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Beginning of 08/26/2024

1 Introduction

Before we dive into approximation algorithms, it is worth noting that optimization problems (the ones that out-

put numerical values) are closely related to decision problems (the ones that output yes or no), which we have

previously studied. To draw a few connections:

• 3SAT. Given a 3-conjunctive normal form1...

– (Decision) Does there exist an assignment of variables to satisfy all clauses?

– (Optimization) Find an assignment of variables that maximizes the number of satisfied clauses.

• GRAPH COLORING. Given a graph G = (V,E)...

– (Decision) Is it possible to properly color2 G using k colors?

– (Optimization) Find the minimum k to properly color G.

• VERTEX COVER. Given a graph G = (V,E)...

– (Decision) Is there a set ∣S∣ = k of vertices such that for every edge e = (u, v), ∣{u, v} ∩ S∣ ⩾ 1?

– (Optimization) Find a vertex cover S of minimal cardinality.

– Note this problem is equivalent to INDEPENDENT SET: find a maximal subset S ⊂ V such that for any

u, v ∈ S, edge (u, v) does not exist. This is based on the following observation:

(S is an independent set) ⇐⇒ (no edge has both endpoints in S)

⇐⇒ (each edge has ⩾ 1 endpoint(s) in Sc) ⇐⇒ (Sc is a vertex cover)

and so the equivalence is given by

(G has an independnet set of size ⩾ k) ⇐⇒ (G has a vertex cover of size ⩽ ∣V ∣ − k).

1.1 Formulations of Optimization Problems

An optimization problem has four components:

(1) Input to the problem.

(2) Set of feasible solutions (e.g. in VERTEX COVER, the set of all valid vertex covers). Also known as constraints.

(3) Objective function, also known as constraints. Maps feasible solutions to numbers (e.g. cardinality of vertex

covers).

(4) Maximization or minimzation (e.g. minimize in VERTEX COVER, maximize in INDEPENDENT SET).

In general, for problems that we cannot provide efficiently provide an optimal solution, we resort to designing

an approximation algorithm as a workaround. Instead of demanding optimality, we require a worst-case quality

assurance:

1A formula consisting of ANDs of any number of clauses, where each clause is the ORs of exactly three literals.
2No vertices that share an edge should be colored the same.
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Definition

For a minimization [resp. maximization] problem, an algorithm ALG is called an α-approximation, α ⩾ 1

[resp. α ⩽ 1], if for all input instances I, ALG(I) ⩽ α ⋅ OPT(I) [resp. ⩾].

With these definitions, we briefly categorize algorithms to the following classes:

• Exact algorithms. These are algorithms that solve optimization problems to optimality (obtains exact maxi-

mizer / minimizer).

• PTAS (polynomial time approximation schemes). An algorithm that provides a solution within a factor 1 ± ε of

being optimal given any ε > 0, but as ε→ 0 the running time blows up.

• Constant approximation O(1). An algorithm that does not yield optimal solution, but the quality of approxi-

mation does not degrade as input size increases. Value of α bounded from above.

• Superconstant, e.g. O(logN), O(N c), etc. The quality of approximation decays as input size increases.

A (probably) counterintuitive fact is that questions that can be Karp reduced to each other need not necessar-

ily have the same approximation difficulty. For example, VERTEX COVER have 2-approximations (hence constant

approximation), but INDEPENDENT SET is of O(N c), one of the most resistant problems to approximation.

4
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2 Approximations of VERTEX COVER

Let us return to the VERTEX COVER problem.

Given G = (V,E), find a S ⊂ V of minimal cardinality such that for all e =
(u, v) ∈ E, ∣{u, v} ∩ S∣ ⩾ 1.

2.1 Greedy Approaches

The most intuitive approach would be to greedily select the vertex with highest degree, and iteratively repeat this

process — after all, we want to more edges with fewer vertices, so high-degree vertices seem to be a natural choice.

Unfortunately, curated examples show that this algorithm is of approximation factor Ω(logn) (in fact it is Θ(logn)).

A “bad” graph for the naïve greedy algorithm.

Left

n

Right

n/2, each with degree 2

n/3, each with degree 3

n/n = 1, fully connected to left

Consider a bipartite graph. The left component consists of n

nodes/vertices. The right component consists of n − 1 blocks, each

with n/j nodes, j ∈ [n]3. This way, the right component has a total

of approximately n logn nodes.

For each right side block of size n/j, we assume that each node has

degree j, and that they all are connected to different nodes on the

left side. (For example, the first node in the n/2 component can

connect to the first two in the left component, and the second node

in the n/2 component can connect to the 3rd and 4th on the left side,

and so on.)

Now, what will our naïve greedy algorithm do? First, it will pick the one single node from the bottom right

component since it has degree n and no other node does (the ones on left side each are connected to n − 1 nodes,

one from each block on the right). After picking this node and removing all the connected edges, in the remaining

graph, the nodes in the n/(n − 1) block have degrees n − 1, whereas the left nodes now have degrees n − 2. So we

pick the nodes in the n/(n − 1) block. Iteratively, we see that we never get to pick the nodes from the left, and in

the end we must have picked every single node on the right. That is O(n logn) nodes, whereas we clearly see that

an more optimal solution is to just pick every node on the left, a total of O(n) nodes.

From this instance alone we see that our algorithm must have an approximation factor ⩾ logn. (And we’ll see later

that this algorithm is isomorphic to a logn-approximation algorithm of SET COVER, so here the optimality factor

Ω(logn) becomes Θ(logn).)

The fix, though seemingly less reasonable than the naïve greedy algorithm, is to add both vertices of the same edge

in each iteration, and discard all edges that are not completely disjoint from our set:

3i ∈ [n] is an abbreviation of 1 ⩽ i ⩽ n.
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Algorithm 1: Improved Greedy Algorithm

1 Inputs: graph G = (V,E)

2 start with S = ∅
3 while S is not a vertex cover do

4 choose any edge e = (u, v) with ∣{u, v} ∩ S∣ = 0

5 S ← S ∪ {u, v}

6 return S

Indeed, even for simple cases, we see that sometimes this algorithm fails to choose opti-

mally. Consider the following graph: it is clear that there exists a set of 3 vertices that

covers the graph, but our algorithm terminates after 2 iterations, resulting in a total of

4 vertices being picked. Nevertheless, the following proof shows that this algorithm is a

2-approximation.

Beginning of 08/28/2024

Proof. Another way to view this algorithm is by paying attention to the edges it has selected among the iterations

(i.e., the e instead of the {u, v}). The key observation of this proof lies in the following fact: for the edges chosen

by this algorithm (call it ALG), they all are incident on two distinct sets of vertices. In other words, these chosen

edges cannot share any common endpoint. A matching!

Suppose our graph G has a matching of size k. Consider any vertex cover and any edge e = (u, v). It follows that

either u and/or v is in the cover. That we have a matching of size k means we have k mutually disjoint edges,

so the vertex cover must contain one endpoint from each edge, resulting in a cardinality of ⩾ k. In particular, if

G admits a matching of size n, then the optimal vertex cover must also have at least k vertices.

Assuming the previous notations, our outputted vertex cover by ALG contains both endpoints of each edge of

the matching, so its cardinality is 2k. The previous paragraph showed that OPT has at least k vertices. Hence

ALG achieves an approximation factor of 2, completing the proof.

Remark. We will later show that optimal solution exist on bipartite graphs.

Remark. When the optimal solution isn’t accessible, a common trick is that we compare it against a surro-

gate that serves as a stand-in for the optimal value, providing a lower bound (e.g., in the previous problem,

the optimal vertex cover has at least size k). This approach allows us to establish a worst-case approximation

factor.

2.2 Threshold Rounding

Another way to construct a 2-approximation algorithm for VERTEX COVER is by relaxing the problem and drawing

some connection to linear programming (LP). The main idea is simple: we want to assign binary values xv to each

vertex v while preserving the algebraic structures of the original problem:

6
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min
v∈V

xv subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xu + xv ⩾ 1 for each edge (u, v) ∈ E

xv ∈ {0,1} for each v ∈ V.

However, a problem immediately arises: the feasible set is not convex! Consider the simplest graph of one edge

and two vertices u, v. We can set either one to be 1 and the other to be 0, but taking the average, xu = xv = 0.5, no

longer a feasible solution. The fix? We deviate from the original problem and allow fractional values for xv:

min
v∈V

xv subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xu + xv ⩾ 1 for each edge (u, v) ∈ E

xv ∈ [0,1] for each v ∈ V.
(1)

Notice that we can still assume xv ∈ [0,1] since if xv > 1, we can simply set xv to be 1 to further decrease the

objective function. We will assume the fact that there are polynomial-time algorithms that solve these type of LP.

A few problems nevertheless persist. Firstly, how do we define an approximation factor? Now we have three quanti-

ties: the output of our algorithm, the output of the optimal solution to VERTEX COVER, and the output of the optimal

solution to LP. Let us call these ALG,OPT(VC), and OPT(LP), respectively. Immediately we have the following

inequality:

ALG ⩾ OPT(VC) ⩾ OPT(LP) (2)

where the first ⩾ follows from the optimality of OPT(VC) on VERTEX COVER, and the second ⩾ follows from the

fact that the LP has less constraints than VERTEX COVER. Therefore we can consider the ratio between ALG and

OPT(LP) and define an approximation factor out of it.

Second problem: how do we recover an ALG from OPT(LP) that makes sense? The answer here is via rounding:

given our optimal fractional solution, we want to recover an integer solution from which we can extract a valid

vertex cover. And most naturally we round our fractional values to 0 and 1 with a threshold of 0.5: if xv ⩾ 0.5 we

round it to 1, and 0 otherwise.

Proof that rounding is a 2-approximation. We first observe that rounding yields a valid vertex cover: for any

edge e = (u, v), if xu + xv = 0 post-rounding, then it means xu, xv are both < 0.5 pre-rounding, contradicting the

constraints in (1). Therefore each edge has at least one value of 1 after rounding, i.e., this is a valid vertex cover.

To see this algorithm has an approximation factor of 2, we note that the values assigned to each edge is at most

doubled (0.5 to 1). Therefore the objective is at most doubled.

Third problem: OPT(LP ) is just as elusive as OPT(VC), not to mention we obtained it using a LP-solving black box.

What is going on here? To answer this question, we will introduce a common technique in LP:

2.3 The Primal-Dual Method

The primal-dual method is used in LP as a tool to provide an alternative perspective that sometimes reveals

additional relationships between constraints and objective function values. With the help of strong or weak duality,

this method helps derive bounds or even optimal values for our objective functions, as we will see below.

Overall, the transformation of primal LP into dual LP assumes the following form:

Primal ∶ min{cTx ∣ Ax ⩾ b, x ⩾ 0} ⇐⇒ Dual ∶ max{bT y ∣ AT y ⩽ c, y ⩾ 0} (3)

7
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In slightly more details:

• Dual variables correspond to primal constraints: for each constraint in the primal, define a dual variable y. In

the VERTEX COVER example, each constraint is of form xu + xv ⩾ 1, one for each edge (u, v), so a dual variable

would be defined w.r.t. edges: ye, e ∈ E.

• Dual constraints correspond to primal variables: for each variable in the primal, there will be a constraint in

the dual. The primal coefficient for each vertex is 1, so the dual constraint requires

∑
edge e incident to v

ye ⩽ 1 for all v ∈ V.

• If the primal is a minimization problem, the dual will be a maximization. Vice versa. In our example, the dual

would be a maximization.

• The signs of dual variables also correspond to the primal constraints. If the primal constraint is ⩽, the corre-

sponding dual variable is non-negative. This means ye ⩾ 0.

Therefore, we have successfully identified the dual LP of (1):

min ∑
v∈V

xv subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xu + xv ⩾ 1, (u, v) ∈ E

xv ∈ [0,1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Primal LP

Ô⇒ max ∑
e∈E

ye subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈Sv

ye ⩽ 1 for all v ∈ V

ye ⩾ 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dual LP

(4)

where Sv denotes the “star graph” at v, or the collection of edges incident on v. Combining (2) and duality, we see

that

ALG ⩾ OPT(VC) ⩾ OPT(LP) and OPT(dual) ⩾ SOL(dual)

since the dual LP is a maximization problem and OPT(dual) is assumed to attain the maximum value, and it must

be no less than any valid dual solution, SOL(dual).

To relate the primal constraints to dual, we note that for each edge e = (u, v),

ye(xu + xv) = y(u,v)(xu + xv) ⩾ yu,v

since xu + xv ⩾ 1. Therefore,

∑
e∈E

ye ⩽ ∑
(u,v)

y(u,v)(xu + xv) = ∑
(u,v)

y(u,v)xu + ∑
(u,v)

y(u,v)xv

= ∑
v

⎛
⎝ ∑
(u,v)∈Sv

y(u,v)xv
⎞
⎠

(each ye is multiplied by both of its endpoint values)

⩽ ∑
v

xv (dual constraint ∑
(u,v)∈Sv

y(u,v) ⩽ 1)

which shows that the objective value of the dual is always less than the objective value of the matching primal. By

weak duality we therefore have

ALG ⩾ OPT(VC) ⩾ OPT(LP) ⩾ OPT(dual) ⩾ SOL(dual) (5)

8
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and so anything valid for the dual LP is a lower bound for OPT(VC). This is more useful because we have complete

control over what SOL(dual) looks like.

Remark. The algorithm was designed without any explicit mention of LP, but as we have seen, the analysis

heavily involved it. This technique is called dual fitting.

Designing & Analyzing the Primal-Dual Algorithm

The high level idea is that we want to build up a primal solution, build up a dual solution simultaneously, and draw

a connection between the primal and the dual via e.g. weak duality.

More generally, below is the general roadmap:

(1) Start with P = D = 0.

(2) (The following applies to VERTEX COVER; adjustment may be needed for general problems.) Recall that the

primal is a minimization problem and dual maximization.

(3) Eventual goals:

• (Primal feasibility) P is feasible for primal LP.

• (Dual feasibility) D is feasible for dual LP.

(4) Observation:

• D is already feasible (set each ye = 0). Therefore, we want to keep dual feasibility invariant under each

iteration. Consequently,

• The algorithm terminates when primal feasibility is satisfied.

(5) To maintain an approximation factor, always ensure ∆P ⩽ α ⋅∆D so that the primal will remain within a factor

of α of D, resulting in an α-approximation. (In this case, α = 2.)

Let us now apply the primal-dual algorithm to VERTEX COVER.

Algorithm 2: Dual LP for VERTEX COVER

1 Inputs: graph G = (V,E), primal x ∶ V → R, dual y ∶ E → R
2 Initialization: x(⋅) = 0 and y(⋅) = 0

3 while Primal LP is not satisfied do

4 find a dual variable ye that can be increased without violating dual

feasibility (guaranteed to exist when primal not satisfied)

5 increase ye until some dual constraint is tight

6 for each primal variable v corresponding to the tight dual constraint do

7 set xv ← 1

8 return {v ∈ V ∶ xv = 1}

9
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The correctness proof is omitted, but to see that this provides a 2-approximation algorithm, simply notice that

∆D comes from line 4 and ∆P comes from line 7. Each time a dual constraint becomes tight, its increment is

precisely 1 (ye must be going directly from 0 to 1, no in-betweens, since the ye’s we perturb are always disjoint),

and line 7 repeats at most 2 times, one on each endpoint of ye. Therefore, in each iteration, ∆P ⩽ 2∆D, proving an

approximation factor of 2.

Remark. The primal-dual method is a very roundabout way of giving the exact result we pursued earlier.

Why bother? The answer is because this alternative perspective is important: once we start look at even

slightly more complicated problems (e.g. weighted vertices instead of uniform weight), our naïve approach

quickly fails, but the primal dual algorithm, providing a more rigorous and systematic approach, continues

to shine.

Beginning of 09/04/2024

2.4 Weighted VERTEX COVER

The weighted VERTEX COVER problem is identical to the standard VERTEX COVER, except now each vertex v ∈ V has

a weight wv ⩾ 0, and we want to find a cover with the least weight. Put in fancy notations,

Given G = (V,E), where each vertex v ∈ V is assigned a weight wv ⩾ 0,

find a S ⊂ V with the smallest ∑v∈S wv subject to the constraint that, for all

e = (u, v) ∈ E, ∣{u, v} ∩ S∣ ⩾ 1.

M 1

1

1

1

1

As promised in the previous remark, we will first show how even our improved greedy

algorithm fails miserably. The simplest example to consider here is a graph G =
({u, v}, (u, v)), with wu = 1 and wv = M for some large M . The optimal solution yields

{u} with total weight u, but the greedy algorithm would pick both endpoints, giving us a

total weight of (M + 1), which makes the approximation factor arbitrarily large!

Perhaps a less trivial example (which shares the same idea) is the star graph shown here,

where each of the n leaf nodes has weight 1 and the center node has weightM . An optimal

solution, assuming M ≫ n is large, would pick all leaf nodes, resulting in a total weight of

n, whereas our greedy algorithm would have chosen the center node plus any leaf node, resulting in a vertex cover

of weight M + 1. Again, this resulting approximation factor can be arbitrarily bad depending on how large M is,

compared to n.

The fix for this problem directly is not to complicated: our intuition suggests that we should somehow prefer nodes

with less weight when adding to our vertex cover. It’s not hard to rigorously formulate this algorithm directly,

but what’s charming is that in fact, the dual algorithm works with almost no modification. The only change lies in

the dual constraint: now the primal objective is min∑v wvxv, so each dual constraint is bonded by wv, namely,

∑e incident to v ye ⩽ wv for each v:

min ∑
v∈V

wvxv subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xu + xv ⩾ 1, (u, v) ∈ E

xv ∈ [0,1]
Ô⇒ max ∑

e∈E
ye subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈Sv

ye ⩽ wv for all v ∈ V

ye ⩾ 0.

(6)

10



CS 632 Notes ∼ YQL 2 - Approximations of VERTEX COVER

The algorithm itself works verbatim.

Algorithm 3: Dual LP for Weighted VERTEX COVER

1 Inputs: graph G = (V,E) with weights w ∶ V → R+, primal x, dual y

2 Initialization: x(⋅) = 0 and y(⋅) = 0

3 while Primal LP is not satisfied do

4 find ye that can be increased without violating dual feasibility

5 increase ye until some dual constraint is tight

6 for each primal variable v corresponding to the tight dual constraint do

7 set xv ← 1

8 return {v ∈ V ∶ xv = 1}

M 1

1

1

1

1

center:
∑e incident ye ⩽M

leaf: ∑e incident ye ⩽ 1

Before analyzing it, let’s first see the algorithm in action. Same star graph ex-

ample as above. Suppose our algorithm chose the red edge (call it e) initially.

Clearly, ye can be increased because none of the dual constraint related to ye
is currently tight. We note that in this graph, the dual constraint associated

with the center is ∑e incident ye ⩽M , whereas for each leaf it is ∑e incident ye ⩽ 1.

Therefore we are free to increase ye by 1, after which the constraint corre-

sponding to the red leaf grows tight. Therefore we select the red leaf node but

not the center node. If M is sufficiently large such that it always carries more

weight in primal (and leaves more room in dual), then the center node will

never be chosen. This solves our problem encountered before.

Of course, whenever a dual constraint becomes tight, nothing will make it loose again, so the algorithm is guar-

anteed to terminate in polynomial runtime. Let us now prove its correctness, and that it is 2-approximate like

before.

Proof that the dual weighted VERTEX COVER algorithm is 2-approximate.

• Claim 1. The dual is feasible. This follows since we explicitly demanded so when tweaking ye.

• Claim 2. The primal is feasible when the algorithm finishes. Suppose not, that two adjacent vertices

(u, v) = e are both unselected. This means ye = 0 for any e incident on u and v. Hence

∑
e incident on u

ye = ∑
e incident on v

ye = 0.

But then we can increase y(u,v) by 1, contradiction.

• Claim 3. The algorithm is 2-approximate. Different from before, instead of showing ∆P ⩽ 2∆D, here we

directly relate the final output P to D. We recall out objectives:

P = ∑
v∈V

wv1[xv = 1]4 and D = ∑
e∈E

ye.

