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Problem 1 (1.1). Prove that for all sets A,B,C the formula

A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)

is true.

Proof. To prove the LHS (left hand side) = the RHS (right hand side), we need to show both (LHS ⊂ RHS) and
(RHS ⊃ LHS), and both proofs are analagous to the one given in example 0.

To show ⊂, suppose x ∈ A ∪ (B ∩ C). Then it follows that x ∈ A or x ∈ B ∩ C. In other words, x belongs to
A or x belongs to both B and C. (Note that the “or” here is the mathematical “or” — both propositions can be
simultaneously true.) Now look at x. Like previously said, there are two possibilities: x ∈ A or x ∈ B ∩C.

(1) If x ∈ A then it belongs to both A ∪B and A ∪C, so it belongs to (A ∪B) ∩ (A ∪C).

(2) If x ∈ B ∩C then it belongs to both B and C and thus both A ∪B and A ∪C, i.e., x ∈ (A ∪B) ∩ (A ∪C).

We have just shown that every element in the LHS is also in the RHS, namely LHS ⊂ RHS.

Now for ⊃. Suppose x ∈ (A ∪B) ∩ (A ∪C). It follows that x ∈ A ∪B and x ∈ A ∪C. Again we have two cases,
either x ∈ A or x ∉ A. The first case immediately leads to x ∈ A∪ (B ∩C). In the latter case x must belong to both
B and C, i.e., x ∈ B ∩C, to meet the requirement. Therefore no matter where x is, we always have x ∈ A∪ (B ∩C).
Thus LHS ⊃ RHS.

Since LHS ⊂ RHS and RHS ⊃ LHS, we conclude that these two sets are indeed equal.

Problem 2 (1.2). If the sets A,B,C, . . . are subsets of the same set X then the differences X ∖A,X ∖B,X ∖C, . . .
are the complements of A,B,C, . . . in X and are denoted Ac,Bc,Cc, . . . . The symbol Ac is read “A complement”.

(1) Prove that (Ac)c = A.

(2) Prove De Morgan’s Law: (A ∩B)c = Ac ∪Bc and derive from it the law (A ∪B)c = Ac ∩Bc.

(3) Draw Venn diagrams to illustrate the two laws.

(4) Generalize these laws to more than two sets.
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Solution. I hate drawing diagrams in LATEX and I’m bad at using Inkscape…

(1) (Ac)c = {x ∈X ∣ x is not in the set of all elements not included in A}
= {x ∈X ∣ x is not an element not included in A} = {x ∈X ∣ x ∈ A} = A.

(2) A quick proof: x ∈ (A ∩B)c ⇐⇒ x ∉ A ∩B ⇐⇒ x ∉ A ∨ x ∉ B ⇐⇒ x ∈ Ac ∨ x ∈ Bc ⇐⇒ x ∈ Ac ∪Bc.

A derivation:

(Ac ∩Bc)c = (Ac)c ∪ (Dc)c (By applying De Morgan’s law to Ac and Bc)

Ô⇒ [(Ac ∩Bc)c]c = [(Ac)c ∪ (Dc)c]c (Taking the complement of both sides, the equation still holds)

Ô⇒ Ac ∩Bc = (A ∪B)c (By the result from (1), complement of complement equals self)

† Jiayue reminded me that the question asks me to derive the second statement directly from the first (De
Morgan’s law), while I originally proved the second one without referring to De Morgan’s law:w. Credits to
her.

(3) The entire rectangle is the set X. The circle on the left represents A and the one on the right reppresents B.
Both sides of the first equation is represented by all the regions that have been colored, and both sides of the
second equation are represented by the region in both purple and cyan. But seriously drawing — especially
coloring is 10 times harder than the problem itself…

(4) Generalized De Morgan’s law: suppose A1,A2, . . . ,An ∈X, then
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This generalized result can be easily proven by weak induction: let φ(k) be the statement that De Morgan’s
law holds when n = k. φ(1) is trivial. Set the base case to k = 2 and we see that φ(2) is indeed true as proven
in (2). For the inductive step, first assume φ(m) is true. Then if we set n =m and let everything on one side
of the big equation above be one set and Am+1 be another. Now we’ve reduced m + 1 sets to 2 sets. Then we
can simply apply De Morgan’s law for n = 2 to show φ(m + 1) holds. Hence φ(k) holds for all k ⩾ 1. QED.

Problem 3 (1.6). Why is the square of an odd integer odd and the square of an even integer even? What is the
situation for higher powers?

Solution. If n is odd, then ∃k ∈ Z such that n = 2k + 1. It follows that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1,
another odd number. If n is even, then ∃k ∈ Z such that n = 2k. Then n2 = (2k)2 = 4k2, even.

If x is odd, then its prime factorization contains no 2. Since the prime factorization of xn simply multiplies each
exponent in x’s prime factorization by n, there is still no 2. Therefore xn is still odd. On the other hand, if x is
even, then it has 2 in its prime factorization. Therefore xn also has 2 in its prime factorization, and it’s even.

(I could have said the same thing to square numbers, but Alas (2k + 1) makes everything look fancier.)

