linearity

W1 +W2 = Eθ(Y1 + Y2 ∣ Z)

is the UMVU for g1(θ) + g2(θ). But what if we don’t assume the existence of a complete sufficient Z a priori? The

answer is still yes:

Theorem: (6.18) Alternate Characterization of UMVU

Let {fθ ∶ θ ∈ Θ} be a family of distributions and let W be unbiased of g(θ). Let L2(Ω) be the set of statistics

with finite second moment. then W ∈ L2(Ω) is UMVU for g(θ) if and only if Eθ(WU) = 0 for all θ ∈ Θ and all

U ∈ L2(Ω) with EθU = 0.

Remark. For the W1,W2 example above, this theorem gives that Eθ(W1U) = Eθ(W2U) = 0 for all U ∈ L2(Ω)
with EθU = 0. Then W1 +W2 is unbiased with Eθ((W1 +W2)U) = 0.

Proof. We first assume that W is UMVU for g(θ). Let U be unbiased for 0. Let s ∈ R and consider W + sU , an

unbiased estimator for g(θ) again. Then

varθ(W ) ⩽ varθ(W + sU) = varθ(W ) + 2sEθ(W −EθW )U + s2 varθ(U).

The minimum value occurs at s = 0 if and only if the derivative vanishes at s = 0. That is, EθWU = Eθ(W −
EθW )U = 0.

Conversely, assume Eθ(WU) = 0 for all U ∈ L2(Ω) unbiased for 0. If Y is unbiased, then U ∶= Y −W is unbiased

for 0. Comparing the variance of Y with W +U we have

varθ(Y ) = varθ(U +W ) = ... = varθ(U) + varθ(W ) ⩾ varθ(U).

6.3 Fisher Information & Cramér-Rao

In this section we assume Θ ⊂ R unless otherwise specified.

Definition: (6.19) Fisher Information

Let {fθ ∶ θ ∈ Θ} be a family of multivariate PDFs or PMFs. Let X be a random vector with distribution fθ.

The Fisher information of the family is defined to be

I(θ) = IX(θ) ∶= Eθ (
d

dθ
log fθ(X))

2

for all θ ∈ Θ

if this quantity exists and is finite. We also implicitly assume that {x ∈ R ∶ fθ(x) > 0} does not depend on θ.
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Beginning of March 9, 2022

Example: (6.20) Gaussians & Fisher. Let σ > 0. Let fθ(x) ∶=
1

σ
√
2π

exp(−(x − θ)
2

2σ2
) for all x ∈ R, θ ∈ R.

Then we have

log fθ(x) = log(
1

σ
√
2π
) ⋅ −(x − θ)

2

2σ2

so
d

dθ
log fθ(X) =

d

dθ

−(X − θ)2

2σ2
,

and so

I(θ) = Eθ (
d

dθ

−(X − θ)2

2σ2
)
2

= Eθ (
X − θ
σ2
)
2

= 1

σ4
var(X − θ) = 1

σ2
.

In general, I(θ) depends on θ, but in this case it does not. Here, when σ is small, fθ looks like a sharp bump rather

than a flat curve. A smaller σ corresponds to a larger I(θ) which gives us more information about where and how

the random variable is distributed. Later we will establish the Cramér-Rao bound and draw connection between

Fisher information and UMVU.

We now provide two alternate forms for the Fisher information which might be useful sometimes:

Remark. Without the square,

Eθ (
d

dθ
log fθ(X)) = ∫

Rn

d/dθfθ(x)
fθ(x)

fθ(x) dx =
d

dθ
∫
Rn

fθ(x) dx =
d

dθ
(1) = 0.

Therefore, treating
d

dθ
log fθ(X) as a random variable,

I(θ) = Eθ(...)2 = varθ (
d

dθ
log fθ(X)) .

Remark. Alternatively,

Eθ (
d2

dθ2
log fθ(X)) = ∫

Rn

d

dθ

d/dθfθ(x)
fθ(x)

fθ(x) dx

= ∫
Rn

fθ(x) d2

dθ2 fθ(x) − ( d
dθ
fθ(x))2

(fθ(x))2
fθ(x) dx

= ∫
Rn

d2

dθ2
fθ(x) − (

d

dθ
log fθ(x))

2

fθ(x) dx

= d2

dθ2
(1) − ∫

Rn
( d

dθ
log fθ(x))

2

fθ(x) dx = 0 − I(θ) = −I(θ).

Proposition: (6.21)

Let X,Y be independent where their distributions are from {fθ ∶ θ ∈ Θ} and {gθ ∶ θ ∈ Θ} respectively (not
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necessarily the same distribution, but same parameter space). Then

I(X,Y )(θ) = IX(θ) + IY (θ).

