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Problem 1

Consider a function f ∶ R → R which is differentiable and satisfies lim
x→∞

f ′(x) = 0. Prove that we have
lim
x→∞
(f(x + 1) − f(x)) = 0.

Solution

By MVT, given x, there exists some y ∈ (x,x + 1) such that

f ′(y) = f(x + 1) − f(x)
(x + 1) − x

= f(x + 1) − f(x).

Since lim
x→∞

f ′(y) = lim
x→∞

f ′(x) = 0, so does f(x + 1) − f(x) as x→∞.

Problem 2

Let q1, q2, . . . be an enumeration of the set of rational numbers in (0,1). Define a function f ∶ (0,1) → R

by
f(x) = ∑

qn<x
2−n.

Prove that f is continuous at every irrational number and discontinuous at every rational number.

Solution

We will first look at the irrational case. Pick any irrational x ∈ (0,1) and ϵ > 0. Then, there exists n ∈ N
such that 1/2n < ϵ.

We first show that there exists δ > 0 such that if y ∈ (x,x + δ) Ô⇒ 0 < f(y) − f(x) < ϵ. Among the first n
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terms of the enumeration, there exists a qi such that it’s the smallest rational number greater than x. Let the
difference be δ1. Then all rational in the interval (x,x + δ1) appear no earlier than qn+1 in the enumeration.
Therefore, if y ∈ (x,x + δ1) then

f(y) − f(x) = ∑
qi∈[x,x+δ1]

2−i ⩽ ∑
qi∈(x,x+δ1)

2−i ⩽
∞
∑

qi∣i⩾n+1
2−i = 1

2n
< ϵ.

Now consider the largest rational less than x among the first n terms of the enumeration. Let the difference
between it and x be δ2. Again, all rationals in (x − δ2, x) appear no earlier than qn+1 in the enumeration.
Hence if we pick y ∈ (x − δ2, x), we get

f(x) − f(y) = ∑
qi∈(x−δ2,x)

2−i ⩽
∞
∑

qi∣i⩾n+1
2−i = 1

2n
< ϵ.

Then, taking δ ∶=min(δ1, δ2) suggests f meets the ϵ− δ condition at irrationals and is therefore continuous
at irrationals.

If x is rational in (0,1), it is of form qn. For any y > x we have f(y) − f(x) ⩾ 2n since x ≮ x but x < y.
Letting ϵ < 0 we see no δ > 0 guarantees the ϵ − δ continuity at x. Hence f is not continuous at the rationals.

Problem 3: 3.1 (Pugh)

Assume that f ∶ R→ R satisfies ∣f(t) − f(x)∣ ⩽ ∣t − x∣2 for all t, x. Prove that f is constant.

Solution

This inequality gives rise to the fact that

−∣t − x∣ ⩽ − ∣f(t) − f(x)∣
∣t − x∣

⩽ f(t) − f(x)
t − x

⩽ ∣f(t) − f(x)∣
∣t − x∣

⩽ ∣t − x∣.

Therefore, taking the limits as t→ x suggests

0 = lim
t→x
(−∣t − x∣) ⩽ lim

t→x

f(t) − f(x)
t − x

= f ′(x) ⩽ lim
t→x
∣t − x∣ = 0.

Therefore f ′(x) = 0 for all x, i.e., f is constant.

Problem 4: 3.3 (Pugh)

Assume f ∶ (a, b)→ R is differentiable.
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(1) If f ′(x) > 0 for all x, prove that f is strictly monotone increasing.

(2) If f ′(x) ⩾ 0 for all x, what can you prove?

Solution

(1) Suppose f is not strictly increasing. Then there exist x1 < x2 such that f(x1) ⩾ f(x2). Therefore, by
mean value theorem, there must exist some x3 ∈ (x1, x2) satisfying

f ′(x3) =
f(x2) − f(x1)

x2 − x1

which would be either 0 or < 0, contradicting the assumption that f ′(x) is always positive. Hence the
function is strictly monotone increasing, i.e., x2 > x1 Ô⇒ f(x2) > f(x1).

(2) This would mean that f is still monotone increasing, albeit not strictly, as x2 > x1 Ô⇒ f(x2) ⩾ f(x1).

Problem 5: 3.4 (Pugh)

Prove that
√
n + 1 −

√
n→ 0 as n→∞.

Solution

Note that

0 <
√
n + 1 −

√
n = (

√
n + 1 −

√
n)
√
n + 1 +

√
n√

n + 1 +
√
n

= (
√
n + 1 −

√
n)(
√
n + 1 +

√
n)√

n + 1 +
√
n

= 1√
n + 1 +

√
n

< 1

2
√
n
.

Since 2
√
n→∞ as n→∞ we have

0 ⩽ lim
n→∞

√
n + 1 −

√
n ⩽ lim

n→∞

1

2
√
n
= 0.

