Contents

1	Revi	iew of Probability	2
2	Moc	les of Convergence & the Limit Theorems	9
	2.1	Modes of Convergence	9
	2.2	The Limit Theorems	10
3	Exp	onential Families	12
	3.1	Exponential Families	12
	3.2	Differential Identities	14
4	Ran	dom Samples	17
	4.1	Random Samples of Gaussians	17
	4.2	Student's <i>t</i> -distrubution	19
	4.3	The Delta Method	20
5	Data	a Reduction	23
	5.1	Sufficient Statistics	23
	5.2	Minimal Sufficient Statistics	25
	5.3	Ancillary Statistics	28
	5.4	Complete Statistics	29
6	Poir	nt Estimation	32
	6.1	Evaluating Estimators; UMVU	32
	6.2	Rao-Blackwell & Lehman-Scheffé	33
	6.3	Fisher Information & Cramér-Rao	37
	6.4	Bayes Estimation	40
	6.5	Method of Moments	41
	6.6	Maximum Likelihood Esimation	43
	6.7	EM Algorithm	46
7	Resa	ampling & Bias Reduction	49
	7.1	Jackknife Resampling	49
8	Con	centration of Measure	51

Chapter 1

Review of Probability

Beginning of Jan.10, 2022

Some preliminaries first:

- Throughout this course, we will use Ω to denote the **universal set**.
- A **probability law** on ω is a function $\mathbb{P}: \Omega \to [0,1]$ satisfying the following axioms:
 - (1) (Nonnegativity) $\mathbb{P}(A) \ge 0$ for all $A \subset X^1$.
 - (2) (Countable additivity) For $\{A_i\}_{i \ge 1}$ with $A_i \cap A_j = \emptyset$ whenever $i \ne j$, $\mathbb{P}(\bigcup_{i>1} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.
 - (3) (Normalization) $\mathbb{P}(\Omega) = 1$.
- The following are direct consequences of the definition of a probability law:
 - (1) If $A \subset B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
 - (2) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$
 - (3) (Union bound) $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ and more generally $\mathbb{P}(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \mathbb{P}(A_k)$.
- Random variable definitions:
 - (1) A random variable is a function $X : \Omega \to \mathbb{R}$ (or some different codomains). A random vector X is a function $X : \Omega \to \mathbb{R}^n$.
 - (2) A discrete random variable is a random variable with finite or countable range.
 - (3) A **probability density function** (PDF) is a function $f : \mathbb{R} \to [0, \infty)$ such that

$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \qquad \text{and} \quad \int_{a}^{b} f(x) \, dx \text{ exists for all } -\infty \leq a \leq b \leq \infty.$$

(4) A random variable X is **continuous** if there exists a PDF f with

$$\mathbb{P}(a \leq X \leq b) = \int_{a}^{b} f(x) \, \mathrm{d}x \qquad \text{for all } -\infty \leq a \leq b \leq \infty.$$

If so we say f is the PDF of X.

¹For technical reasons we avoid measure theories and assume all $A \subset X$ are measurable.

(5) Let *X* be a random variable. We define the **cumulative distribution function** (CDF) to be $F : \mathbb{R} \to [0,1]$ by

$$F(x) \coloneqq \mathbb{P}(X \leq x) = \int_{-\infty}^{x} f(t) dt.$$

- Examples of some distributions:
 - (1) Bernoulli: let $0 and define <math>\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$ and $\mathbb{P} \equiv 0$ otherwise. "Flip one coin. Count the number of heads."
 - (2) Binomial: let $n \in \mathbb{N}$ and $0 . For <math>k \in \{0, ..., n\}$, define $\mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ and define $\mathbb{P} \equiv 0$ otherwise. Can be thought of the sum of *n* independent Bernoulli with parameter *p*. "Flip *n* coins. Count the number of heads."
 - (3) Geometric: let $0 and define <math>\mathbb{P}(X = k) = (1 p)^{k-1}p$ for $k \in \mathbb{N}$ and 0 otherwise. "Flip a coin until heads shows up. Count the number of flips."
 - (4) Normal / Gaussian with mean μ and variance σ^2 : the PDF is given by

$$\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

(5) Poisson with parameter $\lambda > 0$:

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 for $k \in \mathbb{N}$.

"Limit of binomial random variables subject to $\lim p_n = 0$ and $\lim np_n = \lambda$."

Definition: (1.17) Independent Sets

Let $\{A_i\}_{i \in I} \subset \Omega$ equipped with probability law Ω . We say $\{A_i\}$ are **independent** if, for all $S \subset I$ we have

$$\mathbb{P}(\bigcap_{i\in S}A_i)=\prod_{i\in S}\mathbb{P}(A_i).$$

Remark. This is *stronger* than pairwise independence, which only says $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$ for $i \neq j$. An example can be found here.

Expected Value and Variance

Notation: given $A \subset \Omega$, we define the **indicator function** $1_A : \Omega \rightarrow \{0, 1\}$ by

$$1_{A}(\omega) \coloneqq \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A. \end{cases}$$

Definition 1.0.1: (1.37) Expected Values

Let \mathbb{P} be a probability law on Ω and let $X : \Omega \to [0, \infty]$. Define the **expected value** of X denoted $\mathbb{E}X$ to be

$$\mathbb{E}X \coloneqq \int_0^\infty \mathbb{P}(X > t) \, \mathrm{d}t$$

A simple application of Tonelli shows that if X is continuous then $\mathbb{E}X$ agrees with $\int_{-\infty}^{\infty} x f_X(x) \, dx$ which we are more familiar with. If X is discrete, the analogous version is $\mathbb{E}X = \sum_{k \in \mathbb{R}} k \mathbb{P}(X = k)$.

In particular, if $X : \mathbb{R} \to \mathbb{R}$ and if $\mathbb{E}|X| < \infty$, then we can define

$$\mathbb{E}X \coloneqq \mathbb{E}X^+ - \mathbb{E}X^-$$

where

$$X^+ := \max\{X, 0\}$$
 and $X^- := \max\{-X, 0\}.$

Remark. If $X : \Omega \to [0, \infty)$, then for positive integer *n*,

$$\mathbb{E}X^n = \int_0^\infty nt^{n-1} \mathbb{P}(X > t) \, \mathrm{d}t.$$

More generally, if $g: [0, \infty) \to [0, \infty)$ continuous differentiable with g(0) = 0, then

$$\mathbb{E}g(X) = \int_0^\infty g'(t) \mathbb{P}(X > t) \, \mathrm{d}t.$$

Proposition: (1.43) Linearity of $\mathbb E$

Let $X_1, ..., X_n$ be random variables. Then $\mathbb{E}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \mathbb{E}X_i$.

Definition: (1.44) Variance

If $\mathbb{E}|X| < \infty$, define $\operatorname{var}(X) \coloneqq \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$ to be the **variance** of *X*.

Remark. If $X : \Omega \to \mathbb{C}$ is complex valued, then if $\mathbb{E}|X| < \infty$, we can define

$$\mathbb{E}X \coloneqq \mathbb{ERe}(X) + i\mathbb{EIm}(X)$$

and $var(X) \coloneqq \mathbb{E}(X - \mathbb{E}X)^2$ as before.

Joint Distributions

Definition: (1.47) Joint PDF							
A joint PDF for two random variables is a function $f : \mathbb{R}^2 \to [0, \infty)$ with							
$\iint_{\mathbb{R}^2} f(x,y) \mathrm{d} x \mathrm{d} y = 1$							
and such that $\int_c^{\ d} \int_a^b f_{X,Y}(X,Y) \mathrm{d}x \mathrm{d}y$							
exists for all $[a,b] \times [c,d] \in \overline{\mathbb{R}}^2$.							
We say X, Y are jointly continuous with joint PDF $f_{X,Y}$ if							
$\mathbb{P}((X,Y) \in A) = \iint_A f_{X,Y}(x,y) \mathrm{d}x \mathrm{d}y \text{for ``all''} A \subset \mathbb{R}^2.$							
Definition: (1.48) Marginals							
We define the marginal PDF f_X of X to be							
$f_X(x) \coloneqq \int_{-\infty}^{\infty} f_{X,Y}(x,y) \mathrm{d}y \qquad ext{for all } x \in \mathbb{R}.$							

Similarly, if $g : \mathbb{R}^2 \to \mathbb{R}$, we define

$$\mathbb{E}g(X,Y) \coloneqq \iint_{\mathbb{R}^2} g(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y.$$

Definition: (1.55) Independence of RVs

Let $X_1, ..., X_n$ be r random variables on Ω . We say they are **independent** if

$$\mathbb{P}(X_1 \leq x_1, ..., X_n \leq x_n) = \prod_{i=1}^n \mathbb{P}(X_i \leq x_i) \qquad \text{for all } (x_1, ..., x_n) \in \mathbb{R}^n.$$

In particular if $X_1, ..., X_n$ are continuous, then the definition is equivalent to saying

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$
 for all $(x_1,...,x_n) \in \mathbb{R}^n$.

Proposition: (1.59, 1.60)

If $X_1, ..., X_n$ are independent and $\mathbb{E}X_i < \infty$, then

$$\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(X_i),$$

 $\mathbb{E}(\prod_{i=1}^n X_i) = \prod_{i=1}^n \mathbb{E}(X_i).$

and

Conditional Probability

Let $A, B \subset \Omega$ with $\mathbb{P}(B) > 0$. We define

$$\mathbb{P}(A \mid B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

and read the **probability of** *A* given *B*.

For a fixed B, we define

$$\mathbb{E}(X \mid B) \coloneqq \frac{\mathbb{E}X \cdot 1_B}{\mathbb{P}(B)}.$$

Proposition: Laws of Total Probability & Expectation

If $A \subset \Omega$ and $\{B_i\}$ partitions Ω , then

$$\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(A \cap B_i) = \sum_{i=1}^{\infty} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

and

$$\mathbb{E}X = \sum_{i=1}^{\infty} \mathbb{E}(X1_{B_i}) = \sum_{i=1}^{\infty} \mathbb{E}(X \mid B_i) \mathbb{P}(B_i).$$

Definition: (1.75) Conditioning a RV

Let X, Y be continuous random variables with joint PDF $f_{X,Y}$. Fix $y \in \mathbb{R}$ with $f_Y(y) > 0$. Then for any $x \in \mathbb{R}$ we define the **conditional PDF** of X given Y = y by

$$f_{X|Y}(x \mid y) \coloneqq \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

The conditional expectation is given by

$$\mathbb{E}(X \mid Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) \, \mathrm{d}x.$$

Beginning of Jan.14, 2021

Theorem: (1.78) Total Expectation Theorem, Continuous

Let X, Y be continuous random variables and assume $f_{X,Y} : \mathbb{R}^2 \to \mathbb{R}$ be continuous. Then

$$\mathbb{E}X = \int_{-\infty}^{\infty} \mathbb{E}(X \mid Y = y) f_Y(y) \, \mathrm{d}y.$$

Some Useful Inequalities

Theorem: (1.91) Jensen's Inequality

Let $\varphi : \mathbb{R} \to \mathbb{R}$. We say φ is **convex** if for all $x, y \in \mathbb{R}$ and $\lambda \in (0, 1)$ we have

$$\varphi(\lambda x + (1 - \lambda)y) \leq \lambda \varphi(x) + (1 - \lambda)\varphi(y).$$

We say φ is **strictly convex** if the above inequality can be replaced by <. **Jensen's inequality** states that if $\mathbb{E}|X| < \infty$ and $\mathbb{E}|\varphi(X)| < \infty$, and if φ is convex, then

 $\varphi(\mathbb{E}X) \leq \mathbb{E}\varphi(X).$

Theorem: (1.92) Markov's Inequality

For all t > 0, we have

$$\mathbb{P}(|X| > t) \leq \frac{\mathbb{E}|X|}{t}.$$

Moreover, if $n \ge 1$ is a positive integer, then

$$\mathbb{P}(|X| \ge t) \le \frac{\mathbb{E}|X|^n}{t^n}.$$

Theorem: (1.97) Chebyshev's Inequality

Using n = 2 in Markov's inequality applied to the random variable $X - \mathbb{E}X$, we have

$$\mathbb{P}(|X - \mathbb{E}X| \ge t) \le \frac{\operatorname{var}(X)}{t^2}$$

or equivalently

$$\mathbb{P}(|X-\mu| \ge t\sigma) \le \frac{1}{t^2}.$$

Proposition: (1.107) Sum & Convolution

Let X, Y be continuous, independent random variables. Then

$$f_{X+Y}(t) = (f_X * f_Y)(t)$$

where * denotes the convolution:

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_X(s) f_Y(t-s) \, \mathrm{d}s.$$

Proof. We use independence and the fact that PDFs are derivatives of CDFs:

$$\mathbb{P}(X+Y \leq t) = \int_{\{x+y \leq t\}} f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{\infty} \int_{-\infty}^{t-x} f_X(x) f_Y(y) \, \mathrm{d}y \, \mathrm{d}x = \int_{-\infty}^{\infty} f_X(x) \int_{-\infty}^{t-x} f_Y(y) \, \mathrm{d}y \, \mathrm{d}x,$$

 $\mathbb{D}(|X - u|)$

so

$$\begin{split} f_{X+Y}(t) &= \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(X+Y \leq t) \\ &= \frac{\mathrm{d}t}{\mathrm{d}x} \int_{-\infty}^{\infty} f_X(x) \int_{-\infty}^{t-x} f_Y(y) \,\mathrm{d}y \,\mathrm{d}x \\ &= \int_{-\infty}^{\infty} f_X(x) \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{t-x} f_Y(y) \,\mathrm{d}y \,\mathrm{d}x = \int_{-\infty}^{\infty} f_X(x) f_Y(t-x) \,\mathrm{d}x. \end{split}$$

Of course, we have assumed once again that it is well-defined to differentiate w.r.t the integral.

Chapter 2

Modes of Convergence & the Limit Theorems

2.1 Modes of Convergence

Definition: (2.1) Almost Sure (a.s.) Convergence

We say $\{Y_n\}$ converges to Y **almost surely** if

 $\mathbb{P}(\lim_{n\to\infty}Y_n=Y)=1$

or equivalently

$$\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} Y_n(\omega) = Y(\omega)\}) = 1$$

Definition: (2.2) Convergence in Probability

We say $\{Y_n\}$ converges to Y in probability if for all $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|Y_n - Y| > \epsilon) = 0,$$

or equivalently

$$\lim_{n\to\infty} \mathbb{P}(\{\omega \in \Omega : |Y_n(\omega) - Y(\omega)| > \epsilon\}) = 0.$$

Definition: (2.3) Convergence in Distribution

We say $\{Y_n\}$ converges to Y in distribution in distribution if

 $\lim_{n \to \infty} \mathbb{P}(Y_n \leq t) = \mathbb{P}(Y \leq t)$

for all $t \in \mathbb{R}$ such that $s \mapsto \mathbb{P}(Y \leq s)$ is continuous at s = t.

Remark. Since a Gaussian has continuous PDF, the CLT, to be stated right below, is indeed a statement about convergence in distribution.

Definition: (2.4) Convergence in L^p

Let $0 . We say that <math>\{Y_n\}$ converges to Y in L^p if $||Y||_p < \infty$ and

$$\lim_{n \to \infty} \|Y_n - Y\|_p = 0,$$

where

$$\|Y\|_p \coloneqq \begin{cases} (\mathbb{E}|Y|^p)^{1/p} & \text{if } 0 0 : \mathbb{P}(|X| \le c\} = 1) & \text{if } p = \infty. \end{cases}$$

Remark.

Convergence in distribution
$$\leftarrow$$
 Convergence in probability \leftarrow $\begin{cases} a.s. \text{ convergence} \\ convergence in $L^p \end{cases}$$

The converses are all false.

2.2 The Limit Theorems

Theorem: (2.10) Weak Law of Large numbers, Weak LLN

Let $X_1, ..., X_n$ be i.i.d. (independent identically distributed) and assume that $\mu := \mathbb{E}X_1 < \infty$. Then X_n converges to $\mathbb{E}X_1$ in probability, i.e., for $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{X_1 + \dots + X_n}{n} - \mu \right| > \epsilon \right) = 0.$$

Theorem: (2.11) Strong Law of Large Numbers, Strong LLN

Let $X_1, ..., X_n$ be i.i.d. with $\mu \coloneqq \mathbb{E}X_1 < \infty$. Then $X_n \to \mu$ almost surely, i.e.,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{X_1+\ldots+X_n}{n}=\mu\right)=1.$$

Beginning of Jan.19, 2021

Theorem: (2.13) Central Limit Theorem, CLT

Let $X_1, ..., X_n$ be i.i.d. with $\mathbb{E}|X_1| < \infty$ and $0 < var(X_1) < \infty$. Then for any $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \le t\right) = \mathbb{P}(Z \le t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-s^2/2} \,\mathrm{d}s,$$

where $\mu := \mathbb{E}X_1$ and $\sigma^2 := \operatorname{var}(x_1)$. In particular, each quotient $(X_1 + \ldots + X_n - n\mu)/(\sigma\sqrt{n})$ does have mean 0 and variance 1.

Theorem: (2.30) Berry-Esseén Theorem for CLT

Assume in addition that $\mathbb{E}|X_1|^3 < \infty.$ Then

$$\sup_{t\in\mathbb{R}} \left| \mathbb{P}\left(\frac{X_1 + \ldots + X_n - n\mu}{\sigma\sqrt{n}} \leq t \right) - \mathbb{P}(Z \leq t) \right| \leq \frac{\mathbb{E}|X_1|^3}{\sigma^3\sqrt{n}},$$

so in particular if $\mathbb{E}X_1 = 0$ and $var(X_1) = 1$, we have

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \le t \right) - \mathbb{P}(Z \le t) \right| \le \frac{\mathbb{E}|X_1|^3}{\sqrt{n}}.$$

Chapter 3

Exponential Families

3.1 Exponential Families

A general question in statistics is to *fit a parameter to some given data*, for example, to find the unknown mean of a Gaussian sample.