Proof. Using the variance expression,

I(X,Y )(θ)
∗= var( d

dθ
log(fθ(X)gθ(Y ))) = var(

d

dθ
(log fθ(X) + log gθ(X))

∗= varθ (
d

dθ
log fθ(X)) + varθ (

d

dθ
log gθ(X)) = IX(θ) + IY (θ).

(The starred equations are because of independence.)

Theorem: (6.23) Cramér-Rao / Information Inequality

Let X ∶ Ω → Rn be a random variable with distribution from {fθ ∶ θ ∈ Θ}, Θ ⊂ R. Let Y ∶= t(X) be a statistic.

For θ ∈ Θ, define g(θ) ∶= EθY . Then

varθ(Y ) ⩾
∣g′(θ)∣2

IX(θ)
for all θ ∈ Θ.

In particular if Y is unbiased then g(θ) = θ and g′(θ) = 1, so

varθ(Y ) ⩾
1

IX(θ)
for all θ ∈ Θ.

In both cases, “=” happens only when
d/dθ(log fθ(X))

Y −EθY
∈ R for some θ ∈ Θ.

This theorem provides a lower bound on the variance of unbiased estimators of θ — in general, we cannot get

estimators with arbitrarily small variance.

Remark. If X1, ...,Xn are i.i.d. and X = (X1, ...,Xn), then (by last proposition) IX(θ) = nIX1(θ). If

EθY = θ, then varθ(Y ) ⩾ 1/(nIX1(θ)) for all θ ∈ Θ.

Proof. Define g(θ), Y , and t accordingly. If X is continuous (similar for discrete),

∣g′(θ)∣ = ∣ d
dθ
∫
Rn

fθ(x)t(x) dx∣ = ∣∫
Rn

d

dθ
fθ(x)t(x) dx∣

=
∗
∣∫

Rn

d

dθ
(log fθ(x)) t(x)fθ(x) dx∣

∗= ∣ cov( d
dθ
(log fθ(X)), t(X))∣

⩽ (varθ(
d

dθ
(log fθ(X))))

1/2
varθ(t(X))1/2

=
√
IX(θ)

√
varθ Y .

For =
∗
:

d

dθ
(log fθ(x)) =

1

fθ(x)
d

dθ
fθ(x) [note that t(x) is treated as a constant when doing d/dθ], and for ∗=: if

EW = 0, then cov(W,Z) = E[(W −EW )(Z −EZ)] = E[W (Z −EZ)] = E(WZ).
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Note that equality in Cramér-Rao happens if and only if the Cauchy-Schwarz step is attained, i.e., when

d/dθ(log fθ(X)) −E(...)
t(X) −E(tθ(X))

= d/dθ(log fθ(X))
Y −EθY

is a constant.

Example: (6.24). Let fθ(x) ∶= θxθ−1χ(0,1)(x) for x ∈ R and θ > 0. Then for x ∈ (0,1),

d

dθ
log fθ(x) =

d

dθ
log(θxθ−1) = d

dθ
[log θ + (θ − 1) logx] = 1

θ
+ logx.

Then if X1, ...,Xn are i.i.d., for (x1, ..., xn) ∈ (0,1)n,

d

dθ
log

n

∏
i=1

fθ(xi) =
n

∑
i=1
(θ−1 + logxi) = n(

1

θ
+ 1

n
log

n

∑
i=1

xi) .

By Cramér-Rao, any multiple of
d

dθ
log

n

∏
i=1

fθ(Xi) (plus a constant) is UMVU for EθY .

For example, since E( d
dθ

log
n

∏
i=1

fθ(Xi)) = 0, we know E
n

∑
i=1

logXi = −n/θ. Hence if we define Y ∶=

− 1
n
log

n

∏
i=1

Xi, its expected valve is 1/θ, and we claim that this is UMVU of its expectation.

6.4 Bayes Estimation

Beginning of March 21, 2022

In Bayes estimation, the unknown θ ∈ Θ itself is regarded as random variable Ψ; the distribution of Ψ represents

our prior knowledge about its probable values. Given Ψ = θ, the condition distribution of X ∣ Ψ = θ is assumed to

be {fθ ∶ θ ∈ Θ}.

Suppose t ∶ Rn → Rk, y = t(X), and we have a loss function L ∶ Θ ×Rk → R. Let g ∶ Θ→ Rk.

Definition: (6.26) Bayes Estimator

A Bayes estimator for g(θ) w.r.t. Ψ is one such that

EL(g(Ψ), Y ) ⩽ EL(g(Ψ), Z) for all estimators Z.

Proposition: (6.27) Minimizing Conditional Risk ⇒ Bayes

In order to find a Bayes estimator, it suffices to minimize the conditional risk.

