MATH 425A HOMEWORK# 1

Qilin Ye

August 26, 2020

Problem 1 (1.1). Prove that for all sets A, B,C the formula
Au(BnC)=(AuB)n(Au()
is true.

Proof. To prove the LHS (left hand side) = the RHS (right hand side), we need to show both (LHS c RHS) and
(RHS > LHS), and both proofs are analagous to the one given in example 0.

To show c, suppose x € Au (B nC). Then it follows that z € A or x € Bn C. In other words, = belongs to
A or x belongs to both B and C. (Note that the “or” here is the mathematical “or” — both propositions can be

simultaneously true.) Now look at x. Like previously said, there are two possibilities: z € A or z € BnC.
(1) If = € A then it belongs to both Au B and Au C, so it belongs to (Au B)n (Au(C).
(2) If x € Bn C then it belongs to both B and C and thus both AuB and AuC,ie.,ze(AuB)n(AuC).

We have just shown that every element in the LHS is also in the RHS, namely LHS ¢ RHS.

Now for 5. Suppose z € (AuB)n(AuC). It follows that z € Au B and z € AuC. Again we have two cases,
either x € A or x ¢ A. The first case immediately leads to z € Au (B nC). In the latter case  must belong to both
B and C|i.e., x € BnC, to meet the requirement. Therefore no matter where x is, we always have x € Au(BnC).
Thus LHS > RHS.

Since LHS ¢ RHS and RHS > LHS, we conclude that these two sets are indeed equal. O

Problem 2 (1.2). If the sets A, B,C,... are subsets of the same set X then the differences X N A, X\ B, X\ C,...
are the complements of A, B,C,... in X and are denoted A¢, B¢,C¢,.... The symbol A€ is read “A complement”.

(1) Prove that (A°)° = A.
(2) Prove De Morgan’s Law: (A n B)¢ = A°uU B¢ and derive from it the law (Au B)¢ = A°n B°.
(3) Draw Venn diagrams to illustrate the two laws.

(4) Generalize these laws to more than two sets.
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Solution. I hate drawing diagrams in IATEX and I’'m bad at using Inkscape...

(1)

(2)

(A%)¢ ={x e X |z is not in the set of all elements not included in A}
={z € X | z is not an element not included in A} ={x e X |z e A} = A.
A quick proof: z€ (ANB)® < ¢ AnNB < v¢Avr¢B < xecA°vae B¢ < xe A°UB"
A derivation:
(A°nB9)° = (A%)°u (D) (By applying De Morgan’s law to A and B¢)
= [(A°nB)°]° = [(A9)°u(D°)°]® (Taking the complement of both sides, the equation still holds)

- A°nB¢=(AuB)° (By the result from (1), complement of complement equals self)

t Jiayue reminded me that the question asks me to derive the second statement directly from the first (De
Morgan’s law), while I originally proved the second one without referring to De Morgan’s law:w. Credits to

her.

The entire rectangle is the set X. The circle on the left represents A and the one on the right reppresents B.
Both sides of the first equation is represented by all the regions that have been colored, and both sides of the
second equation are represented by the region in both purple and cyan. But seriously drawing — especially

coloring is 10 times harder than the problem itself...
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(4) Generalized De Morgan’s law: suppose A, Ay, ..., A, € X, then

(ﬂAl) = Af and (UAz) ZmAZC
i=1 i=1 i=1 i=1
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This generalized result can be easily proven by weak induction: let p(k) be the statement that De Morgan’s
law holds when n = k. (1) is trivial. Set the base case to k =2 and we see that ¢(2) is indeed true as proven
in (2). For the inductive step, first assume ¢(m) is true. Then if we set n =m and let everything on one side
of the big equation above be one set and A,,,1 be another. Now we’ve reduced m + 1 sets to 2 sets. Then we

can simply apply De Morgan’s law for n = 2 to show ¢(m + 1) holds. Hence (k) holds for all k> 1. QED.

Problem 3 (1.6). Why is the square of an odd integer odd and the square of an even integer even? What is the

situation for higher powers?

Solution. If n is odd, then 3k € Z such that n = 2k + 1. It follows that n? = (2k + 1)? =4k? + 4k + 1 = 4(k*> + k) + 1,
another odd number. If n is even, then 3k € Z such that n = 2k. Then n? = (2k)? = 4k?, even.

If z is odd, then its prime factorization contains no 2. Since the prime factorization of 2™ simply multiplies each
exponent in z’s prime factorization by n, there is still no 2. Therefore x™ is still odd. On the other hand, if x is
even, then it has 2 in its prime factorization. Therefore " also has 2 in its prime factorization, and it’s even.

could have said the same thing to square numbers, but Alas + 1) makes everything look fancier.
I Id h id th thing t b but Alas (2k +1 ki thing look fanci
Problem 4 (1.8). Suppose that the natural number k is not a perfect n'" power.
(1) Prove that its n'" root is irrational.
nfer that the n*" root of a natural number is either a natural number or it is irratitonal. It is never a fraction.
2) Infer that the n'® root of a natural number is eith tural numb it is irratitonal. It i fracti
Solution.

