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Problem 1 (1.9). Let v = A| B,z' = A" | B’ be cuts in Q. We defined
x+x' =(A+A")|the rest of Q.

(1) Show that although B+ B’ is disjoint from A+ A’ it may happen in degenerate cases that Q is not the union
of A+ A and B+ B’.

(2) Infer that the definition of « + 2" as (A+ A") | (B + B") would be incorrect.
(3) Why did we not define z -z’ = (A- A") | rest of Q?
Solution.

(1) Tt turns out that sometimes (A + A") U (B + B’) would be missing an element of Q. Before we begin, define
set S ={reQ|z>0and 2% < 2}, namely all positive rational numbers less than /2 (note that we cannot

actually use this definition because V2 is not in Q.) Now consider sets

x=A|B={reQ|r<0orreS}|therest of Q
'=A"|B' ={reQ|r<0orr<2-s,VseS}|the rest of Q

Though I want to define the set A’ as the set of all rational numbers less than 2 — /2, but again we cannot

say so because, again, 2 — /2 is not a rational number.

Having constructed the two sets without involving R, hopefully now I may use v/2 now. Since a < /2 for all
aeAanda <2-v2forall a’ € A, it follows that all elements of A’+ B’ are strictly less than v/2+ (2- \/5) =2.
Therefore 2 ¢ A+ A’.

On the other hand, since \/2 is irrational, B = {r € Q | > 0 and 2 > 2} is the same as {r € Q | > 0 and 7 > 2}.
In other words, all elements of B are strictly larger than v/2. Likewise, all element of B’ are strictly larger
than 2 — /2. Therefore, all elements of B + B’ are strictly larger than V2 + (2- \/5) =2. Hence 2¢ B+ B’
either. Therefore (A + A")u (B + B’) is not equal to Q.

(2) Based on the definion, if X |Y is a Dedekind cut then X uY = Q which is not the case for (A + A") and
(B + B') as shown in (1).
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(3) We do not define multiplication as such because the product of two negative numbers is positive, and so

(A-A") can give us arbitrarily large positive numbers which we do not want.

Problem 2 (1.10). Prove that for each cut x we have x + (-z) = 0*. This is not trivial.

Solution. The proof involves the assumption that Q has the Archimedean property. For clarity, we will denote
0* =Ag | By, z=A| B, and -z = A’ | B’. The first case is when x = —z = 0*. In this case A9 = A = A" and the
proposition x + (—x) = 0* is trivial.

Now, if z, (-x) # 0, without loss of generality (WLOG) we may assume z > 0, i.e., Ag ¢ A. To show x+(-z) =0*
or A+ A" = Ay, we need to show both (A+ A") c Ap and (A + A") o Ay.

Showing c is easy. Since Vb e B and Va € A we always have b > a, it follows that, for all a € A and for all be B
such that 3¢ > 0 and -b—c ¢ A (i.e., for all elements of B excluding the smallest one — recall how A’ of (-x) is
defined), a + (-b) < 0 always holds, i.e., A+ A’ c Ay.

Now for the > part. First pick an arbitrary m = A,, | B,, satisfying A,, ¢ Ao, i.e., m <0. Clearly m is negative.
Now set n = -, clearly a positive numbenﬂ Since Q has the Archimedean property, there exists an integer k such
that

kne A, ie, kn<zx

(k+1)neB, ie,(k+1l)nzzx

Now let j = —(k + 2)n. Recall the definition of —x when z=A| B :
—x=C|D={reQ]| for some b€ B, not the smallest element of B,r = -b} | the rest of Q

If we look at —j = (k + 2)n, we know —j > (k + 1)n since n is positive. Therefore —j is not the smallest element of

B and thus j € A’. Now we have kn € A and j € A’. Adding them together gives
kn+j=kn-(k+2)n=-2n=m.

Therefore any arbitrary ag € Ag can be written as the sum of some a € A and o’ € A’. We have (A + A") o Ay.
Having shown (A+ A’) c Ag and (A + A") 5> Ag, we conclude that (A+ A’) = Ap and thus z + (-x) = 0*. Really

not trivial... O

Problem 3 (1.12). Prove that there exists no smallest positive real number. Does there exist a smallest positive

rational number? Give a real number z, does there exist a smallest real number y > 27

Solution. All answers are NO.