Suppose there exists t ∶ Rn → R such that, for almost every x ∈ Rn, Y ∶= t(X) minimizes the conditional risk

E(L(g(Ψ), Z) ∣X = x)

over all estimators Z. Then t(X) is Bayes for g(θ) w.r.t. Ψ.
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Proof. Total expectation. If

E(L(g(Ψ), Z) ∣X = x) ⩽ E(L(g(Ψ), Z) ∣X = x)

for (almost) all x, then taking the expectation again preserves ⩽. The probability measure is induced by the

marginal

P(X ∈ A) ∶= ∫
Ω
Pθ(X ∈ A) dΨ(θ).

The distribution of t(X) can depend on the distribution of Ψ.

Example: (6.29). Let n = 1, g(θ) ∶= θ, and L(Ψ, Y ) ∶= (Ψ−Y )2. The conditional stated above is minimized

when t(x) = E(Ψ ∣X = x), since

E((Ψ − t(X)2 ∣X = x)) = E(Ψ2 − 2Ψt(x) + t(x)2 ∣X = x)

= E(Ψ2 ∣X = x) − 2t(x)E(Ψ ∣X = x) + t(x)2.

Therefore E(Ψ ∣X) is Bayes for θ with respect to Ψ.

Given Ψ = θ > 0, suppose X us uniform on [0, θ] and assume that Ψ has a gamma distribution with α = 2, β = 1
so its distribution is θeθ for θ > 0. Then

fΨ,X(θ, x) = fX ∣Ψ=θ(x ∣ θ)fΨ(θ) = e−θ1x∈(0,θ)

and the marginal of X is

fX(x) = 1x>0 ∫
∞

−∞
fΨ,X(θ, x) dθ = 1x>0 ∫

∞

x
e−θ dθ = 1x>0 ⋅ ex.

Therefore

fΨ∣X=x(θ ∣ x) =
fΨ,X(θ, x)
fX(x)

=
e−θ ⋅ 1x∈(0,θ)
e−x ⋅ 1x>0

= ex−θ ⋅ 1x∈(0,θ)

and so

E(Ψ ∣X = x) = ∫
∞

−∞
θfΨ∣X=x(θ ∣ x) dθ = ∫

∞

x
θex−θ dθ = ex((x + 1)e−x) = x + 1,

which says that the Bayes estimator for the mean squared error (MSE) L(Ψ, Y ) = (Ψ − Y )2 is in this case

t(X) =X + 1.

In contrast, the UMVU for θ is (1 + 1/n)X(n) and in this case 2X.

Beginning of March 23, 2022

6.5 Method of Moments

Definition: (6.30) Consistency

Let {fθ ∶ θ ∈ Θ} be a family of distributions and let Y1, Y2, ... be a sequence of estimators for g(θ). We say

Y1, Y2, ... is consistent for g9θ) if, for any θ ∈ Θ, Y1, Y2, ... converges in probability to the constant value g9θ).
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Remark. If h ∶ R is continuous, and if Y1, Y2, ... converges in probability to c ∈ R, then h(Y1), h(Y2), ...
converges in probability to h(c).

Example: (6.31). Let X1, ...,Xn be a sample of size n with distribution fθ. The WLLN states that the

sample mean is consistent when Eθ ∣X1∣ < ∞ for all θ ∈ Θ. The same holds for the jth moment given that

Eθ ∣X1∣j <∞ for all θ ∈ Θ. If we define

µj(θ) ∶= EXj
1 and Mj(θ) ∶=

1

n

n

∑
i=1

Xj
i

then Mj(θ) converges in probability to µj(θ). This gives rise to the Method of Moments.

Definition: (6.32) Methods of Moments

Suppose we want to estimate g(θ) and suppose there exists h ∶ Rj → Rk such that

g(θ) = h(µ1, ..., µj).

Then the estimator h(M1, ...,Mj) is called the method of moments estimator for g(θ).

Example: (6.33). Let g(θ) be the variance. We know var(X) = EX2 − (EX)2. Then the MoM for g(θ) is

M2 −M2
1 =

1

n

n

∑
i=1

X2
i − (

1

n

n

∑
i=1

Xi)
2

.

Example: Consistent but Biased Estimator. Following the previous example, define

Yn ∶=

¿
ÁÁÀ

n

∑
i=1

X2
i /n − (

n

∑
i=1

Xi/n)2.

Since (a, b) ↦
√
a − b2 is continuous, and since ∑n

i=1X
2
i /n and ∑n

i=1Xi/n converge to EX2 and EX respec-

tively, we claim that Yn →
√
EX2 − (EX)2 as n→∞. This implies that Yn is consistent.