(1) First thing: k =1 is trivial, so we will focus on k > 2. Suppose the n™ root of k is rational, then it can be

n
written as b where p and g are co-prime integers with ¢ # 0. It follows that (IZ) =k and thus p" = kq¢™.
q q

By prime factorization, p can be written as ]'[pfi7 a product of primes, each raised to some powers (> 1).

Clearly the LHS is a multiple of p;, and the RHS must also be. Two possibilities:

I. p; divides ¢™. If this is the case then it means p; appears in the prime factoziation of ¢". Since the prime
factorizations of ¢ and ¢ use the same set of prime bases, p,’s appearance in the prime factorization of

n

q" implies its appearance in the prime factorization of g, i.e., p; divides q. However, we have assumed

at the first place that p and ¢ are co-prime. Contradiction.

II. If p; doesn’t divide ¢”, then it must divide k. We actually need a stronger argument here. Since pfl

is a divisor of p, the statement still holds when we raise both to the n*® power, i.e., p?zl divides p™.

Therefore, p?el must also divide kq™. We claimed that even p; doesn’t divide ¢", so the entire p?él must

divide k. For now we will leave it like this.

Note that, when analyzing the divisibility of p;, we immediately run into contradiction if it’s case (I)
but if we get case (II) everything seems fine. Like previously said, if we ended up running into case (IT), we

will temporarily skip it and start analyzing the divisibility of ps analagously. Again, we either run into the
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contradiction that p and ¢ are not co-prime, or we run into a similar case (II) for po, in which case we will

look at p3 and so on...

If we ended up getting case (I) for any p;, we immediately terminate the divisibility check and conclude
that the n'® root of k is irrational since p and ¢ are not co-prime and this contradicts our assumption. If we
managed to “survive” all the way till we are done the last p;, then indeed p and ¢ are co-prime. But now
look at k. It has factors p’le , pgéz ,... for every single p; that divides p, and it does not have any other prime
factors outside the list of p;’s because the LHS, p™, is not divisible by other primes. Therefore, since in the
prime factorization of k each prime factor is raised to the power of a multiple of n, we have k = (I] pfi)"7 a
perfect n'" power itself. Contradiction... finally.

Having considered all possibilities, we may finally conclude that if & is not a perfect n* power, its nt®

root is irrational. O

n
Suppose some fraction P satisfies (B) = k where k isn’t a perfect n'" power and p, ¢ are co-prime with g # 0.
q q

(We have set k to not be a perfect n*® power because otherwise its n'" root is simply a natural number, not
the fraction we are looking for.) Then p" = kq", and by part (1) we know that some contradiction will come
up, either p and ¢ are not co-prime or k is a perfect n'" power. Therefore there does not exist a fraction that

can become an integer when raised to some power.

T Linfeng helped me realize the necessity of resorting to prime factorization to prevent a potential loophole in the

question above. Credits & kudos to him / you (I know you are reading this).

Problem 5. Show that in general (AN B)u B # A.

Solution. Check out the Venn diagram in problem 2 again. A\ B refers to the cyan region, and (A B)u B refers
to Au B, which is different from A unless B\ A =@, i.e., BCc A.

Problem 6. Given an example of a binary relation which is

(1)
(2)
3)
(4)

reflexive and symmetric, but not transitive;
reflexive, but neither symmetric nor transitive;
symmetric, but neither reflexive nor transitive; and

transitive, but neither reflexive nor symmetric.

Solution. Consider the set S = {1,2,3}. We will come up with four relations.

(1)

Define relation Ry as {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)}. Ry is reflexive because (1,1),(2,2), and
(3,3) are all in R;. It is symmetric because if (a,b) € Ry then we can also find (b,a) in R;. It is, however,

not transitive: 1R12 A 2R3 does not give us 1R;3.
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(2) Define relation R as {(1,1),(2,2),(3,3),(1,2),(2,3)}. R; is reflexive because (1,1),(2,2), and (3,3) are all
in Ry. Ry is not symmetric because 1R22 does not lead to 2R51, and it’s not reflexive because 1R22 A 2R23

do not lead to 1R53.

(3) Define relation R3 as {(1,2),(2,1),(2,3),(3,2)}. It is not reflexive becuase (1,1) ¢ Rs. It is not transitive
because 1R32A2R33 do not lead to 1R33. However it is indeed symmetric: aRsb = bRsa for all (a,b) € Rs.

(4) Define relation R4 as {(1,2),(2,3),(1,3)}. It is not reflexive because (1,1) ¢ Ry. It is not symmetric because
1R42 but not 2R41. Tt is, however, transitive: the only pair (a,b), (b,¢) € R4 we can find is (1,2),(2,3), and
indeed we have 1R43.