The rest is just pushing notations. When the algorithm terminates, the nodes labeled xv = 1 are precisely

11
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those whose dual constraints are saturated. Therefore, for each such v, ∑e incident on v ye = wv. Hence

P = ∑
v∈V

wv1[xv = 1] = ∑
xv=1

[ ∑
e incident on v

ye]

= ∑
(u,v)∈E

ye ⋅ ∣{u, v} ∩ {v ∶ xv = 1}∣ (count of ye = num. of tight endpoints)

⩽ ∑
(u,v)∈E

ye ⋅ 2 = 2D.

Remark. Previously we showed a 2-approximate algorithm for VERTEX COVER based on rounding. The

very same algorithm extends trivially to the weighted case, giving us another 2-approximation (round xv to

1 if the fractional optimal solution x∗v ⩾ 1/2 and 0 otherwise.)

2.5 A Taste of Randomized Algorithms

Once again, we look back at “bad” examples we derived earlier, this time the carefully constructed graph which

yielded an approximation factor of logn for our original greedy algorithm. Recall that our algorithm failed miserably,

because we were forced to always choose nodes from the right side. A natural attempt is to allow some randomness,

so that we may find ourselves an opportunity to break the curse of only choosing nodes from the right side:

Algorithm 4: Randomized VERTEX COVER Algorithm

1 Inputs: graph G = (V,E)

2 start with S = ∅
3 while S is not a vertex cover do

4 choose any edge e = (u, v) with ∣{u, v} ∩ S∣ = 0 (i.e. uncovered)

5 pick one of {u, v} u.a.r. (uniformly at random) and add to S

6 return S

Not surprisingly, this gives us yet another 2-approximation algorithm for VERTEX COVER. The proof is quite different

from the ones we’ve seen in primal-dual. Here, we will exploit the known / provable properties of the optimal

solution, OPT, despite not having the slightest clue what it may look like. We will directly compare OPT with our

randomized algorithm, ALG and attain useful bounds.

Proof. Let Vo be the set of vertices chosen by (an) OPT. For each v ∈ Vo, let Sv be the star graph with respect to

the original G = (V,E), i.e., Sv = {(v, u) ∈ E}, the collection of all edges incident on v. Since OPT is feasible,

every edge is covered and in particular belongs to one of the star graphs, i.e., ⋃v∈Vo
Sv = E. Therefore, our

algorithm RLG is essentially choosing a bunch of edges (or equivalently a bunch of vertices) from a bunch of star

graphs. (This is criminally oversimplifying things, of course, but the italicized claim is true nonetheless.)

So a natural question to ask is, how many vertices (on expectation, since our algorithm is probabilistic) will we

choose from a specific graph? Let’s just consider a certain star graph Su with center u, and edges ei leading to

leaf nodes vi. Let the random variable Xu denote the number of vertices chosen from Su.

• The first time ALG considers an edge ei = (u, vi) in Su, there is a probability of 1/2 such that it chooses

u. If this is the case, ALG will never consider any edge in Su again because u has been chosen. So

P(Xu = 1) = 1/2.
4I use 1[S] to denote the indicator function of S, i.e., 1[S](ω) = 1 if ω ∈ S and 0 otherwise.

12
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• The event Xu = 2 means (i) when ALG consider an edge from Su for the first time, it chose the leaf node

over u, but (ii) the second time ALG considers an edge in Su, it did choose u. So P(Xu = 2) = 1/2⋅1/2 = 1/4.

• We see that Xu is essentially a (truncated, since Su is finite) geometric random variable with parameter

1/2, i.e., P(Xu = k) = 2−k. Therefore EXu <= 2.

Since on expectation ALG chooses ⩽ 2 vertices from each star graph, and there are ∣Vo∣ star graphs in total, we

see that the expected number of vertices chosen by ALG is ⩽ 2∣Vo∣, i.e., it is 2-approximate.

Now what? Update adding this randomized algorithm to approximate weighted VERTEX COVER, of course. Revis-

iting the simplest weighted example of G = ({u, v},{(u, v)}), if the vertex weights are 1 and M respectively, then

the most natural way to balance our randomized algorithm is to choose the vertex with small weight (1) with high

probability, and choose the big weight (M) with low probability. We make the proportion linear, and prove that this

indeed gives a 2-approximation.

Algorithm 5: Randomized Weighted VERTEX COVER Algorithm

1 Inputs: graph G = (V,E) with weights w ∶ V → R+

2 start with S = ∅
3 while S is not a vertex cover do

4 choose any edge e = (u, v) with ∣{u, v} ∩ S∣ = 0

5 S ←
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S ∪ {u} with probability wv/(wu +wv)

S ∪ {v} with probability wu/(wu +wv)

6 return S

Proof that randomized weighted VERTEX COVER is a 2-approximation. The idea is similar to that of the un-

weighted case. If Vo is the set of vertices chosen by OPT, then the total weight is ∑v∈Vo
wv. Therefore, similar

to the unweighted case, our goal is to show that for each star graph Sv, the expected total weight of the vertices

chosen by our algorithm ALG is bounded by 2wv, so that linearity of expectation says

E[ALG] = E [ ∑
v∈ALG

wv] = E
⎡⎢⎢⎢⎣
∑
v∈Vo

weights on Sv
⎤⎥⎥⎥⎦
⩽ E

⎡⎢⎢⎢⎣
∑
v∈Vo

2wv
⎤⎥⎥⎥⎦
= 2E

⎡⎢⎢⎢⎣
∑
v∈Vo

wv
⎤⎥⎥⎥⎦
= 2[OPT].

So let us consider a star graph S. Let the center node be v with weight w, and let the leaves vi each have weights

wi, i ∈ [k] (so a total of k leaves). To compute the expected total weight, for each node, we can multiply the

weight by the probability that this vertex is chosen, then sum over all vertices in S. We WLOG5assume the edges

are considered in the order of (v, v1), (v, v2), .... [We’ll later show this is valid.] Like the unweighted counterpart,

we observe that as soon as w is chosen, ALG will never consider any remaining edge from S again. Therefore,

P(vi is chosen) = P(vi is chosen in (v, vi)) ⋅ P(vj is chosen in (v, vj) for all j < i). (*)

13
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And now, time for algebra.

E[total weight] = w ⋅ P(v is chosen) +
k

∑
i=1

wi ⋅ P(vi is chosen)

⩽ w ⋅ 1 +
k

∑
i=1

wi ⋅ P(vi is chosen in (v, vi)) ⋅∏
j<i

(vj is chosen in (v, vj))

= w +
k

∑
i=1

wi ⋅
w

w +wi
⋅∏
j<i

w

w +wj
= w +w ⋅

k

∑
i=1

wi
w +wi

⋅∏
j<i

w

w +wj

= w +w ⋅
k

∑
i=1

wi
w +wi

⋅∏
j<i

(1 − wj

w +wj
)

= w +w ⋅
k

∑
i=1

pi ⋅∏
j<i

(1 − pj) (define pi ∶= wi/(w +wi)).

An easy probabilistic interpretation of the highlighted term is as follows. Suppose we have n coins, where the

jth coin has a probability pi of landing on heads. Then pi∏j<i(1 − pi) is the probability that the first i − 1 coins

land on tails but the ith coin lands on heads. Summing over i we see that the highlighted term is the probability

of the union of some disjoint events which is obviously bounded by 1. So E[total weight] ⩽ 2w. Now apply (*)

and the proof is complete!

Enough VERTEX COVER. Let’s now look at something more general: the SET COVER problem.

5Without loss of generality.
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3 SET COVER

Given a universal set U of n elements and m subsets S1,⋯, Sm ⊂ U with

⋃i Si = U , find a minimum number of subsets that cover U .

As usual, we approach this problem using a naïve greedy algorithm: always pick the set that covers as many

remaining elements as possible. Note that the “bad” example in VERTEX COVER can be transformed into an instance

of SET COVER via the following:

• The universal set U = E, the set of all edges in the bipartite graph G = (V,E).

• For each vertex v, the star graph Sv = {(v, u) ∈ E} can be viewed as a collection of edges, hence a subset of

U . Notice that deg(v) = ∣Sv ∣, so naturally the notion of choosing the highest degree vertex in the naïve greedy

VERTEX COVER algorithm corresponds to that of picking the set that covers most elements in SET COVER.

Since the naïve greedy VERTEX COVER problem has an approximation factor of (at least) logn we know our greedy

SET COVER algorithm can do no better. Fortunately, the following proof shows it is doing no worse either.

Greedy SET COVER algorithm is logn-approximate. Let S1, S2,⋯ be the sequence of sets picked by our greedy

algorithm, ALG. Say S1 covers x1 elements, and for each i > 1, Si covers i additional (uncovered) elements.

Consider the optimal solution OPT which consists of, with the abuse of notations, OPT subsets of U . The key

observation is that:

• x1 ⩾ n/OPT. To see this, note that ∣U ∣ = n, so by pigeonhole the largest set has ⩾ n/OPT elements.

• By the same token, x2 ⩾ (n − x1)/OPT since all sets in OPT must still collectively cover the remaining

n − x1 elements. Thus, the best remaining set performs at least as good as the average.

• Iteratively, xi ⩾ (n −∑j<i xj)/OPT.

Rearranging the last inequality, we obtain (abusing the notation that ALG also means the cardinality of the

outputted set)

1 ⩽ OPT ⋅ xi

∑j⩾i xj
for each i ∈ [ALG]

Summing over i we see

ALG ⩽ OPT ⋅
ALG

∑
i=1

xi

∑j⩾i xj

= OPT ⋅ [x1

n
+ x2

n − x1
+ x3

n − (x1 + x2)
+⋯]

⩽ OPT ⋅ [ 1

n
+ 1

n − 1
+⋯ + 1

n − x1 + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n total

+ 1

n − x1
+ 1

n − x1 − 1
+⋯ + 1

n − (x1 + x2) + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x2 total

+ (x3) total decomposed terms for
x3

n − (x1 + x2)
+⋯]

⩽ OPT ⋅ (1 + 1/2 +⋯ + 1/n) = OPT ⋅Θ(logn).
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Beginning of 09/09/2024

3.1 Another Type of Rounding: Randomized Rounding

Randomized Rounding on Weighted SET COVER

Previously we talked about viewing VERTEX COVER as a LP problem, from which we can obtain a fractional optimal

solution and round it to an integer solution while maintaining an approximation factor of 2. Here, we apply a similar

approach, viewing SET COVER as an LP problem, but use a different rounding technique, randomized rounding,

to recover an integer solution. Clearly, in the LP, we assign a variable xi to each set indicating whether it’s selected:

min∑xi subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i∶j∈Si

xi ⩾ 1 for each element j ∈ U

xi ⩾ 0 for each set index i.
(SET COVER LP)

By solving the LP we obtain an optimal solution x∗i . As usual, note that the optimal solution must have x∗i ⩽ 1

since otherwise we can just reduce the value to 1 while further decreasing the objective. That 0 ⩽ x∗i ⩽ 1 suggests a

probabilistic perspective: maybe we can round x∗i to 1 with probability x∗i , i.e., for our integer solution x̃i,

P(x̃i = 1) = x∗i .

This is natural, since intuitively larger values of x∗i should be more likely to be rounded up to 1.

The good? Expectation-wise, this rounding is just as good as the fractional LP:

E∑
i

x̃i = ∑
i

Ex̃i = ∑
i

x∗i . (7)

But of course, this rounding may or may not work — what if (albeit unlikely) our randomized rounding decides to

round all variables down, setting x̃i = 0 for all i? In that case clearly we don’t have a set cover. So, an alternate

question we can ask is, what is the probability that something goes bad? Let us focus on a certain element j ∈ U and

calculate the probability that j is uncovered after rounding:

P(j uncovered after ronuding) = P( ∑
i∶j∈Si

x̃i < 1) = P(x̃i = 0 for all i such that j ∈ Si)

= ∏
i∶j∈Si

(1 − x∗i ) ⩽ ∏
i∶j∈Si

exp(−x∗i ) = exp
⎛
⎝
− ∑
i∶j∈Si

x∗i
⎞
⎠
⩽ 1/e, (8)

where the first ⩽ used the Taylor expansion6 e−x = 1−x+o(x2) and the last one because∑i∶j∈Si
x∗i ⩾ 1 by the feasibility

of x∗i . This is not really impressive: that each element has a probability of 1/e being missed after rounding is quite

bad. So how do we improve the result, reducing P(j uncovered after rounding)? Well, one way7 is to boost it by

making it more likely to round up. That is, we introduce a boost variable α > 0 and replace the rounding scheme

6Just a caveat, but for those sets with αx∗i ⩾ 1, if an element falls within such set, it is already deterministically covered, so we can just ignore
its analysis. Instead, we only perform analysis on sets that are not deterministically covered. (This is to avoid multiplying by a term (1−x∗i ) = 0
in the product.)

7Another way, not covered in lecture (at least for this year), is to repeat the randomized rounding for t times and combine the results xi ∶=
maxt x̃i,t. This new scheme is t-approximate (since each rounding is optimal in expectation), and P(j uncovered after multi-rounding) ⩽ 1/et.
So the union bound [observe the covergae of each element is not independent, so the answer is not 1−(1−e−t)n], P(some element uncovered) ⩽
ne−t, i.e., P(output is a valid set cover) ⩾ 1 − ne−t, which can be made arbitrarily close to 1.
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with

P(x̃i = 1) = min(αx∗i ,1). (9)

Consequently, (8) becomes

P(j uncovered after rounding) ⩽ exp
⎛
⎝
−α ∑

i∶j∈Si

x∗i
⎞
⎠
⩽ 1/eα. (10)

Here is the general idea of what follows: we pick a relatively large α so that the rounding is expected to cover most

of the elements in U . Then we manually cleanup the missed ones, and since there are only a few elements missed,

this would worsen the overall objective significantly. The magic number here is α = 2 logn, which makes

P(j uncovered after rounding) ⩽ exp(−2 logn) = 1/n2.

By union bound (note that coverage of elements are not independent),

P(some element uncovered) ⩽ 1/n.

So, with probably 1− 1/n, randomized rounding directly yields a valid set cover, where the total cost was α ⋅OPT =
2 logn ⋅OPT. With probability 1/n the rounding fails to yield a valid set cover, so we manually fix it by picking one

set for each of the missed vertices. The extra cost is high (because we are literally picking sets arbitrarily), but it is

certainly bounded by n ⋅OPT (anything we can possibly pick is bounded by this). So our total expected number of

sets picked is

2 logn ⋅OPT ⋅ (1 − 1/n) + (2 logn ⋅OPT + n ⋅OPT) ⋅ (1/n) = (2 logn + 1) ⋅OPT

and the algorithm can be described as follows:

Algorithm 6: SET COVER Randomized Rounding

1 Input: sets S1,⋯, Sm ⊂ U
2 Initialization: declare variables x̃1,⋯x̃n
3 solve SET COVER LP to obtain fractional solutions x∗i
4 for each x∗i do

5 set x̃i ← 1 with probability min(2 lognx∗i , xi)

6 for each element j not yet covered, i.e., ∑i∶j∈Si
x̃i = 0 do

7 pick any set Si containing j and set x̃i ← 1

8 return x̃1,⋯, x̃n as indicators of whether each Si is selected

Randomized rounding with some post processing is Θ(logn)-approximate, not bad.

Randomized Rounding on Weighted SET COVER

What if we introduce weights to sets? That is, the LP now becomes

min∑wixi subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i∶j∈Si

xi ⩾ 1 for each element j ∈ U

xi ⩾ 0 for each set index i.
(Weighted SET COVER LP)

17



CS 632 Notes ∼ YQL 3 - SET COVER

What would change and what not? First, notice that (7) becomes

E∑
i

wix̃i = ∑
i

wiEx̃i ⩽ ∑
i

wiαx
∗
i = α∑

i

wix
∗
i (11)

so the same relation holds. And notice that the computations in (8) do not involves the weights since the rounding

is based on α and x∗i only, so (10) still holds. The only change we need is during post-processing, where this time

we choose the minimum weight set covering each remaining element. Observe that for each uncovered j, the set

we choose to cover j is a lower bound of the entire OPT, so the cost of covering n vertices is again bounded by

n ⋅OPT. By the same calculating, setting α = 2 logn we see that the following algorithm is (2 logn+1)-approximate.

Algorithm 7: Weighted SET COVER Randomized Rounding

1 Input: sets S1,⋯, Sm ⊂ U
2 Initialization: declare variables x̃1,⋯x̃n
3 solve weighted SET COVER LP to obtain fractional solutions x∗i
4 for each x∗i do

5 set x̃i ← 1 with probability min(2 lognx∗i , xi)

6 for each element j not yet covered, i.e., ∑i∶j∈Si
x̃i = 0 do

7 pick the minimum weight Si containing j and set x̃i ← 1

8 return x̃1,⋯, x̃n as indicators of whether each Si is selected

Remark. The approximation of the probabilistic bounds can also be done using the Chernoff-Hoeffding

bounds, which states the following.

Let p1,⋯, pn be n independent random coins. Let Xi be the indicator that the ith coin is heads. Then

P(∣
n

∑
i=1

xi −
n

∑
i=1

pi∣ > ε ⋅ ∣
n

∑
i=1

pi∣) < exp(−c ⋅ ε2 ⋅
n

∑
i=1

pi) .

3.2 A Better Approximation: Improving from logn to logmaxi∣Si∣

In this section, we will replace α with log maxi∣Si∣, i.e., the log of the max size of all sets. By (10) and (10), the

rounding step will product an output bounded by log maxi∣Si∣ ⋅OPT, and each element has a probability 1/maxi∣Si∣
of not being covered by this output. All that remains is to analyze the amount of post-processing one needs to

perform.

We first take a look at the unweighted case. By linearity, the expected number of uncovered vertices after random-

ized rounding is ⩽ n/maxi∣Si∣. But notice that n/maxi∣Si∣ ⩽ OPT, because any solution that covers all n vertices

would need this many sets, since the largest set is of size maxi∣Si∣ and there are n total elements to cover. Therefore,

the log maxi∣Si∣ approximation factor is attained as the additional o(1) ⋅OPT is ignorable.

How about the expected cost in the weighted case? As usual, for each j, we follow the strategy to choose

the minimum cost set covering j. It follows that for each uncovered element j, the expected additional cost is
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mini∶j∈Si wi/maxi∣Si∣. Summing over all j’s, an upper bound for the expected post-processing cost is

1

maxi∣Si∣
⋅ ∑
j

min
i∶j∈Si

wi. (*)

We claim that magically, (*) is still bounded from above by OPT. To see this, we need to look at the universal set

U and think of what OPT is doing. This can be summarized by considering the individual contribution of elements

to OPT: if S is a set in OPT and contributes w to the total value, then alternatively each element in S contributes

a total of w/∣S∣. Summing over all sets in OPT,

OPT = ∑
Si∈OPT

wi = ∑
Si∈OPT

∣Si∣ ⋅
wi
∣Si∣

= ∑
Si∈OPT
j∈Si

wi
∣Si∣

.

On the other hand, if an element j is covered by Sk in OPT, we also know

wk
∣Sk ∣

⩾ wk
maxi∣Si∣

⩾ mini∶j∈Si wi

maxi∣Si∣
= (∗).

Therefore, the total cost of post processing is ⩽ OPT, which once again shows the overall algorithm is (1 +
log maxi∣Si∣) ∼ (log maxi∣Si∣)-approximate.

Remark. In the above analysis, instead of looking at the sets Si, we shifted our attention to the elements

that make up these sets. This is a hint for dualization! It is fairly straightfoward to construct the dual of the

weighted SET COVER LP: where we assign weights on the elements, subject to the constraint that the total

weight assigned to each set shouldn’t exceed the weight of that set.

max∑
j

yj subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
j∈Si

yj ⩽ wi for each set index i

yj ⩾ 0 for each element j.
(Weighted SET COVER Dual LP)

The cool realization here is that (*) is a feasible solution to the dual (setting yj = mini∶j∈Si wi/maxi∣Si∣) and

clearly OPT is primal feasible. Therefore, (∗) ⩽ OPT.