However, Yn is biased! Take n = 1 and X the uniform distribution on [0,1]. Then

EX = 1

2
,EX2 = 1

3
,var(X) = 1

12
, and σ = 1

2
√
3
.

On the other hand,

E
√
X2 −X2 = 0.

Therefore Yn is consistent but biased.

Beginning of March 25, 2022

Example: (6.34). Let X1, ...,Xn be a random sample of size n from [0, θ] where θ > 0 is unknown.

Previously we mentioned that (1 + 1/n)X(n) is UMVU for θ. Ont he other hand, EθX1 = θ/2 so the MoM
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estimator is 2/n ⋅
n

∑
i=1

Xi. The variance of this estimator is

4

n2

n

∑
i=1

var(Xi) =
4

n

θ2

12
= θ2

3n
.

The variance for the UMVU is

var((1 + 1/n)X(n)) = (
n + 1
n
)
2

var(X(n)) =
(n + 1)2

n2
EX2

(n) − θ
2

= (n + 1)
2

n2 ∫
θ

0
2tP(X(n) > t) dt − θ2 = ... =

θ2

n(n + 2)
.

From this we see that MoM might not be too good in terms of variance, in addition to its possibility of not

being biased.

Example: (6.35). Suppose we have a binomial random variable with known parameters n, p where 0 <
p < 1. Then EX1 = np and EX2

1 = np(1 − p) + n2p2. Some algebra shows that n =M1/N , where

N ∶= M2
1

M1 − (M2 −M2
1 )

.

6.6 Maximum Likelihood Esimation

Beginning of March 28, 2022

Definition: (6.36) Maxiimum Likelihood Estimator, MLE

Let X1, ...,Xn be a random sample from fθ where θ ∈ Θ. If x = (x1, ..., xn) ∈ Rn, we define the likelihood

function ℓ ∶ Θ→ [0,∞) to be

ℓ(θ) ∶=
n

∏
i=1

fθ(xi).

The maximum likelihood estimator, MLE, Y , is the estimator maximizing the likelihood.

Remark. MLE might not exist. Even if it exists, it might not be unique and can in fact have uncountably

many.

For the nonexistent one: let fθ(x) ∶= θ ⋅ 1[0,1/θ](x) where θ ∈ N. Then ℓ(θ) = θ has no maximum over θ ∈ N.

However, note that if fθ is continuous and Θ compact, then MLE at least exists.

For the uncountable one, let fθ(x1) ∶= 1[θ,θ+1](x1) for x1 and unknown θ ∈ R. Then

ℓ(θ) =
n

∏
i=1

fθ(xi) =
n

∏
i=1

1[θ⩽x(1)⩽x(n)⩽θ+1.

If x1 = ... = xn = 0, then

ℓ(θ) = 1θ∈[−1,0].

That is, any θ ∈ [−1,0] works as a MLE in this case.
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Remark. We will show later that under certain conditions MLE is consistent and will have the optimal

variance as n→∞.

Definition: (6.40) Log Concavity ⇒ Uniqueness of MLE If It Exists

If each function θ ↦ fθ(xi) is strictly log-concave, then for x1, ..., xn ∈ R, then likelihood function has at most

maximum value.

Note that this does not guarantee existence — for example e−x is log-concave but does not have maximum

on R.

Beginning of March 30, 2022

Example: (6.45 MLE and Gaussian). Consider a Gaussian with unknown µ ∈ R and unknown σ2 > 0 so

θ = (µ,σ). Suppose we want to find the MLE for the pair (µ, θ). Here we maximize log ℓ(θ):

log ℓ(θ) = log
n

∏
i=1

1

σ
√
2π

exp(−(xi − µ)2

2σ2
) =

n

∑
i=1
[− logσ − log 2π

2
− (xi − µ)2

2σ2
] .

Computing its partials,

∂

∂µ
log ℓ(θ) = xi − µ

σ2

∂

∂σ
log ℓ(θ) =

n

∑
i=1
− 1
σ
+ (xi − µ)2

σ3
.

Setting them to 0, we obtain

µ = 1

n

n

∑
i=1

xi σ2 = 1

n

n

∑
i=1
(xi − µ)2.

(Note that we did not get 1/(n − 1) for σ2, but nevertheless this is still pretty good.)

Now that we found a critical point, we need to verify that it is a maximum. Write α ∶= 1/σ2. Then

log ℓ(θ) = 1

2
(

n

∑
i=1

logα − log 2π − α(xi − µ)2)

For fixed α, log ℓ(θ) is strictly concave function of µ; likewise, fixing µ, log ℓ(θ) is a strictly concave function

of α (alternatively, do first derivative test on σ), so the critical point must have been a global maximum. We

have therefore found the (only) MLE:

θ = (µ,σ2) = ( 1
n

n

∑
i=1

Xi,
1

n

n

∑
i=1
(Xi −

1

n

n

∑
i=1

Xi)2) .