An exponential family is some family of PDF or PMFs that depends on a parameter $w \in \mathbb{R}^k$ for some $k \ge 1$. More formally,

Definition: (3.1) Exponential Families

Let n, k be positive integers and let μ be a measure on \mathbb{R}^n . Let $t_1, ..., t_k : \mathbb{R}^n \to \mathbb{R}$, and let $h : \mathbb{R}^n \to [0, \infty]$ not identically zero. For any $w = (w_1, ..., w_k) \in \mathbb{R}^k$, define

$$a(w) \coloneqq \log \int_{\mathbb{R}^n} h(x) \exp\left(\sum_{i=1}^k w_i t_i(x)\right) d\mu(x).$$

The set $\{w \in \mathbb{R}^k : a(w) < \infty\}$ is called the **natural parameter space**. On this set, the functions

$$f_w(x) \coloneqq h(x) \exp\left(\sum_{i=1}^k w_i t_i(x) - a(w)\right)$$
 for all $x \in \mathbb{R}^n$

satisfy

$$\begin{split} \int_{\mathbb{R}^n} f_w(x) \, \mathrm{d}x &= \int_{\mathbb{R}^n} h(x) \frac{\exp\left(\sum_{i=1}^k w_i t_i(x)\right)}{\int_{\mathbb{R}^n} h(x) \exp(\sum_{i=1}^k w_i t_i(x)) \, \mathrm{d}\mu(x)} \, \mathrm{d}\mu(x) \\ &= \frac{\int_{\mathbb{R}^n} h(x) \exp() \, \mathrm{d}\mu(x)}{\int_{\mathbb{R}^n} h(x) \exp() \, \mathrm{d}\mu(x)} = 1. \end{split}$$

Informally, the f_w 's can be interpreted as probability density functions with respect to the measure μ . Then, the set of functions $\{f_w : a(w) < \infty\}$ is called a *k*-parameter exponential family in canonical form. (We interpret f_w as a PDF or PMF according to μ the measure.)

More generally, let $\Theta \subset \mathbb{R}^k$ and let $w : \Theta \to \mathbb{R}^k$. We define a *k*-parameter exponential family to be the set of functions $\{f_\theta : \theta \in \Theta, a(w(\theta)) < \infty\}$ where

$$f_{\theta}(x) \coloneqq h(x) \exp\left(\sum_{i=1}^{k} w_i(\theta) t_i(x) - a(w(\theta))\right)$$
 for all $x \in \mathbb{R}^n$.

Example: (3.3) Writing Gaussians as an Exponential Family. Consider Gaussians with mean $\mu < \infty$ and standard deviation $\sigma > 0$. Then the PDF is given by

$$\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2} - \left(\frac{\mu^2}{2\sigma^2} + \log\sigma\right)\right). \tag{1}$$

2

If we write $\theta = (\theta_1, \theta_2) := (\mu, \sigma^2) \in \mathbb{R}^2$ and define

$$t_1(x) \coloneqq x, \qquad t_2(x) \coloneqq x^2,$$
$$w_1(\theta) \coloneqq \frac{\theta_1}{\theta_2} = \frac{\mu}{\sigma^2}, \qquad w_2(\theta) \coloneqq -\frac{1}{2\theta_2} = -\frac{1}{2\sigma^2},$$
$$a(w(\theta)) \coloneqq \frac{\theta_1^2}{2\theta_2} + \frac{1}{2}\log\theta_2 = \frac{\mu^2}{2\sigma^2} + \log\sigma,$$

. . .

and $h(x) \coloneqq 1/\sqrt{2\pi}$, then (1) becomes

$$h(x)\exp\left(w_1(\theta)t_1(x)+w_2(\theta)t_2(x)-a(w(\theta))\right) \qquad \text{for all } x \in \mathbb{R}.$$

Let $\Theta := \mathbb{R} \times (0, \infty)$, and for $\theta \in \Theta$ we define

$$f_{\theta}(x) \coloneqq h(x) \exp\left(\sum_{i=1}^{2} w_i(\theta) t_i(x) - a(w(\theta))\right)$$
 for all $x \in \mathbb{R}$.

From this we see that $\{f_{\theta} : \theta \in \Theta\}$ is a two parameter exponential family and that the Gaussians can be expressed by an exponential family.

Beginning of Jan.21, 2022

We can also rewrite the Gaussian familty has a two parameter exponential family in canonical form:

$$w_1(\theta) = \frac{\mu}{\sigma^2}$$
 and $w_2(\theta) = -\frac{1}{2\sigma^2}$

so we try to rewrite a(w) in terms of w_1, w_2 by

$$a(w) = \frac{\mu^2}{2\sigma^2} + \log \sigma = -\left(\frac{\mu}{\sigma^2}\right)^2 \cdot \left(-\frac{1}{2\sigma^2}\right)^{-1} - \frac{1}{2}\log\left(-2 \cdot \frac{-1}{2\sigma^2}\right)$$
$$= -\frac{w_1^2}{4w_2} - \frac{\log(-2w_2)}{2}.$$

Originally we had the restriction $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, so this is equivalent to the constraint $\{(w_1, w_2) \in \mathbb{R}^2 : w_2 < 0\}$.

Let X be a random variable with continuous density $f : \mathbb{R} \to [0, \infty)$. Example: (3.4) Location Family. Let $\mu \in \mathbb{R}$. Then the densities $\{f(x + \mu)\}_{\mu \in \mathbb{R}}$ is called the **location family** of *X*. This may *or may not* be an exponential family.

An example: Gaussian densities with a fixed variance — shifting the pdf simply results in a new Gaussian pdf with shifted mean and same variance.

A non-example: if X is uniform on [0,1] then the location family $1_{[-\mu,1-\mu]}$ do not form an exponential family.

Example: (3.6) Scale Family. Let X be a random variable. The densities $\{\sigma^{-1}f(x/\sigma)\}_{\sigma>0}$ are called the scale family of X. (Divide by $1/\sigma$ because we need to ensure the integral is 1.) This family may *or may not* be an exponential family.

Example: (3.7) Location and Scale Family. Combining the two examples above, $\{\sigma^{-1}f((x + \mu)/\sigma)\}$ is called the **location and scale family** of *X*. Again, this may *or may not* be an exponential family.

3.2 Differential Identities

Sometimes exponential families make certain computations easier. One obvious example is via differentiation.

Let X be a standard Gaussian. Then its moment generating function (MGF) is

$$\mathbb{E}e^{tX} = e^{t^2/2} \qquad \text{for al } t \in \mathbb{R}.$$

Using this we have

$$\frac{\mathrm{d}^m}{\mathrm{d}t^m}\Big|_{t=0}\mathbb{E}e^{tX}=\mathbb{E}X^m,$$

so for example

$$\mathbb{E}X^{2} = \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\Big|_{t=0}e^{t^{2}/2} = 1.$$

We can do similar things for exponential families. If

$$a(w) = \log \int_{\mathbb{R}^n} h(x) \exp\left(\sum_{i=1}^k w_i t_i(x)\right) d\mu(x),$$

and let *W* be the natural parameter space (i.e., where $a(w) < \infty$), then we claim that

Lemma: (3.8)

a(w) is continuous and has continuous partial derivatives on the interior of W (i.e. where $a(\cdot)$ is finite). Moreover, the derivative can be obtained by differentiating under the integral sign.

Proof. We prove the existence of first order partial derivative with respect to w_1 and the rest follows by iteration. Let $e_1 := (1, 0, ..., 0) \in \mathbb{R}^k$. Exponential is analytic so it suffices to show that $\exp(a(w))$ has continuous partial derivative along e_1 . The difference quotient is

$$\frac{\exp(a(w+\epsilon e_1)) - \exp(a(w))}{\epsilon} = \frac{1}{\epsilon} \int_{\mathbb{R}^n} h(x) \left[\exp\left(\epsilon t_1(x) + \sum_{i=1}^k w_i t_i(x)\right) - \exp\left(\sum_{i=1}^k w_i t_i(x)\right) \right] d\mu(x)$$
$$= \int_{\mathbb{R}^n} h(x) \frac{\exp(\epsilon t_1(x)) - 1}{\epsilon} \exp\left(w_i t_i(x)\right) d\mu(x).$$

By the MVT, for any $\alpha \in (0, 1)$ and for all $\beta \in \mathbb{R}$,

$$|e^{\alpha\beta-1}| \leq |\alpha\beta|e^{|\beta|} \leq |\alpha|e^{2|\beta|} \leq |\alpha|(e^{2\beta} + e^{-2\beta}).$$
(*)

Beginning of Jan.24, 2022

Therefore, for $\delta > 0$, $\alpha \coloneqq \epsilon/\delta$ and $\beta \coloneqq \delta t_1(x)$,

$$\left| h(x) \frac{\exp(\epsilon t_1(x)) - 1}{\epsilon} \exp\left(\sum_{i=1}^k w_i t_i(x)\right) \right| \le h(x) \left| \frac{\exp(\epsilon t_1(x)) - 1}{\epsilon} \right| \exp\left(\sum_{i=1}^k w_i t_i(x)\right)$$
(1)

$$\leq \frac{1}{\delta}h(x)\left[\exp(2\delta t_1(x) + \exp(-2\delta t_1(x))\right]\exp\left(\sum_{i=1}^{\kappa} w_i t_i(x)\right).$$
 (2)

Note that we have gotten rid of the dependence of ϵ .

If we define $X_{\epsilon} :=$ the LHS of (1) and Y := (2), then $|X_{\epsilon}| \leq Y$ for $0 < \epsilon < \delta < 1$.Letting $\epsilon \to 0$ and using DCT,

$$\frac{\partial}{\partial w_1} \exp(a(w)) = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n} \left| h(x) \frac{\exp(\epsilon t_1(x)) - 1}{\epsilon} \exp\left(\sum_{i=1}^k w_i t_i(x)\right) \right| d\mu(x)$$
$$= \int_{\mathbb{R}^n} \lim_{\epsilon \to 0} h(x) \left| \frac{\exp(\epsilon t_1(x)) - 1}{\epsilon} \exp\left(\sum_{i=1}^k w_i t_i(x)\right) \right| d\mu(x)$$
$$= \int_{\mathbb{R}^n} h(x) t_1(x) \exp\left(\sum_{i=1}^k w_i t_i(x)\right) d\mu(x),$$

where the dominance of an integrable function is given by the fact that w is in the interior of W, so there exists $\delta > 0$ such that

$$a(w+2\delta e_1) < \infty$$
 and $a(w-2\delta e_1) < \infty$.

Remark. We can rewrite the above formula, using definition of $e^{-a(w)}$, as

$$\exp(-a(w))\frac{\partial}{\partial w_1}\exp(a(w)) = \int_{\mathbb{R}^n} t_1(x)h(x)\exp\left(\sum_{i=1}^k w_i t_i(x) - a(w)\right) d\mu(x) = \int_{\mathbb{R}^n} t_1(x)f_w(x) d\mu(x) d\mu($$

That is, differentiating a(w) gives moment information for the exponential family $\{f_w(x)\}$. Since $f_w(x)$ can be thought of as a PDF with respect to the measure μ , i.e. $\int_{\mathbb{R}^n} t_i f_w(x) d\mu(x) = 1$, for convenience we define

$$\mathbb{E}_{\theta} t_i \coloneqq \int_{\mathbb{R}^n} t_i f_w(x) \, \mathrm{d}\mu(x).$$

Remark. We proved the lemma for canonical exponential families. For non-canonical exponential families, a similar argument holds:

$$e^{-a(w(\theta))}\frac{\partial}{\partial\theta_1}e^{a(w(\theta))} = e^{-a(w(\theta))}\sum_{i=1}^k \frac{\partial e^{a(w)}}{\partial w_i}\frac{\partial w_i}{\partial\theta_1} = \sum_{i=1}^k \frac{\partial w_i}{\partial\theta_1}\mathbb{E}_{\theta}t_i = \mathbb{E}_{\theta}\Big(\sum_{i=1}^k \frac{\partial w_i}{\partial\theta_1}t_i\Big).$$

We will often use this version of the **differential identity**. We can take *more* derivatives of $a(w(\theta))$ and obtain more moment information.

Example: (3.13) Gaussian revisited. Recall that, for Gaussians with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, we have k = 2, n = 1, and we defined $\theta = (\theta_1, \theta_2) \coloneqq (\mu, \sigma^2) \in \mathbb{R}^2$, $t_1(x) \coloneqq x$, $t_2(x) \coloneqq x^2$,

$$w_1(\theta) := \frac{\theta_1}{\theta_2} = \frac{\mu}{\sigma^2}, \qquad w_2(\theta) := -\frac{1}{2\theta_2} = -\frac{1}{2\sigma^2},$$

and finally

$$a(w(\theta)) \coloneqq \frac{\theta_1^2}{2\theta_2} + \frac{\log \theta_2}{2} = \frac{\mu^2}{2\sigma^2} + \log \sigma.$$

Then,

$$e^{-a(w(\theta))} \frac{\partial}{\partial \theta_1} e^{a(w(\theta))} = e^{-a(w(\theta))} \frac{\mathrm{d}}{\mathrm{d}\theta_1} \exp\left[\frac{\theta_1^2}{2\theta_2} + \frac{\log \theta_2}{2}\right]$$
$$= (2\theta_1)/(2\theta_2) = \mu/\sigma^2,$$

whereas the previous remark gives

$$\mathbb{E}_{\theta} \Big(\sum_{i=1}^{2} \frac{\partial w_{i}}{\partial \theta_{1}} t_{i} \Big) = \mathbb{E}_{\theta} \Big(\frac{\partial w_{1}}{\partial \theta_{1}} t_{1} + 0 \Big) \mathbb{E}_{\theta} (x/\theta_{2}) = \mathbb{E}_{\theta} (x)/\sigma^{2}.$$

That is,

$$\mathbb{E}_{\theta}(x)/\sigma^2 = \mu/\sigma^2 \implies \mathbb{E}_{\theta}(x) = \mu.$$

In totality, we've shown that *expected value of a Gaussian with mean* μ *is indeed* μ *!*

Beginning of Jan.26, 2022

Example: (3.15) Binomial (n, p) has expected value np. Since

$$\mathbb{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} (1-p)^n \left(\frac{p}{1-p}\right)^x$$
$$= \binom{n}{x} \exp\left(x \log\left(\frac{p}{1-p}\right) - (-1)n \log(1-p)\right)$$

we define a one-parameter exponential family using $h(x) \coloneqq \binom{n}{x}$ on \mathbb{N} , $\theta \coloneqq p$, $\Theta \coloneqq (0,1)$,

 $t(x) \coloneqq x, \qquad w(\theta) \coloneqq \log(\theta/(1-\theta)), \qquad \text{and } a(w(\theta)) \coloneqq -n\log(1-\theta).$

In doing so we have $f_{\theta}(x) = h(x) \exp(w(\theta)t(x) - a(w(\theta)))$, so the differential identity gives

$$e^{-a(w(\theta))} \frac{\mathrm{d}}{\mathrm{d}\theta} e^{a(w(\theta))} = \frac{\mathrm{d}}{\mathrm{d}\theta} a(w(\theta)) = \mathbb{E}_{\theta} \left(\frac{\mathrm{d}}{\mathrm{d}\theta} w(\theta) t \right).$$

Therefore, $\frac{n}{1-\theta} = \frac{\mathbb{E}_{\theta}(x)}{\theta(1-\theta)}$ which, upon rearranging, leads to

$$\mathbb{E}_{\theta}(x) = \frac{n\theta(1-\theta)}{1-\theta} = n\theta = np,$$

i.e., the expected value of a Binomial (n, p) has expected np. How surprising.

Chapter 4

Random Samples

4.1 Random Samples of Gaussians

Definition: (4.1) Random Samples

A random sample of size n is a sequence $X_1, ..., X_n$ of independent identically distributed (i.i.d.) (real-valued) random variables.

Definition: (4.2) Statistic

Let n, k be positive integers. Let $X_1, ..., X_n$ be a random sample and let $f : \mathbb{R}^n \to \mathbb{R}^k$. A **statistic** is a random variable of form $Y := f(X_1, ..., X_n)$ and its distribution is called a **sampling distribution**. Most common examples include the **sample mean**

$$\overline{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$

and the sample variance

$$S^2 \coloneqq \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2.$$

(We divide by n-1 because this makes S^2 unbiased to estimate σ^2 ; this will be discussed later.)

Proposition: (4.7)

Let $n \ge 2$ and let $X_1, ..., X_n$ be a random sample from a *Gaussian* distribution with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Then:

- (1) \overline{X} and S are independent,
- (2) $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, and
- (3) $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$. (A chi-squared random variable with *n* degrees of freedom, χ^2_n , has the PDF obtained from adding *n* independent squared standard Gaussians, i.e., $\chi^2_n \sim Z_1^2 + ... + Z_n^2$.)

Proof of (1). WLOG assume $\mu = 0$ and $\sigma = 1$ since the claim is invariant under shifting and scaling.

We first show that \overline{X} is independent of $X_2 - \overline{X}, ..., X_n - \overline{X}$ (i.e., *pairwise* independent between X_2 and any one of these). To see this, note that $(1, ..., 1) \in \mathbb{R}^n$ is orthogonal to the span of

$$e_2 - \frac{(1, \dots, 1)}{n}, \dots, e_n - \frac{(1, \dots, 1)}{n}$$

(where e_i has the i^{th} component 1 and zero for all other components).

Exercise 3.16 shows that if $X = (X_1, ..., X_n)$, then $\langle X, v_1 \rangle, \langle X, v_2 \rangle, ..., \langle X, v_n \rangle$ are independent (random variables) if and only if $v_1, ..., v_n$ are pairwise orthogonal (vectors). Hence the result above shows that

$$\langle X, (1, ..., 1) \rangle = X_1 + ... + X_n$$

is independent of the span of

 $\langle X, e_2 - (1, ..., 1)/n \rangle = X_2 - \overline{X}, ..., \langle X, (e_n - (1, ..., 1)/n \rangle = X_n - \overline{X}.$

It remains to notice that

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = (X_{1} - \overline{X})^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2}$$
$$= (n\overline{X} - \overline{X} - \sum_{i=2}^{n} X_{i})^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2} = \left(\sum_{i=2}^{n} (X_{i} - \overline{X})\right)^{2} + \sum_{i=2}^{n} (X_{i} - \overline{X})^{2}.$$

That is, S^2 can be written as a function of $X_2 - \overline{X}, ..., X_n - \overline{X}$ only, all of which are independent to $n\overline{X}$. This proves the claim.