Beginning of 09/11/2024

3.3 Limitations of LP: Integrality Gaps

Previously, we have seen plenty of examples where we relax an integer-valued optimization problem to fractional

LP, solve for the fractional optimal solution, then use some kind of rounding to retrieve an integer solution and

make sense of it. In the process of doing so, we derived a chain of inequalities (assuming primal is maximization

and dual minimization):

Dopt
integer ⩽D

opt
fractional ⩽ P

opt
fractional ⩽ P

opt
integer ⩽ ALG (our algorithm to be analyzed).

When analyzing the approximation factor, we try to compare our algorithm to the integral optimum, where we

focused exclusively on the last ⩽. However, since this quantity is hard to directly bound, we have resorted to LP

rounding, comparing against Dopt
fractional, or dual fitting, comparing against Dopt

integer. However, both of these induce

the extra gap between P opt
fractional and P opt

integer. We call the ratio Dopt
integer/D

opt
fractional the integrality gap. When such gap
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exists (i.e., > 1), the rounding factor (P opt
fractional against ALG) is strictly better than the approximation factor.

As usual, we will revisit the two examples we’ve seen over and over again, VERTEX COVER and SET COVER, and

compute their integrality gaps.

Integrality Gap of VERTEX COVER

Recall that our objective is to minimize ∑v xv subject to xu + xv ⩾ 1 for each edge (u, v). An easy example to show

the discrepancy between fractional and rounded solution is by considering a triangle. Clearly, an integer solution

would need to pick 2 out of the 3 vertices, hence achieving an objective value of 2. On the other hand, the optimal

fractional solution assigns 1/2 to each vertex, resulting in an objective value of 3/2. Therefore, for this specific

graph, the gap is 2/(3/2) = 4/3.

More generally, consider a complete graph Kn (i.e. vertices are pairwise directly connected). The integral solution

needs to choose n−1 vertices, but the fractional solution can again assign 1/2 to each vertex. Here, the gap becomes

(n− 1)/(n/2) = 2(1− 1/n). Since n is arbitrary, we see that the integrality gap for the problem must be at least 2. In

other words,

It is impossible for any rounding algorithm on VERTEX COVER to achieve an

approximation factor better than 2.

And since we showed that threshold rounding indeed achieves an approximation of 2, we conclude that the inte-

grality gap of VERTEX COVER is 2.

Integrality Gap of SET COVER

Recall that our objective is to minimize ∑i xi such that ∑i∶j∈Si
xi ⩾ 1 for each j in the universal set U .

Consider the following instance of set cover. Say we have m sets, S1,⋯, Sm. For every collection X of m/2 sets,

define an element x that only belongs to these m/2 sets. By Sterling’s formula, there are roughly

( m

m/2) ≈
2m√
πm

elements. By the pigeonhole principle, the optimal integral solution must contain m/2 + 1 elements, but it suffices

to assign 2/m to each element in a fractional solution, resulting in a total weight of 2/m ⋅m = 2. Therefore, the gap

is m/4 which, by taking the log of ( m
m/2), becomes Θ(logn). Therefore, rounding in SET COVER with n elements

cannot get better than a factor of Θ(logn).
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4 Growing Balls (Literally)

4.1 Shortest s − t Path

In this section we consider the shortest s − t path problem. Let G = (V,E) be an undirected graph with edge

weights/lengths `e. Our goal is to simply compute the shortest s − t path. Clearly we’ve known a fair amount of

algorithms, such as Dijkstra or Bellman-Ford.

As usual, let us formulate the shortest s − t path problem as LP:

min∑
e

`exe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ 1 for all connected sets S ⊂ V with ∣S ∩ {s, t}∣ = 1

xe ⩾ 0.

Essentially (S,Sc) can be viewed as an s − t cut on G: one contains s and the other t. Of course, we assume S to

be connected, so the shortest path “leaves” any such S once and never returns. And e ∈ ∂S means e crosses the

boundary of S, or in more formal expression, ∂S = {e = (u, v) ∶ ∣S ∩ {u, v}∣ = 1}. The dual can be written as

max∑
S

yS , indexed over all connected subset cuts S, subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
S∶e∈∂S

yS ⩽ `e for all e

yS ⩾ 0.

We will use a primal-dual algorithm to solve for the shortest path. Like before, this approach seems unnecessarily

convoluted on simple questions, but its power lies in the ease of generalization. Specifically, we will use “ball

growing” to find a shortest path.

Imagine if we have a ball at s and another at t, and they grow over time. Consider the s-ball and denote it by Bs,r
where r is the radius. Initially the ball only contains s, i.e., Bs,0 ∩V = {s}, so the dual variable this ball corresponds

to is y{s}. Say the shortest edge leaving s is edge (s,w) of length 1. Then, Bs,r ∩ V = {s} as long as r < 1, but it

jumps to {s,w} immediately as r hits 1. This corresponds to the fact that in Dijkstra, after traveling for a distance

of 1, we have for the first time reached a node starting from s, i.e., we found the nearest vertex.

At this point, in Dijkstra, for any path continuing on t, we no longer need to consider the first hop (s, t) since we

know the shortest path from s to t is directly via this edge. The “settling” of a node via Dijkstra corresponds to

saturating the dual constraint along the edge that lead us to this node. In this (s,w) example, at r = 1, the dual

constraint for e = (s,w) becomes tight, so we no longer increase y{s} but instead consider a new variable y{s,w},

starting from y{s,w} = 0. Rinse and repeat.

What about terminal condition? Remember, that as we are growing balls from the s-side we are simultaneously

growing another one from the t-side. If we view ball growing as finding the shortest path to reach nodes within a

certain radius, then the shortest path should be found when the two balls “collide.” Say they collide on an edge

(u, v), where the current balls are B1 and B2. Then, moments before the collision, yB1∩V and yB2∩V are both

increasing, so the dual constraint (u, v) is being pressed by both sides. Therefore, the terminal condition is when

(i) an edge is feeling pressure from both ends, and (ii) this edge becomes tight.

21



CS 632 Notes ∼ YQL 4 - Growing Balls (Literally)
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To put the above into context, consider this graph, where the short-

est path clearly is s−w−x−t. When the ball growing reaches radius

> 2, the LHS becomes {s, u,w} and the RHS {t, x}. At this point,

the dual constraint for (w,x) is being pressured by both y{s,u,w}

and y{t,x}. Note that we start increasing y{s,u,w} from 0 when ra-

dius r = 2, so y{s,u,w} = r − 2. Likewise for y{t,x}. Since the dual

variables are increasing at a uniform rate, the constraint for (w,x)
saturates when y{s,u,w} = y{t,x} = 1, corresponding to r = 3. So at

this point we conclude that the shortest s − t path length is 2r = 6.

But how do we recover the desired s − t path? Observe that throughout the ball growing process, we saturated

(s,w), (w,x), and (x, t), the three edges we want, but in the process of doing so, our balls also saturated excess

edges like (s, u). Therefore, by the time the ball growing terminates,

F = {e ∈ E ∶ dual constraint for e is tight}

probably contains more edges than needed, and we need to conduct reverse deletion. Observe that if we repeatedly

delete edges e such that F/{e} remains feasible, then in the end we will have no excess edges. Also observe that in

doing so we recover a path, since the edge removal process guarantees that we would have broken any cycle if it

exists in F . It remains to argue that the modified F is the shortest s − t path.

Proof that F is the shortest path. We will prove this by showing that the primal and dual objectives equal, and

the rest follows by duality theorem.

Recall that each time we add an edge (u, v), the dual constraint is tight, i.e., ∑S∶e∈∂S yS = `e. Therefore, we can

rewrite the primal objective as

∑
e∈E

`exe = ∑
e∈F

`e = ∑
e∈F

∑
S∶e∈∂S

yS = ∑
S

yS ⋅ ∣F ∩ ∂S∣

by rearranging based on the number of appearances of yS .

Clearly, since F is a path and S an s − t cut, ∣F ∩ ∂S∣ ⩾ 1. However, during the contraction process, if two edges

e1, e2 leave the connected cut S, then one of them will be eventually pruned, because if S,Sc are both connected,

then it suffices to keep only one between e1 and e2 while also maintaining a valid s−t path. Therefore, ∣F∩∂S∣ = 1

for all connected cut S, so the primal and dual objectives equal, and the proof of optimality is complete.

4.2 MSTs & Steiner Trees — From Balls to Moats

Minimum Spanning Trees

We now consider trees, and start off by considering the Minimum Spanning Tree, MST:

Given G = (V,E) with weighted, undirected edges, fund a subset E′ ⊂ E such

that (V,E′) is also connected and ∑e∈E′ `e is minimized.

Like shortest s − t path, we first formulate the problem as an LP. The objective remains unchanged. As for the

constraint, we note that to ensure the tree is connected, for any subset S ⊂ V , there needs to be an edge connecting
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S with outside. Therefore, the MST can be represented by LP via

min∑
e

`exe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ 1 for all nonempty S ⊂ V

xe ⩾ 0.

Before discussing how to “grow balls” to construct MST, let us first consider its integrality gap. Using the unilateral

triangle graph as an example again, we see that an integer solution needs to pick 2 edges resulting in an objective

value of 2, while a fractional solution can assign 1/2 to all three edges. This gives an integrality gap of 4/3.

More generally, consider a complete graph of n vertices, which under this context is called a k-clique. The integer

solution needs to pick at least n−1 edges, setting xe = 1 each. The fractional solution can uniformly assign 1/(n−1)
to each of the (n

2
) edges, resulting in a total objective value n/2. Thus the integrality gap approaches 2 as n → ∞.

Hence any LP-based algorithm cannot do better than being 2-approximate on MST.

Let us now write down the dual of the MST problem, which again highly resembles that of shortest s − t path:

max∑
S

yS , indexed over all subsets S ⊂ V, subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
S∶e∈∂S

yS ⩽ `e for all e

yS ⩾ 0.

Time to grow balls. In the shortest path problem, we grew two balls simultaneously, one from s and the other t,

and we stop growing balls once the balls collide, essentially giving us a viable path connecting s and t. In MST, we

want to make every vertex connected, not just s and t, so naturally we grow a ball at every vertex.

a

c

b
2

4

4

a

c

b2

4

4

For example, in this simple triangle graph where edge costs are given by labels, we initially grow balls at each

vertex, increasing values of y{a}, y{b}, and y{c} simultaneously. At time τ = 1, the balls on the left collide, at which

point we realize the dual constraint for edge (a, c) becomes tight, so we add (a, c) to our primal solution, and in the

dual, replace the growing of y{a} and {yc} by y{a,c}. At this point, y{b} = 1 and y{a,c} = 0, and they increase at the

same rate. Unfortunately after the merging of a and c, the left component no longer resembles a ball. Hence, we

sometimes call this process moat growing instead. Note that this is essentially Kruskal’s algorithm, but stated in

a much more convoluted way. Again, the motivation here is that LP allows us to generalize this approach to more

complicated problems, such as the computation of Steiner Tree below.

Initially, we grow a ball for each vertex, so we have ∣V ∣ = n balls. As they iterative marge, we have fewer moats.

Finally, our ball/moat growing process terminates once everything is merged into one big component.
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Following our previous path, the next question to ask is, after getting F , the set of primal edges whose corresponding

dual constraints are saturated, do we need to perform reverse deletion? The answer is no, because F is a tree, and

removing an edge will break the tree-like structure. To see F is a tree, note that we are always engulfing previously

disconnected nodes into the “main” moat, and doing so will never create a cycle.

Clearly, F is a valid spanning tree. Remember that we said this MST problem has an integrality gap of 2, so no

algorithm can be better than being 2-approximate. To show F is an MST, it suffices to show that it achieves the

approximation factor 2.

Proof that F is an 2-approximate MST. Let us first draw F . Initially, all vertices in F belong to different

balls/moats, but as time passes, they merge. An important observation here is that any moat at any time is also

a subtree.
1

2

4 5

6 7

8 9

3

10

11 12

13 14

For example, consider the tree above, where at some stage, F is broken into several color-coded maots, each

forming its own subtree. The condensed tree T is shown on the right, where each colored subtree is condensed

into one node.

We will now analyzie ∆D versus ∆P but “in hindsight.” When the algorithm terminates, we know every edge

in F is tight, so ∑S∶e∈∂S yS = `e. Therefore, after the MSQ terminates,

Primal = ∑
e∈E

`exe = ∑
e∈F

`e = ∑
e∈F

∑
S∶e∈∂S

yS = ∑
S

[yS ⋅ degF(S)],

where degF(s) is the number of edge crossing S with respect to F . And of course the dual is always ∑S yS . This

proof is backwards in the sense that we will always keep track of how the double sum ∑e∈F ∑S∶e∈∂S yS changes,

even though it doesn’t mean anything useful when F isn’t finalized. What we do know is that this quantity

eventually will become the primal value.

At time τ , if we increase each dual variable yS by δ, then the total change is ∆D = Nδ, where N is the current

number of condensed nodes (or the number of moats). On the other hand, observe that if S is a subtree in F
and s is the condensed node in T , then degF(S) = degT (s)! Therefore,

∆P = ∑
S

δ ⋅ degF(S) = δ∑
S

degF(S) = δ ∑
v∈T

degT (v).

But T is a condensed tree with N nodes, so ∑v degT (v) = 2(N − 1), and so ∆P = 2δ(N − 1). Thus ∆P /∆D ⩽ 2,

and our proof is complete.

Steiner Trees

Now we consider a more general version of MST, the (minimum) Steiner Tree. The formulation is simple — instead

of picking a subset of edges to cover all of V , we now want to pick a min-cost subset of edges covering some given
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subset R ⊂ V . Clearly, the shortest s − t path is an instance of Steiner Tree where the nodes to connect are {s, t}.

And MST is the instance of Steiner Tree where R = V .

Here is where the hard work we devoted into LP algorithm for s− t path and MST pays off: to solve Steiner Tree via

LP, we only need minimal adjustment to the problem formulation and the proof.

First, how do we modify the primal constraints? Well, in MST we needed to ensure all vertices are connected, so

given any subset of vertices, there must be some edge connecting these vertices to the outside. Here in Steiner Tree,

we need to enforce something similar. But note that if S ⊂ V is disjoint from R, or if S ⊃ R, then we don’t need

to impose any constraints, as such constraints bear no effect on R. Therefore, we only care when 1 ⩽ ∣S ∩R∣ < ∣R∣,
namely, when S encloses some, but not all, nodes of R. And in this case, we require that an edge leaves S.

min∑
e

`exe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
S∶e∈∂S

yS ⩾ 1 for all S with 1 ⩽ ∣S ∩R∣ ⩽ ∣R∣ − 1

xe ⩾ 0.

And how do we grow balls or moats? Initially, we only grow on terminals (i.e. for v ∈ R), and the algorithm

terminates when all terminals are unified into one universal moat. Do observe that reverse deletion is needed in

Steiner Tree: recall that we needed to reverse delete excess edges in the shortest s − t path problem, which is a

special case of Steiner Tree. The proof that Steiner Tree LP is 2-approximate, however, can be copied verbatim from

the previous section, with F replaced by the pruned F ′.

Remark. There exist much simpler 2-approximations for Steiner Tree. One such algorithm is:

• Compute pairwise distances between the terminals (nodes in R).

• Construct an MST on the terminals. From this, recover a Steiner Tree.

To see why this is 2-approximate, let G′ be the subgraph of G formed by R. Consider the OPT. One

immediate observation is that every leaf node is a terminal node in R, for otherwise we can discard it. Now

we use post-order or pre-order traversal to travel along the tree, and we can easily create a cycle, starting

from the root, traversing through nodes OPT, and return to the root. In particular, for each pair of terminal

nodes u and v, we traveled from u to v once, and another time backwards. Therefore, the cost of this cycle

is 2OPT. On the other hand, the cost from u to v must be at least the length of the shortest u − v path in G.

Therefore, if we simply create a new graph consisting of nodes in R while preserving the pairwise distance

they have in G, the MST on the new graph must satisfy

MST on new graph ⩽ cost of cycle = 2OPT.

Remark. Better approximations for Steiner Trees also exist. Our cut covering LP has an integrality of gap

so any analysis based on this LP cannot do better. However, later we will discuss hypergraphic LP which, if

used on Steiner Tree, gives an approximation factor of log 2.

Beginning of 09/18/2024
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4.3 Steiner Forest — When Do We Grow Moats?

In this section, we generalize our problem one step further and consider Steiner Forests. Instead of considering

a subset R of terminal nodes, the Steiner Forest problem considers a set of terminal pairs {(si, ti) ∶ si, ti ∈ V } and

aims to compute a cost minimizing subgraph of G such that each (si, ti) is connected.

Note that this is a direct generalization of the Steiner Tree problem, where a subgraph covers R = {v1,⋯, vk} if and

only if every pair of form (v1, vi), i ⩾ 2, is connected.

It is still clear that a cost minimizing subgraph does not admit a cycle, but now it’s possible for a feasible solution to

be the disjoint union of more than one trees. The intuition, following the Steiner Tree, is that we need to somehow

construct Steiner Trees for each “component.” The challenge, of course, is we have no idea what defines these

components a priori.

The LP formulation for Steiner Forest is similar to that of Steiner Tree, except now we would require that there

exists an edge going across any cut separating any (si, ti) pair. Let us again default to using ce to represent edge

costs. In other words:

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈∂S xe ⩾ 1 if ∣S ∩ {si, ti}∣ = 1 for some i

xe ⩾ 0.

For convenience, let us rewrite the constraint of S using a demand function

f(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if ∣S ∩ {si, ti}∣ = 1 for some i

0 otherwise

so the primal constraints become ∑e∈∂S xe ⩾ 1 for all S with f(S) = 1. And of course, the dual is

max ∑
S∶f(S)=1

yS subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈∂S yS ⩽ ce for all e

yS ⩾ 0.

How do we grow moats? Of course, we start by growing tiny balls around each terminal node si, ti. Consider the

following example, where we have two pairs, (s1, t1) and (s2, t2). All four balls start growing, until at a certain

time, {s2} and {t2} touch. In the Steiner Tree problem we would continue growing them, but in Steiner Forest,

observe that f({s2, t2}) = 0, i.e., the newly formed moat has no demand, since it is not crossing any (si, ti) pair (for

the same pair). Therefore, in the next step, we only grow {s1} and {t1}, and {t1} later meets with {s2, t2}. Now

observe that f({t1, s2, t2}) = 1 again, so after another merging, this moat becomes active again. Therefore, in the

bottom-right figure, both {s1} and {t1, s2, t2} are being grown.

In other words, the moat growing process can be summarized as follows:

• Start by growing a ball around each si, ti.

• Whenever two moats (initially balls) S1, S2 touch, replace S1, S2 with S1∪S2, and grow this new moat S1∪S2

if and only if f(S1 ∪ S2) = 1.

(We say a moat S is active if f(S) = 1 and inactive otherwise.) And of course, every time when a dual constraint

e is saturated, we add this edge to the set F in the primal solution. By the very same token as before, F does not

contain a cycle. Because of the nature of this problem, it may become a forest. We define, as usual, F ′ as the set of

edges chosen after reverse delete (recall Steiner Tree requires reverse delete; therefore, so does Steiner Forest).
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Analyzing the Steiner Forest LP Moat-Growing Algorithm

The proof won’t be much different from that of the Steiner Tree problem. However, we note a few complications:

(1) F ′ is now a forest, not necessarily a tree.

(2) In each iteration of the dual problem (moat growing), we are only growing along active moats — for example,

in the above figure, we have never grown y{s2,t2}.

Recall that in the proof of Steiner Tree, after moat growing terminates,

Primal = ∑
e∈E

cexe = ∑
e∈F ′

ce = ∑
e∈F ′

∑
S∶e∈∂S

yS = ∑
S

[yS ⋅ degF ′(S)].

The Steiner Tree analysis works, based on the observation that the average degree of a node in a (condensed) tree

is < 2, so ∆P < 2∆D. Here, however, if we look only at active moats, it is not clear whether their average degree in

F ′ is still < 2. So this requires some work.