1Rudin W. Principles of Analysis. 3'4 ed., McGraw-Hill, 1976, p.19.
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(1) Suppose z > 0 is the smallest positive real number. Since we know 1 > %, it follows that 1-x > %x == >3,
and we’ve just found a smaller positive real number. Contradiction. Therefore there does not exist a smallest

positive real number.
(2) Similar to (1) except the word “real” is replaced by “rational”.

(3) Suppose no, then the statement implies there is no real number = such that = > 0 and « < y — 2. Otherwise
we can simply add the smaller number to z and find a real number greater than z but smaller than y. By
(1) we are always able to come up with such numbers. Therefore, given z, there does not exist a smallest real

number y > x.

Problem 4 (1.14). Prove that /2 € R by showing that z -z = 2 where 2 = A | B is the cut in Q with
A={reQ|r>0orr?<2}.

Solution. Recall that the definition of z - = where x = A| B is
z-x=C|D={reQ|r<0 or 3 positive a,b € A such that r = ab} | the rest of Q.

Also note that 2=F | F={z e Q |z <2} |{z Q|2 >2}. To show x-x =2, we have to show (C c E) A (C > E) so
that C' = E.
Like the first problem, showing c is super easy: if a,b satisfy a?,b? < 2, then ab < 2. Therefore C c E.

On the other hand, we want to show E > F. A formal way to phrase this statement is the following:

For each € > 0, there exists a € A such that 2 — ¢ < a? < 2.

In other words, if 2 — € = ¢ € C' then there exists a® € E such that a2 > ¢ so c € F as well.

Now imagine 1,2 sitting on an evenly spaced axis of rational numbers. We may divide the interval between 1
and 2 into many sub-intervals, each with a rational length < ¢/4. (We can do so by simply picking an integer > 4/¢
and set the interval length to 1/n.) Again, by the Archimedean property of @, among all the endpoints of these
sub-intervals, there exists an adjacent pair, where the square of the value of the left one < 2 and the other > 2. To

visualize this, see the not-to-scale diagram below (on the next page).
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z2=2
A={zecQ|z<0or 2®<2
{ | ; B = the rest of Q
1 2
| JIN E |
acA beB

Since a < 2 and b < 2, we know a +b < 4. Moreover, we also know b—a = /4. Therefore b>—a? = (b+a)(b-a) <e.

2

Since b? > 2 and a? < 2, we know that the point 2 is between a and b. Therefore 2 — a? < b? - a® < €, and we've

successfully found an a such that 2 — € < a? < 2. Hence C > E and therefore C = E, z-x = 2. O

Problem 5 (1.15). Given y € R, n € N, and € > 0, show that for some § >0, if v € R and |u—-y| < d then [u™ -y"| <e.

Hint: use induction and consider the identity
n 1 n—-2 n—l)

-yt = (u-y) (U U Ty ey

Solution. I managed to finish this problem without induction. Here is my claim:

€
l, ——«—
n(ly+ 1)

Given y e R,n €N, and € >0, if5<min( ), thenif u e R, Ju—y|<d = |[u" -y"|<e.

Proof. For convenience, we prefer to limit ¢ < 1 using a min() function when necessaury.E

If ju —y| < 1, then |u| < |y|+ 1 and |y| < |y| + 1. Tt follows that

[u" —y"| < |u-y] (by the identity given in question)

n-1 (n-1)-i
z : yZ’U, n-1)—1
=0

n_l . .

<lu-yl ), ylu (iterations of triangle inequality)
i=0
n-1

<Ju—y| Y (yl+ )" (assumption that |y| < |y + 1)
i=0

<o(n)(lyl+ )"

Therefore if we set § < min (1, 61) then
n(lyl+ 1)

€
u" =y < e (n) (Jy + 1) = e
n(ly[+ 1)

from which we conclude that the claim holds.

?Idea came a casual chat with Prof. Andrew Manion during his office hours.
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O

Alternate Solution 1. This time we will actually use (Strong)E induction as suggested by the hint. Let ¢(n) be

the statement

Given y € R,n € N, e > 0, there exists § > 0 such that if u € R and |u - y| < § then |[u* — | < € for all integers k € [0,7].