Beginning of Jan.28, 2022

Proof of (3). Notation-wise, redefine $\overline{X}_n : \sum_{i=1}^n X_i/n$ and $S_n^2 := \sum_{i=1}^n (X_i - \overline{X}_n)^2/(n-1)$. We use induction on n. In the case n = 2, we have

$$S_2^2 = (X_1 - (X_1 + X_2)/2)^2 + (X_2 - (X_1 + X_2)/2)^2 = \frac{(X_1 - X_2)^2}{4} + \frac{(X_2 - X_1)^2}{4} = \frac{(X_1 - X_2)^2}{2}$$

Since $X_1 - X_2$ is a Gaussian with mean 0 and variance $2\sigma^2$ (by independence), $(X_1 - X_2)/(\sqrt{2}\sigma)$ is a standard Gaussian. Therefore $S_2^2/\sigma^2 \sim \chi_1^2$. Base case complete.

Now we induct on n. Some simple algebraic manipulation shows that

$$nS_{n+1}^{2} = (n-1)S_{n}^{2} + \frac{n}{n+1}(X_{n+1} - \overline{X}_{n})^{2} \quad \text{for all } n \ge 2.$$

From part (1), S_n is independent of \overline{X}_n ; also, X_{n+1} is independent of S_n , which is a function of $X_1, ..., X_n$ only. Therefore S_n is independent of their difference squared, i.e., $(X_{n+1}-\overline{X}_n)^2$. By inductive hypothesis, $(n-1)S_n^2/\sigma^2$ is χ_n^2 . Also, $(X_{n+1}-\overline{X}_n)^2$ is a Gaussian with mean 0 and variance $\sigma^2 + \sigma^2/n = \sigma^2 n/(n+1)$. Therefore,

$$\frac{nS_{n+1}^2}{\sigma^2} = \frac{(n-1)S_n^2}{\sigma^2} + \frac{n(X_{n+1} - \overline{X}_n)^2}{(n+1)\sigma^2} \sim \chi_n^2 + Z^2 \sim \chi_{n+1}^2$$

which finishes the inductive step.

4.2 Student's *t*-distrubution

Recall that if $X_1, X_2, ...$ are a random sample from a Gaussian random variable with known parameters μ, σ , then

$$\frac{X_1 + \dots + X_n}{\sigma \sqrt{n}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim Z.$$

In practice, however, σ and/or μ are often times *unknown*. In this case, we can replace σ by S and instead examine

$$\frac{\overline{X} - \mu}{S/\sqrt{n}}$$

where μ becomes the only unknown quantity. By examine μ and plugging in different values, we might be able to determine the actual μ . However, it is not immediately clear what distribution $(\overline{X} - \mu)/(S/\sqrt{n})$ follows, since it is no longer a Gaussian —

Proposition: (4.9) Student's *t*-distribution

Let *X* be a standard Gaussian. Let $Y \sim \chi_p^2$ and assume that *X*, *Y* are *independent*. Then $X/\sqrt{Y/p}$ has the **student's** *t*-distribution with *p* degrees of freedom, characterized by the PDF

$$f_{X/(\sqrt{Y/p})}(t) \coloneqq \frac{\Gamma((p+1)/2)}{\sqrt{\pi p} \, \Gamma(p/2)} \left(1 + \frac{t^2}{p}\right)^{-(p+1)/2} \qquad \text{where } t \in \mathbb{R}.$$

Proof. For convenience let $Z := \sqrt{Y/p}$, and our goal is find the PDF of Z. We compute CDF and the differentiate:

$$f_Z(y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(Z \leq y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(Y \leq y^2 p) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{y^2 p} f_{\chi_p^2}(x) \,\mathrm{d}x$$
$$= \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{y^2 p} \frac{x^{p/2-1} e^{-x/2}}{2^{p/2} \Gamma(p/2)} \,\mathrm{d}x = (2yp) f_{\chi_p^2}(y^2/p)$$
$$= \frac{2yp}{2^{p/2} \Gamma(p/2)} (y^2 p)^{p/2-1} e^{-y^2 p/2} = \frac{p^{p/2} y^{p-1} e^{-y^2 p/2}}{2^{p/2-1} \Gamma(p/2)}.$$

Now we compute the CDF of X/Z. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $(b, a/b) \mapsto (a, b)$. (By doing so, the region below with constraint $x \leq ty$ becomes $x/y \leq t$, which makes things simpler.) The Jacobian determinant is |a| for all $(a, b) \in \mathbb{R}^2$. Then,

$$\mathbb{P}(X/Z \leq t) = \mathbb{P}(X \leq tZ) = \int_{\{(x,y):x \leq ty,y > 0\}} f_X(x) f_Z(y) \, \mathrm{d}x \mathrm{d}y$$
$$= \int_{\{(a,b):b \leq t,a > 0\}} |a| f_X(ab) f_Z(a) \, \mathrm{d}a \mathrm{d}b$$
$$= \int_{-\infty}^t \int_0^\infty |a| f_X(ab) f_Z(a) \, \mathrm{d}a \, \mathrm{d}b.$$

Differentiating with respect to t gives

$$f_{X/Z}(t) = \int_0^\infty |a| f_X(at) f_Z(a) \, \mathrm{d}a = \frac{p^{p/2}}{\sqrt{2\pi} 2^{p/2-1} \Gamma(p/2)} \int_0^\infty a^p e^{-(p+t^2)a^2/2} \, \mathrm{d}a$$
$$= \frac{p^{p/2}}{\sqrt{2\pi} 2^{p/2} \Gamma(p/2)} \int_0^\infty x^{(p-1)/2} e^{-(p+t^2)x/2} \, \mathrm{d}x.$$

Recall that a Gamma distributed random variable has PDF 1, i.e.,

$$\frac{1}{\beta^{\alpha}\Gamma(\alpha)}\int_{0}^{\infty}x^{\alpha-1}e^{-x/\beta}\,\mathrm{d}x=1\implies\int_{0}^{\infty}x^{\alpha-1}e^{-x/\beta}\,\mathrm{d}x=\beta^{\alpha}\Gamma(\alpha).$$

Substituting with $\alpha - 1 \coloneqq (p - 1)/2$ and $\beta \coloneqq 2/(p + t^2)$, we have

$$f_{X/Z}(t) = \frac{p^{p/2}}{\sqrt{2\pi}2^{p/2}\Gamma(p/2)}\beta^{\alpha}\Gamma(\alpha)$$

$$= \frac{p^{p/2}}{\sqrt{2\pi}2^{p/2}\Gamma(p/2)}\Gamma((p+1)/2)\left(\frac{2}{p+t^2}\right)^{(p+1)/2}$$

$$= \frac{p^{p/2}\Gamma((p+1)/2)}{\sqrt{\pi}2^{(p+1)/2}\Gamma(p/2)}\left(\frac{p(1+t^2/p)}{2}\right)^{-(p+1)/2}$$

$$= \frac{\Gamma((p+1)/2)}{\sqrt{\pi p}\Gamma(p/2)}\left(1+\frac{t^2}{p}\right)^{-(p+1)/2}$$

which concludes the proof.

4.3 The Delta Method

Beginning of Jan.31, 2022

Recall that if X_1, X_2, \dots are i.i.d. with mean μ and variance $\sigma^2 \in \mathbb{R}$, then the CLT states that

$$\frac{X_1 + \dots + X_n - n\mu}{\sqrt{n}} = \sqrt{n} \left(\frac{X_1 + \dots + X_n}{n} - \mu \right)$$

converges in distribution to a mean zero Gaussian with variance σ^2 . That is, we have a "good" way of estimating the mean μ . The next question is, what about functions of μ , for example $1/\mu$ or μ^2 ?

Theorem: (4.14) Delta Method

Let $\theta \in \mathbb{R}$. Let $Y_1, Y_2, ...$ be random variables such that $\sqrt{n}(Y_n - \theta)$ converges in distribution to $\mathcal{N}(0, \sigma^2)$ (assume $\sigma^2 > 0$). Let $f : \mathbb{R} \to \mathbb{R}$ and assume $f'(\theta)$ exists. Then

$$\sqrt{n}(f(Y_n) - f(\theta))$$

converges in distribution to a mean zero Gaussian with variance $\sigma^2(f'(\theta))^2$ as $n \to \infty$.

Since $f(\theta)$ is just a constant, we have

$$\sigma^{2}(f'(\theta))' \approx \operatorname{var}(\sqrt{n}(f(Y_{n}) - f(\theta))) = n \operatorname{var}(f(Y_{n}));$$

that is, the Delta method an *approximation* $var(f(Y_n)) \approx \frac{\sigma^2 (f'(\theta))^2}{n}$ (convergence in distribution is strictly weaker than that in L^2 so this limits might not equal; approximations, however, still makes sense).

Proof. Suppose $f'(\theta)$ exists, i.e., $\lim_{y \to \theta} \frac{f(y) - f(\theta)}{y - \theta}$ exists. By definition there exists a sublinear $h : \mathbb{R} \to \mathbb{R}$ satisfying $f(y) = f(\theta) + f'(\theta)(y - \theta) + h(y - \theta).$

(That is, *h* satisfies $\lim_{z\to 0} h(z)/z = 0$.) Some algebraic manipulation gives

$$\sqrt{n}(f(Y_n) - f(\theta)) = \sqrt{n}f'(\theta)(Y_n - \theta) + \sqrt{n}h(Y_n - \theta).$$
(1)

It remains to justify that the last term "doesn't matter" as $n \to \infty$.

By convergence in distribution, for all s, t > 0,

$$\lim_{n \to \infty} \mathbb{P}(|Y_n - \theta| > st/\sqrt{n}) = \frac{2}{\sqrt{2\pi}} \int_{st}^{\infty} e^{-y^2/(2\sigma^2)} \,\mathrm{d}y.$$
⁽²⁾

Therefore, splitting the case $\sqrt{n}|h(Y_n - \theta)| > t$ by whether $|Y_n - \theta|$ is small, we have

$$\mathbb{P}(\sqrt{n}|h(Y_n-\theta)| > t) = \mathbb{P}(\sqrt{n}|h(Y_n-\theta)| > t, |Y_n-\theta| > st/\sqrt{n}) + \mathbb{P}(\sqrt{n}|h(Y_n-\theta)| > t, |Y_n-\theta| \le st/\sqrt{n})$$
$$\leq \mathbb{P}(|Y_n-\theta| > st/\sqrt{n}) + \mathbb{P}(\sqrt{n}|h(Y_n-\theta)| > t, |Y_n-\theta| \le st/\sqrt{n}).$$
(3)

Let $n \to \infty$. The first term in (3) converges to $\frac{2}{\sqrt{2\pi}} \int_{st}^{\infty} e^{-y^2/(2\sigma^2)} dy$ by (2). For the second term, since

$$\sqrt{n}|h(Y_n-\theta)| = \frac{|h(Y_n-\theta)|}{|Y_n-\theta|} \cdot \sqrt{n}|Y_n-\theta| \leq st \frac{|h(Y_n-\theta)|}{|Y_n-\theta|} \to 0,$$

the entire probability tends to 0. Therefore, for any s, t > 0,

$$\lim_{n \to \infty} \mathbb{P}(\sqrt{n}|h(Y_n - \theta)| > t) \leq \frac{2}{\sqrt{2\pi}} \int_{st}^{\infty} e^{-y^2/(2\sigma^2)} \,\mathrm{d}y.$$
(4)

Note that the LHS of (4) is independent of s, so we can let $s \to \infty$ for any fixed t and obtain

$$\lim_{n \to \infty} \mathbb{P}(\sqrt{n}|h(Y_n - \theta)| > t) = 0,$$
(5)

i.e., $\sqrt{n}h(Y_n - \theta)$ converges to the zero constant random variable in probability. By *Slutsky's Theorem* ($X_n \rightarrow X$ in probability and $Y_n \rightarrow$ a constant c in distribution together imply $X_n + Y_n \rightarrow X + c$ in distribution),

$$\sqrt{n}(f(Y_n) - f(\theta)) = \underbrace{\sqrt{n}h(Y_n - \theta)}_{\text{conv. in prob.}} + \underbrace{\sqrt{n}f'(\theta)(Y_n - \theta)}_{\text{con. in dist.}}$$

converges in distribution to a Gaussian random variable with mean 0 and variance $\sigma^2(f'(\theta))^2$.

Beginning of Feb.2, 2022

Example: (4.15). Let \overline{X}_n be the sample mean for $X_1, ..., X_n$. We assume $var(X_1) < \infty$. Let $\mu := \mathbb{E}X_1 \neq 0$. By CLT, $\sqrt{n}(\overline{X}_n - \mu)$ converges in distribution to a mean zero Gaussian with variance $\sigma^2 := var(X_1)$. If we let f(x) := 1/x for nonzero x, then by the Delta method

$$\sqrt{n}(f(\overline{X}_n) - f(\mu)) = \sqrt{n}\left(\frac{1}{\overline{X}_n} - \frac{1}{\mu}\right)$$

converges in distribution to a mean zero Gaussian with variance $\sigma^2(f'(\mu))^2 = \sigma^2/\mu^4$. Put informally, we have the approximation $var(1/\overline{X}_n) \approx \sigma^2/(n\mu^4)$.

The last approximation is not rigorous – convergence in distribution does not necessarily imply converges in variance. In order to make this rigorous, we need to assume that there exist $\epsilon, c > 0$ such that

$$\mathbb{E}\left|\sqrt{n}\left(f(\overline{X}_n) - \frac{1}{\mu}\right)\right|^{2+\epsilon} \le c$$

for all c > 0.

Theorem: (4.16) Convergence Theorem with Bounded Moment

Let $X_1, X_2, ...$ be random variables that converge in distribution X. Assume that there exist $0 < \epsilon, c < \infty$ such that $\mathbb{E}|X_n|^{1+\epsilon} \leq c$ for all $n \geq 1$. Then

$$\mathbb{E}X = \mathbb{E}\lim_{n \to \infty} X_n = \lim_{n \to \infty} \mathbb{E}X_n$$

Remark. If $f'(\theta) = 0$ then the Delta method simply says that $\sqrt{n}(f(Y_n) - f(\theta))$ converges in distribution to the zero random variable. This kills the purpose of analyzing the variance alongside convergence. We fix this issue by introducing the second-order Delta method.

Theorem: (4.17) Second Order Delta Method

Let the above assumptions hold. Let $f'(\theta) = 0$ and $f''(\theta)$ exist and be nonzero. Then

 $n(f(Y_n) - f(\theta))$

converges in distribution to $\sigma^2/2 \cdot f''(\theta)$ times χ_1^2 . More generally, if $f'(\theta) = \cdots = f^{(m-1)}(\theta) = 0$ and if $f^{(m)}(\theta)$ exists and is nonzero, then

 $\sqrt{n^m}(f(Y_n) - f(\theta))$

converges in distribution to $\sigma^2/m! \cdot f^{(m)}(\theta)$ times $(\mathcal{N}(0,1))^m$.

Chapter 5

Data Reduction

Question. How to find a parameter that fits data well using as little information as possible? One way is by using a sufficient statistic.

5.1 Sufficient Statistics

Definition: (5.1) Sufficient Statistic

Let $X = (X_1, ..., X_n)$ be a random sample from a distribution $f \in \{f_\theta : \theta \in \Theta\}$. Let $t : \mathbb{R}^n \to \mathbb{R}^k$ so that $Y := t(X_1, ..., X_n)$ is a statistic. We say Y is **sufficient** for θ if, for every $y \in \mathbb{R}^k$ and every $\theta \in \Theta$, the conditional distribution of $X = (X_1, ..., X_n)$ given Y = y does *not* depend on θ . In other words, Y provides sufficient information to *estimate* θ from $X_1, ..., X_n$.

As we shall see from the next example, Y being sufficient does not mean Y allows us to *exactly* determine θ . All it says is that we have sufficient information to *guess* or *give a good estimate* for the unknown θ .

Beginning of Feb.4, 2022

Example: (5.5) Sufficient statistics always exist. Though trivial, the statistic $(X_1, ..., X_n)$ is always sufficient, for the distribution of $(X_1, ..., X_n) | (X_1, ..., X_n)$ clearly does not depend on θ .

We now look at two nontrivial, more succinct sufficient statistics, and later we will determine if there exists a sufficient statistic with "minimal amount of information", i.e., a "most useful" sufficient statistic.

Example: (5.2). Let $X_1, ..., X_n$ be i.i.d. Bernoulli distributions with parameter $\theta \in (0, 1)$. Then $Y := X_1 + ... + X_n$ is sufficient for θ .

Proof. Let $(x_1, ..., x_n) \in \{0, 1\}$ and let $0 \le y \le n$. Then Y is a binomial distribution with parameters (n, θ) . Then

$$\mathbb{P}((X_1,...,X_n) = (x_1,...,x_n) \mid Y = y) = \begin{cases} 0 \text{ (trivial)} & \text{if } \sum x_i \neq y \\ \text{something nontrivial} & \text{if } \sum x_i = y. \end{cases}$$

For this reason, we assume that $y = x_1 + ... + x_n$. Then,

$$\mathbb{P}((X_1, ..., X_n) = (x_1, ..., x_n) | Y = y) = \frac{\mathbb{P}((X_1, ..., X_n) = (x_1, ..., x_n)), Y = y}{\mathbb{P}(Y = y)}$$
$$= \frac{\mathbb{P}((X_1, ..., X_n) = (x_1, ..., x_n))}{\mathbb{P}(Y = y)}$$
$$= \frac{\prod_{i=1}^n \mathbb{P}(X_i = x_i)}{\mathbb{P}(Y = y)} = \frac{\prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i}}{\binom{n}{y} \theta^y (1 - \theta)^{n - y}}$$
$$= \frac{\theta^y (1 - \theta)^{n - y}}{\binom{n}{y} \theta^y (1 - \theta)^{n - y}} = \binom{n}{y}^{-1},$$

indeed an expression not depending on θ .

Again, it is clear that *Y* alone cannot determine exactly what θ is; it however provides enough information for us to estimate θ .

Also, more formally, we should say Y_n is sufficient for θ given a random sample of size n. However, since dependency on n is clear, we tend to drop the cumbersome subscript and simply say Y is sufficient.

Example: (5.3). Let $X_1, ..., X_n$ be i.i.d. Gaussians with unknown $\mu \in \mathbb{R}$ and known $\sigma^2 > 0$. We claim that the sample mean $Y := (X_1 + ... + X_n)/n$ is sufficient for μ .