Fortunately, we can prove that if S is inactive, then degF ′(S) > 1. To see this, suppose there is only one edge eF ′

leaving S in F ′. The fact that this edge remains in F ′ means it is crucial to connecting some (si, ti) pair (without

it, si, ti won’t be connected). But then, by definition, we know ∣S ∩ {si, ti}∣ = 1, which means S has demand and

is active. Contradiction. Therefore, all inactive moats have high degree, ensuring that the average degree of active

moats is bounded by 2. The rest of the proof follows, and once again we obtain a 2-approximation.
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Remark. The primal LP can in fact be re-written as

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈∂S xe ⩾ f(S)

xe ⩾ 0

where f(S) is the demand function.

We say a set function f ∶ 2V → R is proper if f(V ) = 0, f(S) = f(V /S), and for disjoint A,B, f(A ⊔B) ⩽
max(f(A), f(B)). It can be shown that our Primal-Dual analysis generalizes to any proper function f(S).

Beginning of 09/23/2024

4.4 Survivable Network Design Problems (SND/SNDP)

Note: this section is very terse and may contain more errors than others.

In the Steiner Forest problem we required connectivity between certain pairs of nodes. Namely, for every cut

separating some pair (si, ti), there needs to be at least one edge leaving the cut. This can be stated with respect to

a binary function r(u, v) such that r(si, ti) = 1 and r(u, v) = 0 otherwise, and we impose the condition that

∑
e∈∂S

xe ⩾ r(u, v) for all S and all (u, v) with ∣S ∩ {u, v}∣ = 1.

To further generalize the problem, what if we allow the requirement function r(u, v) to take arbitrary integer values

⩾ 0? Think of this as requiring k-connectivity. For example, r(u, v) = 3 means for any cut separating u and v, there

needs to be at least 3 edges crossing it. So let us formulate the Survivable Network Design (SND) problem as

below:

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ r(u, v) for all S and (u, v) with ∣S ∩ {u, v}∣ = 1

xe ⩾ 0.

Further notice that for every cut S, the LHS ∑e∈∂S xe just needs to be ⩾ the maximal r(u, v) where (u, v) crosses S.

Define

r(S) ∶= max{r(u, v) ∶ ∣S ∩ {u, v}∣ = 1},

so the first constraint reduces to ∑e∈∂S xe ⩾ r(S). Also note that in the current problem, we can “cheat” by allowing

duplicates: if previously there is one edge e crossing S, then by increasing the value of xe we can easily achieve a

higher connectivity between S and Sc. This defeats our goal, so to ban such shortcuts, we also require 0 ⩽ xe ⩽ 1:

when transformed into an integer solution, we either pick each edge e (once) or not.

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈∂S xe ⩾ r(S) for all S

0 ⩽ xe ⩽ 1.
(Survivable Network Design)

To solve the SND problem, we use an augmentation approach to iteratively increase the connectivity of cuts until

all of them meet their respective requirements. We first find the set of edges that allow us to give connectivity 1

to all cuts with r(S) = 1. In the next iteration we pick some additional edges so now cuts with r(S) = 2 are also

satisfied. Repeat until all requirements are satisfied. This approach is based on a paper by Williamson et al. here. A
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high-level algorithm is shown below. To avoid confusing the overall requirement function r(u, v) and r(S) with the

intermediate ones (in each iteration), we use r′ to denote the latter.

Algorithm 7: SND Augmentation

1 Given: G = (V,E) that is [r′(u, v) − 1]-connected for each (u, v)
2 Given: a set of edges F with costs ce
3 Goal: find a min cost set of edge F ′ ⊂ F such that G = (V,E ∪ F ′) is r′(u, v)-connected.

4 repeat

So let us write out the augmentation LP first. The objective, clearly, is to pick a set of min cost edges from F ,

min∑e∈F cexe. The constraint is that after augmentation, the number of edges crossing S should be ⩾ r′(S). Hence,

∑
e∈F∩∂S

xe

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
new edges

+ ∣E ∩ ∂S∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

existing edges

⩾ r′(S) = max{r′(u, v) ∶ ∣S ∩ {u, v}∣ = 1}.

Rearranging gives ∑e∈F∩∂S xe ⩾ r′(S) − ∣E ∩ ∂S∣. Note the RHS ⩽ 1 because we are increasing connectivity by 1 in

each step. Define the residual demand to be

f(S) ∶= max(RHS,0) = max(r′(S) − ∣E ∩ ∂S∣,0).

Note this measures how much change is needed in order to satisfy connectivity requirements of S. We see we

have another binary function: we either need 1 additioanl edge or not, since our augmentation objective is just to

increase connectivity by 1. The augmentation LP can finally be simplified as

min ∑
e∈F

cexe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈F∩∂S

xe ⩾ f(S) for each S ⊂ V

xe ⩾ 0 for each e ∈ E.

4.4.1 Set Functions & The Original 2k-Approximation

Let f ∶ 2V → R (in our case, binary f ∶ 2V → {0,1} suffices) be a set function defined on V . We introduce the

following notions:

(1) f is a submodular function if it satisfies the law of diminishing returns:

if A ⊂ B then f(A + x) − f(A) ⩾ f(B + x) − f(B).

(2) f is a supermodular function if the above holds with ⩾ replaced by ⩽.

• f is called skew supermodular if one of the following holds:

– f(A) + f(B) ⩽ f(A/B) + f(B/A), or

– f(A) + f(B) ⩽ f(A ∩B) + f(A ∪B). [Note this is equivalent to being supermodular, so with another

condition above, skew supermodular is a weaker condition.]

(3) f is said to be uncrossable if:
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• f(V ) = 0,

• f(S) = f(V /S) for all S ⊂ V , and

• if f(A) = f(B) = 1 then f(A/B) = f(B/A) = 1 or f(A ∩B) = f(A ∪B) = 1.

We will state, without proof, that r′(S) is skew supermodular, S ↦ ∣E ∩ ∂S∣ is submodular, and that the difference

between a skew supermodular function and a submodular function is also skew supermodular.

Consequently, the residual demand f(S) is also skew supermodular. It is easy to check that this condition, along

with the fact that f is binary, implies that f is uncrossable.

Enough definitions. Let us see what does an uncrossable f give us. Consider sets of vertices A,B with residual

demands 1. This implies either f(A/B) = f(/B) = 1 or f(A ∩ B) = f(A ∪ B) = 1. In either case, we see that

there exists a smaller set that also has residual demand 1. This means that the minimal sets8with active residual

demand must be disjoint.

But when would a set of vertices have an active residual demand? It happens precisely when the r′(S) demand

is not yet satisfied, meaning the connectivity of (S,Sc) needs to be increased. The minimal sets with active

residual remand are precisely, in the language of Steiner Forests, active moats. We finally established a

concrete connection between the primal and the dual.

Remark. The augmentation step itself gives a 2-approximation based on the proof that our Steiner Forest

algorithm is 2-approximate. Summing over all augmentation steps, we obtain a 2k-approximation factor,

where k = maxe r(e).

Later, Goemans et al. observer that we can in fact reverse the augmentation order. First take the nodes

with connectivity requirements k and make them 1-connected. In the new graph, the highest demand has

now decreased by 1, to k − 1. Repeat until done. Note that if we simply take our solution obtained from

the first augmentation iteration and scale it by k, then we obtain a feasible solution. This means at the first

step, we obtain a 2-approximation w.r.t. the optimum scaled by k, giving us an actual approximation factor

of 2/k. The next iteration will give a factor of 2/(k − 1), and so on, so overall, with reversed augmentation

order, we obtain a 2Hk-approximation, where Hn is the nth harmonic number. (So we improved from Θ(k)
to Θ(log k).)

Beginning of 09/25/2024

4.4.2 Reverse Augmentation: Improving to Θ(logk)-Approximation

For convenience, let us recall some helpful definitions. Related to demand, we define

f(S) = max r(u, v) taken over all (u, v) with ∣S ∩ {u, v}∣ = 1

and correspondingly

fmax = max
S⊂V

f(S).

Recall that fmax denotes the maximum demand of any possible cut, and consequently our augmentation algorithm

will need to run for a total of fmax times, where in each iteration we will add a set of edges to our intermediate
8In the sense that no strict subset also has active residual demand.
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solution. Define Fp−1 to be the set of edges added in iteration 1,⋯, p − 1. In the current iteration, our objective is

min ∑
e∈E/Fp−1

ceze subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ rp(S) for all S

ze ⩾ 0 for all e ∈ E/Fp−1.

(SND Reverse LP(p))

(Of course, we have not yet defined rp(S).) The design choice for rp is subject to the goal that it decreases any

“active” demand by 1 in each iteration. The ultimate goal is that in each iteration, the maximum demand

decreases by 1. For example, consider three sets in a graph whose demands initially are (3,5,7). Our first goal

would be to reduce the maximum demand from 7 to 6. But in doing so, maybe the edge we added also affected the

demand of, say, the second set, resulting in (3,4,6). The third set still has the highest demand, so we further reduce

it to (3,4,5), and to (3,4,4). Repeat until all demands are gone.

Therefore, we want rp(S) to be an indicator of whether the demand of a set S is currently on the high threshold.

The current remand is f(S) minus the number of edges added that now cross S. Call this latter quantity δp−1(S).
On the other hand, at iteration p (1-indexed), the highest demand threshold should be fmax − (p − 1). Therefore,

rp(S) = 1 if max (f(S) − δp−1(S),0) = fmax − (p − 1) (12)

and 0 otherwise. This way, we know that if rp(S) = 1 then we must reduce the demand by S. (And of course, we

may get bonus demand reductions for any set, like outlined above.)

As usual, it is now time to write the dual for (SND Reverse LP(p)):

max ∑
S⊂V

rp(S) ⋅ y′S subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
S∶e∈∂S

y′S ⩽ ce for all e ∈ E/Fp−1

y′S ⩾ 0 for all S ⊂ V.
(SND Reverse Dual(p))

... and recall that we also have the overall primal and dual LPs. We attach them below for a refresher.

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ f(S) for all S ⊂ V

0 ⩽ xe ⩽ 1 for all e ∈ E.
(SND LP)

For the dual, we assign variables yS for each S ⊂ V and γe for each edge e. Because we want xe ⩽ 1, which is

equivalent to −xe ⩾ −1, in the dual objective, the coefficients for γe are negative.

max ∑
S⊂V

f(S) − ∑
e∈E

γe subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
e∈∂S

yS ⩽ ce + γe for all e ∈ E

yS , γe ⩾ 0 for all S ⊂ V, e ∈ E.
(SND Dual LP)

Yes, now we have two primals and two duals. To analyze the algorithm, let us use ALG, Dual, ALG(p), and Dual(p)
to denote the objective values of SND primal, SND dual, SND reverse augmentation primal at iteration p, and SND

reverse augmentation dual at iteration p, respectively.

Using a similar argument to the forward augmentation, the reverse augmentation is 2-approximate, so ALG(p) ⩽
2 ⋅ Dual(p). And by duality, Dual ⩽ ALG. Therefore, we just need to relate the overall problem to the reverse

augmentation.
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Claim. For each p, Dual(p) ⩽ Dual/(fmax − (p − 1)). If this claim is true, then

ALG =
fmax

∑
p=1

ALG(p) ⩽ 2∑
p

Dual(p) ⩽ 2∑
p

Dual

fmax − (p − 1) = Dual ⋅Θ(log fmax),

which completes the approximation ratio analysis for SND when using reverse augmentation.

Proof of claim. Let us first consider a feasible way to assign values to γe in (SND Dual LP). To make sure the

constraints are satisfied, one way is to define

γe =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
S∶e∈∂S

y′S if e ∈ Fp−1

0 otherwise.

This ensures yS = y′S for all S. With such assignment,

Dual = ∑
S

f(S) −∑
e

γe = ∑
S

f(S) − ∑
e∈Fp−1

∑
S∶e∈∂S

y′S

= ∑
S

[f(S) − δp−1(S)] ⋅ y′S (δp−1(S) = size of boundary of S w.r.t. Fp−1)

[observe that y′S appears

once for each edge in δp−1(S)]

= ∑
S∶rp(S)=1

[f(S) − δp−1(S)] ⋅ y′(S) + ∑
S∶rp(S)=0

[f(S) − δp−1(S)] ⋅ y′(S)

[observe in (SND Reverse LP(p))

y′S only matters if rp(S) = 1

if rp(S) = 0, can set y′S = 0]

⩽ ∑
S∶rp(S)=1

[fmax − (p − 1)] y′S = ∑
S

rp(S)y′S = Dual(p).

Thus we have completed the final piece of the puzzle, and the claim that reverse augmentation achieves a

Θ(log fmax) overall approximation factor has been proven.
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5 Assignment Problems and Iterative Rounding

5.1 Min-Cost Matching Problem

Consider a problem where we have to assign n tasks to n people, one for each. Let wi,j be the weight or cost of

assigning task i to person j. Our goal is to minimize the sum of weights. Using xi,j to represent the action of

assigning item i to person j, the LP relaxation is

min∑
i,j

wi,jxi,j subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

xi,j = 1 for all j

∑
j

xi,j = 1 for all i

xi,j ⩾ 0.

We state, without proof, some important facts about extreme point solutions. Given a linear LP, the feasible

solutions form a polytope P . A feasible solution x is said to be an extreme point solution if for any y ≠ 0, either

x + y ∉ P or x − y ∉ P . The important property is that if the original LP has m variables and x is an extreme point

solution, then x has m tight linearly independent constraints.

Back to our problem: we have 2n constraints, one for each i, and one for each j. But notice that we only have 2n−1

nontrivial linearly independent constraints, for if we satisfy any 2n − 1 constraints, the last one is automatically

satisfied by noting that ∑i [∑j xi,j] = ∑j [∑i xi,j]. On the other hand, we have m = n2 variables, one for each edge.

Now, consider the concept of extreme points in the context of this problem. For an extreme point solution, there

must be n2 − (2n− 1) variables whose corresponding xi,j equal 0, as they are not involved in any active constraints.

The remaining 2n − 1 tight active variables will form a sparse assignment configuration. There are n people and

2n−1 edges, and because the assignment is valid, it must be the case that one person, say person j, has degree 1 to,

say task i, and everyone else degree 2. If we remove this pair (task i,person j) from consideration, then recurse,

considering the subproblem with n − 1 people and 2(n − 1) − 1 tight constraints. This process is called iterative

rounding.

5.2 Generalized Assignment Problems & Budget Allocation

Beginning of 09/30/2024

Generalized Assignment Problems (GAP)

In this part, we consider a direct generalization of the assignment problem. Suppose that we are to assign n jobs to

m agents, where we also have the following quantities defined:

• ci,j measures the cost of assigning job j to agent i,

• Pi,j measures the processing time of agent i working on job j, and

• Ti is the total available time agent i has.

The goal, naturally, is to produce a feasible solution of minimum cost such that all jobs are processed:

min∑
i,j

ci,jxi,j subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑i xi,j = 1 for each job j ∈ [n]

∑j Pi,jxi,j ⩽ Ti for each agent i ∈ [m]

xi,j ⩾ 0.

(GAP LP)
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However, notice that this LP can have arbitrarily large integrality gaps: consider one job and m agents, such that

for agent 1, processing time is 1 but cost is some large M , and for all other agents, cost is 0 but processing time is

m−1. Further assume that all agents have available time Ti = 1. This would force the integral solution to assign the

job to agent 1, whereas in the integral solution, a much better alternative would be to assign 1/m fraction of the job

to each agent.

So what’s the problem here? We should force the fractional solution to also discard assignments that we know are

impossible: if Pi,j > Ti, we don’t assign job j to agent i. So we need some preprocessing: remove all xi,j (or set it

to 0) where Pi,j > Ti.

A known lower bound to the approximation ratio of the makespan of this problem is 3/2, but it is not known

whether it is possible to achieve any approximation ratio < 2. In what follows, we provide a 2-approximation

algorithm, i.e., find an assignment satisfying ∑j Pi,jxi,j ⩽ 2Ti. Note the difference here: we are relaxing constraints

by a factor of 2, not the objective value.

Designing a 2-approximate makespan GAP Solution. Let F be the solution set (i.e. the set of variables xi,j set

to 1), initially empty. Like previously, we will start with x∗, an extremely point solution. Recall that this means

there are m + n variables and m + n tight constraints, one for each j ∈ [n] and one for each i ∈ [m].

CASE 1. If x∗i,j = 0 for some i, j, we can simply remove these variables from the LP without causing any change.

CASE 2. If x∗i,j = 1, then this means an assignment of job j to agent i has been made. So we are done with job

j and also need to update agent i’s remaining availability. That is, (i) add the assignment (job j, agent i) to F ,

(ii) remove job j from the set of jobs, and (iii) update Ti ← Ti − Pi,j .

CASE 3. Otherwise, x∗i,j ∈ (0,1) for all i, j. Recall that there are m + n such tight constraints. We now check the

degrees of each job or agent vertex. Clearly, there must not be a degree 1 job, for otherwise the job constraint

∑i xi,j = 1 implies that x∗i,j = 1 for some i, j. But what about the agents? The previous two conditions took care

of edge cases, so we may assume each remaining agent has degree ⩾ 1. We use di to denote the degree of agent

i.

(3.1) Suppose di = 1 for some i. Suppose this agent is assigned job j. Consider the following sequence of

actions: (i) remove j from the set of jobs, (ii) add (job j, agent i) to F , and (iii) remove everything related

to agent i. From now on, agent i will never be updated again. What is the total time we assigned to agent

i, compared against Ti? Previously, we may have updated Ti according to CASE 2, but the total deduction

does not exceed Ti because x∗ is a feasible solution, and CASE 2 is invoked only if x∗i,j = 1. Thus, for the

previous deductions, we have ∑j Pi,j = ∑j Pi,jx∗i,j ⩽ Ti. For our current assignment in (3.1), we also know

that our final assignment has price Pi,j ⩽ Ti (directly by original LP’s post-processing condition), so the

total runtime on agent i is bounded by 2Ti.

(3.2) The harder case is if every agent i has degree di ⩾ 2. In this case we can view E, the set of edges in

the graph, as a set of cycles. And because of matchings, these cycles are all even. Further, the number of

agent and jobs are equal in this case, say k.

We claim that there exists an agent i with di = 2 and ∑j x
∗

i,j
= 1. This is obvious, since among all

existing x∗i,j ’s,

∑
j

=1
³¹¹¹¹¹¹·¹¹¹¹¹¹µ
∑
i

x∗i,j = k = ∑
i

∑
j

x∗i,j .
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For convenience, consider agent i and the two adjacent jobs, j1 and j2. We perform the following actions:

• remove j1, j2 from the set of remaining jobs,

• add both assignments (job j1, agent i) and (job j2, agent i) to F , and

• remove agent i from the set of remaining agents.

Suppose agent i has quota T ′i remaining right before the above actions are carried out. This means that all

previous assignments to agent i, like in (3.1), must have been performed in CASE 2, and therefore have a

total cost bounded by Ti − T ′i , i.e., with respect to the old F ,

∑
j∶(i,j)∈F

Pi,j ⩽ Ti − T ′i .

On the other hand, it is clear that max(Pi,j1 , Pi,j2) ⩽ Ti by feasibility, and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi,j1Pi,j1 + xi,j2Pi,j2 ⩽ T ′i (by feasibility)

xi,j1 + xi,j2 = 1 (by claim above)
⇒min(Pi,j1 , Pi,j2) ⩽ T ′i .

Agent i will be permanently removed after the actions listed in the bullet points above, and it will have

worked for a total of

∑
j∶(i,j)∈F

Pi,j + Pi,j1 + Pi,j2 ⩽ (Ti − T ′i ) + T ′i + Ti = 2Ti.

This completes the proof that our new assignment has is at worst 2-approximate with respect to makespan.

But what about the objective values∑i,j ci,jxi,j which we never talked about? The cool idea here is that all of our

previous cases can be done simply by removing variables and constraints, without modifying any actual value.

In CASE 1, an unused assignment x∗i,j = 0 is as if it didn’t exist at all, so we can simply remove the variables. In

CASE 2, once an assignment x∗i,j = 1 has been made, we also no longer care about the corresponding variables.