Furthermore, ¢ can be defined as

. € 1 | | 51
min z
2nly 1 2mfyl 1 )Y
J <

- € L
mny —,——
2nfy[" 1 2nfy] )"

Clearly (1) is trivial. To see p(2) is true, consider the following:

[u® = | < Ju—yllu+y|
1

Z yiul—i

=0

1 . .
<lu-yl Xyl
i=0

= Ju -y (just written in another form)

1
<=yl 3 o' (Jy' ]+ Ju' ™ = ' ))] (triangle inequality)
i=0
1
<Ju-y Y [|v| (|y(1_i)| +e)] (by the assumption that |u* — | < € for all k € [0,2])
i=0

1 .
<Ju=yl Y (lyl+€y])

=0
< Ju =yl Clyl + 2¢lyl) < 6 (2lyl + 2ely]) -

Honestly, the case for n = 2 could have been a lot simpler. However I deliberately did so just to illustrate that the

definition of § above works. If n = 2 then

6 < ) regardless of the magnitude of y.

( € 1
n|—,,—
4ly|” 4ly]

Substituting these values into the equation we see

€ 1 € €
If — ,then [u® — 4| < — (2Jy|) + (2¢elyl) < (2ly]) + (2¢ly]) =z + s =€cand
Ty < T 4|| 4|| 4|| 4|\ 272
I then Ju? — y?) <~ (2y) + o 2elul) < —— (2gl) + - 2elyl) = < + &
— n|u” -y Y €ly]) < Y €ly —+ - =e.
R 4|| 4|| 4|| i 2 "2

Hence ¢(2) is also true. Now assume (k) is true, and we expand |[u**! — y**1| below to show ¢(k + 1) also holds:

3Linfeng suggested that I try strong induction as opposed to weak induction, and he gave me hints on how to set up ¢(n).
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uF -y = (by the provided identity)

(u_y>(gyiuk-i)

<lu-yly [|y | (| 1| + |uk_i - yk_im (triangle inequality)
=0
k

<|u-y| Z [|yk‘ + e‘y ] (induction hypothesis, all [u’ - y'| < )

—M(EJM"+§ZHMXOMJmk%e) (maimizing 3" ')
i=0 i=0 i=0
= 0(k +1)[yl* + Se(k + 1) max(|yl, [y|*)
Note that since we don’t know if |y| > 1, we don’t know if |y| or |y|* is the largest element in the sequence
lyl, ly%,...,|y|¥. Therefore we have to use a max() function to determine so. Since the formula for § is highly

similar in both cases, we will only verify the former here. Suppose |y| > 1, n =k + 1, and we take

6 < mi ¢ 1
in .
2(k + D)lylF " 2(k + 1)yl

€ 1
If < th
20k + Dyl " 20k DlylF
k+l | k+1 K € k_ € 1 E_€¢ . €
- +1 — _e(k+1 S e(k+1 Sy =
1 €
and if < , then
2(k+Dlyls ~ 2(k+1)yl*
k+1 | k+1 ko k € k 5 €
- +1 T DY L — | + S
u < s & O s ek + DI g o (s Dl 5 = 5+ =
Therefore we’ve shown p(k) = ¢(k +1).
Having completed the base cases and the inductive step, we claim ¢(n) holds for all n € N. O

Alternate Solution 2. Another solution uses weak induction but doesn’t use the identity provided. However it’s
much less complicated. Before coming up with this solution, I was wondering if it’s possible to express the degree

n+1 function [u™*! —y™*1| by only using degree 1 and degree n functions — specifically |[u™ —y™|. The answer turns

out to be very elegant:

n+l yn+1| < |un+1 n yn+1|

[u —uy"| + |uy

(1)
<ulfu” =y +[y"|lu-y]
Similar to what we’ve done in the first proof, we may well keep |u —y| < 1 using a min() function so |u| < |y|+ 1. Let
p(n) be the statement that
’Given yeR neN, and € >0, there exists 6 >0 such that f u e R, Ju-y|<§ = |u" - y"| <e.‘
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Again ¢(1) is trivial. To show ¢(2) holds:

lu® - 37|

<Ju? —uy| + uy - |

< Jullu =yl + [yllu -yl

< (Il + Dl =yl + [yllu - y]