Problem 4 (1.8). Suppose that the natural number k is not a perfect nth power.

(1) Prove that its nth root is irrational.

(2) Infer that the nth root of a natural number is either a natural number or it is irratitonal. It is never a fraction.

Solution.

(1) First thing: k = 1 is trivial, so we will focus on k ⩾ 2. Suppose the nth root of k is rational, then it can be
written as p

q
where p and q are co-prime integers with q ≠ 0. It follows that (p

q
)
n

= k and thus pn = kqn.

By prime factorization, p can be written as ∏pℓii , a product of primes, each raised to some powers (⩾ 1).
Clearly the LHS is a multiple of p1, and the RHS must also be. Two possibilities:

I. p1 divides qn. If this is the case then it means p1 appears in the prime factoziation of qn. Since the prime
factorizations of qn and q use the same set of prime bases, p1’s appearance in the prime factorization of
qn implies its appearance in the prime factorization of q, i.e., p1 divides q. However, we have assumed
at the first place that p and q are co-prime. Contradiction.

II. If p1 doesn’t divide qn, then it must divide k. We actually need a stronger argument here. Since pℓ11

is a divisor of p, the statement still holds when we raise both to the nth power, i.e., pnℓ11 divides pn.
Therefore, pnℓ11 must also divide kqn. We claimed that even p1 doesn’t divide qn, so the entire pnℓ11 must
divide k. For now we will leave it like this.

Note that, when analyzing the divisibility of p1, we immediately run into contradiction if it’s case (I)
but if we get case (II) everything seems fine. Like previously said, if we ended up running into case (II), we
will temporarily skip it and start analyzing the divisibility of p2 analagously. Again, we either run into the
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contradiction that p and q are not co-prime, or we run into a similar case (II) for p2, in which case we will
look at p3 and so on…

If we ended up getting case (I) for any pi, we immediately terminate the divisibility check and conclude
that the nth root of k is irrational since p and q are not co-prime and this contradicts our assumption. If we
managed to “survive” all the way till we are done the last pi, then indeed p and q are co-prime. But now
look at k. It has factors pnℓ11 , pnℓ22 , . . . for every single pi that divides p, and it does not have any other prime
factors outside the list of pi’s because the LHS, pn, is not divisible by other primes. Therefore, since in the
prime factorization of k each prime factor is raised to the power of a multiple of n, we have k = (∏pℓii )

n, a
perfect nth power itself. Contradiction… finally.

Having considered all possibilities, we may finally conclude that if k is not a perfect nth power, its nth

root is irrational. ◻

(2) Suppose some fraction p

q
satisfies (p

q
)
n

= k where k isn’t a perfect nth power and p, q are co-prime with q ≠ 0.

(We have set k to not be a perfect nth power because otherwise its nth root is simply a natural number, not
the fraction we are looking for.) Then pn = kqn, and by part (1) we know that some contradiction will come
up, either p and q are not co-prime or k is a perfect nth power. Therefore there does not exist a fraction that
can become an integer when raised to some power.

† Linfeng helped me realize the necessity of resorting to prime factorization to prevent a potential loophole in the
question above. Credits & kudos to him / you (I know you are reading this).

Problem 5. Show that in general (A ∖B) ∪B ≠ A.

Solution. Check out the Venn diagram in problem 2 again. A∖B refers to the cyan region, and (A∖B)∪B refers
to A ∪B, which is different from A unless B ∖A = ∅, i.e., B ⊆ A.

Problem 6. Given an example of a binary relation which is

(1) reflexive and symmetric, but not transitive;

(2) reflexive, but neither symmetric nor transitive;

(3) symmetric, but neither reflexive nor transitive; and

(4) transitive, but neither reflexive nor symmetric.

Solution. Consider the set S = {1,2,3}. We will come up with four relations.

(1) Define relation R1 as {(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)}. R1 is reflexive because (1,1), (2,2), and
(3,3) are all in R1. It is symmetric because if (a, b) ∈ R1 then we can also find (b, a) in R1. It is, however,
not transitive: 1R12 ∧ 2R13 does not give us 1R13.
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(2) Define relation R2 as {(1,1), (2,2), (3,3), (1,2), (2,3)}. R1 is reflexive because (1,1), (2,2), and (3,3) are all
in R2. R2 is not symmetric because 1R22 does not lead to 2R21, and it’s not reflexive because 1R22 ∧ 2R23

do not lead to 1R23.

(3) Define relation R3 as {(1,2), (2,1), (2,3), (3,2)}. It is not reflexive becuase (1,1) ∉ R3. It is not transitive
because 1R32∧2R33 do not lead to 1R33. However it is indeed symmetric: aR3b Ô⇒ bR3a for all (a, b) ∈ R3.

(4) Define relation R4 as {(1,2), (2,3), (1,3)}. It is not reflexive because (1,1) ∉ R4. It is not symmetric because
1R42 but not 2R41. It is, however, transitive: the only pair (a, b), (b, c) ∈ R4 we can find is (1,2), (2,3), and
indeed we have 1R43.
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