Therefore
√
n + 1 −

√
n→ 0 as n→∞.
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Problem 6: 3.8(a) (Pugh)

Draw the graph of a continuous function defined on [0,1] that is differentiable on the interval (0,1) but
not at the endpoints.

Solution

I was thinking about f(x) = g(x) sin(1/g(x)) such that g(x) → 0 as x → 0 and x → 1. Then I came up
with g(x) = x(1 − x) and this function:

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x = 0,1

g(x) otherwise

whose graph looks like the following.

But then Bruno suggested something much, much simpler: f(x) =
√
0.25 − (x − 0.5)2.
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Problem 7: 3.9 (Pugh)

Assume that f ∶ R→ R is differentiable.

(1) If there is an L < 1 such that for each x ∈ R we have f ′(x) < L, prove that there exists a unique point x

such that f(x) = x.

(2) Show by example that (1) fails if L = 1.

Solution

(1) Define g(x) ∶= f(x) − x so that g′(x) = f ′(x) − 1 < L − 1 < 0 for all x. Since

g(x) = g(0) + ∫
x

0
g′(x̃) dx̃ < g(0) + (L − 1)x

we see that g(x1) < 0 for sufficiently large x1 and g(x2) > 0 for sufficiently small (maybe negative) x2.
Since f is differentiable it is continuous, and so is g. Therefore g(c) = 0 for some c ∈ (x1, x2), and at this
point we know f(c) = c, i.e., c is a fixed point of f .

(2) Consider the Signoid function 1/(1 + e−x). If we define g(x) as

g(x) ∶= 1 − 1

1 + e−x

then we see that the range of g(x) is (1,0). Taking its antiderivative gives

G(x) = ∫ 1 − 1

1 + e−x
dx = x − ln(ex + 1) +C.

Setting C = 0, we get a function with derivative < 1 without a fixed point, as ln(ex + 1) ≠ 0 for all x ∈ R.

Problem 8: (extra credit) 1.31 (Pugh)

Suppose that a function f ∶ [a, b]→ R is monotone nondecreasing, i.e., x1 ⩽ x2 Ô⇒ f(x1) ⩽ f(x2).

(1) Prove that f is continuous except at a countable set of points.

(2) Is the same assertion true for a monotone function defined on all of R?
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Solution

We’ll first prove the following lemma. Once done, the rest is almost immediate.

Lemma

Suppose f ∶ [a, b]→ R is monotone nondecreasing. Then f is continuous at x if and only if the jump
at x is zero, i.e., f(x+) = f(x−).

Proof

Since f is monotone nondecreasing, we can define

f(x+) ∶= inf{f(x̃) ∣ x̃ > x} and f(x−) ∶= sup{f(x̃) ∣ x̃ < x}.

For Ô⇒ , suppose f is continuous at x. Then given ϵ > 0, there exists δ > 0 such that

∣x − y∣ < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ

2
.

By the monotonicity of f , it follows that f(x+) = inf{f(x̃) ∣ x ∈ (x,x + δ)} < f(x) + ϵ/2. Likewise
f(x−) < f(x)− ϵ/2. Therefore f(x+)− f(x−) < ϵ. Since ϵ is arbitrary, we conclude that f has zero jump
at x.

Now for the converse ⇐Ô , suppose f(x+) = f(x−) = a. By the properties of infimum and supremum,
given ϵ > 0, there exist b > x with f(b) < a+ϵ and c < x with f(c) > a−ϵ. If we define δ ∶=min{(b−x), (x−a)}
then

∣x − y∣ < δ Ô⇒ ∣a − f(y)∣ < ϵ. (*)

Here the problem reduces to showing that f(x) = a. Suppose not and WLOG assume f(x) < a. Then
there exists some t > x such that f(t) ∈ (f(x), a) Ô⇒ f(t) < f(x). This contradicts f ’s being monotone
nondecreasing. Likewise for the other case. Hence f(x) = a, and the above (∗) becomes

∣x − y∣ < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ,

i.e., f is continuous at x.

(1) Once more, by the monotonicity of f , if x1, x2 are two points of discontinuity, then

f(x1−) ⩽ f(x1) ⩽ f(x1+) ⩽ f(x2−) ⩽ f(x2) ⩽ f(x2+) with f(x1) < f(x2).
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Therefore, there exists a bijection between the set S of all points of discontinuity and a bunch of open
intervals of form (f(x−), f(x+)). Since Q is dense in R, there exists (at least) one rational in each
interval, and so there exists an injection g ∶ S → Q. This implies S is countable.

(2) Yes. By (1), for any n ∈ Z, there exist only countably many points of discontinuity in the interval
[n,n+ 1] and thus in [n,n+ 1). The union of all these intervals is precisely R. Hence the same assertion
still holds.
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