Note that such MLE is biased for σ2 but asymptotically unbiased.

Beginning of April 8, 2022

Theorem: (6.52) Consistency of MLE

Let X1,X2, ... ∶ Ω → Rn be i.i.d. with pdf fθ. Suppose Θ is compact and fθ(x1) is a continuous function

for θ for a.e. x1 ∈ R. Assume Eθ supθ′∈Θ∣log fθ′(X1)∣ < ∞ and Pθ ≠ Pθ′ for all θ′ ≠ θ. Then the MLE Yn of θ

converges in probability to the constant function θ with respect to Pθ.
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Proof for finiteh Θ. Fix θ ∈ Θ. For θ′ ∈ Θ and n ⩾ 1, let

ℓn(θ′) ∶=
1

n

n

∑
i=1

log fθ′(Xi).

Note that each log fθ′(Xi) is a random variable with finite expectation, so by WLLN, ℓn(θ′) converges in proba-

bility with respect to Pθ to the constant µ(θ′) ∶= Eθ log fθ′(X1).
Enumerate Θ as {θ, θ1, ..., θk}. Since Pθ ≠ Pθ′ for all θ′ ≠ θ, we have by information inequality that I(θ, θ′) =
µ(θ) − µ(θ′) > 0.

For n ⩾ 1, define

Ω ⊃ An ∶= {ℓn(θ) > ℓn(θj) for all 1 ⩽ j ⩽ k}

Then lim
n→∞

Pθ(An) = 1 because ℓn(θ) → µ(θ) in probability and ℓn(θj) → µ(θ′) < µ(θ) in probability for each

j and there are only finitely many j’s. (For infinite case the proof needs to be modified). By convergence in

probability,

lim
n→∞

Pθ(∣ℓn(θ) − µ(θ)∣ > ϵ) = lim
n→∞

Pθ(∣ℓn(θ′) − µ(θ′)∣ > ϵ0 = 0.

Using triangle inequality,

∣ℓn(θ) − ℓn(θj)∣ = ∣ℓn(θ) − µ(θ) + µ(θ) − µ(θj) + µ(θj) − ℓn(θj)∣

where the first two terms are < ϵ, last two < ϵ, and the middle two can be > 3ϵ for small ϵ. Then the entire thing

> ϵ. Taking maximum index over all j’s again,

lim
n→∞

Pθ(∣ℓn(θ) − ℓn(θj)∣ > ϵ for all 1 ⩽ j ⩽ k) = lim
n→∞

Pθ(An) = 1.

On each An, the MLE Yn is well-defined and unique with Yn = θ, so {Yn = θ}c ⊂ Ac
n. Using lim

n→∞
P(An) = 1 we

have

lim
n→∞

Pθ(∣Yn − θ∣ > ϵ) ⩽ lim
n→∞

Pθ(Ac
n) = 0.

Beginning of April 11, 2022

We now give a powerful theorem on the asymptotic variance of MLE and claim that it achieves it asymptotically

achieve the Cramér-Rao lower bound.

Theorem: (6.53) Limiting Distribution of MLE

(Think of this as an analogue to the CLT/Delta.) Let {fθ ∶ θ ∈ Θ} be a family of PDFs with fθ ∶ R→ [0,∞) for

all θ. Let X1,X2, ... be i.i.d. with distribution fθ. Assume that

(1) The set A ∶= {x ∈ R ∶ fθ(x) > 0} is independent of θ,

(2) For every x ∈ A, ∂2fθ(x)/∂θ2 exists and is continuous in θ,

(3) The Fisher information IX1(θ) exists and is finite with

Eθ
d

dθ
log fθ(X1) = 0 and IX1(θ) = −Eθ

d2

dθ2
log fθ(X1) > 0,
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(4) For every θ in the interior of Θ, there exists δ > 0 such that

Eθ sup
θ′∈Θ
∣1[θ−δ,θ+δ]

d2

d[θ′]2
log fθ′(X1)∣ <∞,

and

(5) The MLE Yn of θ is consistent.

Then, for any θ in the interior of Θ, as n→∞,
√
n(Yn − θ) converges in distribution to a mean zero Gaussian

with variance 1/IX1(θ) w.r.t. Pθ.

Proof. We assume Θ is finite for simplicity (in which case (4) is trivial). Fix θ ∈ Θ.

Define the log-likelihood to be

ℓn(θ′) ∶=
1

n

n

∑
i=1

log fθ′(Xi).