Proof. Let $(x_1, ..., x_n) \in \mathbb{R}$ and $y \in \mathbb{R}$. Like above, we can assume that $y = (x_1 + ... + x_n)/n$. Then Y is a Gaussian with mean μ and variance σ^2/n , and

$$f_{X_1,...,X_n|Y}(x_1,...,x_n \mid y) = \frac{f_{X_1,...,X_n,Y}(x_1,...,x_n,y)}{f_Y(y)} = \frac{f_{X_1,...,X_n}(x_1,...,x_n)}{f_Y(y)}$$
$$= \frac{\prod_{i=1}^n (\sigma\sqrt{2\pi})^{-1} \exp(-(x-\mu)^2/(2\sigma^2))}{\exp\left(-\frac{((x_1+...+x_n)/n-\mu)^2}{2\sigma^2/n}\right)/\sqrt{2\pi}\sigma/\sqrt{n}}$$
$$= \frac{\sigma^{-n}(2\pi)^{-n/2}}{n^{1/2}\sigma^{-1}(2\pi)^{-1/2}} \frac{\exp(-(x_1^2+...+x_n^2)/(2\sigma^2) - n\mu^2/(2\sigma^2) + \sum x_i\mu/\sigma^2)}{\exp(-y^2n/(2\sigma^2) - n\mu^2/(2\sigma^2) + n\mu y/\sigma^2)}$$
$$= \frac{\sigma^{-n}(2\pi)^{-n/2}}{n^{1/2}\sigma^{-1}(2\pi)^{1/2}} \frac{\exp((-\sum x_i^2)/(2\sigma^2))}{\exp(-y^2n/(2\sigma^2))}.$$

The last expression does not depend on μ , so Y is indeed sufficient for μ .

We now provide an "easy" way to find and/or identify sufficient statistics. Later on, we will further draw connections with exponential families, which would make things even nicer.

Theorem: (4.12) Factorization Theorem

Suppose $X_1, ..., X_n$ is a random sample from $\{f_\theta : \theta \in \Theta\}$. Suppose $Y = t(X_1, ..., X_n)$ is a statistic where $t : \mathbb{R}^n \to \mathbb{R}^k$. Then Y is sufficient for θ if and only if there exist $h : \mathbb{R}^n \to [0, \infty)$ and $g_\theta : \mathbb{R}^k \to [0, \infty)$ such that

$$f_{\theta}(x_1, ..., x_n) = f_{\theta}(x) = g_{\theta}(t(x)) \cdot h(x)$$
 for all $\theta \in \Theta$.

A technical remark: in the PMF case, we assume that $\bigcup_{\theta \in \Theta} \{x \in \mathbb{R}^n : f_{\theta}(x) > 0\}$ is at most countable and require

the above equation to hold on this set; in the PDF case, we require the above equality to hold almost everywhere.

Beginning of Feb.8, 2022

Proof of Factorization Theorem, PMF Case. We first show that (sufficient) \Rightarrow (factorization). Let $x \in \mathbb{R}^n$. Then

$$f_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = \mathbb{P}_{\theta}(X = x \text{ and } Y = t(x))$$
$$= \mathbb{P}_{\theta}(Y = t(x))\mathbb{P}_{\theta}(X = x \mid Y = y) = \mathbb{P}_{\theta}(Y = t(x))\mathbb{P}(X = x).$$

where the last step is by the sufficiency of *Y*. Thus we have obtained a factorization.

Conversely, suppose $f_{\theta}(x)$ admits a factorization $f_{\theta}(x) = g_{\theta}(t(x))h(x)$. Some definitions first: we define

 $r_{\theta}(z) \coloneqq \mathbb{P}_{\theta}(t(X) = z) = \mathbb{P}_{\theta}(Y = z) \quad \text{where } z \in \mathbb{R}^{k},$ $\tilde{t}(t(x)) \coloneqq \{y \in \mathbb{R}^{n} : t(y) = t(x)\} \quad \text{where } x \in \mathbb{R}^{n}.$

Now we expand the conditional probability:

$$\mathbb{P}_{\theta}(X = x \mid Y = t(x)) = \frac{\mathbb{P}_{\theta}(X = x \text{ and } Y = t(x))}{\mathbb{P}_{\theta}(Y = t(x))} = \frac{\mathbb{P}_{\theta}(X = x)}{\mathbb{P}_{\theta}(Y = t(x))}$$

$$= \frac{g_{\theta}(t(x)) \cdot h(x)}{\mathbb{P}_{\theta}(Y = t(x))} = \frac{g_{\theta}(t(x)) \cdot h(x)}{\sum_{z \in \tilde{t}t(x)} \mathbb{P}_{\theta}(X = z)}$$
(total probability law)
$$= \frac{g_{\theta}(t(x)) \cdot h(x)}{\sum_{z \in \tilde{t}t(x)} g_{\theta}(t(z)) \cdot h(z)}$$
(factorization assumption)
$$= \frac{g_{\theta}(t(x)) \cdot h(x)}{\sum_{z \in \tilde{t}t(x)} g_{\theta}(t(x)) \cdot h(z)}$$
(since $z \in \tilde{t}t(x) \Rightarrow t(z) = t(x)$)
$$= \frac{g_{\theta}(t(x))}{g_{\theta}(t(x))} \frac{h(x)}{\sum_{z \in \tilde{t}t(x)} h(z)} = \frac{h(x)}{\sum_{z \in \tilde{t}t(x)} h(z)},$$

which is indeed independent of θ .

We now move on to address the question of whether there exists a "more succinct" sufficient statistic, as mentioned before.

5.2 Minimal Sufficient Statistics

Suppose $t : \mathbb{R}^n \to \mathbb{R}^k$ and $Y = t(X_1, ..., X_n)$ is sufficient for θ . Suppose $s : \mathbb{R}^n \to \mathbb{R}^m$ so $Z := s(X_1, ..., X_n)$ is another statistic. If there exists a function $\varphi : \mathbb{R}^m \to \mathbb{R}^k$ such that $\varphi \circ s = t$, i.e., $Y = \varphi(Z)$, then from the factorization above, Z is also sufficient, in the sense that

$$f_{\theta}(x) = g_{\theta}(t(x))h(x) = g_{\theta}(\varphi(s(x)))h(x) = (g \circ \varphi)_{\theta}(s(x))h(x).$$

That is, if Y is sufficient and Y is a function of Z, then Z is automatically sufficient. Now we present the minimal sufficient statistics, as promised.

Definition: (5.6) Minimal Sufficient Statistic (MSS)

Suppose $X = (X_1, ..., X_n)$ is a random sample of size n following a distribution in $\{f_{\theta} : \theta \in \Theta\}$. Let $Y = t(X_1, ..., X_n)$ where $t : \mathbb{R}^n \to \mathbb{R}^k$ and assume Y is sufficient for θ . Then we say Y is **minimal sufficient** if, for every other sufficient $Z : \Omega \to \mathbb{R}^m$, there exists some function $r : \mathbb{R}^m \to \mathbb{R}^k$ such that Y = r(Z). Connecting to our introduction of MSS, this implies Y is the "most succint" sufficient statistic, as any other sufficient statistic requires more information.

Example: (5.7). Let $X_1, ..., X_n$ be a random Gaussian sample with (known) variance 1 but *unknown* mean $\mu \in \mathbb{R}$. We previous showed that the sample mean \overline{X} is sufficient; in fact, it is minimal sufficient.

Connecting to another previous example, if we define $Y = t(X) := (X_1, ..., X_n)$, then Y is trivially sufficient, since \overline{X} can be expressed as the average of components of Y. Unless n = 1, it is not minimal sufficient — for $n \ge 2$, we cannot write $Y = (X_1, ..., X_n)$ as a function of \overline{X} .

We will not prove that \overline{X} is minimal sufficient; the proof is rather hard.

Theorem: (5.8) Characterization of Minimal Sufficiency

Let $X_1, ..., X_n$ is a random sample with *joint* PDF/PMF from $\{f_\theta : \theta \in \Theta\}$. (If it is from a family of PMFs, assume the set $E := \bigcup_{\theta \in \Theta} \{x \in \mathbb{R}^n : f_\theta(x) > 0\}$ is at most countable.) Let $t : \mathbb{R}^n \to \mathbb{R}^m$ and $Y = t(X_1, ..., X_n)$ be a statistic. If the following holds (a.e.) on \mathbb{R}^n for PDFs or on E for PMFs, then Y is minimal sufficient:

There exists $c(x, y) \in \mathbb{R}$, dependent on x, y but *not* on θ , such that $f_{\theta}(x) = c(x, y)f_{\theta}(y)$ for all $\theta \in \Theta$ if and only if t(x) = t(y).

Proof. To avoid technical issues arising in measure theory, we again only consider the PMF case. We first show that Y is sufficient. For any $z \in t(\mathbb{R}^n)$, let y_z be any element of $t^{-1}(z)$ so that $t(y_z) = z$. Then, for $x \in \mathbb{R}^n$, $t(y_{t(x)}) = t(x)$ so by assumption

$$f_{\theta}(x) = c(x, y_{t(x)}) f_{\theta}(y_{t(x)}).$$

Therefore, for all $z \in \mathbb{R}^m$ and all $x \in E$, if we define

$$g_{\theta}(z) \coloneqq f_{\theta}(y_z)$$
 and $h(x) \coloneqq c(x, y_{t(x)}),$

then we admit a factorization which completes the proof of sufficiency.

$$f_{\theta}(x) = g_{\theta}(t(x))h(x),$$

Now we show that Y is minimal sufficient. Let Z be any other sufficient statistic with $Z = u(X_1, ..., X_n)$. We need to show that t is a function of u.

By factorization theorem on Z, we can can write

$$f_{\theta}(x) = \tilde{g}_{\theta}(u(x)) \cdot \tilde{h}(x)$$
 for all $\theta \in \Theta$ and all $x \in E$.

Let $y \in \mathbb{R}^n$. WLOG assume $\tilde{h}(y) \neq 0$; otherwise $f_{\theta}(y) = 0$ for all θ , so by definition $y \notin E$ and we can simply ignore the case. Suppose for $u, y \in \mathbb{R}^n$ we have u(x) = u(y). Then

$$f_{\theta}(x) = \tilde{g}_{\theta}(u(x)) \cdot \tilde{h}(x) = \tilde{g}_{\theta}(u(y)) \cdot \tilde{h}(x) = \tilde{g}_{\theta}(u(y)) \cdot \tilde{h}(y) \cdot \frac{h(x)}{\tilde{h}(y)}.$$

Using the converse of factorization theorem again,

$$f_{\theta}(x) = f_{\theta}(y) \frac{h(x)}{\tilde{h}(y)}, \quad \text{for all } \theta \in \Theta$$

Define $c(x, y) := \tilde{h}(x)/\tilde{h}(y)$, which is independent of θ indeed. We have shown that $f_{\theta}(x) = c(x, y)f_{\theta}(y)$ for all $\theta \in \Theta$. By the Theorem's assumption, this implies t(x) = t(y). In other words, u(x) = u(y) implies t(x) = t(y). This implies that there exists a function φ with $t = \varphi \circ u$ (Exercise 5.9), which concludes the proof.

Example: (5.10) Exponential Families Gives MSS. Let $\{f_{\theta} : \theta \in \Theta\}$ be a *k*-parameter exponential family in canonical form

$$f_w(x) = h(x) \exp\Big(\sum_{i=1}^k w_i t_i(x) - a(w(\theta))\Big).$$

Let $X_1, ..., X_n$ be i.i.d. from f_w . Define

$$Y := t(X) := \sum_{i=1}^{n} (t_i(X_j), ..., t_k(X_j))$$

Then *Y* is MSS for θ . **Upshot**: we can easily construct MSS from exponential families.

For example, if we sample from a Gaussian with unknown μ and $\sigma^2 > 0$, then \overline{X} is minimal sufficient for θ and (\overline{X}, S^2) is minimal sufficient for (μ, σ^2) .

Existence and Uniqueness of MSS

Beginning of Feb.11, 2022

Observe that since \overline{X} is MSS for μ where $X_1, ..., X_n$ are i.i.d. Gaussians wit known variance, then so is $c\overline{X}$ for any constant c. It turns out this uniqueness is "up to invertible transformations".

Remark: (5.11) Uniqueness of MSS up to Invertible Transformation. If $Y : \Omega \to \mathbb{R}^n, Z : \Omega \to \mathbb{R}^m$ are both MSS, then by definition there exist $r : \mathbb{R}^m \to \mathbb{R}^n$ with Y = r(Z) and $s : \mathbb{R}^n \to \mathbb{R}^m$ with Z = s(Y). Composing gives $r \circ s = id_Y$ and $s \circ r = id_Z$. Hence Y and Z are invertible images of each other.

Note that this also connects to the characterization of MSS in some sense. In particular, if Y is MSS, then the condition

$$f_{\theta}(x) = c(x, y) f_{\theta}(y) \iff t(x) = t(y)$$

should hold.

We now show existence of MSS.

Theorem: (5.12) Existence of MSS

Suppose $X_1, ..., X_n$ is a random sample of size n from $\{f_\theta : \theta \in \Theta\}$. In the case of PMFs, assume $\bigcup \{x \in \mathbb{R}^n : \theta \in \Theta\}$. $f_{\theta}(x) > 0$ is countable. Then there exists a MSS Y for θ .

Proof for countable Θ . We label elements of $\{f_{\theta} : \theta \in \Theta\}$ as $\{f_n\}_{n \ge 1}$. We define an equivalence relation on $\mathbb{R}^{\mathbb{N}}$ by $x \sim y$ if x is a scalar multiple of y. Consider $t : \mathbb{R}^n \to \mathbb{R}^N / \sim$ by

$$t(x) \coloneqq (f_1(x), f_2(x), ...)$$

Define $Y := t(X_1, ..., X_n)$. We now check that such Y satisfies the condition in the MSS characterization theorem. On one hand, if t(x) = t(y), then $f_k(x) = \alpha f_k(y)$ for some constant α that works for all k. Conversely, if for each θ , the corresponding $f_k(x)$ is some fixed α times $f_k(y)$, then again t(x) = t(y) modulo ~.

Therefore, the characterization theorem applies and Y, despite its weird appearance, is sufficient. From above, MSS sometimes might still contain "excess information". After all $(f_1(x), f_2(x), ...)$ is an infinite sequence. Though this is minimal sufficient, it is more interesting to come up with a way to get rid of the excess information of a statistic.

5.3 **Ancillary Statistics**

Definition: (5.14) Ancillary Statistic

Suppose $X_1, ..., X_n$ is a random sample of size *n* from $\{f_\theta : \theta \in \Theta\}$. A statistic $Y = t(X_1, ..., X_n)$ is **ancillary** for θ if the distribution of *Y* does not depend on θ .

Example: (5.15). Let $X_1, ..., X_n$ be a random sample from the location family for the **Cauchy distribu**tion. The joint PDF is

$$f_{\theta}(x) \coloneqq \prod_{i=1}^{n} \frac{1}{\pi} \frac{1}{1 + (x_i - \theta)^2}, \qquad x \in \mathbb{R}^n, \theta \in \mathbb{R}.$$

The order statistics $(X_{(1)}, ..., X_{(n)})$, all put together, are minimal sufficient for θ . For sufficiency, we have

$$f_{\theta}(X) = \prod_{i=1}^{n} \frac{1}{\pi} \frac{1}{1 + (X_i - \theta)^2} = \prod_{i=1}^{n} \frac{1}{\pi} \frac{1}{1 + (X_{(i)} - \theta)^2} \cdot 1.$$

For minimal sufficiency, if $x, y \in \mathbb{R}^n$ are fixed, then

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \frac{\prod_{i=1}^{n} (1 + (y_i - \theta)^2)}{\prod_{i=1}^{n} (1 + (x_i - \theta)^2)}$$

only when t(x) = t(y). (Both top and bottom are polynomials of θ and their ratio is constant if and only if they share the same roots. Ordering them gives the same result, so t(x) = t(y).) Then using the characterization theroem, we see $(X_{(1)}, ..., X_{(n)})$ is indeed MSS.

However, we began with a vector $(X_1, ..., X_n) \in \mathbb{R}^n$ and we ended up with another vector in \mathbb{R}^n . Something should be excess here.

For example, $X_{(n)} - X_{(1)}$ is ancillary for θ . If we let $Z_1, ..., Z_n$ be i.i.d. Cauchy random variables with pdf $\pi^{-1}1/(1 + x^2)$, then $X_i = Z_i + \theta$ and $X_{(n)} - X_{(1)} = Z_{(n)} - Z_{(1)}$, which is indeed independent of θ . Because $(X_{(1)}, ..., X_{(n)})$ contains such ancillary statistic, it has "excess information" for θ .

5.4 Complete Statistics

Beginning of Feb.14, 2022

Continuing the above example, since $X_{(n)} - X_{(1)}$ is ancillary, its distribution does not rely on θ . Hence there exists a constant *c* such that, for all $\theta \in \Theta$,

$$\mathbb{E}_{\theta}(X_{(n)} - X_{(1)}) \mathbb{1}_{\{-1 \leq X_{(1)} \leq X_{(n)} \leq c\}} = c.$$

(The indicator function only serves to ensure that the above expression is well-defined, i.e., finite.) Let $Y \coloneqq (X_{(1)}, ..., X_{(n)})$ and let

$$f(x_1, ..., x_n) \coloneqq (x_n - x_1) \mathbf{1}_{\{-1 \le x_1, x_n \le 1\}} - c \qquad \text{for } (x_1, ..., x_n) \in \mathbb{R}^n.$$

Then as stated above, $\mathbb{E}_{\theta} f(Y) = 0$ for all $\theta \in \Theta$ with $f(Y) \neq 0$. We claim that this implies *Y* contains extraneous information, and we turn the negation into a definition:

Definition: (5.16) Complete Statistic

Suppose $X_1, ..., X_n$ is a random sample with distribution from $\{f_\theta : \theta \in \Theta\}$. Let $t : \mathbb{R}^n \to \mathbb{R}^m$. We say a statistic $Y = t(X_1, ..., X_n)$ is **complete** for $\{f_\theta : \theta \in \Theta\}$ if, for any $f : \mathbb{R}^m \to \mathbb{R}$ with $\mathbb{E}_\theta f(Y) = 0$ for all $\theta \in \Theta$, we have f(Y) = 0.

(We implicitly assume $\mathbb{E}_{\theta} f(Y)$ is well-defined and $\mathbb{E}_{\theta} |f(Y)| < \infty$ for all $\theta \in \Theta$.)

Intuition: being complete means we have no excess information about θ .