Finally, in each iteration of CASE 3, we are essentially removing a constraint imposed by agent i. To sum up,

another way to implement this algorithm is by dynamically updating the set of jobs and agents until none is left,

while keeping the LP inequalities verbatim. Under this perspective, the algorithm is just relaxing constraints, so

certainly the overall cost won’t deteriorate. Therefore, we have shown that we have found an assignment whose

cost is optimal while makepsan is 2-approximate.

Budgeted Allocation

Now we consider the “opposite” of GAP. The budget allocation problem instead wants to maximize the objective

value. Say we have an auction with again n auction items, indexed by j, and m buyers, indexed by i. The value

bi,j measures the bit buyer i is willing to place on item j, and each buyer i has a total budget Bi. Clearly, no one is

allowed to overspend, and the goal for the auction organizer is to maximize the money raised in the event:

max∑
i,j

bi,jxi,j subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑i xi,j ⩽ 1 for each item j

∑j bi,jxi,j ⩽ Bi for each buyer i

xi,j ⩾ 0.

(Budgeted Allocation)

Just like the naïve GAP, we have a problem: imagine if everyone is broke with budget 1 but there is one expensive
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item. The fractional solution would give everyone “fractions” of the item, but the integer solution would simply

deny everyone from buying. Therefore, just like before, we assume bi,j > Bi for each i, j.

Now let x∗ be an extreme point solution to the budgeted allocation problem, and we will use a similar rounding

scheme to cover an assignment. Let F be the set of assignments, initially empty.

CASE 1. If x∗i,j = 0, like before, simply remove the variable xi,j .

CASE 2. If x∗i,j = 1, then buyer i buys item j, so assign (item j, buyer i) to F , and update buyer i’s remaining budget

by Bi ← Bi − bi,j .
CASE 3. Otherwise, x∗i,j ∈ (0,1) for all i, j. Because x∗ is an extreme point solution, there are ∣E∣ = m + n variables

and m + n constraints. Based on the degrees of vertices, we once again have two cases: either every vertex has

degree 2, or maybe there is a degree 1 vertex.

(3.1) If every vertex has degree 2, by the nature of matching, the induced graph consists of even cycles where

notes alternate between items and buyers. We use a technique known as cycle pushing. For each cycle

C = u1 → v1 → ⋯ → uk → vk → u1 [where we use u’s and v’s to represent the bipartiteness], consider two

new cycles, C ′ defined by pushing +δ on u1 → v1, −δ on v1 → u2, +δ on u2 → v2, and likewise, C ′′ defined by

pushing −δ on u1 → v1, +δ on v1 → u2, −δ on u2 → v2, and so on.

It is immediately clear that (C ′ + C ′′)/2 = C. This means at least one of the directions along which we push

alternating δ weights will result in a new cycle that is no worse than the original one. Fix this direction and

make δ as large as possible so that some edge now becomes 0 or 1. At this point, we have converted C into an

acyclic path that is at least as good as original. This leads to the following case, which we will WLOG assume

is what happens in CASE 3:

(3.2) The graph induced by any extreme point solution x∗ is acyclic.

Beginning of 10/02/2024

In other words, we assume that {(i, j) ∶ x∗i,j > 0} is a forest. For the following analysis, we restrict our attention

to one single tree, say T , and think of how to make progress on it. The idea is to look at leaf agents.

Observe that if we have a leaf agent i, we can always just assign the parent item j to this agent and be done

with item j. This assignment is valid because our preprocessing ensured bi,j = min(bi,j ,Bi). What if item j

has three leaf children, i1, i2, i3? Intuitively, we should make the assignment to the agent with the highest bid.

But there is one more complication. If item j has a parent node, that node is also an agent. What if the

highest bid comes from this parent agent (red edge)? Note that this agent may also have some other bidding

(represented by the blue edge) affecting their available budget.

(agent on top)

(whatever) (item j)

(agent i1) (agent i2) (agent i3)
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We put aside the above observation temporarily. Let us also consider the reverse case, where items become

leaves, and we want to analyze the buying actions of an agent i. Of course, to maximize the revenue generated

by agent i, we want to let agent i buy as many items incident to them as possible, but clearly the budget Bi
imposes a constraint.

(item j)

(whatever) (agent i)

(item j1) ⋯ (item jk)

Quoting CASE 2, let us first consider an extreme special case: that x∗i,j` = 1 for all edges between agent i and

children j`. Certainly, in this case, that x∗i,j` = 1 implies that an assignment (i, j`) can be made for all ` without

violating the budgeting constraint Bi. Now let us consider the change to the total revenue (objective) after

assigning all leaf items to agent i. Originally, revenue generated by agent i according to x∗ is

Ri =
k

∑
`=1

bi,j`x
∗
i,j`

+ bi,jx∗i,j =
k

∑
`=1

bi,j` + bi,jx∗i,j ,

whereas after the assignment, the revenue obtained from the parent item j is now the minimum between bi,j
and Bi −∑k`=1 bi,j` due to an updated budget constraint. So the new revenue is

R′
i =

k

∑
`=1

bi,j` +min(bi,j ,Bi −
k

∑
`=1

bi,j`)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=b′i,j

x∗i,j .

Claim. R′
i ⩾ Ri/2.

Proof of claim. Observe that Bi ⩾ Ri because clearly the Bi ⩾ ∑j adjacent bi,j ⩾ Ri.

If ∑k`=1 bi,j` ⩾ Bi/2 ⩾ Ri/2 then there is nothing to show. Otherwise, we observe that if ∑k`=1 bi,j` < Bi/2, then

b′i,j ⩾ min(bi,j ,Bi/2) ⇒ b′i,jx
∗
i,j ⩾

bi,jx
∗
i,j

2
.

END OF PROOF OF CLAIM

Notice that we never relied on the value of x∗i,j` in the proof above. Therefore, we may relax this assumption

and still get the result that R′
i ⩾ Ri/2. That is, by applying this assignment argument to every leaf item in

every iteration, we get a 2-approximation from this analysis as our revenue gained for each item is at least

1/2 of the optimal value gained from that item.

5.3 SND & Iterative Rounding: a 2-Approximation

In this section we will revisit the SND problem, for which the method of iterative rounding is originally designed.

A result due to Jain [1998], this iterative rounding algorithm for the first time reduces SND approximation ratio
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down to a constant factor (much better than Θ(log fmax) as we mentioned before).

First, let us recall the problem formulation: given a pair (u, v) of vertices, the function value r(u, v) denotes the

requirement/demand of the number of paths between the two endpoints. Each edge is weighted with cost ce, and

the LP is

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
e∈∂S

xe ⩾ r(S) = max
u,v

∣S∩{u,v}∣=1

r(u, v) for all S ⊂ V

0 ⩽ xe ⩽ 1 for all e ∈ E.

Furthermore, we will assume that the demand r is integer valued. Recall that in the primal-dual analysis, we used

the fact that r is skew supermodular; that if we have a partial solution S, then the weighted sum of S, then the

cardinality function S ↦ ∣E ∩ ∂S∣ is submodular; and that the residual demand

f(S) ∶= max(r(S) − ∣E ∩ ∂S∣,0)

is also skew supermodular. We slightly generalize the notion of ∣E ∩ ∂S∣. Instead, let y be a set of solutions, i.e.,

a set of edges whose values are ye ∈ {0,1}. Then define ϕ(y,S) = ∑e∈∂S ye, the size of E ∩ ∂S with respect to the

edges chosen by y. This are the edges with ye = 0. This still gives a submodular function, and consequently, the

generalized residual demand (w.r.t. any partial solution y)

fy(S) = max(f(S) − ϕ(y,S),0)

is skew supermodular for any y ∈ {0,1}∣E∣. This is the one and only known fact about fy(S) throughout the rounding

scheme (the solutions themselves may become barely interpretable).

Now, looking back at the primal-dual approach, we see that the primal-dual algorithm uses the LP in the analysis

but not the LP itself in the solution. Here, iterative rounding starts with an LP, so we need to solve it. That is, we

have one more obstacle: we need to know we can solve the LP a priori. This is not immediately clear, since the

number of constraints is exponential w.r.t. set size. The fix to this is via a separation oracle. The high-level idea is,

although we cannot efficiently and explicitly check if a solution is feasible (because there are ∼ 2∣E∣ constraints), we

can derive a polynomial-time verifier/certificate because we only have polynomial number of variables. In this LP,

specifically, the verifier can be implemented using Max-Flow: for each pair (u, v), run a Max-Flow algorithm from u

to v and see if it admits a flow with value ⩾ r(u, v). If this holds for all pairs (u, v) then we know all constraints are

satisfied. Else, the Min-Cut would return a set S whose SND LP constraint is violated.

As usual, let x∗ be an extreme point solution. If x∗e = 0 then we can simply ignore the variable edge e. If x∗e = 1,

then essentially edge e has been chosen, so we set ye = 1 (i.e., add edge e to the partial solution set y) and update

the residual demands fy(S) for each S [note even though there are expnentially many sets S, the total number

of updates is polynomial w.r.t. graph size because we only modified one edge]. Otherwise, let us assume that

x∗e ∈ (0,1) for each e. That is, none of the constraints of form 0 ⩽ xe ⩽ 1 are currently tight.

Recall that the number of linearly independent tight constraints equals that of variables for an extreme point

solution. This is known as the rank lemma. We have ∣E∣ = m variables, so we have m linearly independent tight

constraints of form x∗(S) = fy(S).

Next up, we will inspect sets whose demand constraints are currently tight and analyze their structures. In particular,

we show the following:
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Claim. There exists a laminar family of sets satisfying the rank lemma with

tight constraints x∗(S) = fy(S).

(A family of sets is laminar if any two sets are either disjoint or one is a subset of the other. Note that applying

topological hierarchy on a laminar family of sets gives a tree.)

To establish this lemma, we will take a slightly different perspective of sets. In particular, we want to use linear

independence by relating sets with vectors. To this end, we associate each set S with a characteristic vector

χS ∈ {0,1}m such that χS(e) = 1 iff e ∈ ∂S. In other words, if we were to enumerate all edges e ∈ S, then the

corresponding component in χS is 1 iff e is in the cut (e ∈ ∂S).

Let T be the collection of the m independent tight constraints according to the rank lemma. Intuitively, this means

χT = {χS ∶ S ∈ T } is also a set of linearly independent vectors. Therefore, χT spans Rm.

Now we prove the claim. Let L be a maximal laminar subset of T . If ∣L∣ = m then we are done. Otherwise, if

∣L∣ <m, then span(L) is a strict subspace of Rm, and in particular, there exists S ∈ T with S ∉ span(L).

Beginning of 10/07/2024

Before we continue, now is a good time to take a step back and review the various set functions we have previously

discussed. We state, without proof, the following (most of which have already been stated before). To simplify

notations slightly, we will replace x∗(S) by x(S), the sum of the set of edges crossing S, as well as fy(S) by f(S),
the residual demand.

(1) x(A) + x(B) = f(A) + f(B).

(2) x(A) + x(B) ⩾ x(A/B) + x(B/A).

(3) x(A) + x(B) ⩾ x(A ∩B) + x(A ∪B), and

(4) One of the following holds due to skew supermodularity:

(4a) f(A) + f(B) ⩽ f(A/B) + f(B/A), or

(4b) f(A) + f(B) ⩽ f(A ∩B) + f(A ∪B).

These are a lot of inequalities to digest, so let us consider arbitrary sets A,B, and categorize all types of edges by

checking the location of their endpoints. Because two A,B partition the space into A ∩B,A/B,B/A, and Ac ∩Bc,
we have (4

2
) = 6 types of edges, labelled below. We first assume that

a f

b

c

d e

CASE 1: (4a) holds. Then (1), (2), and (4a) imply that

x(A) + x(B) = x(A/B) + x(B/A).

Now note that the LHS contains {a, b, c, e} and

{b, c, d, f}, whereas the RHS contains {a, c, d} and

c, e, f . Equating both sides, we see that the total con-

tribution of (twice times) edges of type b is 0. Since

x∗e ≠ 0 by assumption, we conclude that no edge of type

b exists. So really, the graph looks like the following:

The cool realization is that if no edges connecting A ∩B to Ac ∩Bc exist, then the characteristic vectors satisfy

χA + χB = χA/B + χB/A.
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Likewise, in CASE 2 where (4b) holds, using (1), (3), and (4b), we would obtain

χA + χB = χA∩B + χA∪B .

Let us now return to the discussion of laminar sets, and assume ∣L∣ <m with S ∈ T /span(L). WLOG, let us assume

that S crosses the fewest sets in L (note this quantity is positive, and S exists: for otherwise S would be disjoint

from L, and L ∪ {S} is also laminar).

Let S′ ∈ L be a set that intersects S. We assume (4a) holds, so χS +χS′ = χS/S′ +χS′/S . The other case is analogous.

Then, by replacing S,S′ with S/S′ and S′/S, respectively, the number sets that now cross S must have been reduced:

sets become smaller, so certainly the number of crossings should decrease. We then repeat this process until no more

sets cross S. But now, based on our previous observation, this means L must span the space of all tight sets, so

∣L∣ =m, and we are done.

To wrap up the proof, we will use what is known as the total counting argument. Our goal is to prove the following

claim:

Anytime during the algorithm, there exists an edge e with xe ⩾ 1/2 to allow

us to round up to 1. This ensures an overall 2-approximation ratio.

C

A B

u v

To show this, we suppose not, that xe < 1/2 for all edges e. We will use a

“token distribution scheme,” where in each iteration, we assign one token to

each edge e, and ask it to distribute tokens to three specific sets:

• distribute xe tokens to the smallest set A ∈ L containing u;

• distribute xe tokens to the smallest set B ∈ L containing v; and

• distribute 1− 2xe to the smallest set C ∈ L containing both u and v. Note

because L is laminar, such set contains both A and B.

We will prove several important claims:

Claim 1. Some tokens are left undisributed.

Proof. Now let S be any maximal laminar set (this just means no other set contains it). The set exists because

the set characteristic vectors χX are linearly independent and hence nonzero (or because the constraint w.r.t. S

is tight). What about an edge e = (u, v) ∈ ∂S, with u ∈ S, v ∉ S? Well, the token redistribution scheme asks e to

give xe tokens to S, and also xe tokens to the smallest set containing v. But no set contains both u and v by the

maximality of S, so e is left with 1 − 2xe undistributed tokens.

Claim 2. Each set gets ⩾ 1 tokens via this distribution scheme.

Proof. Let S ∈ L be given, and let T1,⋯, Tk be the collection of laminar sets inside S (maybe there is none, but

the proof works as-is). Call the latter child sets. There are four types of edges that we are interested in:

(a) e = (u, v) where u ∈ Ti, v ∈ S/⋃ Ti, i.e., from a vertex in a child set to one in S/⋃ Ti;

(b) e = (u, v) where u ∈ Ti, v ∈ Tj , i.e., from one child set to another;

(c) e = (u, v) where u ∈ S/⋃i∈ Ti and v ∉ S, i.e., from a vertex in S/⋃ Ti to outside S; and

(d) e = (u, v) where u ∈ Ti and v ∉ S, i.e., from a child set to outside.
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By appealing to the definition of the token redistribution scheme, we see that the amount of token S receives

can be broken down as follows:

(a) For an edge of this form, S receives xe + (1 − 2xe) = 1 − xe (the other xe token are given to some Ti).

(b) S receives 1 − 2xe (since each endpoint gives xe to some Ti).

(c) S receives only xe, from the one endpoint in S.

(d) S receives nothing, since one endpoint is outside of S, and the other gives xe to some Ti instead of S.

Summing over everything, the total token S gained is

(type a) + (type b) + (type c) + (type d) = ∑
type a

(1 − xe) + ∑
type b

(1 − 2xe) + ∑
type c

xe + 0. (*)

Observe that for any given set S, we must have at least one non-type d edge, for otherwise the set characteristic

vector χS can be expressed as a linear combination of the χTi ’s, violating linear independence. Therefore, (*) is

strictly positive!

To show (*) ⩾ 1, it suffices now to show that it is integer-valued. Clearly, rearranging gives

(∗) = ∣{type a edges}∣ + ∣{type b edges}∣ +
⎛
⎝ ∑type c

xe − 2 ∑
type b

xe − ∑
type a

xe
⎞
⎠

= integer +∑
c

xe +∑
d

xe − (∑
a

xe + 2∑
b

xe +∑
d

xe)

= integer + f(S) − ∑
Ti⊂S

f(Ti) = integer.

This completes the proof that every set gets ⩾ 1 tokens in each iteration via redistribution.

S

T1 T2

T3

ab

c
d

So if xe < 1/2 for all edges e, with the help of the two

claims, we inevitably arrive at a contradiction: we have

m = ∣E∣ tokens to distribute, and by the rank lemma

we also have m sets to receive these tokens. Some to-

kens were lost, but somehow all sets end up receiving

⩾ 1 tokens, resulting in a total of ⩾ m tokens, which is

absurd. Therefore, during any stage, there exists some

xe ⩾ 1/2. We simply round it up to 1 and repeat. Clearly,

this iterative rounding approach achieves the claimed

2-approximation factor.

Beginning of 10/09/2024

6 Data Rounding on “Really Good”

Approximations

In this section we consider a technique called data rounding. The high level idea is that we can round the input

values in a way to drastically reduce the number of solutions which, combined with other algorithms such as DP,

leads to efficient solutions.
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6.1 Revisiting the 0 − 1 Knapsack Problem

The first example we examine is the knapsack problem, which is sometimes treated as the first example of dynamic

programming. Given n items, each with weight wi and values vi, our goal is to maximize the values of items we

take whose total weight is bounded by some capacity W . WLOG assume each wi ⩽W for otherwise the item cannot

be picked regardless. The classic DP-based approach solves to solve the following recursion:

K(i,w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

K(i − 1,w) w < wi
max(K(i − 1,w),K(i − 1,w −wi) + vi) w ⩾ wi

where K(i,w) measures the optimal total value that one can take from items 1,⋯, i, with total budget w. And it

is well-known that knapsack solved via this approach is pseudopolynomial, where its runtime also depends on the

maximum weight budget.

The problem lies in the fact that the DP memoization table for the above approach has W columns. One way to

improve, naturally, is to ask whether it is possible to reduce the number of columns to a quantity that is polynomial

w.r.t. the number of bits representing it.

Before proceeding, we first notice that we must not modify the weights wi of items, for otherwise we are left with

a completely different problem, and there is no way to draw connection to the optimal solutions of both problems.

Instead, (and to make this sound like an approximation algorithm) we modify the values vi via discretization: we

impose thresholds, and round each original value vi to an associated discretized value.

Let ε > 0 be given. We prove the following result:

Theorem

Let V be the maximal value maxi vi among all items and define k = V ε/n to be the discretization scale. For

each item i, we round its value down to the nearest multiple of k, i.e., vi = ⌊vi/k⌋ ⋅ k. Then, this rounding

algorithm is an 1 − ε approximation with runtime O(n3/ε), which is strongly polynomial.

Proof. Observe that via rounding, each item losses value of at most k. Since at most n items can be picked, the

total loss is bounded by V ε. On the other hand, the original OPT is certainly at least V for this can be attained by

simply picking the most valuable item. Combining both claims, we see that the total loss is ⩽ ε ⋅OPT, completing

the proof.

As for the runtime, it is certainly bounded by O(n2V /k) = O(n3/ε), which amazingly is now free of W .

6.2 Bin Packing

Now we consider the bin packing problem: there are n items, each with weights s1,⋯, sn ⩽ 1. There are also bins

with capacity = 1. Our goal is to pack the items into as few bins as possible.

There are many applications to this problem, for example caching and memory allocation. Some of the commonly

heard strategies include “first fit” where one finds the first available bin with enough space to fit si, and if none

exists, get a new bin. Another common strategy is “best fit” where one finds the fullest bin that can contain si, and

get a new bin if no such bin exists.

It is easy to prove that both strategies satisfy an asymptotic 2-approximation: ALG ⩽ 2OPT + 1. This is because at

any time in the algorithm, all but at most one bin must be ⩾ half full. Otherwise, if we have two bins that are less

than half full, we could have merged them (slightly more justification needed, but this is the idea).