Assuming Θ is finite, let ϵ > 0 be small so that [θ − ϵ, θ + ϵ] ∩Θ = {θ}. Let An be the event where Yn = θ, and

by (5) we have lim
n→∞

P(An) = 1. Since Yn is MLE, we have ℓ′n(Yn) = 0 on Yn (assuming the notion of derivative

works in a finite domain, thought in actuality it doesn’t). Taylor expansion gives

0 = ℓ′n(Yn) = ℓ′n(θ) + ℓ′′n(Zn)(Yn − θ) if An occurs,

for some Zn always lying between θ and Yn. Therefore

√
n(Yn − θ) =

√
nℓ′n(θ)
−ℓ′′n(Zn)

if An occurs. (*)

By (3), each term in ℓ′n(θ) has mean zero and variance IX1(θ), so
√
nℓ′n(θ) converges in distribution to a mean

zero Gaussian with variance IX1(θ) by CLT.

For the denominator, first note that by (5), Yn converges to θ, the constant. Then by (4) and WLLN, ℓ′′n(θ)
converges in probability to Eθℓ

′′
n(θ), where ℓ′′n(θ) is simply a fixed value. Therefore the denominator converges

in probability to Eθℓ
′′
n(θ) = −IX1(θ). Therefore, (*) implies that

√
n(Yn − θ) converges to a Gaussian with mean

0 and variance 1/IX1(θ), as claimed.

Beginning of April 13, 2022

6.7 EM Algorithm

Let X ∶ Ω → Rn be a random variable. Let h ∶ Rn → Rm be non-invertible and let Y ∶= t(X). Sometimes we want to

ideally observe the sample X but in really we only have access to Y .

Suppose X has a distribution from {fθ ∶ θ ∈ Θ}. To find the MLE of θ, we want to maximize

log ℓ(θ) = log fθ(X).

Yet, since X cannot be directly observed we cannot maximize the above. Instead, we try to approximate the

maximum value by conditioning on Y .
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Definition 6.7.1: Expectation-Maximization Algorithm

Initialize θ0 ∈ Θ. Fix k ⩾ 1. For 1 ⩽ j ⩽ k, repeat the following procedure:

(1) (Expectation) Given θj−1, let φj(θ) ∶= Eθj−1(log fθ(X) ∣ Y ), and

(2) (Maximization) Define θj ∶= argmaxφj(θ).

Beginning of April 15, 2022

A few examples:

(1) If Y =X the whole sample then Y is sufficient. We have φ1(θ) = log fθ(X) so we get MLE in one run.

(2) If Y is constant, φ1(θ) = Eθ0 log fθ(X). We get θ = θ0 in one run according to the likelihood inequality, and we

keep getting this result iteratively.

(3) Let t(x1, ..., xn) = (x1, ..., xm) where m < n. Then

φj(θ) = Eθj−1(
n

∑
i=1

log fθ(Xi) ∣ (X1, ...,Xm))

= Eθj−1(
m

∑
i=1

log fθ(Xi) ∣ (X1, ...,Xm)) +Eθj−1(
n

∑
i=m+1

log fθ(Xi) ∣ (X1, ...,Xm))

=
m

∑
i=1

log fθ(Xi) +Eθj−1

n

∑
i=m+1

log fθ(Xi).

We now provide a “measure of progress” of the EM algorithm.

Proposition: (6.58)

Suppose X has density fθ and Y ∶= t(X) has density hθ. We denote gθ(x ∣ y) ∶= fX ∣Y (x ∣ y). Then for any

θ ∈ Θ,

loghθ(Y ) − loghθj−1(Y ) ⩾ φj(θ) − φj(θj−1)

with equality only when gθ(X ∣ y) = gθj−1(X ∣ y) a.s. w.r.t. Pθj−1 for fixed y.

Proof. Since fX,Y (x, y) = fX ∣Y (x ∣ y)fY (y), we have

log fY (y) = log fX,Y (x, y) − log fX ∣Y (x ∣ y).

Since Y = t(X), we have fX,Y (x, y) = fX(x)1y=t(x). Hence, when y = t(x),

log fY (y) = log fX(x) − log fX ∣Y (x ∣ y) = log fθ(x) − log fX ∣Y (x ∣ y).

That is,

loghθ(y) = log fθ(x) − log gθ(x ∣ y).

Multiplying by hθj−1(x ∣ y) and integrating in x, we have

Eθj−1(loghθ(Y ) ∣ Y = y) = Eθj−1(log fθ(X) ∣ Y = y) −Eθj−1(log gθ(X ∣ y) ∣ Y = y) for all θ ∈ Θ.
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Since the above holds for any θ, in particular we can set θ ∶= θj−1. Note that the first term is simply loghθ(y).
Subtracting gvies

loghθ(y) − loghθj−1(y) = Eθj−1(log fθ(X) ∣ Y = y) −Eθj−1(log fθj−1(X) ∣ Y = y)

−Eθj−1(log gθ(X ∣ y) ∣ Y = y) +Eθj−1(log gθj−1(X ∣ y) ∣ Y = y).