Remark: Nonconstant Complete \Rightarrow Not Ancillary. Let *Y* be nonconstant and complete. If *Y* is ancillary then there exists $c \in \mathbb{R}$ with $\mathbb{E}_{\theta} Y = c$ or $\mathbb{E}_{\theta} (Y - c) = 0$ for all $\theta \in \Theta$. By completeness this forces us to have Y = c, a contradiction.

Remark: Complete and Ancillary \Rightarrow **Sufficient**. Consider a constant statistic.

Remark. We always have trivial complete statistics (like the constant one above), but unfortunately *complete sufficient* statistics might not exist. When they do, they are "good."

Example: (5.21) Binomial Revisited. Let $X = (X_1, ..., X_n)$ be a random sample from a Bernoulli distribution with parameter $0 < \theta < 1$. We showed that $Y = \sum_{i=1}^{n} X_i$ is sufficient for θ . We now show that Y is also complete.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\mathbb{E}_{\theta} f(Y) = 0$ for all $\theta \in (0, 1)$. Writing this explicitly,

$$0 = \mathbb{E}_{\theta} f(Y) = \sum_{k=0}^{n} f(k) \binom{n}{k} \theta^{k} (1-\theta)^{n-k} \qquad \theta \in (0,1).$$

Since

$$0 = \sum_{k=0}^{n} f(k) \binom{n}{k} \alpha^{k}$$

where $\alpha := \theta/(1-\theta)$, we see the above is a polynomial that equals zero for all $\alpha > 0$. That is, the polynomial itself must be identically 0. Since binomial coefficients are not, we must have f(k) = 0 for $k \in \{0, 1, ..., n\}$, which completes our proof showing *Y* is complete.

Example: (5.22) Gaussians Revisited. Recall that if $X_1, ..., X_n$ are i.i.d. Gaussians with known variance $\sigma^2 > 0$ and unknown $\mu \in \mathbb{R}$, then $Y = \overline{X}$ is (minimal) sufficient. We now claim that Y is also complete. For simplicity we assume $n = \sigma = 1$ so Y is simply a standard Gaussian. Let $f : \mathbb{R} \to \mathbb{R}$ and assume $\mathbb{E}_{\mu}|f(Y)| < \infty$ for all μ . We further assume that

$$0 = \mathbb{E}_{\mu}f(Y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \exp(-(t-\mu)^2/2) \, \mathrm{d}t, \qquad \text{for all } \mu \in \mathbb{R}.$$

Equivalently, after expansion and getting rid of the constants,

$$\int_{\mathbb{R}} f(t) \exp(-t^2/2) e^{t\mu} \, \mathrm{d}t = 0 \qquad \text{for all } \mu \in \mathbb{R}.$$

If $f \ge 0$ then clearly f needs to be identically 0. Otherwise we split f into positive and negative parts and will also obtain the result after some algebra.

Theorem: (5.25) Bahadur's Theorem

If *Y* is complete and sufficient for $\{f_{\theta} : \theta \in \Theta\}$ then *Y* is minimal sufficient.

(For PMFs we assume $\bigcup_{\theta \in \Theta} \{x \in \mathbb{R}^n : f_{\theta}(x) > 0\}$ is countable.)

Proof. By a previous remark, there exists a MSS Z, so it suffices to show that there exists a function r with Y = r(Z) (because any sufficient statistic is a function of Z, so Y is a composite function of that sufficient statistic).

Define $r(Z) := \mathbb{E}_{\theta}(Y \mid Z)$. We will show that r(Z) = Y. Since *Z* is MSS and *Y* sufficient, *Z* can be written as a function of *Y*, say Z = u(Y). Therefore, using properties of conditionals,

$$\mathbb{E}_{\theta}(r(u(Y))) = \mathbb{E}_{\theta}(r(Z))$$

$$= \mathbb{E}_{\theta}[\mathbb{E}_{\theta}(Y \mid Z)] \qquad (\text{definition of } r(Z))$$

$$= \mathbb{E}_{\theta}(Y). \qquad (\text{total expected value})$$

Therefore $\mathbb{E}_{\theta}(r(u(Y)) - Y) = 0$ for all $\theta \in \Theta$. By completeness this means r(u(Y)) = Y, i.e., r(Z) = Y.

Theorem: (5.27) Basu's Theorem

Let *Y* be complete and sufficient for $\{f_{\theta} : \theta \in \Theta\}$. If *Z* is ancillary for θ , then *Y* and *Z* are independent with respect to f_{θ} .

"Complete sufficient statistics are very nice since they do not contain ancillary data."

Proof. Let $Y : \Omega \to \mathbb{R}^k$ and $Z : \Omega \to \mathbb{R}^m$. Let $A \subset \mathbb{R}^k$ and $B \subset \mathbb{R}^m$. To show independence, we need to verify that

$$\mathbb{P}_{\theta}(Y \in A, Z \in B) = \mathbb{P}_{\theta}(Y \in A)\mathbb{P}_{\theta}(Z \in B) \quad \text{for all } \theta \in \Theta.$$

That is,

$$\mathbb{P}_{\theta}(Y \in A, Z \in B) = \mathbb{E}_{\theta} \mathbb{1}_{Y \in A} \mathbb{1}_{Z \in B} = \mathbb{E}_{\theta} [\mathbb{E}_{\theta}(\theta(\mathbb{1}_{Y \in A} \mathbb{1}_{Z \in B}) \mid Y] = \mathbb{E}_{\theta} [\mathbb{1}_{Y \in A} \mathbb{E}_{\theta}(\mathbb{1}_{Z \in B} \mid Y)]$$

where the last = is by the tower property (i.e., $\mathbb{E}[\mathbb{E}(Xh(Y) | Y)] = h(Y)\mathbb{E}(X | Y)$). Since *Y* is sufficient, the conditional distribution does not depend on θ , so (check) $g(Y) \coloneqq \mathbb{E}_{\theta}(1_{Z \in B} | Y)$ should not depend on θ . Therefore

$$\mathbb{E}_{\theta}g(Y) = \mathbb{E}_{\theta}[\mathbb{E}_{\theta}(1_{Z \in B} \mid Y)] = \mathbb{E}_{\theta}(1_{Z \in B}) = \mathbb{P}_{\theta}(Z \in B).$$

Since Z is ancillary we see $\mathbb{E}_{\theta}g(Y)$ does not depend on θ . Define this quantity to be c. Then

$$\mathbb{E}_{\theta}(g(Y) - c) = 0$$

for all $\theta \in \Theta$. By completeness this implies g(Y) = c, i.e., g(Y) is constant. Therefore,

$$\mathbb{P}_{\theta}(Y \in A, Z \in B) = \mathbb{E}_{\theta}(1_{Y \in A} \cdot c) = \mathbb{E}_{\theta}(1_{Y \in A})\mathbb{P}_{\theta}(Z \in B) = \mathbb{P}_{\theta}(Y \in A)\mathbb{P}_{\theta}(Z \in B).$$

		п
		н
_	_	

Chapter 6

Point Estimation

Goal in a nutshell: estimate some known $\theta \in \Theta$ using a function / statistic of a random sample $X_1, ..., X_n$. Such statistic $Y = t(X_1, ..., X_n)$ is called an **estimator** or **point estimator**. Unless otherwise specified, we assume $X_1, ..., X_n$ are i.i.d. from $\{f_\theta : \theta \in \Theta\}$. We also assume Y is a statistic of $X_1, ..., X_n$.

6.1 Evaluating Estimators; UMVU

Beginning of Feb.23, 2022

Definition: (6.2) Unbiased Estimator

Let Y be an estimator for $g(\theta)$ where $g: \Theta \to \mathbb{R}^k$. We say Y is **unbiased** for $g(\theta)$ if

 $\mathbb{E}_{\theta}Y = g(\theta) \qquad \text{for all } \theta \in \Theta.$

(Unbiased estimators always exist; for example consider the trivial constant statistic.)

For example, we have shown that the sample mean and variance are unbiased for a Gaussian's mean and variance, respectively.

However, it should be clear that just being unbiased doesn't necessarily guarantee a "good" estimator. For example, any statistic taking value +r with probability 1/2 and -r with 1/2 has expected value 0. If the quantity it estimates has expected value 0 then all such estimators are unbiased, but clearly as r gets large, this estimator gets "bad" since its distribution gets spread more widely. A workaround is to examing the **mean-squared error** (or L^2 norm):

$$\mathbb{E}_{ heta}(Y - g(heta))^2$$

For unbiased estimators, the above quantity equals var(Y).

Definition: (6.3) Uniformly Minimum Variance Unbiased Estimators, UMVU

Let $g : \Theta \to \mathbb{R}$. Assume Y is unbiased. We say Y is (an) **uniformly minimum variance unbiased** (estimator), **UMVU**, for $g(\theta)$ if for any other unbiased estimator Z for $g(\theta)$,

$$\operatorname{var}_{\theta}(Y) \leq \operatorname{var}_{\theta}(Z) \quad \text{for all } \theta \in \Theta.$$

(UMVU might not exist a priori. See below.)

Definition: (6.4) Uniformly Minimum Risk Unbiased Estimators, UMRU

This generalizes the notion of UMVU. Suppose we are given a loss function

$$L: \Theta \times \mathbb{R}^k \to \mathbb{R}$$

(for example, consider $L(\theta, y) \coloneqq (y - g(\theta))^2$, in which case the UMRU defined below is simply UMVU; also, we often assume that $L(\theta, y)$ is strictly convex in y) and we define the **risk function** to be

$$r(\theta, Y) = \mathbb{E}_{\theta} L(\theta, Y)$$
 for all $\theta \in \Theta$.

Again, assume Y is unbiased for $g(\theta)$. We say Y is (an) **uniformly minimum risk unbiased** (estimator), **UMRU**, for $g(\theta)$ if for any other unbiased estimator Z for $g(\theta)$,

 $r(\theta, Y) \leq r(\theta, Z)$ for all $\theta \in \Theta$.

Example: (6.5) UMVU might not exist. Suppose *X* is a binomial random variable with parameter *n* (known) and $\theta \in (0,1)$ (unknown), and we want to estimate $\theta/(1-\theta)$. It turns out there is *no unbiased estimator* for $g(\theta)$ (which implies there is no UMVU): for any estimator Y = t(X),

$$\mathbb{E}_{\theta}Y = \mathbb{E}_{\theta}t(X) = \sum_{j=0}^{n} \binom{n}{i} t(i)\theta^{i}(1-\theta)^{i},$$

a polynomial of θ , whereas $\theta/(1-\theta)$ is not.

6.2 Rao-Blackwell & Lehman-Scheffé

Theorem: (6.7) Rao-Blackwell Theorem

If $L(\theta, y)$ is convex in y, then conditioning an unbiased on a sufficient one will only improve it. More formally, if Z is sufficient for $\{f_{\theta} : \theta \in \Theta\}$ and Y unbiased for $g(\theta)$. Let $\theta \in \Theta$ with $r(\theta, Y) < \infty$ and such that $L(\theta, y)$ is convex in y. Then $W := \mathbb{E}_{\theta}(Y | Z)$ is unbiased and

$$r(\theta, W) \leq r(\theta, Y).$$

If in addition the risk function is strictly convex in y, then the inequality is strict unless W = Y.

Proof. First note that since Z is sufficient, the distribution of W does not depend on θ , so W is indeed welldefined. Also, since Y is unbiased, so is W, since $\mathbb{E}_{\theta}W = \mathbb{E}_{\theta}\mathbb{E}_{\theta}(Y \mid Z) = \mathbb{E}_{\theta}Y$. By definition $L(\theta, W) = L(\theta, \mathbb{E}_{\theta}(Y \mid Z))$. By Jensen's inequality we have

$$L(\theta, W) = L(\theta, \mathbb{E}_{\theta}(Y \mid Z)) \leq \mathbb{E}_{\theta}(L(\theta, Y) \mid Z).$$
^(*)

Taking expectation on both sides again,

$$r(\theta, W) = \mathbb{E}_{\theta} L(\theta, W) \leq \mathbb{E}_{\theta} \mathbb{E}_{\theta} (L(\theta, Y) \mid Z) = \mathbb{E}_{\theta} L(\theta, Y) = r(\theta, Y).$$

Finally, if *L* is strictly convex, then the above inequality is strict unless (*) is attains equality; this happens when *Y* is a function of *Z*. If so, $W = \mathbb{E}_{\theta}(Y \mid Z) = Y$.

Remark. We will later show that if Y is unbiased and Z is sufficient and *complete*, then the corresponding W automatically gives the UMRU.

Example: (6.12). Let $X_1, ..., X_n$ be i.i.d. with unknown mean $\mu \in \mathbb{R}$. Let $Y \coloneqq t(X_1, ..., X_n) \coloneqq X_1$, a bad yet unbiased estimator.

A bad example of Rao-Blackwell: condition Y on the trivially sufficient $(X_1, ..., X_n)$, which gives

$$W = \mathbb{E}(X_1 \mid X_1, ..., X_n) = \mathbb{E}(X_1 \mid X_1) = X_1.$$

A better example: we now condition Y on $\sum_{i=1}^{n} X_i$ (no guarantee if this is sufficient, but we condition it anyways). Then

$$\sum_{j=1}^{n} \mathbb{E}(X_j \mid \sum_{i=1}^{n} X_i) = n \mathbb{E}(X_1 \mid \sum_{i=1}^{n} X_i) \implies W := \mathbb{E}(X_1 \mid \sum_{i=1}^{n} X_i) = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

so (whether or not) Rao-Blackwell gives a much better unbiased estimator.

Example: Order statistics and sufficiency. If $X_1, ..., X_n$ are i.i.d. from $\{f_\theta : \theta \in \Theta\}$, then $(X_{(1)}, ..., X_{(n)})$ is always sufficient.

On the other hand, suppose also that $Y_1, ..., Y_n$ are i.i.d. from $\{g_\theta : \theta \in \Theta\}$. Suppose we want to estimate $var(X_1, Y_1) = \mathbb{E}[(X_1 - \mathbb{E}X_1)(Y_1 - \mathbb{E}Y_1)]$. By reordering X_i into $X_{(1)}, ..., X_{(n)}$ and Y_i into $Y_{(1)}, ..., Y_{(n)}$ separately, there is no guarantee that X_i, Y_i still share the same index after using order statistics. Hence $X_{(1)}, ..., X_{(n)}, Y_{(1)}, ..., Y_{(n)}$ might not be sufficient for the covariance.

Theorem: (6.13) Lehmann-Scheffé

Conditioning an unbiased statistic on a complete sufficient one gives the UMRU/UMVU. Let Z be a complete sufficient statistic for $\{f_{\theta} : \theta \in \Theta\}$, let Y be unbiased for $g(\theta)$, let $L(\theta, y)$ be convex in y, and define $W := \mathbb{E}_{\theta}(Y \mid Z)$. Then W is UMRU for $g(\theta)$.

Moreover, if $L(\theta, y)$ is strictly convex, then W is unique. (In particular, UMVU is unique.)

Proof. Since Y is unbiased, so is W. We first show that W does not depend on Y. (Intuitively, given a strictly convex loss function, the unique UMRU should not depend on what Y on which we conditioned.) Let Y' be another unbiased estimator for $g(\theta)$. Then

$$\mathbb{E}_{\theta}[\mathbb{E}_{\theta}(Y \mid Z) - \mathbb{E}_{\theta}(Y' \mid Z)] = \mathbb{E}_{\theta}Y - \mathbb{E}_{\theta}Y' = g(\theta) - g(\theta) = 0 \quad \text{for all } \theta \in \Theta$$

so by completeness

 $\mathbb{E}_{\theta}(Y \mid Z) = \mathbb{E}_{\theta}(Y' \mid Z) \quad \text{for all } \theta \in \Theta.$

Therefore W does not depend on the choice of Y. Using Rao-Blackwell,

$$r(\theta, W) = r(\theta, \mathbb{E}_{\theta}(Y \mid Z)) = r(\theta, \mathbb{E}_{\theta}(Y' \mid Z)) \leq r(\theta, Y') \quad \text{for all } \theta \in \Theta.$$

for all unbiased Y'. That is, W is a UMRU. Uniqueness when L is convex follows from Rao-Blackwell as well. \Box

Remark: (6.14). Here is a method to think backwards on obtaining a UMVU via Lehmann-Scheffé. Let $Z : \Omega \to \mathbb{R}^k$ be complete sufficient for $\{f_\theta : \theta \in \Theta\}$. Let $h : \mathbb{R}^k \to \mathbb{R}^m$ and let $g(\theta) := \mathbb{E}_{\theta}h(Z)$. Then $W := \mathbb{E}_{\theta}(h(Z) | Z) = h(Z)$ is unbiased for $g(\theta)$. That is, h(Z) is UMVU for $g(\theta)$. If we can guess or solve a function h such that $g(\theta) = \mathbb{E}_{\theta}h(Z)$, then we are done.

Beginning of March 4, 2022

Example: (6.15) Gaussian and UMVU (backward thinking). Suppose we are sampling from a Gaussian with unknown $\mu \in \mathbb{R}$ and unknown $\sigma^2 > 0$. We take it for granted that (\overline{X}, S^2) is complete for (μ, σ^2) . So \overline{X} is UMVU for μ :

 $h(x,y) \coloneqq x \text{ and } g(\mu,\sigma^2) \coloneqq \mu \implies g(\mu,\sigma^2) = \mathbb{E}_{\theta}h(Z).$

Similarly, S^2 is UMVU for σ^2 :

$$h(x,y) \coloneqq y \text{ and } g(\mu,\sigma^2) \coloneqq \sigma^2 \implies g(\mu,\sigma^2) = \mathbb{E}_{\theta}h(Z).$$

Finally, to find the UMVU for μ^2 , we try to express it in terms of \overline{X} and S^2 :

$$\mathbb{E}\overline{X}^{2} = \operatorname{var}(\overline{X}) + (\mathbb{E}\overline{X})^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

SO

$$\mu^2 = \mathbb{E}(\overline{X}^2 - S^2/n).$$

That is, \overline{X}^2 – S^2/n is UMVU for $\mu^2.$

Example: (6.16) Binomial and UMVU (backward thinking). Consider a binomial random variable with parameters n and $\theta \in (0, 1)$. Suppose we want to estimate $g(\theta) \coloneqq \theta(1-\theta)$, the variance of X. Using "backward thinking", we want to find $h : \mathbb{R} \to \mathbb{R}$ such that

$$\theta(1-\theta) = \mathbb{E}_{\theta}h(X) = \sum_{j=0}^{n} h(j) {n \choose j} \theta^{j} (1-\theta)^{n-j}.$$

Let $a \coloneqq \theta/(1-\theta)$ so

$$\sum_{j=0}^{n} h(j) \binom{n}{j} a^{j} = (1-\theta)^{-n} \mathbb{E}_{\theta} h(X) = \theta (1-\theta)^{1-n}.$$
 (1)

Since $\theta = a/(1+a)$ and so $1 - \theta = 1/(1+a)$, binomial theorem gives

$$(1-\theta)^{-n}\mathbb{E}_{\theta}h(X) = (1+a)^{-1}a(1+a)^{n-1} = a(1+a)^{n-2} = a\sum_{j=0}^{n-2} \binom{n-2}{j}a^j = \sum_{j=1}^{n-1} \binom{n-2}{j-1}a^j.$$
 (2)

Comparing the LHS of (1) and the RHS of (2) we see that the polynomials are equal on (0,1), so their coefficients must be identical. Therefore

$$h(j) = \binom{n-2}{j-1} \binom{n}{j}^{-1} = \frac{(n-2)!}{(j-1)!(n-j-1)!} \frac{j!(n-j)!}{n!} = \frac{(n-j)j}{n(n-1)!}$$

i.e., the UMVU for $\theta(1-\theta)$ is $\frac{X(n-X)}{n(n-1)}$ (assuming $n \ge 2$).