In what follows, we show that it is possible to derive a polynomial-time solution such that ALG ⩽ (1+ε)OPT+1,
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for any given ε > 1. The “+1” at the end implies that bin packing is asymptotically PTAS (but not). Without it, the

best approximation ratio cannot achieve ⩽ 3/2, as otherwise this would contradict the NP-hardness of the partition

problem. But that is okay, since when the input size is large, the trailing 1 is negligible, and in the end we “almost”

still have an 1 + ε approximation.

First, we will assume the two following properties of the si’s and show that this yields a valid polynomial-time

solution. Then, we will show that it is possible to transform any instance of bin packing into one satisfying the

following two while losing no more than a factor of ε. This will get the proof completed.

Assumption 1. All si’s satisfy si ⩾ ε.

Assumption 2. The number of distinct values among the si’s is constant. Call it k.

Deriving an Approximate Bin Packing Algorithm. We will approach this problem via a multi-step approach,

each time with less additional constraints and eventually solve the approximate bin packing.

STEP 1. Assuming both assumptions hold, there exists a polynomial-time exact algorithm (i.e. finds the best

answer to the bin packing instance).

Proof of STEP 1. First, by assumption 2, we can “categorize” items by type 1 up to type k. Therefore, in each bin,

there are at most k distinct types. Further, each bin contains ⩽ 1/ε items by assumption 1.

Think of representing each bin by a dictionary with k keys. One (not so elegant) way to represent this specific

bin/dicitonary is via a binary string using stars-and-bars, where 1’s serve as category separators, and the count

of 0’s between bars represent the count of items of that type. For example, if k = 4, and a bin’s item count for

type 1 to 4 are 2,4,0, and 3, respectively, then the bin could be represented by

00 1 0000 1 1 000.

It’s apparent that each configuration uniquely characterizes a bin. Such a string has at most k + 1/ε bits (can be

shorter), so the total space of configurations has size bounded by M ∶= (k+1/ε
k

).

Now we repeat the same argument, but this time for the overall arrangement of bins. There are M types

of bins, and the total number of bins is bounded by n, since there are only n items in total. Another stars-

and-bars argument implies that the total number of solutions to this instance of bin packing is bounded by

(M+n
n

) ⩽ (M + n)n which is also polynomial w.r.t. n and ε.

Therefore, a brute force based approach would indeed find the exact optimal solution in polynomial time. (Do

observe that the exponent would be astronomical! So while this algorithm is polynomial, it is almost never

practical. For example, if ε = 1/20, n = 20, and k = 3, the exponent would be 23 choose 3 = 1171 and the overall

runtime O(n1171). Well...) END OF PROOF OF STEP 1

STEP 2. We now relax assumption 2 and deal with any bin packing instance, only subject to the constraint that

si ⩾ ε for each i. We show that there still exists a 1 + ε approximation algorithm.

Proof of STEP 2. The rounding scheme goes as follows: for some prescribed r that we determine later, (i) sort the

bins in increasing sizes, (ii) partition items into groups of size r, and (iii) within each group, round everything

to the largest item. By doing so, we reduce the problem to STEP 1, with k = ⌈n/r⌉. Therefore, as our brute force

algorithm outputs the exact optimal solution, to calculate the approximation factor, it suffices to compare OPT

(un-rounded optimal solution) directly against OPT′ (rounded up optimal solution).

It turns out a very elegant of bounding this difference is by introducing a third instance in which we round

everything down to the smallest item in each group of size r. Call the corresponding optimal solution OPT′′.
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The key observation here is that we can compare the rounded up values of group j against the rounded down

values of group j + 1. This works for all but one pair, namely, the rounded up value of the largest group against

the rounded down value of the smallest group. Put slightly more formally, let OPT′(i) denote the sum of values

from group i, and likewise for OPT′′(j). Then,

OPT′ −OPT′′ =
n

∑
i=1

[OPT′(i) −OPT′′(i)]

=
n−1

∑
i=1

[OPT′(i) −OPT′′(i + 1)] + [OPT′(n) −OPT′′(1)]

⩽ OPT′(n) −OPT′′(1) ⩽ 1 ⋅ r,

since each group contains r elements, and all elements are within [0,1]. (This reminds me of ancient Chinese

game theory strategy known as Tian Ji’s horse racing strategy.)

Beginning of 10/16/2024

Therefore, if r = nε2 then we have obtained a 1+ ε appromate algorithm, since the total weight is at least nε, and

OPT therefore contains at least nε bins, each of capacity 1. END OF PROOF OF STEP 2

STEP 3. Finally, we also relax assumption 1. But that’s easy. We first pack everything ⩾ ε into bins as described

above. Then we can use any reasonable strategy, for example first fit, to simply put all remaining small elements

of size < ε into the bins, and include a new bin whenever necessary. Two possibilities:

(1) This procedure does not introduce any new bins. Then there’s nothing to show, for certainly the result

is still 1 + ε approximate without new bins.

(2) This procedure opens (one or more) bins. In order to open a bin, we know for sure that all current bins

are at least 1 − ε full, since the new item to be packed is < ε. This shows that eventually, all but one bin is

at least 1 − ε full. Therefore,

ALG ⩽ 1 + (1 − ε)−1
n

∑
i=1

si ⩽ 1 + (1 + 2ε)
n

∑
i=1

si ⩽ 1 + (1 + 2ε)OPT.

Since ε is arbitrary, we are done.

To sum up, below is the full procedure that we have described above.
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Algorithm 8: Approximate PTAS Bin Packing

1 Input: ε > 0, and n items with capcities/sizes si
2 temporarily discard all “small” items with si < ε
3 for remaining “large” items do

4 k ← nε2

5 sort these items in increasing sizes and group into blocks of size k

6 round all items to the max item size in the block it lies in

7 with rounded “large” items: solve exactly using brute force

8 for “small” items do

9 pack each item using first fit (or any other), and open new bin if necessary

7 Cuts and Metrics

7.1 Multi-Cuts

Recall that in the minimum s− t cut problem, given a graph G = (V,E) with nonnegative edge weights ce, we want

to find the minimum cost cut/separator of s and t. Here, we consider a direct generalization: we seek a partition

of vertices, and instead of one pair (s, t), we have n pairs, where each si is to be separated from ti. This problem is

known to be NP-hard for n ⩾ 3.

Let us first write out the LP formulation of the problem:

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈Pi
xe ⩾ 1 for all unique si − ti path Pi

xe ⩾ 0 for all e.

We begin the simplest nontrivial graph among all, a graph with three nodes, s, r, t (where r is “root”). Clearly, if

given a fractional solution x∗e to this three-node graph, then x(s,r) +x(r,t) ⩾ 1, meaning that at least one of the edges

(s, r), (r, t) has a value ⩾ 1/2. It follows that we can simply round this value up to 1 and the other down to 0 to

recover an integer solution that is no worse than a 2-approximation, must alike the threshold rounding examples

we’ve seen many times before.

Now, to add slightly more generality, let us consider a larger tree.

Let si, ti be any non-root node (highlighed as red in

the figure). The path from si to ti must walk past the

root. Now assume we have already solved the fractional

multi-cut LP and obtained the solution x∗e . It follows,

from feasibility, that the sum of all x∗e along this path is

⩾ 1, so we want to design a rounding scheme that picks

a certain subset of sets along this edge, round them up

to 1, all while ensuring that this scheme can be simul-

taneously applied to various si, ti pairs.

A natural attempt would be to claim that either the left path or the right path (w.r.t root t) has a total value of

⩾ 1/2, so can round that half up. But it is not clear which edge in that half-path should we round up, let alone the

feasibility of parallel rounding across multiple si − ti paths. Instead, we will again grow “balls.” The statement is
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extremely simple:

• Pick a starting radius R uniform at random from (0,1/2).

• Grow a ball centered at root r with radius R, increasing its radius each time by 1/2 (so R,R + 1/2,R + 1, and

so on), where the distance metric of the tree is given by values of x∗e .

• Stop when the ball engulfs all si − ti pairs, and round all edges cut by the growing ball up to 1.

For example, in the figure above, let the red vertices be si and si. We end up rounding 3 out of the 5 edges up. One

of the other two (thin red) edges has a value x∗e to small and was missed by the initial R ∈ (0,1/2), and the other

also too small and missed by the 1/2 discrete increment of R.

Firstly, this rounding scheme admists a feasible solution: if we view si − ti as a combination of the paths si − r and

r − ti, where r is the lowest common ancestor (LCA), then one of the paths must have length ⩾ 1/2 because the total

length ⩾ 1 by feasiblity. Then since initially R < 1/2, it must cut one side, and the edge being cut will be rounded

up, making the result feasible. Therefore, the reasl question is, are we maintaining a 2-approximation factor? The

answer is (of course), yes.

We consider individual edges along the path, and we have two cases based on the value of x∗e .

CASE 1. x∗e ⩾ 1/2. Certainly this edge will be cut because R increases by 1/2 every time. On the other hand it’s also

clear that rounding up still induces an approximation factor of ⩽ 2.

CASE 2. x∗e ⩽ 1/2. In this case, e is either cut once or not at all. A simple argument in proability shows that

P(e is cut) = x∗e/0.5 = 2x∗e , so in expectation, x∗e is rounded to 2x∗e which also retains the 2-approximation factor.

Therefore, this rounding scheme is 2-approximation, completing our claim.

Beginning of 10/23/2024

Our goal is to consider a direct generalization of the multi-cut problem. First obseve that the original rounding

scheme results in a solution set with the following properties:

(*) Among the graph of remaining edges (excluding the ones being chosen via rounding), the diameter of each

component is < 1. Otherwise, consider two nodes u, v with d(u, v) > 1. This means at least one of the paths

from si or ti to their LCA r has distance ⩾ 1/2. But then some edge will be cut because we increment R by 1/2.

(**) For each edge e, P(e is cut) ⩽ 2x∗e . Obvious from the previous analysis.

Both of the claims would change according to our criterion for selecting the initial R. For rationales that will be

explained later, let us generalize R ∈ (0,1/2) by replacing it with R ∈ (0, d/2) for some d and increment R by d/2
instead of 1/2 each time. Correspondingly, the two claims naturally generalize to:

(*) The diameter of any remaining component is < d, and

(**) Each edge has probability ⩽ 2x∗e/d of being cut.

This leads us to a more generlaized problem:

7.2 Low Diameter Decomposition (LDD)

Given G = (V,E) with xe as edge length of e, we want to partition the graph such that

(1) The diameter of each component is ⩽D for some D, and
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(2) For each edge e, P(e is cut) ⩽ α ⋅ xe/D for some α depending on the nature of the graph.

Observe that as analyzed before, when G is a tree, α can be made constant. In particular, LDD outputs an α-

approximation of multi-cut with D = 1, for feasibility is guaranteed by (*), and when D = 1,

E∑
e∈F

ce ⩽
α

D
∑
e∈E

cexe = α∑
e∈E

cexe.

Further, using a separation oracle, we can also efficiently solve the multi-cut LP, where we just need to run shortest

path algorithm for each (si, ti) pair and see if all pairs are now with distance ⩾ 1, and return feasible iff this

condition holds for all pairs. Therefore, to solve the multi-cut problem, it suffices to simply find a satisfying LDD,

which we will focus on from now on.

For general graphs, however, the factor α need not be constant — it could be dependent on the graph.

What would be our strategy now? Certainly, growing one ball and cutting edges is no longer sufficient — consider

the annulus/ring of width d/2 between two circles. If there exists a long s − t path contained entirely within this

annulus, then our rippling circles will not be able to capture and cut it.

The fix is, of course, easy: grow rings from every vertex, but not simultaneously. Let π be a permutation, i.e.,

let π(1),⋯, π(n) be an enumeration of all vertices. Let B(x, r) be the ball centered at x and with radius r (w.r.t.

path lengths). The process is simple: in each step i, assign all vertices in B(π(i),R) that is not yet assigned (by a

previous iteration) to a component represented π(i). When we are done, remove all edges crossed by any of the

boundaries.

Some immediate observations:

(1) π(i) need not be assigned to the component represented by itself, and

(2) components defined this way may even end up being disconnected.

(This illustration shows an example where π(i) (red dot) is not assigned to the

component (red) it represents.) To see that we have a feasible solution, let

si, ti belonging to the same component Sj be given. If there is to exist a path

P after components have been formed and edges removed, certainly

P ∈ Sj = B(π(j),R)/{⋃
k<j

B(π(k),R} ⊂ B(π(j),R).

Even B(π(j),R) has radius R < d/2, so the path length of P must be no more than d, satisfying the feasibility

constraint (*).

Now let us analyze the second condition (**), the probability of an edge e = (u, v) being cut by the boundary of

some ball. To do so, we first simplify the graph, focusing only on e = (u, v), as well as all other vertices but not

edges. Specifically, we transform the graph into a long chain with e = (u, v) in the center. For each other vertex w,

we define

d(w) = min(d(v,w), d(u,w))

and attach w to the chain leading to u if d(w) = d(u,w), and to v otherwise. Further, for every non-{u, v} node, we

sort and relabel their indices to be σ1, σ2,⋯, σn−2 based on d(w). For example, σ1 is closer to u than to v, whereas

σ2 is closer to v than to u. Below is one example:

u v

σ1 σ2σ3σ4 σ5
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Note that these paths between σi’s do not represent the actual structure of the graph — they are visualized in this

way only to highlight distance to u and v.

Clearly, if e = (u, v) were to be cut, it has to be cut by one of the σ’s. Consider, for example, σ2, where we ask, “what

does it take for B(σ2) to cut through e? The condition is di ⩽ R ⩽ di + xe, which has probability at most xe/(d/2).
There are potentially n − 2 = O(n) possible nodes, from which we can draw balls of radius R and possibly cut e.

Therefore, union bound shows that the total probability of e is bounded by P(e cut) ⩽ O(n) ⋅ (xe/d), so this gives

the factor α = O(n).

Observe, however, that there is a way to improve: for example, if e is cut by σ2, we should no longer care if it is also

cut by some further nodes σj , j > 2. That is, we care about the first occasion where e is cut. Because the σj ’s are

a random permutation of the vertices (recall how we defined π), σ1 has a probability of ∼ 1/n ⋅ (xe/(d/2)) of being

the first to cut e. The larger the index j for σj , the smaller the denominator and hence the larger the probability is:

P(e is cut) = O(xe/D)
n−2

∑
i=1

logn = O(logn)(xe/D),

from which we have improved α = O(n) to O(logn). This is still worse than the constant factor that we can easily

achieve on trees, but it’s good enough.

7.3 Multi-Way Cut

Beginning of 10/28/2024

In this section we consider a generalized problem, where instead of looking for a decomposition/vertex decomposi-

tion that separates all given (si, ti) pairs, we are given a set {si}ki=1 of k terminals and aim to pairwise separate all

of them. This is known as the Multi-Way Cut problem.

Let us first consider a baseline solution:

• Fix some si. Our goal is to separate si from all sj , j ≠ i.

• This can be done by augmenting a super sink ti, and add an edge (sj , ti) with infinite capacity for each j ≠ i.

• Any (si, ti) min cut must not contain an edge (sj , ti) because of its infinite capacity, so it will separate si from

{sj ∶ j ≠ i} ∪ {ti}. This gets the job done, since we can efficiently compute min cut.

• Repeat for each different i for a total of k times.

Trivially, this gives us a k-approximate solution. We will, however, take a closer look at the structure of the solution

and show that it is in fact much better than this naïve estimate.

Let OPT be given. Observe that OPT must have k connected components where there is exactly one terminal si in

each component. Let us call these components S1,⋯, Sk where si ∈ Si.
For each i ∈ [k], let Xi be the total cost of edges crossing Si in OPT. Similarly, let Ci be the cost of edges crossing Si
in our naïve solution ALG. Because Ci is obtained via computing the min cut splitting si and all sj , j ≠ i, certainly

the cost c(Ci) ⩽ c(Xi). Summing over all i ∈ [k] and using the fact that each edge is precisely double counted,

ALG ⩽
k

∑
i=1

∑
e∈Ci

ce ⩽
k

∑
i=1

∑
e∈Xi

ce = 2e ∈ OPTce = 2OPT,
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i.e., ALG is in fact 2-approximate. In fact, we can further slightly optimize this algorithm by terminating one

iteration early: if s1,⋯, sk−1 are all already separated from sk, there is no need to perform iteration k. By reordering

the cuts, we may safely discard the heaviest cut and obtain a total factor of 2(1 − 1/k)OPT

This bound is indeed tight: consider an n-gon with edge weights 1, and for each vertex, we further connect it to a

terminal si with edge weight 2− ε. The following graph illustrates the case n = 3. The optimal solution is to remove

all edges along the n-gon, giving a total cost of n. Our algorithm, however, would be forced to remove (n−1) edges

of weights 2 − ε. The comparison between (n − 1)(2 − ε) against n approaches 2(1 − 1/k) as n→∞.

1

11

2 − ε 2 − ε

2 − ε

s1 s2

s3

Unfortunately, the standard LP itself

min ∑
e∈E

cexe subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑e∈P xe ⩾ 1 for all (si, ti) path P

xe ⩾ 0

admits an integrality gap of 2(1 − 1/k) as well: consider a star graph where all

leaves are terminals and all edge weights are 1. The optimal integer solution is

to remove k − 1 edges, but a fractional solution assigning each edge the value

1/2 gets the job done. Therefore, we have no hope of improving our algorithm

beyond even the baseline, unless we consider a different LP.

So what went wrong here? The answer is that our LP is directly considering

the edge costs we. A graph with edge weights naturally induces a metric d(u, v) defined by the cheapest cost from

u to v. More generally, a metric d can be any function defined on a space (in our case, the set of vertices) that is (i)

nondegenerate, i.e., d(⋅, ⋅) ⩾ 0 with equality if and only if both arguments equal, (ii) symmetric, i.e., d(u, v) = d(v, u),
and (iii) satisfies triangle inequality: d(u, v) ⩽ d(u, t) + d(t, v).
The problem with our approach is that we are using the canonical metric. Instead, now we consider a more curated

one which gives us additional properties that we can use to get better bounds.

7.3.1 Improving Multi-Way Cut using Metric Embedding

Now we start over by designing a different metric. Recall that OPT must contain exactly k connected components,

each containing one terminal si. The distinction between individual vertices in V are much less interesting than

the distinction between the components. So, how about we categorize the vertices v ∈ V into clusters, based on the

terminal it contains? In particular, we can define a binary function d(u, v) such that d(u, v) = 1 if and only if u, v

belong to the same component Si. It is easy to verify that this function indeed induces a discrete metric.

Now consider a new interpretation of variables: for each u ∈ V and i ∈ [k], let xu,i denote the assignment variable

that evaluates to 1 if u ∈ Si and 0 otherwise. Now, if u, v are assigned to the same cluster, then xu,i = xv,i for all i’s.

Otherwise, ∣xu,i − xv−i∣ = 1 for two such indices (one for each cluster). Essentially, the `1 distance between vectors

(xu,1,⋯, xu,k) and (xv,1,⋯, xv,k) is either 0 or 2, and our metric is half of it. Therefore, the original LP can now be

re-written as

min
1

2
∑

(u,v)∈E
c(u, v) ⋅

k

∑
i=1

∣xu,i − xv,i∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
`1 distance/2

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

∑
i=1

xu,i = 1 for all u ∈ V (assignment)

xsi,i = 1 (cluster center)

xu,i ⩾ 0.

We have already implicitly stated this right above, but because of the form the objective takes, it is natural to

49



CS 632 Notes ∼ YQL 7 - Cuts and Metrics

vectorize the variables into k-dimensional vectors xu = (xu,1,⋯, xu,k) for each u ∈ V . Under the view of this

vector relaxation, the first and third constraints imply that each xu is in the k-dimensional simplex ∆k, whereas

in addition, the second implies that all terminal nodes si require xsi being one-hot (i.e. one coordinate as 1 and all

others as 0). Let us now simply the notation and state multi-way cut as a simplex LP problem. In the following,

define ∥x∥ = ∑ki=1∣xi∣/2, i.e., the half `1 norm.

min ∑
(u,v)∈E

c(u, v)∥xu − xv∥ subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xu ∈ ∆k ⊂ Rk for each u ∈ V

xsi = ei ∈ Rk for each si.
(Multi-Way Cut Simplex LP)

Once we have obtained a fractional solution, the rounding itself is rather straightforward, as we once again grow

balls and remove edges cut by the surface sphere, the only difference being the balls are now drawn with respect to

the norm ∥ ⋅ ∥.