By likelihood inequality, the sum of the last two terms should be positive, and we recover our claim.

Proposition: (6.59) EM Algorithm Improvement

Let θ1, ..., θk be an output of the EM algorithm. Then for all 1 ⩽ j ⩽ k,

loghθj(Y ) ⩾ loghθj−1(Y ).

Moreover, equality occurs only when gθj(X ∣ y) = gθj−1(X ∣ y) a.e. w.r.t. Pθj−1 for fixed y or when θj = θj−1.
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Chapter 7

Resampling & Bias Reduction

Idea. For a fixed sample size n, there are ways to reduce the bias of an estimator on n samples by re-sampling from

the n samples given.

7.1 Jackknife Resampling

Definition: (7.1) Jackknife Estimator

Let X1,X2, ... ∶ Ω → R be i.i.d. with distribution fθ ∶ Rn → [0,∞). Suppose Y1, Y2, ... are estimators for θ so

that Yn = tn(X1, ...,Xn). For n ⩾ 1, we define the jackknife estimator of Yn to be

Zn ∶= nYn −
n − 1
n

n

∑
i=1

tn−1(X1, ...,Xi−1,Xi+1, ...,Xn).

Proposition: (7.2) Jackknife Reduces Bias

Suppose there exist a, b ∈ R such that

EYn = θ +
a

n
+ b

n2
+O(1/n3).

Then

EZn = θ +O(1/n2)

and if b = 0 and O(1/n3) = 0 then Zn is unbiased.

Proof.

EZn = nθ + a +
b

n
+O(1/n2) − n − 1

n

n

∑
i=1

Etn−1(X1, ...,Xi−1,Xi+1, ...,Xn)

= nθ + a + b

n
+O(1/n2) − n − 1

n

n

∑
i=1
(θ + a

n − 1
+ b

(n − 1)2
+O(1/n3))

= θ + b

n
− b

n − 1
+O(1/n2) = θ +O(1/n2).
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Example: (7.3) Jackknife and Sample Mean. The jackknife estimator of the sample mean is the sample

mean:

n

∑
i=1

Xi −
n − 1
n

n

∑
i=1

1

n − 1∑j≠i
Xj =

n

∑
i=1

Xi −
n − 1
n

n

∑
i=1

Xi =
1

n

n

∑
i=1

Xi.

Example: (7.4) Jackknife and Bernoulli. Let X1, ...,Xn be i.i.d. Bernoulli with parameter θ ∈ (0,1).

Then the MLE for θ is the sample mean so that for θ2 is simply sample mean squared Yn ∶= (
1

n

n

∑
i=1

Xi)
2

. Then

EYn =
1

n2
(nθ + n(n − 1)θ2) = θ2 + θ − θ2

n

so the corresponding jackknife estimator is unbiased for θ2.
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Chapter 8

Concentration of Measure

Beginning of April 22, 2022

Theorem: (8.1) Hoeffding Inequality

Let X1,X2, ... be i.i.d. with P(X1 = 1) = P(X1 = −1) = 1/2. Let a1, a2, ... ∈ R. Then for n ⩾ 1 and t ⩾ 0,

P(
n

∑
i=1

aiXi ⩾ t) ⩽ exp(−
t2

2∑n
i=1 a

2
i

) and therefore P(∣
n

∑
i=1

aiXi∣ ⩾ t) ⩽ 2 exp(−
t2

2∑n
i=1 a

2
i

) .

Proof. We may assume
n

∑
i=1

a2i = 1. Let α > 0. Then

P(
n

∑
i=1

aiXi ⩾ t) = P(exp(α
n

∑
i=1

aiXi) ⩾ eαt)

⩽ e−αtE exp(α
n

∑
i=1

aiXi) = e−αtE
n

∏
i=1

eαaiXi = e−αt
n

∏
i=1

EeαaiXi

= e−αt
n

∏
i=1

eαai + e−αai

2
= e−αt

n

∏
i=1

cosh(αai)

⩽ e−αt
n

∏
i=1

eα
2a2

i /2 = e−αt+α
2/2.

The LHS is independent of α. Letting α ∶= t we have P(
n

∑
i=1

aiXi ⩾ t) ⩽ e−t
2+t2/2 = e−t

2/2.