Example: (6.17) Bernoulli and UMVU (Lehman-Scheffé). Let $X_1, ..., X_n$ be i.i.d. Bernoulli with $\theta \in (0,1)$. We have shown previosuly that $Z := \sum_{i=1}^n X_i$ is complete and sufficient and \overline{X} is unbiased for θ . Therefore \overline{X} is UMVU for θ .

Suppose we want to estimate θ^2 . Since $Y \coloneqq X_1X_2$ is unbiased, $\mathbb{E}(Y \mid Z)$ will be the UMVU. Let $2 \le z \le n$. Since Y = 1 if and only if $X_1 = X_2 = 1$,

$$\mathbb{E}_{\theta}(Y \mid Z = z) = \mathbb{E}_{\theta}(1_{X_{1}=X_{2}=1} \mid Z = z) = \mathbb{P}_{\theta}(X_{1} = X_{2} = 1 \mid Z = z)$$

$$= \mathbb{P}_{\theta}(X_{1} = X_{2} = 1 \mid \sum_{i=1}^{n} X_{i} = z) = \frac{\mathbb{P}_{\theta}(X_{1} = X_{2} = 1, \sum_{i=1}^{n} X_{i} = z)}{\mathbb{P}_{\theta}(\sum_{i=1}^{n} X_{i} = z)}$$

$$= \frac{\mathbb{P}_{\theta}(X_{1} = X_{2} = 1, \sum_{i=3}^{n} X_{i} = z - 2)}{\mathbb{P}_{\theta}(\sum_{i=1}^{n} X_{i} = z)}$$

$$= \frac{\theta^{2}\binom{n-2}{z-2}\theta^{z-2}(1-\theta)^{n-z}}{\binom{n}{z}\theta^{z}(1-\theta)^{n-z}} = \binom{n-2}{z-2}\binom{n}{z}^{-1}$$

$$= \frac{(n-2)!}{(z-2)!(n-z)!}\frac{z!(n-z)!}{n!} = \frac{z(z-1)}{n(n-1)}.$$

We check that the cases z = 1, z = 2 still satisfy this relation. Hence the UMVU for θ^2 is $\mathbb{E}_{\theta}(Y \mid Z) = \frac{Z(Z-1)}{n(n-1)}$.

Beginning of March 7, 2022

One More Remark on UMVU

Question. if W_1 is UMVU for $g_1(\theta)$ and W_2 UMVU for $g_2(\theta)$, does it follow that $W_1 + W_2$ is UMVU for $g_1(\theta) + g_2(\theta)$? By Lehman-Scheffé, if *Y* is unbiased for $g_1(\theta)$ and Y_2 unbiased for $g_2(\theta)$, and if *Z* is complete and sufficient, then by uniqueness $W_i = \mathbb{E}_{\theta}(Y_i | Z)$, and by linearity

$$W_1 + W_2 = \mathbb{E}_{\theta}(Y_1 + Y_2 \mid Z)$$

is the UMVU for $g_1(\theta) + g_2(\theta)$. But what if we don't assume the existence of a complete sufficient Z a priori? The answer is still yes:

Theorem: (6.18) Alternate Characterization of UMVU

Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of distributions and let W be unbiased of $g(\theta)$. Let $L_2(\Omega)$ be the set of statistics with finite second moment. then $W \in L_2(\Omega)$ is UMVU for $g(\theta)$ if and only if $\mathbb{E}_{\theta}(WU) = 0$ for all $\theta \in \Theta$ and all $U \in L_2(\Omega)$ with $\mathbb{E}_{\theta}U = 0$.

Remark. For the W_1, W_2 example above, this theorem gives that $\mathbb{E}_{\theta}(W_1U) = \mathbb{E}_{\theta}(W_2U) = 0$ for all $U \in L_2(\Omega)$ with $\mathbb{E}_{\theta}U = 0$. Then $W_1 + W_2$ is unbiased with $\mathbb{E}_{\theta}((W_1 + W_2)U) = 0$.

Proof. We first assume that W is UMVU for $g(\theta)$. Let U be unbiased for 0. Let $s \in \mathbb{R}$ and consider W + sU, an unbiased estimator for $g(\theta)$ again. Then

$$\operatorname{var}_{\theta}(W) \leq \operatorname{var}_{\theta}(W + sU) = \operatorname{var}_{\theta}(W) + 2s\mathbb{E}_{\theta}(W - \mathbb{E}_{\theta}W)U + s^{2}\operatorname{var}_{\theta}(U).$$

The minimum value occurs at s = 0 if and only if the derivative vanishes at s = 0. That is, $\mathbb{E}_{\theta}WU = \mathbb{E}_{\theta}(W - \mathbb{E}_{\theta}W)U = 0$.

Conversely, assume $\mathbb{E}_{\theta}(WU) = 0$ for all $U \in L_2(\Omega)$ unbiased for 0. If Y is unbiased, then $U \coloneqq Y - W$ is unbiased for 0. Comparing the variance of Y with W + U we have

$$\operatorname{var}_{\theta}(Y) = \operatorname{var}_{\theta}(U + W) = \dots = \operatorname{var}_{\theta}(U) + \operatorname{var}_{\theta}(W) \ge \operatorname{var}_{\theta}(U).$$

6.3 Fisher Information & Cramér-Rao

In this section we assume $\Theta \subset \mathbb{R}$ unless otherwise specified.

Definition: (6.19) Fisher Information

Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of multivariate PDFs or PMFs. Let *X* be a random vector with distribution f_{θ} . The **Fisher information** of the family is defined to be

$$I(\theta) = I_X(\theta) \coloneqq \mathbb{E}_{\theta} \left(\frac{\mathrm{d}}{\mathrm{d}\theta} \log f_{\theta}(X) \right)^2 \quad \text{for all } \theta \in \Theta$$

if this quantity exists and is finite. We also implicitly assume that $\{x \in \mathbb{R} : f_{\theta}(x) > 0\}$ does not depend on θ .

Beginning of March 9, 2022

Example: (6.20) Gaussians & Fisher. Let $\sigma > 0$. Let $f_{\theta}(x) \coloneqq \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2\sigma^2}\right)$ for all $x \in \mathbb{R}, \theta \in \mathbb{R}$. Then we have

$$\log f_{\theta}(x) = \log \left(\frac{1}{\sigma\sqrt{2\pi}}\right) \cdot -\frac{(x-\theta)^2}{2\sigma^2}$$

SO

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_{\theta}(X) = \frac{\mathrm{d}}{\mathrm{d}\theta}\frac{-(X-\theta)^2}{2\sigma^2},$$

and so

$$I(\theta) = \mathbb{E}_{\theta} \left(\frac{\mathrm{d}}{\mathrm{d}\theta} \frac{-(X-\theta)^2}{2\sigma^2} \right)^2 = \mathbb{E}_{\theta} \left(\frac{X-\theta}{\sigma^2} \right)^2 = \frac{1}{\sigma^4} \operatorname{var}(X-\theta) = \frac{1}{\sigma^2}.$$

In general, $I(\theta)$ depends on θ , but in this case it does not. Here, when σ is small, f_{θ} looks like a sharp bump rather than a flat curve. A smaller σ corresponds to a larger $I(\theta)$ which gives us more information about where and how the random variable is distributed. Later we will establish the Cramér-Rao bound and draw connection between Fisher information and UMVU.

We now provide two alternate forms for the Fisher information which might be useful sometimes:

Remark. Without the square,

$$\mathbb{E}_{\theta}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_{\theta}(X)\right) = \int_{\mathbb{R}^{n}} \frac{\mathrm{d}/\mathrm{d}\theta f_{\theta}(x)}{f_{\theta}(x)} f_{\theta}(x) \,\mathrm{d}x = \frac{\mathrm{d}}{\mathrm{d}\theta} \int_{\mathbb{R}^{n}} f_{\theta}(x) \,\mathrm{d}x = \frac{\mathrm{d}}{\mathrm{d}\theta}(1) = 0.$$

Therefore, treating $\frac{\mathrm{d}}{\mathrm{d}\theta} \log f_{\theta}(X)$ as a random variable,

$$I(\theta) = \mathbb{E}_{\theta}(...)^2 = \operatorname{var}_{\theta}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_{\theta}(X)\right).$$

Remark. Alternatively,

$$\begin{split} \mathbb{E}_{\theta} \left(\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log f_{\theta}(X) \right) &= \int_{\mathbb{R}^n} \frac{\mathrm{d}}{\mathrm{d}\theta} \frac{\mathrm{d}/\mathrm{d}\theta f_{\theta}(x)}{f_{\theta}(x)} f_{\theta}(x) \, \mathrm{d}x \\ &= \int_{\mathbb{R}^n} \frac{f_{\theta}(x) \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} f_{\theta}(x) - \left(\frac{\mathrm{d}}{\mathrm{d}\theta} f_{\theta}(x)\right)^2}{(f_{\theta}(x))^2} f_{\theta}(x) \, \mathrm{d}x \\ &= \int_{\mathbb{R}^n} \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} f_{\theta}(x) - \left(\frac{\mathrm{d}}{\mathrm{d}\theta} \log f_{\theta}(x)\right)^2 f_{\theta}(x) \, \mathrm{d}x \\ &= \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} (1) - \int_{\mathbb{R}^n} \left(\frac{\mathrm{d}}{\mathrm{d}\theta} \log f_{\theta}(x)\right)^2 f_{\theta}(x) \, \mathrm{d}x = 0 - I(\theta) = -I(\theta). \end{split}$$

Proposition: (6.21)

Let X, Y be independent where their distributions are from $\{f_{\theta} : \theta \in \Theta\}$ and $\{g_{\theta} : \theta \in \Theta\}$ respectively (not

necessarily the same distribution, but same parameter space). Then

$$I_{(X,Y)}(\theta) = I_X(\theta) + I_Y(\theta).$$

Proof. Using the variance expression,

$$I_{(X,Y)}(\theta) \stackrel{*}{=} \operatorname{var}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log(f_{\theta}(X)g_{\theta}(Y))\right) = \operatorname{var}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}(\log f_{\theta}(X) + \log g_{\theta}(X))\right)$$
$$\stackrel{*}{=} \operatorname{var}_{\theta}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_{\theta}(X)\right) + \operatorname{var}_{\theta}\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log g_{\theta}(X)\right) = I_{X}(\theta) + I_{Y}(\theta).$$

(The starred equations are because of independence.)

Theorem: (6.23) Cramér-Rao / Information Inequality

Let $X : \Omega \to \mathbb{R}^n$ be a random variable with distribution from $\{f_\theta : \theta \in \Theta\}$, $\Theta \subset \mathbb{R}$. Let Y := t(X) be a statistic. For $\theta \in \Theta$, define $g(\theta) := \mathbb{E}_{\theta} Y$. Then

$$\operatorname{var}_{\theta}(Y) \ge \frac{|g'(\theta)|^2}{I_X(\theta)} \quad \text{for all } \theta \in \Theta.$$

In particular if *Y* is *unbiased* then $g(\theta) = \theta$ and $g'(\theta) = 1$, so

$$\operatorname{var}_{\theta}(Y) \ge \frac{1}{I_X(\theta)} \quad \text{for all } \theta \in \Theta.$$

In both cases, "=" happens only when $\frac{d/d\theta(\log f_{\theta}(X))}{Y - \mathbb{E}_{\theta}Y} \in \mathbb{R}$ for some $\theta \in \Theta$.

This theorem provides a lower bound on the variance of unbiased estimators of θ — in general, we cannot get estimators with arbitrarily small variance.

Remark. If $X_1, ..., X_n$ are i.i.d. and $X = (X_1, ..., X_n)$, then (by last proposition) $I_X(\theta) = nI_{X_1}(\theta)$. If $\mathbb{E}_{\theta}Y = \theta$, then $\operatorname{var}_{\theta}(Y) \ge 1/(nI_{X_1}(\theta))$ for all $\theta \in \Theta$.

Proof. Define $g(\theta)$, Y, and t accordingly. If X is continuous (similar for discrete),

$$\begin{aligned} |g'(\theta)| &= \left| \frac{\mathrm{d}}{\mathrm{d}\theta} \int_{\mathbb{R}^n} f_{\theta}(x) t(x) \, \mathrm{d}x \right| = \left| \int_{\mathbb{R}^n} \frac{\mathrm{d}}{\mathrm{d}\theta} f_{\theta}(x) t(x) \, \mathrm{d}x \right| \\ &= \left| \int_{\mathbb{R}^n} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\log f_{\theta}(x) \right) t(x) f_{\theta}(x) \, \mathrm{d}x \right| \\ &\stackrel{*}{=} \left| \operatorname{cov}\left(\frac{\mathrm{d}}{\mathrm{d}\theta} (\log f_{\theta}(X)), t(X) \right) \right| \\ &\leq \left(\operatorname{var}_{\theta}\left(\frac{\mathrm{d}}{\mathrm{d}\theta} (\log f_{\theta}(X)) \right) \right)^{1/2} \operatorname{var}_{\theta}(t(X))^{1/2} \\ &= \sqrt{I_X(\theta)} \sqrt{\operatorname{var}_{\theta} Y}. \end{aligned}$$

For $=: \frac{d}{d\theta}(\log f_{\theta}(x)) = \frac{1}{f_{\theta}(x)} \frac{d}{d\theta} f_{\theta}(x)$ [note that t(x) is treated as a constant when doing $d/d\theta$], and for $\stackrel{*}{=}:$ if $\mathbb{E}W = 0$, then $\operatorname{cov}(W, Z) = \mathbb{E}[(W - \mathbb{E}W)(Z - \mathbb{E}Z)] = \mathbb{E}[W(Z - \mathbb{E}Z)] = \mathbb{E}(WZ)$.

Note that equality in Cramér-Rao happens if and only if the Cauchy-Schwarz step is attained, i.e., when

$$\frac{\mathrm{d}/\mathrm{d}\theta(\log f_{\theta}(X)) - \mathbb{E}(...)}{t(X) - \mathbb{E}(t_{\theta}(X))} = \frac{\mathrm{d}/\mathrm{d}\theta(\log f_{\theta}(X))}{Y - \mathbb{E}_{\theta}Y} \text{ is a constant.}$$

Example: (6.24). Let $f_{\theta}(x) \coloneqq \theta x^{\theta-1} \chi_{(0,1)}(x)$ for $x \in \mathbb{R}$ and $\theta > 0$. Then for $x \in (0,1)$,

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_{\theta}(x) = \frac{\mathrm{d}}{\mathrm{d}\theta}\log(\theta x^{\theta-1}) = \frac{\mathrm{d}}{\mathrm{d}\theta}\left[\log\theta + (\theta-1)\log x\right] = \frac{1}{\theta} + \log x.$$

Then if $X_1, ..., X_n$ are i.i.d., for $(x_1, ..., x_n) \in (0, 1)^n$,

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log\prod_{i=1}^n f_\theta(x_i) = \sum_{i=1}^n (\theta^{-1} + \log x_i) = n\left(\frac{1}{\theta} + \frac{1}{n}\log\sum_{i=1}^n x_i\right).$$

By Cramér-Rao, any multiple of $\frac{d}{d\theta} \log \prod_{i=1}^{n} f_{\theta}(X_{i})$ (plus a constant) is UMVU for $\mathbb{E}_{\theta}Y$. For example, since $\mathbb{E}(\frac{d}{d\theta} \log \prod_{i=1}^{n} f_{\theta}(X_{i})) = 0$, we know $\mathbb{E}\sum_{i=1}^{n} \log X_{i} = -n/\theta$. Hence if we define $Y := -\frac{1}{n} \log \prod_{i=1}^{n} X_{i}$, its expected value is $1/\theta$, and we claim that this is UMVU of its expectation.

6.4 Bayes Estimation

Beginning of March 21, 2022

In **Bayes estimation**, the unknown $\theta \in \Theta$ *itself* is regarded as random variable Ψ ; the distribution of Ψ represents our **prior** knowledge about its probable values. Given $\Psi = \theta$, the condition distribution of $X | \Psi = \theta$ is assumed to be $\{f_{\theta} : \theta \in \Theta\}$.

Suppose $t : \mathbb{R}^n \to \mathbb{R}^k$, y = t(X), and we have a loss function $L : \Theta \times \mathbb{R}^k \to \mathbb{R}$. Let $g : \Theta \to \mathbb{R}^k$.

Definition: (6.26) Bayes Estimator

A **Bayes estimator** for $g(\theta)$ w.r.t. Ψ is one such that

 $\mathbb{E}L(g(\Psi), Y) \leq \mathbb{E}L(g(\Psi), Z)$ for all estimators Z.

Proposition: (6.27) Minimizing Conditional Risk \Rightarrow Bayes

In order to find a Bayes estimator, it suffices to minimize the conditional risk. Suppose there exists $t : \mathbb{R}^n \to \mathbb{R}$ such that, for almost every $x \in \mathbb{R}^n$, Y := t(X) minimizes the conditional risk

$$\mathbb{E}(L(g(\Psi), Z) \mid X = x)$$

over all estimators Z. Then t(X) is Bayes for $g(\theta)$ w.r.t. Ψ .