Algorithm 9: Rounding Simplex LP Multi-Way Cut

1 Inputs: xv ∈ Rk, solution to the simplex LP

2 randomly select R ∈ (0,1)
3 for i = 1,⋯, k do

4 define Ci = Ball(si,R)/⋃
j<i
Cj

5 return all edges (u, v) where u, v belong to different Ci’s

Beginning of 10/30/2024

Claim. The output is 3/2-approximate.

To prove this claim, we first take a look at what it means if xv ∈ Ball(si,R).

xv ∈ Ball(si,R) Ô⇒ ∥xv − ei∥ ⩽ R Ô⇒ ∑
j

∣xv,i − ei,j ∣/2 ⩽ R

Ô⇒ 1 − xv,i
2

+ 1

2
∑
j≠i
xv,j

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=1−xv,i

⩽ R Ô⇒ 1 − xv,i ⩽ R.

We have therefore obtained the following characterization:

Ball(si,R) = {v ∶ 1 − xv,i ⩽ R}. (*)

For convenience call the balls Bi, and U = V /
k

⋃
i=1

Bi be the set of vertices not enclosed by any ball. Observe that

the partition B1 ∪ U,B2,⋯,Bk is feasible: each component still contains exactly one terminal, and we just need to

remove all edges in ∂Bi as well as ∂U . That is, it suffices to analyze (which is also an upper bound, not necessarily

optimal even after rounding)
k

∑
i=1

c(∂Bi) + c(∂U).

First fix an i and consider an edge (u, v) ∈ ∂Bi. By assumption, one endpoint lies in Bi but the other does not.

Therefore, this requires that (assuming WLOG xu,i ⩾ xv,i) 1 − xu,i ⩽ R < 1 − xv,i. Since R is drawn uniformly at
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random from (0,1), such event has probability ∣xu,i − xv,i∣ (and note that now we may drop the assumption that

xu,i ⩾ xv,i). Summing over all balls i,

P((u, v) ∈ ⋃
i

∂Bi) = ∑
i

∣xu,i − xv,i∣ = ∥xu − xv∥. (**)

Now we consider an edge (u, v) ∈ ∂U . WLOG assume u ∈ U . Then 1 − xu,i > R for all i by (*), so maxi xu,i < 1 −R.

Because v ∉ U , it lies in some ball Bj , so by (*) again 1−xv,j ⩾ R and in particular maxi 1−xv,i ⩾ R. Thus, (u, v) ∈ ∂U
implies

max
i
xu,i < 1 −R ⩽ max

i
xv,i,

and so

P((u, v) ∈ ∂U) = ∣max
i
xv,i −max

i
xu,i∣ ⩽

1

2

k

∑
i=1

∣xu,i − xv,i∣ = ∥xu − xv∥/2. (***)

(The proof of the inequality is omitted here.) Combining (**) and (***), we see that by picking edges crossing

{B1 ∪U,B2,⋯,Bk}, we obtain an overall 3/2-approximate algorithm.

One last issue remains: we need to resolve overlaps. If Bi ∩Bj ≠ ∅, then one potential solution to resolve this is by

replacing {Bi,Bj} with either {Bi,Bj/Bi} or {Bi/Bj ,Bj}. Observe that U remains unaffected by such operations.

We recall the ancient definitions of super- and sub-modularity, and state without proof that

c(∂X) + c(∂Y ) ⩾ c(∂(X/Y )) + c(∂(Y /X)).

This immediately implies that either c(∂X) ⩾ c(∂(X/Y )) or c(∂Y ) ⩾ c(∂(Y /X)) (for otherwise the ⩾ cannot hold).

Then, correspondingly, we add c(∂Y ) or c(∂X) to both sides, and we see that we can replace {X,Y } with either

{X,X/Y } or {Y,Y /X} without inducing extra costs. This completes the proof.

7.4 Sparsest Cut

Beginning of 11/04/2024

In this section we consider the sparsest cut problem. The difference from before is that now when an (s, t) pair

is separated by the cut, we gain some credit instead of being charged some cost. More formally, given undirected

G = (V,E) with capacity matrix C (where Ci,j is the capacity of a path, not necessarily a direct edge, (i, j)) and

demand matrix Di,j measuring credits, we want to find a cut that minimizes the cost relative to credit. That is, we

want to find a cut S that minimizes

∑
(u,v)∈∂S

Cu,v/ ∑
(u,v)∈∂S

Du,v.

This is a direct generalization of some of the problems we have previously encountered. For example, if the demand

is just a single pair, then after some rescaling this problem reduces to minimum s − t cut.

To effectively model whether (u, v) ∈ ∂S, we can use a indicator random variable 1[(u, v) ∈ ∂S]. Then, we can relax

the sum to over all u, v ∈ V and replace Cu,v and Du,v with the product with this indicator variable:

min
S⊂V

∑
u,v∈V

Cu,v1[(u, v) ∈ ∂S]/ ∑
u,v∈V

Du,v1[(u, v) ∈ ∂S].

Two additional improvements that we make. First, observe that the above can be viewed as a function of S. For

each fixed S, the indicator random variable is deterministic. Second, 1[(u, v) ∈ ∂S] defines a metric (this is called
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a cut metric associated with S) on G, and so does any scalar multiple of it. These imply that givem a fixed cut S,

the ratio is equivalent to that on a graph equipped with a scaled metric such that the denominator equals 1.

Finally, there is a one-to-one correspondence The objective is to optimize this ratio over all S. Writing each cut

metric as some dS(u, v) = 1[(u, v) ∈ ∂S], the (rescaled) objective becomes

min
dS cut metric

∑
u,v∈V

Cu,vdS(u, v).

We will perform one further relaxation, by replacing cut metrics with general metrics on graphs:

min ∑
u,v∈V

Cu,vd(u, v) subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
u,v∈V

Du,vd(u, v) = 1 (rescaling assumption)

d(u, v) ⩽ d(u,w) + d(w, v) (metric)

d(u, v) = d(v, u) ⩾ 0. (metric)

(Sparsest Cut LP)

Cut Metrics, Cones, and `1 Metrics

We introduce the notion of cone of cut metrics: if d1, d2 are two cut metrics, then {αd1 + βd2, α, β ⩾ 0} forms the

cone of d1, d2. Note that this definition extends to any finite cut metrics.

We will resort to our old friend, then `1 metric. Our claim is that cut metrics are “essentially” `1 metric, in the sense

that the cone of cut metrics can be converted into an `1 metric, and vice versa. Since

α1C1 + α2C2 +⋯ + αkCk
α1D1 + αD2 +⋯ + αkDk

⩾ min
k

Ck
Dk

,

it suffices to optimize among the cones, for the true optimal is guaranteed to be no worse.

Let us consider the easier direction first: a cone of cut metric can be converted into an `1 metric. Let a cone metric

be given. We represent it using {(αi, Si)}ki=1, i.e., the linear combination of cut metrics associated with Si and

coefficient αi. Scaled cut metric is just a scaled bipartition of vertices, where the cut metric distance between nodes

are either 0 or αi. This naturally allows us to embed each node v into a vector in v′Rk, where the ith component

is 0 if v ∈ Si, and αi if otherwise. Then, looking at the ith component, the difference between u′ and v′ is either 0

(when they belong to both Si or both Sci ) or αi (when they are separated by S). Hence,

∥u′ − v′∥ =
k

∑
i=1

∣u′i − v′i∣ =
k

∑
i=1

αi1[(u, v) ∈ ∂Si] =
k

∑
i=1

αidSi(u, v).

The converse requires slightly more work. Let us begin with a `1 metric in Rk. For simplicity consider k = 1

first. Suppose we have n points, 0, x1,⋯, xn−1, and we want to find a cone metric that agrees with the pairwise `1

distance between these points. Assume 0 < x1 < x2 < ⋯ < xn−1. We define a cut metric d1 that separates 0 against

{x1,⋯, xn−1}, with a coefficient of x1 (i.e. d(0, xi) = x1 and d(xi, xj) = x1 for 1 ⩽ i < j ⩽ n−1). Likewise, we define a

second cut metric d2 separating {0, x1} with {x2,⋯, xn−1} with coefficient x2 −x1. We repeat the process and define

a metric ds separating {0, x1,⋯, xs−1} against {xs,⋯, xn−1}, with coefficient xk − xk−1. It follows that for i > j,

∣xi − xj ∣ = (xi − xi−1) +⋯ + (xj+1 − xj) = ∑
s

αsds(xi, xj).

For higher dimension k, we focus on one coordinate at a time, and represent the `1 metric in Rk as a linear

52



CS 632 Notes ∼ YQL 8 - Semidefinite Programming (SDP)

combination of nk cut metrics. This is valid since `1 is additive over coordinates.

Next up, we provide a theorem that ensures that the dimension required for such metric embedding is at most

reasonably large.

Theorem: (Bourgain)

Any metric space (V, d1) on n points can be embedded into a `1 metric space (V, d2) with O(log2 n) dimen-

sion with a distortion factor of O(logn). That is, for all x, y ∈ V ,

d1(x, y) ⩽ d2(x, y) ⩽ O(logn)d1(x, y).

One can also replace the claim with a non-deterministic one, where (V, d1) is to be embedded into a distri-

bution D of distributions, such that

d1(x, y) ⩽ d2(x, y) for all d2 ∈ D,

and

E
d2∼D

d2(x, y) ⩽ O(logn)d1(x, y).

The term O(logn) here is the distortion factor of the embedding.

Beginning of 11/11/2024

8 Semidefinite Programming (SDP)

I missed a lecture on introduction to SDP; the following italicized section are notes borrowed from 532’s SDP lecture.

In this section, we consider an alternative to linear programming LP, where we introduce a certain amount of geometric

complexity by drawing connection to PSD (positive semidefinite) matrices in higher dimensions.

MAX-CUT

Firstly, we consider the MAX-CUT problem, where given an undirected graph G = (V,E) with edge weights we ⩾ 0, we

want to find the cut (S,Sc) that maximizes the weights of edges crossing the cut, i.e., max ∑
e∈∂S

w(e). It is known that

MAX-CUT is NP despite its counterpart, min-cut or max-flow, can be solved efficiently.

A baseline for MAX-CUT is that any algorithm we propose must do better than “random guess.” Specifically, if for each

edge we independently include it with probability 1/2 in S, then

E(w(S)) ∶= E ∑
e∈∂S

w(e) = 1

2
∑
e∈E

w(e) ⩾ OPT

2

so the baseline is we can certainly achieve a 1/2-approximation factor. A slightly more sophisticated threshold rounding

scheme on the LP relaxation gives a 3/4-approximation. But how can we do better?

The idea behind SDP is that instead of assigning each variable yi ∈ {0,1}, we let yi ∈ {−1,1}. Then, (1− yiyj)/2 = 0 is a
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binary variable that equals 1 if and only if yi, yj are assigned different values. Therefore, the SDP objective is

max
1

2
∑

(i,j)∈E
(1 − yiyj)wi,j subject to yi ∈ {−1,1}.

To fully generalize this problem into matrix algebraic notations and enjoy the benefits of geometry of PSD matrices, for

vertex variable yi, we define its vertex relaxation to be vi ∈ Rn, such that all vi’s are unit vectors. The problem can

now be written w.r.t. vector products

max
1

2
∑

(i,j)∈E
(1 − vTi vj)wi,j subject to ∥vi∥ = 1 for all vi ∈ Rn. (MAX-CUT SDP)

First, we answer the question “why SDP?” Suppose we know how to solve the problemm, obtaining a set of vector

relaxation solution {v∗i }. By definition, these points lie on the unit sphere in Rn. Recall that our original objective is to

partition V into two sets of vertices, one for S and another for Sc.

The most natural interpretation of {v∗i }, therefore, is to partition these unit vectors into two sets as well. We consider

an extremely simple approach: (i) pick a random unit vector r, and (ii) choose S = {i ∶ rT v∗i > 0}, i.e., one of

the hemispheres defined by the hyperplane to which r is normal. Let θi,j denote the angle between vi and vj , which

can be calculated by θi,j = cos−1(v∗Ti v∗j /(∥vTi ∥∥v∗j ∥)) = cos−1(v∗Ti v∗j ). A simple geometric interpretation shows that

P(i, j separated by cut) = P(v∗i , v∗j in different hemispheres) = θi,j/π = π−1 cos−1(v∗Ti v∗j ).
It can be shown that θ, π−1 cos−1(x) ⩾ 0.878(1 − x)/2, so this implies that the SDP randomized algorithm achieves an

approximation factor of 0.878. Two side notes:

• Unless P = NP, it can be shown that MAX-CUT cannot have an approximation factor better than 0.94, and

• Under UGC (unique game conjecture), this factor of 0.878 is already the best possible.

A side remark on how to solve the problem: the more general form of SDP (and also how it got this name) is

max∑
i,j

ci,jXi,j subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑i,j ai,jkXi,j = bk for each constraint k

X ⪰ 0 (PSD).

With these assumptions, the Ellipsoid method works. So in the future we will assume that we have the black box that

solves the vector relaxations of SDP.

Actual beginning of 11/11/2024

8.1 Graph Coloring via SDP: a O(n0.39) Solution

Let G = (V,E) be a graph. A k-coloring for G is a way to color each vertex such that both ends of any edge are

colored differently. Formally, a k-coloring is a function f ∶ V → [k] such that f(u) ≠ f(v) for all (u, v) ∈ E. We say G

is k-colorable if there exists a k-coloring of G. It is known that finding a k-coloring for G is solvable in polynomial

time for k = 2 but NP-hard for k ⩾ 3, so instead we turn to approximation algorithms, where the approximation ratio

is with respect to the number of colors we use.

A baseline we should consider is the following greedy algorithm: When a graph is 3-colorable, given any vertex

x, its neighbors must be 2-colorable. We can then greedily start by coloring neighborhoods of vertices with high

degree, and throw out parts that have already been colored. Some analysis shows that this happens at most
√
n

times, each with linear time. In each iteration we gain 3 colors, so the total number of colors is 3
√
n, or O(√n).
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Now we will attempt to improve upon this O(√n) solution by resorting to SDP. We will embed each vertex into a

vector in some higher dimensional space, with the intuition that vertices that are connected should be far from each

other, and that vertices with the same color should be clustered:

minλ subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vTi vj ⩽ λ for all edges (i, j) ∈ E

∥vi∥ = 1 for all vertices i

vi ∈ Rn.

What would a feasible solution look like? Let us consider 3-coloring first. Certainly, if a graph is 3-colorable, we

can find three single-point clusters in Rn that form an equilateral triangle on the unit sphere, so that their pairwise

angle is 2π/3. By assigning each vertex’s vector relaxation to one of these clusters, we obtain vTi vj = −1/2 whenever

i, j are colored differently.

More generally, we show that if λ∗ is the optimal/minimum value our SDP can attain, then

For a k-colorable graph G, λ∗ ⩽ −1/(k − 1).

We show this via induction, and observe that the bases cases are already done: for k = 2, clearly we can force the

two representations to be directly opposite, giving λ∗ = −1. For k = 3, as argued above, λ∗ ⩽ −1/2. We further

assume that it is sufficient to represent such k vectors in Rk−1, which clearly holds for base cases.

Now assume the claim holds for k − 1, that a (k − 1)-colorable graph admits a λ∗ ⩽ −1/(k − 2). Let α1,⋯, αk−1 ∈ Rk−2

be the vectors representing the k − 1 colors, and now let the kth color be given. Our goal is to embed αi into Rk−1,

introduce a new (k−1)-dimensional vector for the last color, and show that their pairwise dot product is bounded by

−1/(k−1). This is easy: for each αi ∈ Rk−2, we augment α′i ∈ Rk−1 = (βαi,−1/(k−1)) where β2+(−1/(k−1))2 = 1 or

β =
√

1 − 1/(k − 1)2; for the last additional color, associate it with (0,⋯,0,1) ∈ Rk−1. It follows that the dot product

between color k and any other j ⩽ k − 1 is just the product of the last coordinate, or −1/(k − 1). On the other hand,

for 1 ⩽ i ⩽ j ⩽ k − 1,

(α′i)T (α′j) = (βαi,−1/(k − 1))T (βαj ,−1/(k − 1)) = β2αTi αj +
1

(k − 1)2

⩽ (1 − 1

(k − 1)2
)(− 1

k − 2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
by IH

+ 1

(k − 1)2
⩽ − 1

k − 1
.

In fact, this bound is also tight! Consider k-clique (k fully connected vertices) or any graph that contains a k-clique.

The best possible way to separate them cannot get better than the bound above.

So now let’s assume we have the optimal solution and instead talk about rounding. Using the same idea as before,

we consider a random vector and the hyperplane defined by setting this vector as the normal. The random hyper-

plane cuts the unit sphere in Rn into two equal halves. If vi, vj are partitioned into different halves, then we assign

different colors to the corresponding vertices. It follows that by doing so, for an edge (i, j) ∈ E,

P((i, j) monochromatic) = P((i, j) on same side of hyperplane)

= 1 − θi,j
π

= 1 − cos−1(vTi vj)
π

⩽ 1 − cos−1(−1/2)
3

= 1 − 2π/3
π

= 1

3

because vTi vj ⩽ −1/2 in the optimal solution. That is, if we only have one hyperplane to determine if two vertices

should be colored differently, then each edge has 1/3 probability of failure. We can, of course, boost this by
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considering t random hyperplanes that partition the space into 2t parts. The probability that (i, j) falls into the

same section is now (1/3)t, which is much better.

How Much Should We Boost Rounding?

Regardless of how many random hyperplanes we choose, the nature of this algorithm guarantees that there will

most likely be some edges that are monochromatic (so they need to be fixed), so we need to come up with a way to

address them.

The cool observation is that if we can bound the number of monochromatic edges by n/4, then certainly the number

of “bad” vertices is ⩽ n/2, and consequently we have ⩾ n/2 “good” vertices that are already properly colored.

Therefore, keeping the good half frozen, we may recursively define a SDP subproblem, fixing half of the “bad”

vertices, and so on. If in each round we use t random hyperplanes, then the total number of colors will be 2t logn,

since there will be logn iterations.

So we want to ensure that there are no more than n/4 monochromatic edges. Observe by a Markov-like argument

that if E((i, j) monochromatic) ⩽ n/8, then with probability ⩾ 1/2, the total number of monochromatic edges is

⩽ n/4 (where we use the fact that P(X ⩾ aEX) ⩽ 1/a). We call results as such a semi-coloring. This is not

completely deterministic, but if the rate of success is ⩾ 1/2, we may as well repeat it until we succeed, for we are

expected to succeed after only 2 tries.

So now it amounts to requiring that E((i, j) monochromatic) ⩽ n/8. Let ∆ be the maximum degree amount all

vertices, which implies the total number of edges m ⩽ n∆/2. Therefore, it amounts to requiring that

n∆

2
⋅ 1

3t
⩽ n

8
Ô⇒ 3t ⩾ 4∆ Ô⇒ t ⩾ log3(4∆) Ô⇒ t ⩾ log3 ∆ + 1.

This in turn means the total color needed for our rounding is 2t logn = O(nlog3 2 logn) ≈ O(n0.63 logn), which is

worse than our greedy baseline. What happened? We could have applied the idea behind the greedy algorithm to

optimize our SDP rounding. Specifically, if a vertex has high degree, it might be better if we simply 3-color that

vertex and its neighbors first, and only run SDP when the degrees of each vertex is below a certain threshold, say

σ. This requires no more than 3n/σ colors for preprocessing, along with O(σlog3 2) colors to SDP round the pruned

graph. Setting σ = nlog6 3 this gives an algorithm usingO(n0.39) that outputs, with probability ⩾ 1/2, a semi-coloring.