Theorem: (8.3) Chernoff Inequality

Let 0 < p < 1 and let X1,X2, ... be i.i.d. Bernoulli. Then for n ⩾ 1,

P( 1
n

n

∑
i=1

Xi ⩾ t) ⩽ e−np (
ep

t
)
tn

for t ⩾ p.
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Theorem: (8.5) Concentration of Measure for Gaussians

Let f ∶ Rn → R be Lipschitz with constant 1, i.e., ∣f(x) − f(y)∣ ⩽ ∥x − y∥. Let X = (X1, ...,Xn) be a mean zero

Gaussian random vector with identity covariance matrix (or i.i.d. standard Gaussians). Then for t > 0,

P(x ∈ Rn ∶ ∣f(x) −Ef(X)∣ ⩾ t) ⩽ 2e−2t
2/π2

.

Beginning of April 25, 2022

Proof. We assume all partial derivatives of f exist and are continuous. Let Y = (Y1, ..., Yn) be another mean zero

Gaussian vector with identity covariance matrix and X and Y are independent. Then, for θ ∈ [0, π/2] define

Zθ ∶=X sin θ + Y cos θ.

We have
d

dθ
Zθ =X cos θ − Y sin θ.

Note that X1 sin θ + Y1 cos θ is a Gaussian with mean zero and variance 1, and so is X1 cos θ − Y1 sin θ. But then

their covariance is

E(X1 sin θ + Y1 cos θ)(X1 cos θ − Y1 sin θ) = EX2
1 sin θ cos θ −EY 2

1 sin θ cos θ −EX1Y1 sin
2 θ +EX1Y1 cos

2 θ

= EX2
1 sin θ cos θ −EY 2

1 sin θ cos θ − 0 + 0 = 0.

Jointly uncorrelated Gaussians are independent so Zθ and
d

dθ
Zθ are. Note that Z0 = Y and Zπ/2 =X.

Also, since (sin θ, cos θ) and (cos θ,− sin θ) are orthogonal, (Z,dZθ/dθ have the same joint distribution as X and

Y .

Let φ ∶ R→ [0,∞) be convex. Then,

Eφ[f(X) −Ef(Y )] ⩽ Eφ(f(X) − f(Y )) (Jensen)

= Eφ(∫
π/2

0

d

dθ
f(Zθ) dθ) (FTC)

= Eφ(∫
π/2

0
⟨∇f(Zθ),

d

dθ
Zθ⟩ dθ)

= Eφ( 1

π/2 ∫
π/2

0

π

2
(∇f(Zθ),

d

dθ
Zθ) dθ)

⩽ 1

π/2
E∫

π/2

0
φ(π

2
⟨∇f(Zθ),

d

dθ
Zθ⟩) dθ (Jensen again)

= 1

π/2 ∫
π/2

0
Eφ(π

2
∇f(Zθ),

d

dθ
Zθ) dθ (Fubini)

= 1

π/2 ∫
π/2

0
Eφ(π

2
⟨∇f(X), Y ⟩) dθ (⟨Z,dZθ/dθ⟩ ∼ (X,Y ))

= 1

π/2
π

2
Eφ(π

2
⟨∇f(X), Y ⟩) = Eφ(π

2
⟨∇f(X), Y ⟩) .

Let α ∈ R and φ(x) ∶= eαx for x ∈ R. Then

E exp(α[f(X) −Ef(Y )]) ⩽ E exp(απ

2

n

∑
i=1

∂f(X)
∂xi

⋅ Yi)

= EX

n

∏
i=1

EY exp(απ

2

∂f(X)
∂xi

⋅ Yi)
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where we can split the expectation of product into product of expected value because the Yi’s are independent

(we don’t care about the behavior of Xi’s in this step).

By the property of MGF, for all s ∈ R and all 1 ⩽ i ⩽ n,

EY exp(sYi) = es
2/2.

Continuing the inequality above with s ∶= απ

2

∂f(X)
∂xi

, we have

E exp(α[f(X) −Ef(Y )]) ⩽ E exp
⎛
⎝
α2π

2

8

n

∑
i=1
(∂f(X)

∂xi
)
2⎞
⎠
.

Since f is 1-Lipschitz, ∥∇f(x)∥ ⩽ 1, so we further bound the quantity by exp(α2π2/8). Then,

P(f(X) −Ef(Y ) > t) = P(exp(α[f(X) −Ef(Y )]) > eαt)

⩽ e−αt exp(α2π2/8) = exp(−αt + α2π2/8).

Like in Hoeffding, the LHS is independent of α. The RHS is minimized when α = 4t/π2, and when so we obtain

P(f(X) −Ef(Y ) > t) ⩽ exp(−2t2/π2).

A symmetric argument to P(f(X) −Ef(Y ) < −t), giving

P(∣f(X) −Ef(Y )∣ > t) ⩽ 2 exp(−2t2/π2).
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