Proof. Total expectation. If

$$\mathbb{E}(L(g(\Psi), Z) \mid X = x) \leq \mathbb{E}(L(g(\Psi), Z) \mid X = x)$$

for (almost) all x, then taking the expectation again preserves \leq . The probability measure is induced by the marginal

$$\mathbb{P}(X \in A) \coloneqq \int_{\Omega} \mathbb{P}_{\theta}(X \in A) \, \mathrm{d}\Psi(\theta)$$

The distribution of t(X) can depend on the distribution of Ψ .

Example: (6.29). Let n = 1, $g(\theta) \coloneqq \theta$, and $L(\Psi, Y) \coloneqq (\Psi - Y)^2$. The conditional stated above is minimized when $t(x) = E(\Psi | X = x)$, since

$$\mathbb{E}((\Psi - t(X)^2 \mid X = x)) = \mathbb{E}(\Psi^2 - 2\Psi t(x) + t(x)^2 \mid X = x)$$

= $\mathbb{E}(\Psi^2 \mid X = x) - 2t(x)\mathbb{E}(\Psi \mid X = x) + t(x)^2.$

Therefore $\mathbb{E}(\Psi \mid X)$ is Bayes for θ with respect to Ψ .

Given $\Psi = \theta > 0$, suppose X us uniform on $[0, \theta]$ and assume that Ψ has a gamma distribution with $\alpha = 2, \beta = 1$ so its distribution is θe^{θ} for $\theta > 0$. Then

$$f_{\Psi,X}(\theta,x) = f_{X|\Psi=\theta}(x \mid \theta) f_{\Psi}(\theta) = e^{-\theta} \mathbf{1}_{x \in (0,\theta)}$$

and the marginal of X is

$$f_X(x) = 1_{x>0} \int_{-\infty}^{\infty} f_{\Psi,X}(\theta, x) \,\mathrm{d}\theta = 1_{x>0} \int_{x}^{\infty} e^{-\theta} \,\mathrm{d}\theta = 1_{x>0} \cdot e^x.$$

Therefore

$$f_{\Psi|X=x}(\theta \mid x) = \frac{f_{\Psi,X}(\theta, x)}{f_X(x)} = \frac{e^{-\theta} \cdot 1_{x \in (0,\theta)}}{e^{-x} \cdot 1_{x>0}} = e^{x-\theta} \cdot 1_{x \in (0,\theta)}$$

and so

$$\mathbb{E}(\Psi \mid X = x) = \int_{-\infty}^{\infty} \theta f_{\Psi \mid X = x}(\theta \mid x) \, \mathrm{d}\theta = \int_{x}^{\infty} \theta e^{x-\theta} \, \mathrm{d}\theta = e^{x}((x+1)e^{-x}) = x+1,$$

which says that the Bayes estimator for the **mean squared error** (MSE) $L(\Psi, Y) = (\Psi - Y)^2$ is in this case t(X) = X + 1.

In contrast, the UMVU for θ is $(1 + 1/n)X_{(n)}$ and in this case 2X.

Beginning of March 23, 2022

6.5 Method of Moments

Definition: (6.30) Consistency

Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of distributions and let $Y_1, Y_2, ...$ be a sequence of estimators for $g(\theta)$. We say $Y_1, Y_2, ...$ is **consistent** for $g_9\theta$) if, for any $\theta \in \Theta$, $Y_1, Y_2, ...$ converges in probability to the constant value $g_9\theta$).

Remark. If $h : \mathbb{R}$ is continuous, and if $Y_1, Y_2, ...$ converges in probability to $c \in \mathbb{R}$, then $h(Y_1), h(Y_2), ...$ converges in probability to h(c).

Example: (6.31). Let $X_1, ..., X_n$ be a sample of size n with distribution f_{θ} . The WLLN states that the sample mean is consistent when $\mathbb{E}_{\theta}|X_1| < \infty$ for all $\theta \in \Theta$. The same holds for the j^{th} moment given that $\mathbb{E}_{\theta}|X_1|^j < \infty$ for all $\theta \in \Theta$. If we define

$$\mu_j(\theta) \coloneqq \mathbb{E}X_1^j \qquad \text{and } M_j(\theta) \coloneqq \frac{1}{n} \sum_{i=1}^n X_i^j$$

then $M_j(\theta)$ converges in probability to $\mu_j(\theta)$. This gives rise to the Method of Moments.

Definition: (6.32) Methods of Moments

Suppose we want to estimate $g(\theta)$ and suppose there exists $h : \mathbb{R}^j \to \mathbb{R}^k$ such that

$$g(\theta) = h(\mu_1, ..., \mu_j).$$

Then the estimator $h(M_1, ..., M_j)$ is called the **method of moments** estimator for $g(\theta)$.

Example: (6.33). Let $g(\theta)$ be the variance. We know $var(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2$. Then the MoM for $g(\theta)$ is $M_2 - M_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2$.

Example: Consistent but Biased Estimator. Following the previous example, define

$$Y_n := \sqrt{\sum_{i=1}^n X_i^2 / n - (\sum_{i=1}^n X_i / n)^2}.$$

Since $(a,b) \mapsto \sqrt{a-b^2}$ is continuous, and since $\sum_{i=1}^n X_i^2/n$ and $\sum_{i=1}^n X_i/n$ converge to $\mathbb{E}X^2$ and $\mathbb{E}X$ respectively, we claim that $Y_n \to \sqrt{\mathbb{E}X^2 - (\mathbb{E}X)^2}$ as $n \to \infty$. This implies that Y_n is *consistent*. However, Y_n is biased! Take n = 1 and X the uniform distribution on [0, 1]. Then

$$\mathbb{E}X = \frac{1}{2}, \mathbb{E}X^2 = \frac{1}{3}, \text{var}(X) = \frac{1}{12}, \text{ and } \sigma = \frac{1}{2\sqrt{3}}$$

On the other hand,

 $\mathbb{E}\sqrt{X^2 - X^2} = 0.$

Therefore Y_n is consistent but biased.

Beginning of March 25, 2022

Example: (6.34). Let $X_1, ..., X_n$ be a random sample of size n from $[0, \theta]$ where $\theta > 0$ is unknown. Previously we mentioned that $(1 + 1/n)X_{(n)}$ is UMVU for θ . Ont he other hand, $\mathbb{E}_{\theta}X_1 = \theta/2$ so the MoM estimator is $2/n \cdot \sum_{i=1}^n X_i.$ The variance of this estimator is

$$\frac{4}{n^2} \sum_{i=1}^{n} \operatorname{var}(X_i) = \frac{4}{n} \frac{\theta^2}{12} = \frac{\theta^2}{3n}.$$

The variance for the UMVU is

$$\operatorname{var}((1+1/n)X_{(n)}) = \left(\frac{n+1}{n}\right)^{2} \operatorname{var}(X_{(n)}) = \frac{(n+1)^{2}}{n^{2}} \mathbb{E}X_{(n)}^{2} - \theta^{2}$$
$$= \frac{(n+1)^{2}}{n^{2}} \int_{0}^{\theta} 2t \mathbb{P}(X_{(n)} > t) \, \mathrm{d}t - \theta^{2} = \dots = \frac{\theta^{2}}{n(n+2)}$$

From this we see that MoM might not be too good in terms of variance, in addition to its possibility of not being biased.

Example: (6.35). Suppose we have a binomial random variable with known parameters n, p where $0 . Then <math>\mathbb{E}X_1 = np$ and $\mathbb{E}X_1^2 = np(1-p) + n^2p^2$. Some algebra shows that $n = M_1/N$, where

$$N \coloneqq \frac{M_1^2}{M_1 - (M_2 - M_1^2)}$$

6.6 Maximum Likelihood Esimation

Beginning of March 28, 2022

Definition: (6.36) Maxiimum Likelihood Estimator, MLE

Let $X_1, ..., X_n$ be a random sample from f_θ where $\theta \in \Theta$. If $x = (x_1, ..., x_n) \in \mathbb{R}^n$, we define the **likelihood** function $\ell : \Theta \to [0, \infty)$ to be

$$\ell(\theta) \coloneqq \prod_{i=1}^n f_\theta(x_i).$$

The **maximum likelihood estimator**, MLE, *Y*, is the estimator maximizing the likelihood.

Remark. MLE might not exist. Even if it exists, it might not be unique and can in fact have uncountably many.

For the nonexistent one: let $f_{\theta}(x) \coloneqq \theta \cdot 1_{[0,1/\theta]}(x)$ where $\theta \in \mathbb{N}$. Then $\ell(\theta) = \theta$ has no maximum over $\theta \in \mathbb{N}$. However, note that if f_{θ} is continuous and Θ compact, then MLE at least exists.

For the uncountable one, let $f_{\theta}(x_1) \coloneqq \mathbb{1}_{[\theta, \theta+1]}(x_1)$ for x_1 and unknown $\theta \in \mathbb{R}$. Then

$$\ell(\theta) = \prod_{i=1}^n f_\theta(x_i) = \prod_{i=1}^n \mathbb{1}_{\left[\theta \le x_{(1)} \le x_{(n)} \le \theta + 1\right]}$$

If $x_1 = ... = x_n = 0$, then

$$\ell(\theta) = 1_{\theta \in [-1,0]}$$

That is, any $\theta \in [-1, 0]$ works as a MLE in this case.

Remark. We will show later that under certain conditions MLE is consistent and will have the optimal variance as $n \to \infty$.

Definition: (6.40) Log Concavity \Rightarrow Uniqueness of MLE If It Exists

If each function $\theta \mapsto f_{\theta}(x_i)$ is strictly log-concave, then for $x_1, ..., x_n \in \mathbb{R}$, then likelihood function has at most maximum value.

Note that this does not guarantee existence — for example e^{-x} is log-concave but does not have maximum on \mathbb{R} .

Example: (6.45 MLE and Gaussian). Consider a Gaussian with unknown $\mu \in \mathbb{R}$ and unknown $\sigma^2 > 0$ so $\theta = (\mu, \sigma)$. Suppose we want to find the MLE for the pair (μ, θ) . Here we maximize $\log \ell(\theta)$:

$$\log \ell(\theta) = \log \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) = \sum_{i=1}^{n} \left[-\log \sigma - \frac{\log 2\pi}{2} - \frac{(x_i - \mu)^2}{2\sigma^2}\right].$$

Computing its partials,

$$\frac{\partial}{\partial \mu} \log \ell(\theta) = \frac{x_i - \mu}{\sigma^2} \qquad \frac{\partial}{\partial \sigma} \log \ell(\theta) = \sum_{i=1}^n -\frac{1}{\sigma} + \frac{(x_i - \mu)^2}{\sigma^3}.$$

Setting them to 0, we obtain

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2.$$

(Note that we did not get 1/(n-1) for σ^2 , but nevertheless this is still pretty good.) Now that we found a critical point, we need to verify that it is a maximum. Write $\alpha \coloneqq 1/\sigma^2$. Then

$$\log \ell(\theta) = \frac{1}{2} \left(\sum_{i=1}^{n} \log \alpha - \log 2\pi - \alpha (x_i - \mu)^2 \right)$$

For fixed α , $\log \ell(\theta)$ is strictly concave function of μ ; likewise, fixing μ , $\log \ell(\theta)$ is a strictly concave function of α (alternatively, do first derivative test on σ), so the critical point must have been a global maximum. We have therefore found *the* (only) MLE:

$$\theta = (\mu, \sigma^2) = \left(\frac{1}{n} \sum_{i=1}^n X_i, \frac{1}{n} \sum_{i=1}^n (X_i - \frac{1}{n} \sum_{i=1}^n X_i)^2\right).$$

Note that such MLE is biased for σ^2 but asymptotically unbiased.

Beginning of April 8, 2022

Theorem: (6.52) Consistency of MLE

Let $X_1, X_2, ... : \Omega \to \mathbb{R}^n$ be i.i.d. with pdf f_{θ} . Suppose Θ is compact and $f_{\theta}(x_1)$ is a continuous function for θ for a.e. $x_1 \in \mathbb{R}$. Assume $\mathbb{E}_{\theta} \sup_{\theta' \in \Theta} |\log f_{\theta'}(X_1)| < \infty$ and $\mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$ for all $\theta' \neq \theta$. Then the MLE Y_n of θ converges in probability to the constant function θ with respect to \mathbb{P}_{θ} . **Proof for finiteh** Θ . Fix $\theta \in \Theta$. For $\theta' \in \Theta$ and $n \ge 1$, let

$$\ell_n(\theta') \coloneqq \frac{1}{n} \sum_{i=1}^n \log f_{\theta'}(X_i).$$

Note that each $\log f_{\theta'}(X_i)$ is a random variable with finite expectation, so by WLLN, $\ell_n(\theta')$ converges in probability with respect to \mathbb{P}_{θ} to the constant $\mu(\theta') \coloneqq \mathbb{E}_{\theta} \log f_{\theta'}(X_1)$.

Enumerate Θ as $\{\theta, \theta_1, ..., \theta_k\}$. Since $\mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$ for all $\theta' \neq \theta$, we have by information inequality that $I(\theta, \theta') = \mu(\theta) - \mu(\theta') > 0$.

For $n \ge 1$, define

$$\Omega \supset A_n := \{\ell_n(\theta) > \ell_n(\theta_i) \text{ for all } 1 \le j \le k\}$$

Then $\lim_{n\to\infty} \mathbb{P}_{\theta}(A_n) = 1$ because $\ell_n(\theta) \to \mu(\theta)$ in probability and $\ell_n(\theta_j) \to \mu(\theta') < \mu(\theta)$ in probability for each j and there are only finitely many j's. (For infinite case the proof needs to be modified). By convergence in probability,

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(|\ell_n(\theta) - \mu(\theta)| > \epsilon) = \lim_{n \to \infty} \mathbb{P}_{\theta}(|\ell_n(\theta') - \mu(\theta')| > \epsilon_0 = 0.$$

Using triangle inequality,

$$|\ell_n(\theta) - \ell_n(\theta_j)| = |\ell_n(\theta) - \mu(\theta) + \mu(\theta) - \mu(\theta_j) + \mu(\theta_j) - \ell_n(\theta_j)$$

where the first two terms are $\langle \epsilon$, last two $\langle \epsilon$, and the middle two can be $> 3\epsilon$ for small ϵ . Then the entire thing $> \epsilon$. Taking maximum index over all *j*'s again,

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(|\ell_n(\theta) - \ell_n(\theta_j)| > \epsilon \text{ for all } 1 \le j \le k) = \lim_{n \to \infty} \mathbb{P}_{\theta}(A_n) = 1$$

On each A_n , the MLE Y_n is well-defined and unique with $Y_n = \theta$, so $\{Y_n = \theta\}^c \subset A_n^c$. Using $\lim_{n \to \infty} \mathbb{P}(A_n) = 1$ we have

$$\lim_{n \to \infty} \mathbb{P}_{\theta}(|Y_n - \theta| > \epsilon) \leq \lim_{n \to \infty} \mathbb{P}_{\theta}(A_n^c) = 0.$$

Beginning of April 11, 2022

We now give a powerful theorem on the asymptotic variance of MLE and claim that it achieves it asymptotically achieve the Cramér-Rao lower bound.

Theorem: (6.53) Limiting Distribution of MLE

(Think of this as an analogue to the CLT/Delta.) Let $\{f_{\theta} : \theta \in \Theta\}$ be a family of PDFs with $f_{\theta} : \mathbb{R} \to [0, \infty)$ for all θ . Let X_1, X_2, \ldots be i.i.d. with distribution f_{θ} . Assume that

- (1) The set $A := \{x \in \mathbb{R} : f_{\theta}(x) > 0\}$ is independent of θ ,
- (2) For every $x \in A$, $\partial^2 f_{\theta}(x) / \partial \theta^2$ exists and is continuous in θ ,
- (3) The Fisher information $I_{X_1}(\theta)$ exists and is finite with

$$\mathbb{E}_{\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \log f_{\theta}(X_1) = 0 \quad \text{and} \quad I_{X_1}(\theta) = -\mathbb{E}_{\theta} \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log f_{\theta}(X_1) > 0,$$

(4) For every θ in the interior of Θ , there exists $\delta > 0$ such that

$$\mathbb{E}_{\theta} \sup_{\theta' \in \Theta} \left| \mathbb{1}_{[\theta - \delta, \theta + \delta]} \frac{\mathrm{d}^2}{\mathrm{d}[\theta']^2} \log f_{\theta'}(X_1) \right| < \infty,$$

and

(5) The MLE Y_n of θ is consistent.

Then, for any θ in the interior of Θ , as $n \to \infty$, $\sqrt{n}(Y_n - \theta)$ converges in distribution to a mean zero Gaussian with variance $1/I_{X_1}(\theta)$ w.r.t. \mathbb{P}_{θ} .

Proof. We assume Θ is finite for simplicity (in which case (4) is trivial). Fix $\theta \in \Theta$. Define the log-likelihood to be

$$\ell_n(\theta') \coloneqq \frac{1}{n} \sum_{i=1}^n \log f_{\theta'}(X_i).$$

Assuming Θ is finite, let $\epsilon > 0$ be small so that $[\theta - \epsilon, \theta + \epsilon] \cap \Theta = \{\theta\}$. Let A_n be the event where $Y_n = \theta$, and by (5) we have $\lim_{n \to \infty} \mathbb{P}(A_n) = 1$. Since Y_n is MLE, we have $\ell'_n(Y_n) = 0$ on Y_n (assuming the notion of derivative works in a finite domain, thought in actuality it doesn't). Taylor expansion gives

$$0 = \ell'_n(Y_n) = \ell'_n(\theta) + \ell''_n(Z_n)(Y_n - \theta) \quad \text{if } A_n \text{ occurs},$$

for some Z_n always lying between θ and Y_n . Therefore

$$\sqrt{n}(Y_n - \theta) = \frac{\sqrt{n}\ell'_n(\theta)}{-\ell''_n(Z_n)} \qquad \text{if } A_n \text{ occurs.} \tag{(*)}$$

By (3), each term in $\ell'_n(\theta)$ has mean zero and variance $I_{X_1}(\theta)$, so $\sqrt{n}\ell'_n(\theta)$ converges in distribution to a mean zero Gaussian with variance $I_{X_1}(\theta)$ by CLT.