We can simply repeat this process until a desired result is obtained.

Beginning of 11/13/2024

8.2 Improving to O(n1/4) Colors

We consider a different approach to the coloring problem, noting that the set of vertices that are assigned the

same color forms an independent set. It is known that the INDEPENDENT SET problem itself is very hard and there

are no good approximations of it, so instead we will attempt to identify one independent set.

We will still use the typical SDP rounding scheme where after obtaining a set of n-dimensional unit vectors vi for

each vertex i, we partition the unit sphere into two halves, based on the hempishere defined by a randomly chosen

normal vector r ∈ Rn. Then, we focus on one party of it. The idea is that we want to discard certain vertices on

this hemisphere so that the remaining ones form an independent set.

A naïve approach simply drops a vertex as long as it is incident to some other vertex in the same hemisphere, then

repeat until no such vertex can be found. This however may end up with ∅ since the dropping criterion is too strict,
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and no finer constraints are provided.

Instead, we observe the following:

• Any two vertices with an edge between them must be far apart, as vTi vj = −1/2 implies their angle is 2π/3.

• This means if v has a neighbor in the hempishere, then v itself must be relatively close to hyperplane.

shifted
original

ε
u

v

These observation suggest that we should consider shifted hyper-

planes to eliminate one of the endpoints to make the remaining

vertices independent. For example, in the figure to the right, orig-

inally (u, v) are not separated by the original hyperplane, but by

allowing a shift of ε, they are now separated.

To this end, let us define

S ∶= {i ∈ V ∶ vTi r ⩾ 0} S(ε) ∶= {i ∈ V ∶ vTi r ⩾ ε}

and

S′(ε) ∶= {i ∈ S(ε) ∶ j ∉ S(i) for all vertex j incident on i}

which gives an independent set. Our goal is to estimate ES′(ε). Observe that since vi is deterministic (we are only

concerned with the rounding scheme) and each coordinate of r = (r1,⋯, rn) independently follows a Gaussian, so

does vTi r, since Gaussian is rotationally invariant. Let Φ(x) be the CDF of the standard normal and Φ′(x) = 1−Φ(x).
Then by linearity of expectation, summing over each vertex vector vi,

E [∣S(ε)∣] = n ⋅ P(vTi r ⩾ ε) = nΦ′(s)

What about S′(ε)? Let ∆ be the max degree of any vertex in the graph. Then for any vertex i,

P(i ∉ S′(ε) ∣ i ∈ S(ε)) = P(i ∈ S(ε) but so does some neighbor)

⩽ ∆ ⋅ P(j ∈ S(ε) ∣ i ∈ S(ε), (i, j) ∈ E).

We try to analyze the term P(j ∈ S(ε) ∣ i ∈ S(ε), (i, j) ∈ E) via the following diagram. Let u be orthogonal to vi. It

follows that because the angle between vi, vj is π/3, we can write vj = −vi/2 +
√

3u/2. Therefore

vTj r = −
1

2
vTi r +

√
3

2
uT r.

By assuming (i, j) ∈ E and j ∈ S(ε), we have vTi r ⩾ ε and so (
√

3/2)uT r ⩾ 3ε/2, implying uT r ⩾
√

3ε. Like argued

before, uT r follows a normal distribution, so

P(i ∉ S′(ε) ∣ i ∈ S(ε)) ⩽ ∆Φ′(
√

3ε).

Our goal is to choose an appropriate ε to ensure this quantity is bounded by 1/2. To do so, we use the following

fact:
xp(x)
1 + x2

⩽ Φ′(x) ⩽ p(x)
x

where p(x) is the PDF of a standard normal. With the help of this identity, setting ε = (2 log ∆/3)1/2 kills ∆, as

∆Φ′(
√

3ε) ⩽ 1√
3ε

1√
2π

⩽ 1

2
.
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Combining everything we have discussed so far,

E [∣S′(ε)∣] ⩾ E [∣S(ε)∣]
2

= n
2

Φ′(ε) ⩾ n
2

ε

1 + ε2 e
−ε2/2 = n

2

ε

1 + ε2
1

∆1/2 = O( n

∆1/3√log ∆
) . (*)

So now we obtained an independent set. What next? How to get a coloring? The cleanup is just like before: we

interactively compute independent sets on the shrinking graph, each time decreasing by a factor (*), until we have

a graph of O(1) size left. Starting with a graph of size n, this requires k = O(logn∆1/3√log ∆) steps. Then we use

brute force.

This approach works well when ∆ is relatively small. For large ∆, on the other hand, because the graph is 3-

colorable, we prune each high-degree vertex v by assigning one color to v and then 2-color its neighbors. To sum

up, we have the following two options: given a threshold σ,

• If ∆ > σ, we reduce ∆ to σ via O(n/σ) colors by pruning high-degree vertices, and

• If ∆ ⩽ σ, we use O(∆1/3) = O(σ1/3) colors as in (*).

It follows that the best way to manage the trade-off is by setting σ = n3/4 so that in either cases, the total number of

colors required is O(n1/4).

9 Facility Locations & Local Search

Beginning of 11/18/2024

In this section, we consider the facility location problem, which is a special instance of clustering. Specifically, we

consider the following problem setup:

Let (V, c) be a metric space. Each point v ∈ V can act as supplier facility

or client, or both. Specifically, to produce any supply, each v ∈ V needs to

first induce an opening cost fv ⩾ 0. For each i, j, the quantity ci,j denotes

the serving cost of using (facility) i to serve (client) j. Each client will be

served by the nearest open facility. The goal is to ensure all customers v ∈
V are served, while ensuring the total opening costs plus serving costs are

minimized.

Remark. Note that in the above definition, v ∈ V can simultaneously be a supplier and a client. The

problem also covers the special case where clients and suppliers are disjoint: simply set the opening cost of

clients to ∞, so they must not become suppliers.

Also, we are analyzing a more restricted case where c forms a metric. A more general problem, the non-

metric facility location, is essentially equivalent to SET COVER by assigning opening cost of every v ∈ V to

1 and serving cost ci,j to 0.

Let us first define the LP formulation of the problem. We use xi,j to indicate whether i serves j, and use yi to denote
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if i ∈ V is a supplier. It follows that the LP relaxation is given by

min

⎡⎢⎢⎢⎢⎣
∑
i,j∈V

ci,jxi,j + ∑
i∈V

fiyi

⎤⎥⎥⎥⎥⎦
subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

xi,j ⩾ 1 for all j (clients must be served)

xi,j ⩽ yi for all i, j (must open facility before serving)

xi,j , yi ⩾ 0.

Instead of solving the fractional LP, we consider an alternate approach called local search. The core idea is decep-

tively simple: we make small changes a solution and see if there is any improvement. In our problem, we allow

ourselves to choose from one of the following operations:

• OPEN (a new facility),

• CLOSE (an existing facility), and

• SWAP (i.e. closing an open facility and opening a new facility).

We further assume that every time an operation is performed on the set of open facilities, the serving assignment

is updated correctly (so that clients are still served by their nearest open facility). By doing so, we will end up at

a locally optimal solution (F,σ) where F is the set of open facilities, and σ ∶ V → F maps clients to open facilities.

Observe that because our operations are chosen such that each one results in a strict increase in performance, no

two operations are identical. This ensures that our algorithm terminates, and with further optimizations (e.g. only

consider a move if it improves the performance by a certain factor) this can be achieved in polynomial time.

So now let (F,σ) be a locally optimal solution and let (F ∗, σ∗) be the global optimum. The remainder of this section

will be devoted to analyzing the approximation ratio of (F,σ).

Warning: the proofs will be overloaded with all kinds of different notations. Each of them will be highlighted.

With an abuse of notation, let F,C denote the facility cost and serving cost of solution (F,σ) respectively [we’ll use

F interchangeably; hopefully the context is clear enough to avoid confusions], and likewise F ∗,C∗ for (F ∗, σ∗).

Bounding (F,σ)’s Facility Cost F : Effects of OPEN

We first claim that there exists i∗ ∈ F ∗ but not F . Otherwise, if F is a superset of F ∗, then either (F,σ) is identical

to (F ∗, σ∗) or F is a strict superset of F ∗, which makes (F,σ) impossible to be locally optimal.

Now suppose we want to open i∗ ∈ F ∗. By local optimality this makes things worse. In other words,

∑
j∶σ∗(j)=i∗

ci,j ⩽ ∑
j∶σ∗(j)=i∗

ci∗,j + f∗i

for the LHS is the old cost of taking care of these clients and the LHS is the new cost. Summing over all i ∈ F ∗,

∑
i∈F ∗

∑
j∶σ∗(j)=i∗

ci,j = F ⩽ F ∗ +C∗ = ∑
i∈F ∗

f∗i + ∑
i∈F ∗

∑
j∶σ∗(j)=i∗

ci∗,j . (13)

Bounding (F,σ)’s Serving Cost C: Effects of CLOSE

This is significantly more involved, but similar to above, let us first consider the effects of CLOSE-ing a facility. Let

i ∈ F be the facility that we aim to close. Let j be such that σ(j) = i. We need to find a new facility to assign j to!

The complication arises in that we have two cases.
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The first case is easy: if σ∗(j) ∈ F then we simply assign j to i∗.

The more annoying case is when σ∗(j) is not in F . In this case, it makes sense to assign i to the closest facility to i∗

that is currently open, hoping that eventually this distance is not much different from cj,σ∗(j). To this end, let Φ(i∗)
be the closest facility i ∈ F to i∗, i.e., Φ(i∗) = argmini∈F d(i, i∗), and we assign i to Φ(i∗). Note this definition is

consistent with the first case, so in either cases we are free to redirect j to Φ(σ∗(j)) = Φ(i∗). To make subscripts

more visible, we let i′ = Φ(i∗), the new facility to serve j. Then

ci′,j ⩽ ci′,i∗ + ci∗,j ⩽ ci∗,j + ci,i∗ ⩽ ci∗,j + ci,j + cj,i∗ = ci,j + 2ci∗,j ,

where the second ⩽ is by definition of Φ, and the first and third are because of triangle inequality. In other words,

ci′,j − ci,j ⩽ 2ci∗,j or cΦ(σ∗(j)),j − ci,j ⩽ 2cσ∗(j),j . (14)

This inequality is good, since we are associating change in costs to something entirely dependent on the optimal

solution. Once again, by local optimality,

gain of closing i
©
fi ⩽ ∑

j∶σ(j)=i
[cΦ(σ∗(j)),j − ci,j]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
total cost of closing i

⩽ 2 ∑
j∶σ(j)=i

cσ∗(j),j .

But there is a problem: what if Φ(σ∗(j)) = i itself? Our analysis above fails because after i is closed, we do not

know what to assign j to. To this end, we will define two types of facilities: the ones that are safe and those that

are unsafe. We define the set of safe facilities to be

S = {i ∈ F ∶ no i∗ ∈ F ∗ has Φ(i∗) = i},

and unsafe as its complement. What we have shown above is that if i ∈ S and σ(j) = i, then after closing i, we can

redirect j to i′ = Φ(σ∗(i)) with

fi ⩽ 2 ∑
jLσ(j)=i

cσ∗(j),j .

Now, what about unsafe facilities? If i is unsafe, we define the set of troubles to be

Ri = {i∗ ∈ F ∗ ∶ Φ(i∗) = i}.

After closing i, we do need to relocate all j where σ(j) = i. A natural choice would be to consider ĩ as argmini∗∈Ri
ci,i∗ ,

for this facility is relatively close to i and would serve as a fairly well substitute.

To be used later: for any i∗ ∈ Ri/{̃i}, we know eventually they will be opened, but not yet. If we were to open such

i∗, the clients affected would be those j satisfying σ(j) = i but σ∗(j) = i∗. Consequently, by local optimality we have

fi∗ +∑
σ(j)=i
σ∗(j)=i∗

[ci∗,j − ci,j] = fi∗ +∑
σ(j)=i
σ∗(j)=i∗

[cσ∗(j),j − ci,j] ⩾ 0 for all i∗ ∈ Ri/{̃i}. (15)
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Analyzing SWAP

So now let us analyze the effects of swapping i with ĩ. We need to relocate all clients j where σ(j) = i. Again, two

cases:

• CASE 1. i∗ = σ∗(i) ∉ Ri. This means Φ(i∗) ≠ i and is open by definition — we simply move j to Φ(i∗).

• CASE 2. i∗ ∈ Ri so we cannot move j to Φ(i∗) = i. In this case, we make use of the newly opened ĩ.

The old cost is fi+ ∑
σ(j)=i

ci,j and the new cost is fĩ+∑
σ(j)=i
σ∗(j)∈Ri

cĩ,j +∑
σ(j)=i
σ∗(j)∉Ri

cΦ(σ∗(j)),j . By local optimality and splitting the sums,

we see that

(fĩ − fi) +∑
σ(j)=i
σ∗(j)∉Ri

[cΦ(σ∗(j)),j − ci,j] +∑
σ(j)=i
σ∗(j)∈Ri

[cĩ,j − ci,j] ⩾ 0. (16)

Let us analyze the terms separately. The middle term, by (14), is bounded by 2∑ cσ∗(j),j . The third term can be

bounded by

∑[cĩ,j − ci,j] ⩽ ∑ ci,̃i ⩽ ∑ ci,i∗ = ∑ cσ(j),σ∗(j) ⩽ ∑[cσ(j),j + cσ∗(j),j]

where the first inequality is by triangle inequality, second by definition of ĩ ∈ Ri, and third by triangle inequality

again. Cleaning up, we obtain

(fĩ − fi) + 2∑
σ(j)=i
σ∗(j)∉Ri

cσ∗(j),j +∑
σ(j)=i
σ∗(j)∈Ri

[ci,j + cσ∗(j),j] ⩾ 0. (17)

Now consider the sum of (17), along with (15), summed over each i∗ ∈ Ri/{̃i}. Three cases depending on the

structure of j. Clearly the sum involves ∑i∈R−i fi − fĩ, along with some costs, which has three cases depending on

where σ∗(j) is.

• If σ∗(j) = i∗ ∈ Ri/{̃i}, then the contribution is (cσ∗(j),j − ci,j) + (ci,j + cσ∗(j),j) = 2cσ∗(j),j .

• If σ∗(j) = i∗ ∉ Ri, then the contribution is 2cσ∗(j),j .

• Finally, if σ∗(j) = i∗ ∈ Ri, the contribution via the original expression is cĩ,j − ci,j ⩽ cσ∗(j),j − ci,j ⩽ cσ∗(j),j .

In all three cases, the contribution is no more than 2cσ∗(j),j , so we conclude that for a fixed i,

∑
i∈Ri

fi − fĩ + 2 ∑
σ(j)=i

cσ∗(j),j ⩾ 0. (18)

Finally, summing over all facilities i, we obtain the long-desired bound

F = ∑
i

fi ⩽ ∑
i∈F

∑
i∗∈Ri

fi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F ∗

+2∑
i∈F

∑
σ(j)=i

cσ∗(j),j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C∗

= F ∗ + 2C∗.

This combined with (??) help us conclude that local search yields a 3-aprpoximation.
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9.1 k-Median

In this section, we consider the k-median problem, where given (V, c), we want to find k points, assign then as the

centers of clusters, and partition V into k clusters, each corresponding to a center. The objective is to minimize the

sum of distances for each v to the nearest assigned center.

To stay consistent with our notations in the previous section, let F of size k be a set of centers that we pick. The

local search involves only one operation, SWAP, since in the end we also want to return a set of size k as the

cluster centers. Once again, let F be an locally optimal solution and F ∗ be the global optimum. For i∗ ∈ F ∗, let

Φ(i∗) = argmini∈F ci,i∗ , the closest point to i∗ that is currently chosen. Finally, let σ,σ∗ denote the mapping of points

to their nearest center in F and F ∗, respectively. We will show that F is a 5-approximation. We will also adopt the

language from the previous section, treating the chosen centers as “facilities.”

We first partition F,F ∗ into subsets based on the structure of Φ: each i ∈ F may correspond to zero, one, or more

i∗ ∈ F ∗ where Φ(i∗) = i. Using initials, we let Z,O, and T to denote the sets

Z = {i ∈ F ∶ no i∗ ∈ F ∗ satisfies Φ(i∗) = i}

O = {i ∈ F ∶ exactly one i∗ ∈ F satisfies Φ(i∗) = i}

T = {i ∈ F ∶ two or more i∗ ∈ F ∗ satisfy Φ(i∗) = i}.

Z

T

O

T ∗

O∗

Correspondingly, we partition F ∗ into O∗ and T ∗ where Φ maps O∗ bijectively to O, and T ∗

to T , where the pre-image Φ−1 of each i ∈ T has at least two elements in T ∗ by definition. It

follows that ∣O∣ = ∣O∗∣, ∣T ∣ ⩽ ∣T ∗∣/2, and ∣Z∣ ⩾ ∣T ∗∣/2.

We are primarily interested in SWAP operations that involve replacing some i ∈ F with some

i∗ ∈ F ∗. We call them the critical swaps. Based on the structure of Z,O, and T , we are

interested in the following two types:

(1) If i∗ ∈ O∗, then we swap i = Φ(i∗) for i∗, and

(2) If i∗ ∈ T ∗, then we swap any i ∈ Z for i∗, subject to the condition that i∗ has been swapped

via this type for at most once (so counting the new one, at most two). This is possible,

since ∣Z∣ ⩾ ∣T ∗∣/2. The purpose of this seemingly arbitrary requirement will be made clear

toward the end.

(3) Importantly, we do not allow i ∈ T to participate in critical swaps.

There is one caveat we need to consider when performing critical swaps as such. Suppose we swap i ∈ F for i∗ ∈ F ∗.

Suppose j is such that σ(j) = i but σ∗(j) = i′ ∈ F ∗ where i′ ≠ i∗. If i′ is not yet open, we should look for a

workaround: assign j to Φ(i′) = Φ(σ∗(j)), the closest currently open facility to the true optimum i′.

We need to ensure one thing to make our operation well-defined: when σ∗(j) ≠ i∗, we must have Φ(i′) = Φ(σ∗(j)) ≠
i. To see this, first observe that i ∉ T by the definition of a critical swap. If i ∈ Z, there is nothing to show by the

definition of Z. On the other hand, if i ∈ O, then by definition i∗ is the only element in F ∗ that maps to i by Φ. This

concludes the proof of this observation.

With this caveat taken care of, we are now ready to formally describe the effects a critical swap (i, i∗) imposes on

all j’s. We also have two cases after closing i and opening i∗:

• CASE 1. Regardless of anything else, if σ∗(j) = i∗, we certainly want to reassign j to i∗.

• CASE 2. If σ∗(j) ≠ i∗ and σ(j) = i, we reassign j to Φ(σ∗(j)).
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The two cases successfully reassigns every affected j with σ(j) = i, as well as some additional j that may also benefit

from an update (in CASE 1).

The rest of the proof is just triangle inequality and symbol pushing. Fix (i, i∗). For a single j as in CASE 1, we have

ci∗,j − ci,j = cσ∗(j),j − cσ(j),j .

For a single j as in CASE 2, we have

cΦ(σ∗(j)),j − ci,j ⩽ cσ∗(j),j + cΦ(σ∗(j)),σ∗(j) − ci,j (∆ − ineq)

⩽ cσ∗(j),j + ci,σ∗(j) − ci,j (by definition of Φ)

⩽ cσ∗(j),j + ci,j + cσ∗(j),j − ci,j ⩽ 2cσ∗(j),j . (∆ − ineq again)

Therefore, for a single critical swap (i, i∗), summing over all affected j’s gives

∑
σ∗(j)=i∗

[cσ∗(j),j − cσ(j),j] + 2∑
σ∗(j)≠i∗
σ(j)=i

cσ∗(j),j .

Now if we sum over all such critical swaps, the first term gives OPT − ALG; the second term, by the assumption

that no i ∈ Z is used more than twice by critical swap pairs, yields 4OPT. Of course, ALG is locally optimal, so this

implies OPT −ALG + 4OPT ⩾ 0, and in other words we have obtained a 5-approximation, as claimed.
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