<62yl +1)

1’ € €
2yl +1 2yl +1

assume (k) to be true, then there exists §; such that if |u —y| < 8 then |[u* — y¥| <

Therefore if we set § < min( ) then |u? - y?| < (2ly| + 1) = e. Now, for the inductive step, if we

S — (This fraction is
2(Jy[+ 1)
particularly useful because we’ve set |u| < |y| + 1 and the (Jy|+ 1) would cancel each other out during multiplication,

leaving us with a neat ¢/2.) If we let

€ T
5 1<mm(1,5k, )
: 2(Jyl* +1)

12 to create €/2, [y|* to cancel out |y*| in inequality (1), +1 to avoid zero denominator.

then
[ — ) < ulfu® = o]+ [yF || -y (by the inequality (1) above)
€ k €
<(l+1) srim—= +WW'+D) 7=
2(Jyl +1) 2(Jyl* + 1)
—_— | S —
(< [u* = y*| by hypothesis) (by the construction of §j11)
€ €
=—+-=¢
2 2
Therefore p(k) = ¢(k + 1) and the induction is done. Hence question proven. ]

Problem 6 (1.16). Given = > 0 and n € N, prove that there is a unique y > 0 such that y™ = x. That is, the nth
root of x exists and is unique. Hint: consider y = sup(S) where § := {s € R | s” < z} and then show that y" can

neither < x or > x.

Solution. (I'm not sure if it’s necessary to show the existence of sup(S) for this question, since the hint already
takes it as granted. Anyway, it’s clear that 0" = 0 <  and (z +1)" > o + 1 > . Therefore S is nonempty and
bounded from above, and we may safely proceed to assume y = sup(S ))E

As suggested by the hint, the proof of existence divides into two parts. We first suppose, by contradiction, that

y" <z, and we pick e <z —y" (so y" + € <x). Now, by the conclusion of the previous problem, we know that

€ n n
5<W — (y+6) -y <e.

4Idea comes from a casual chat with Jiayue who believes that it’s necessary to show the existence of sup(S).
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(Note that we no longer need to use (|y|+1)" ! because we know that 1) both y and y +§ are positive and therefore

their absolute values are the same as themselves and 2) we know max(y,y + ) =y +J.) Therefore
(y+6)" <y +e<ux

from which we can immediately tell that y + 6 € S. Therefore y cannot be sup(S) because it’s not even an upper
bound of §.
Now for the other part, suppose y" > x and we pick € < y™ —z (so that y™ — e > ). Similarly, by the conclusion
of the previous problem, we have
5<$ = y"-(y-9)"<e.
Therefore

(y=0)">y" -e>x

from which the existence of y — d shows y is not the L.U.B. of S§. Hence it’s impossible that y™ > z.
By trichotomy, y™ £ « and y™ # = implies y" = .

Now we try to prove the uniqueness of such y. Two proofs below, both supposes that ' € R and (y')" = x.

First proof. Clearly 3’ is also an upper bound of S. It’s also clear that gy’ is the L.U.B. because for any z € R,
z<y == 2" <z and thus z cannot be an upper bound of § as shown above. By trichotomy exactly one among
y<y',y=19",y>1vy is true. If y <y’ then ¢’ isn’t the least upper bound, whereas if 3y > 3’ then ¥ isn’t the least upper
bound. Therefore the only possibility is if y = y’. Hence proven. O

Second proof. We will first need a lemma.

Lemma. If 0 < a < b, then a™ < b™ for all n € Z*.
Proof of lemma. Suppose 0 < a <b. Let p(n) be the statement that a™ < b™. Clearly (1) is true. Now suppose

©(k) holds, i.e., a® < b*. Then since R is a well-ordered field, we have a**1 < b-a**t < pF*1, O

Back to the question. By trichotomy, if y’ # y, then either y < ¢’ or ¢’ < y, and either = = y" < (y')" or
(y")"* < y™ = x. Therefore if (3')™ = x then ¢’ =y, i.e., y is unique.
O