For the denominator, first note that by (5), Y_n converges to θ , the constant. Then by (4) and WLLN, $\ell''_n(\theta)$ converges in probability to $\mathbb{E}_{\theta}\ell''_n(\theta)$, where $\ell''_n(\theta)$ is simply a fixed value. Therefore the denominator converges in probability to $\mathbb{E}_{\theta}\ell''_n(\theta) = -I_{X_1}(\theta)$. Therefore, (*) implies that $\sqrt{n}(Y_n - \theta)$ converges to a Gaussian with mean 0 and variance $1/I_{X_1}(\theta)$, as claimed.

Beginning of April 13, 2022

6.7 EM Algorithm

Let $X : \Omega \to \mathbb{R}^n$ be a random variable. Let $h : \mathbb{R}^n \to \mathbb{R}^m$ be non-invertible and let Y := t(X). Sometimes we want to ideally observe the sample X but in really we only have access to Y.

Suppose *X* has a distribution from $\{f_{\theta} : \theta \in \Theta\}$. To find the MLE of θ , we want to maximize

$$\log \ell(\theta) = \log f_{\theta}(X).$$

Yet, since X cannot be directly observed we cannot maximize the above. Instead, we try to approximate the maximum value by conditioning on Y.

Definition 6.7.1: Expectation-Maximization Algorithm

Initialize $\theta_0 \in \Theta$. Fix $k \ge 1$. For $1 \le j \le k$, repeat the following procedure:

- (1) (Expectation) Given θ_{j-1} , let $\varphi_j(\theta) \coloneqq \mathbb{E}_{\theta_{j-1}}(\log f_{\theta}(X) | Y)$, and
- (2) (Maximization) Define $\theta_j \coloneqq \operatorname{argmax} \varphi_j(\theta)$.

Beginning of April 15, 2022

A few examples:

- (1) If Y = X the whole sample then Y is sufficient. We have $\varphi_1(\theta) = \log f_{\theta}(X)$ so we get MLE in one run.
- (2) If *Y* is constant, $\varphi_1(\theta) = \mathbb{E}_{\theta 0} \log f_{\theta}(X)$. We get $\theta = \theta_0$ in one run according to the likelihood inequality, and we keep getting this result iteratively.
- (3) Let $t(x_1, ..., x_n) = (x_1, ..., x_m)$ where m < n. Then

$$\varphi_{j}(\theta) = \mathbb{E}_{\theta_{j-1}} \Big(\sum_{i=1}^{n} \log f_{\theta}(X_{i}) \mid (X_{1}, ..., X_{m}) \Big)$$

= $\mathbb{E}_{\theta_{j-1}} \Big(\sum_{i=1}^{m} \log f_{\theta}(X_{i}) \mid (X_{1}, ..., X_{m}) \Big) + \mathbb{E}_{\theta_{j-1}} \Big(\sum_{i=m+1}^{n} \log f_{\theta}(X_{i}) \mid (X_{1}, ..., X_{m}) \Big)$
= $\sum_{i=1}^{m} \log f_{\theta}(X_{i}) + \mathbb{E}_{\theta_{j-1}} \sum_{i=m+1}^{n} \log f_{\theta}(X_{i}).$

We now provide a "measure of progress" of the EM algorithm.

Proposition: (6.58)

Suppose X has density f_{θ} and $Y \coloneqq t(X)$ has density h_{θ} . We denote $g_{\theta}(x \mid y) \coloneqq f_{X|Y}(x \mid y)$. Then for any $\theta \in \Theta$,

$$\log h_{\theta}(Y) - \log h_{\theta_{j-1}}(Y) \ge \varphi_j(\theta) - \varphi_j(\theta_{j-1})$$

with equality only when $g_{\theta}(X \mid y) = g_{\theta_{j-1}}(X \mid y)$ a.s. w.r.t. $\mathbb{P}_{\theta_{j-1}}$ for fixed y.

Proof. Since $f_{X,Y}(x,y) = f_{X|Y}(x \mid y)f_Y(y)$, we have

$$\log f_Y(y) = \log f_{X,Y}(x,y) - \log f_{X|Y}(x \mid y).$$

Since Y = t(X), we have $f_{X,Y}(x, y) = f_X(x) \mathbb{1}_{y=t(x)}$. Hence, when y = t(x),

$$\log f_Y(y) = \log f_X(x) - \log f_{X|Y}(x \mid y) = \log f_\theta(x) - \log f_{X|Y}(x \mid y)$$

That is,

$$\log h_{\theta}(y) = \log f_{\theta}(x) - \log g_{\theta}(x \mid y).$$

Multiplying by $h_{\theta_{i-1}}(x \mid y)$ and integrating in *x*, we have

$$\mathbb{E}_{\theta_{j-1}}(\log h_{\theta}(Y) \mid Y = y) = \mathbb{E}_{\theta_{j-1}}(\log f_{\theta}(X) \mid Y = y) - \mathbb{E}_{\theta_{j-1}}(\log g_{\theta}(X \mid y) \mid Y = y) \quad \text{for all } \theta \in \Theta.$$

Since the above holds for any θ , in particular we can set $\theta \coloneqq \theta_{j-1}$. Note that the first term is simply $\log h_{\theta}(y)$. Subtracting gvies

$$\log h_{\theta}(y) - \log h_{\theta_{j-1}}(y) = \mathbb{E}_{\theta_{j-1}}(\log f_{\theta}(X) \mid Y = y) - \mathbb{E}_{\theta_{j-1}}(\log f_{\theta_{j-1}}(X) \mid Y = y) - \mathbb{E}_{\theta_{j-1}}(\log g_{\theta}(X \mid y) \mid Y = y) + \mathbb{E}_{\theta_{j-1}}(\log g_{\theta_{j-1}}(X \mid y) \mid Y = y).$$

By likelihood inequality, the sum of the last two terms should be positive, and we recover our claim.

Proposition: (6.59) EM Algorithm Improvement

Let $\theta_1, ..., \theta_k$ be an output of the EM algorithm. Then for all $1 \le j \le k$,

$$\log h_{\theta_j}(Y) \ge \log h_{\theta_{j-1}}(Y).$$

Moreover, equality occurs only when $g_{\theta_j}(X \mid y) = g_{\theta_{j-1}}(X \mid y)$ a.e. w.r.t. $\mathbb{P}_{\theta_{j-1}}$ for fixed y or when $\theta_j = \theta_{j-1}$.

Chapter 7

Resampling & Bias Reduction

Idea. For a fixed sample size n, there are ways to reduce the bias of an estimator on n samples by re-sampling from the n samples given.

7.1 Jackknife Resampling

Definition: (7.1) Jackknife Estimator

Let $X_1, X_2, ... : \Omega \to \mathbb{R}$ be i.i.d. with distribution $f_{\theta} : \mathbb{R}^n \to [0, \infty)$. Suppose $Y_1, Y_2, ...$ are estimators for θ so that $Y_n = t_n(X_1, ..., X_n)$. For $n \ge 1$, we define the **jackknife estimator** of Y_n to be

$$Z_n \coloneqq nY_n - \frac{n-1}{n} \sum_{i=1}^n t_{n-1}(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n).$$

Proposition: (7.2) Jackknife Reduces Bias

Suppose there exist $a, b \in \mathbb{R}$ such that

$$\mathbb{E}Y_n = \theta + \frac{a}{n} + \frac{b}{n^2} + \mathcal{O}(1/n^3).$$

Then

$$\mathbb{E}Z_n = \theta + \mathcal{O}(1/n^2)$$

and if b = 0 and $\mathcal{O}(1/n^3) = 0$ then Z_n is unbiased.

Proof.

$$\mathbb{E}Z_n = n\theta + a + \frac{b}{n} + \mathcal{O}(1/n^2) - \frac{n-1}{n} \sum_{i=1}^n \mathbb{E}t_{n-1}(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$$

= $n\theta + a + \frac{b}{n} + \mathcal{O}(1/n^2) - \frac{n-1}{n} \sum_{i=1}^n \left(\theta + \frac{a}{n-1} + \frac{b}{(n-1)^2} + \mathcal{O}(1/n^3)\right)$
= $\theta + \frac{b}{n} - \frac{b}{n-1} + \mathcal{O}(1/n^2) = \theta + \mathcal{O}(1/n^2).$

Example: (7.3) Jackknife and Sample Mean. The jackknife estimator of the sample mean is the sample mean:

$$\sum_{i=1}^{n} X_{i} - \frac{n-1}{n} \sum_{i=1}^{n} \frac{1}{n-1} \sum_{j \neq i} X_{j} = \sum_{i=1}^{n} X_{i} - \frac{n-1}{n} \sum_{i=1}^{n} X_{i} = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

Example: (7.4) Jackknife and Bernoulli. Let $X_1, ..., X_n$ be i.i.d. Bernoulli with parameter $\theta \in (0, 1)$. Then the MLE for θ is the sample mean so that for θ^2 is simply sample mean squared $Y_n := \left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2$. Then

$$\mathbb{E}Y_n = \frac{1}{n^2}(n\theta + n(n-1)\theta^2) = \theta^2 + \frac{\theta - \theta^2}{n}$$

so the corresponding jackknife estimator is unbiased for θ^2 .

Chapter 8

Concentration of Measure

Beginning of April 22, 2022

Theorem: (8.1) Hoeffding Inequality

Let X_1, X_2, \dots be i.i.d. with $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$. Let $a_1, a_2, \dots \in \mathbb{R}$. Then for $n \ge 1$ and $t \ge 0$,

$$\mathbb{P}\left(\sum_{i=1}^{n} a_i X_i \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} a_i^2}\right) \qquad \text{and therefore} \qquad \mathbb{P}\left(\left|\sum_{i=1}^{n} a_i X_i\right| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^{n} a_i^2}\right).$$

Proof. We may assume $\sum_{i=1}^{n} a_i^2 = 1$. Let $\alpha > 0$. Then

$$\mathbb{P}\left(\sum_{i=1}^{n} a_i X_i \ge t\right) = \mathbb{P}\left(\exp\left(\alpha \sum_{i=1}^{n} a_i X_i\right) \ge e^{\alpha t}\right)$$

$$\leqslant e^{-\alpha t} \mathbb{E} \exp\left(\alpha \sum_{i=1}^{n} a_i X_i\right) = e^{-\alpha t} \mathbb{E} \prod_{i=1}^{n} e^{\alpha a_i X_i} = e^{-\alpha t} \prod_{i=1}^{n} \mathbb{E} e^{\alpha a_i X_i}$$

$$= e^{-\alpha t} \prod_{i=1}^{n} \frac{e^{\alpha a_i} + e^{-\alpha a_i}}{2} = e^{-\alpha t} \prod_{i=1}^{n} \cosh(\alpha a_i)$$

$$\leqslant e^{-\alpha t} \prod_{i=1}^{n} e^{\alpha^2 a_i^2/2} = e^{-\alpha t + \alpha^2/2}.$$

The LHS is independent of α . Letting $\alpha \coloneqq t$ we have $\mathbb{P}\left(\sum_{i=1}^{n} a_i X_i \ge t\right) \le e^{-t^2 + t^2/2} = e^{-t^2/2}$.

Theorem: (8.3) Chernoff Inequality

Let $0 and let <math>X_1, X_2, \dots$ be i.i.d. Bernoulli. Then for $n \ge 1$,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge t\right) \le e^{-np}\left(\frac{ep}{t}\right)^{tn} \qquad \text{for } t \ge p.$$

Theorem: (8.5) Concentration of Measure for Gaussians

Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz with constant 1, i.e., $|f(x) - f(y)| \le ||x - y||$. Let $X = (X_1, ..., X_n)$ be a mean zero Gaussian random vector with identity covariance matrix (or i.i.d. standard Gaussians). Then for t > 0,

$$\mathbb{P}(x \in \mathbb{R}^n : |f(x) - \mathbb{E}f(X)| \ge t) \le 2e^{-2t^2/\pi^2}$$

Beginning of April 25, 2022

Proof. We assume all partial derivatives of f exist and are continuous. Let $Y = (Y_1, ..., Y_n)$ be another mean zero Gaussian vector with identity covariance matrix and X and Y are independent. Then, for $\theta \in [0, \pi/2]$ define

$$Z_{\theta} \coloneqq X \sin \theta + Y \cos \theta.$$

We have

$$\frac{\mathrm{d}}{\mathrm{d}\theta} Z_{\theta} = X \cos \theta - Y \sin \theta.$$

Note that $X_1 \sin \theta + Y_1 \cos \theta$ is a Gaussian with mean zero and variance 1, and so is $X_1 \cos \theta - Y_1 \sin \theta$. But then their covariance is

$$\mathbb{E}(X_1 \sin \theta + Y_1 \cos \theta)(X_1 \cos \theta - Y_1 \sin \theta) = \mathbb{E}X_1^2 \sin \theta \cos \theta - \mathbb{E}Y_1^2 \sin \theta \cos \theta - \mathbb{E}X_1 Y_1 \sin^2 \theta + \mathbb{E}X_1 Y_1 \cos^2 \theta$$
$$= \mathbb{E}X_1^2 \sin \theta \cos \theta - \mathbb{E}Y_1^2 \sin \theta \cos \theta - 0 + 0 = 0.$$

Jointly uncorrelated Gaussians are independent so Z_{θ} and $\frac{d}{d\theta}Z_{\theta}$ are. Note that $Z_0 = Y$ and $Z_{\pi/2} = X$. Also, since $(\sin \theta, \cos \theta)$ and $(\cos \theta, -\sin \theta)$ are orthogonal, $(Z, dZ_{\theta}/d\theta)$ have the same joint distribution as X and Y.

Let $\varphi : \mathbb{R} \to [0, \infty)$ be convex. Then,

$$\mathbb{E}\varphi[f(X) - \mathbb{E}f(Y)] \leq \mathbb{E}\varphi(f(X) - f(Y))$$
(Jensen)

$$= \mathbb{E}\varphi\left(\int_{0}^{\pi/2} \frac{\mathrm{d}}{\mathrm{d}\theta}f(Z_{\theta}) \,\mathrm{d}\theta\right)$$
(FTC)

$$= \mathbb{E}\varphi\left(\int_{0}^{\pi/2} \left(\nabla f(Z_{\theta}), \frac{\mathrm{d}}{\mathrm{d}\theta}Z_{\theta}\right) \,\mathrm{d}\theta\right)$$
(FTC)

$$= \mathbb{E}\varphi\left(\frac{1}{\pi/2} \int_{0}^{\pi/2} \frac{\pi}{2} \left(\nabla f(Z_{\theta}), \frac{\mathrm{d}}{\mathrm{d}\theta}Z_{\theta}\right) \,\mathrm{d}\theta\right)$$
(Jensen again)

$$\leq \frac{1}{\pi/2} \mathbb{E} \int_{0}^{\pi/2} \mathbb{E}\varphi\left(\frac{\pi}{2} \left(\nabla f(Z_{\theta}), \frac{\mathrm{d}}{\mathrm{d}\theta}Z_{\theta}\right)\right) \,\mathrm{d}\theta$$
(Jensen again)

$$= \frac{1}{\pi/2} \int_{0}^{\pi/2} \mathbb{E}\varphi\left(\frac{\pi}{2} \left(\nabla f(Z_{\theta}), \frac{\mathrm{d}}{\mathrm{d}\theta}Z_{\theta}\right) \,\mathrm{d}\theta$$
(Fubini)

$$= \frac{1}{\pi/2} \int_{0}^{\pi/2} \mathbb{E}\varphi\left(\frac{\pi}{2} \left(\nabla f(X), Y\right)\right) \,\mathrm{d}\theta$$
($(\langle Z, \mathrm{d}Z_{\theta}/\mathrm{d}\theta \rangle \sim (X, Y))$)

$$= \frac{1}{\pi/2} \frac{\pi}{2} \mathbb{E}\varphi\left(\frac{\pi}{2} \left(\nabla f(X), Y\right)\right) = \mathbb{E}\varphi\left(\frac{\pi}{2} \left(\nabla f(X), Y\right)\right).$$

Let $\alpha \in \mathbb{R}$ and $\varphi(x) \coloneqq e^{\alpha x}$ for $x \in \mathbb{R}$. Then

$$\mathbb{E}\exp(\alpha[f(X) - \mathbb{E}f(Y)]) \leq \mathbb{E}\exp\left(\alpha\frac{\pi}{2}\sum_{i=1}^{n}\frac{\partial f(X)}{\partial x_{i}} \cdot Y_{i}\right)$$
$$= \mathbb{E}_{X}\prod_{i=1}^{n}\mathbb{E}_{Y}\exp\left(\alpha\frac{\pi}{2}\frac{\partial f(X)}{\partial x_{i}} \cdot Y_{i}\right)$$

where we can split the expectation of product into product of expected value because the Y_i 's are independent (we don't care about the behavior of X_i 's in this step).

By the property of MGF, for all $s \in \mathbb{R}$ and all $1 \leqslant i \leqslant n,$

$$\mathbb{E}_Y \exp(sY_i) = e^{s^2/2}.$$

Continuing the inequality above with $s \coloneqq \alpha \frac{\pi}{2} \frac{\partial f(X)}{\partial x_i}$, we have

$$\mathbb{E}\exp(\alpha[f(X) - \mathbb{E}f(Y)]) \leq \mathbb{E}\exp\left(\alpha^2 \frac{\pi^2}{8} \sum_{i=1}^n \left(\frac{\partial f(X)}{\partial x_i}\right)^2\right).$$

Since f is 1-Lipschitz, $\|\nabla f(x)\| \leq 1$, so we further bound the quantity by $\exp(\alpha^2 \pi^2/8)$. Then,

$$\mathbb{P}(f(X) - \mathbb{E}f(Y) > t) = \mathbb{P}(\exp(\alpha[f(X) - \mathbb{E}f(Y)]) > e^{\alpha t})$$
$$\leq e^{-\alpha t} \exp(\alpha^2 \pi^2/8) = \exp(-\alpha t + \alpha^2 \pi^2/8).$$

Like in Hoeffding, the LHS is independent of α . The RHS is minimized when $\alpha = 4t/\pi^2$, and when so we obtain

$$\mathbb{P}(f(X) - \mathbb{E}f(Y) > t) \leq \exp(-2t^2/\pi^2).$$

A symmetric argument to $\mathbb{P}(f(X) - \mathbb{E}f(Y) < -t)$, giving

$$\mathbb{P}(|f(X) - \mathbb{E}f(Y)| > t) \le 2\exp(-2t^2/\pi^2).$$