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Problem 1 (1.9). Let x = A ∣ B,x′ = A′ ∣ B′ be cuts in Q. We defined

x + x′ = (A +A′) ∣ the rest of Q.

(1) Show that although B +B′ is disjoint from A+A′, it may happen in degenerate cases that Q is not the union
of A +A′ and B +B′.

(2) Infer that the definition of x + x′ as (A +A′) ∣ (B +B′) would be incorrect.

(3) Why did we not define x ⋅ x′ = (A ⋅A′) ∣ rest of Q?

Solution.

(1) It turns out that sometimes (A +A′) ∪ (B +B′) would be missing an element of Q. Before we begin, define
set S = {x ∈ Q ∣ x > 0 and x2 < 2}, namely all positive rational numbers less than

√
2 (note that we cannot

actually use this definition because
√
2 is not in Q.) Now consider sets

x = A ∣ B = {r ∈ Q ∣ r ⩽ 0 or r ∈ S} ∣ the rest of Q

x′ = A′ ∣ B′ = {r ∈ Q ∣ r ⩽ 0 or r < 2 − s,∀s ∈ S} ∣ the rest of Q

Though I want to define the set A′ as the set of all rational numbers less than 2 −
√
2, but again we cannot

say so because, again, 2 −
√
2 is not a rational number.

Having constructed the two sets without involving R, hopefully now I may use
√
2 now. Since a <

√
2 for all

a ∈ A and a′ < 2−
√
2 for all a′ ∈ A′, it follows that all elements of A′+B′ are strictly less than

√
2+(2−

√
2) = 2.

Therefore 2 ∉ A +A′.

On the other hand, since
√
2 is irrational, B = {r ∈ Q ∣ r > 0 and r2 ⩾ 2} is the same as {r ∈ Q ∣ r > 0 and r2 > 2}.

In other words, all elements of B are strictly larger than
√
2. Likewise, all element of B′ are strictly larger

than 2 −
√
2. Therefore, all elements of B +B′ are strictly larger than

√
2 + (2 −

√
2) = 2. Hence 2 ∉ B +B′

either. Therefore (A +A′) ∪ (B +B′) is not equal to Q.

(2) Based on the definion, if X ∣ Y is a Dedekind cut then X ∪ Y = Q which is not the case for (A + A′) and
(B +B′) as shown in (1).

1



MATH 425a Problem Set 2 YQL

(3) We do not define multiplication as such because the product of two negative numbers is positive, and so
(A ⋅A′) can give us arbitrarily large positive numbers which we do not want.

Problem 2 (1.10). Prove that for each cut x we have x + (−x) = 0∗. This is not trivial.

Solution. The proof involves the assumption that Q has the Archimedean property. For clarity, we will denote
0∗ = A0 ∣ B0, x = A ∣ B, and −x = A′ ∣ B′. The first case is when x = −x = 0∗. In this case A0 = A = A′ and the
proposition x + (−x) = 0∗ is trivial.

Now, if x, (−x) ≠ 0, without loss of generality (WLOG) we may assume x > 0, i.e., A0 ⊊ A. To show x+(−x) = 0∗

or A +A′ = A0, we need to show both (A +A′) ⊂ A0 and (A +A′) ⊃ A0.
Showing ⊂ is easy. Since ∀b ∈ B and ∀a ∈ A we always have b > a, it follows that, for all a ∈ A and for all b ∈ B

such that ∃c > 0 and −b − c ∉ A (i.e., for all elements of B excluding the smallest one — recall how A′ of (−x) is
defined), a + (−b) < 0 always holds, i.e., A +A′ ⊂ A0.

Now for the ⊃ part. First pick an arbitrary m = Am ∣ Bm satisfying Am ⊊ A0, i.e., m < 0. Clearly m is negative.
Now set n = −m

2
, clearly a positive number.1 Since Q has the Archimedean property, there exists an integer k such

that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kn ∈ A, i.e., kn < x

(k + 1)n ∈ B, i.e., (k + 1)n ⩾ x

Now let j = −(k + 2)n. Recall the definition of −x when x = A ∣ B :

−x = C ∣D = {r ∈ Q ∣ for some b ∈ B, not the smallest element of B, r = −b} ∣ the rest of Q

If we look at −j = (k + 2)n, we know −j > (k + 1)n since n is positive. Therefore −j is not the smallest element of
B and thus j ∈ A′. Now we have kn ∈ A and j ∈ A′. Adding them together gives

kn + j = kn − (k + 2)n = −2n =m.

Therefore any arbitrary a0 ∈ A0 can be written as the sum of some a ∈ A and a′ ∈ A′. We have (A +A′) ⊃ A0.
Having shown (A +A′) ⊂ A0 and (A +A′) ⊃ A0, we conclude that (A +A′) = A0 and thus x + (−x) = 0∗. Really

not trivial… ◻

Problem 3 (1.12). Prove that there exists no smallest positive real number. Does there exist a smallest positive
rational number? Give a real number x, does there exist a smallest real number y > x?

Solution. All answers are NO.

1Rudin W. Principles of Analysis. 3rd ed., McGraw-Hill, 1976, p.19.
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(1) Suppose x > 0 is the smallest positive real number. Since we know 1 > 1
2
, it follows that 1 ⋅x > 1

2
⋅x Ô⇒ x > x

2
,

and we’ve just found a smaller positive real number. Contradiction. Therefore there does not exist a smallest
positive real number.

(2) Similar to (1) except the word “real” is replaced by “rational”.

(3) Suppose no, then the statement implies there is no real number x such that x > 0 and x < y − x. Otherwise
we can simply add the smaller number to x and find a real number greater than x but smaller than y. By
(1) we are always able to come up with such numbers. Therefore, given x, there does not exist a smallest real
number y > x.

Problem 4 (1.14). Prove that
√
2 ∈ R by showing that x ⋅ x = 2 where x = A ∣ B is the cut in Q with

A = {r ∈ Q ∣ r ⩾ 0 or r2 < 2}.

Solution. Recall that the definition of x ⋅ x where x = A ∣ B is

x ⋅ x = C ∣D = {r ∈ Q ∣ r ⩽ 0 or ∃ positive a, b ∈ A such that r = ab} ∣ the rest of Q.

Also note that 2 = E ∣ F = {x ∈ Q ∣ x < 2} ∣ {x ∈ Q ∣ x ⩾ 2}. To show x ⋅ x = 2, we have to show (C ⊂ E) ∧ (C ⊃ E) so
that C = E.

Like the first problem, showing ⊂ is super easy: if a, b satisfy a2, b2 < 2, then ab < 2. Therefore C ⊂ E.
On the other hand, we want to show E ⊃ F . A formal way to phrase this statement is the following:

For each ϵ > 0, there exists a ∈ A such that 2 − ϵ < a2 < 2.

In other words, if 2 − ϵ = c ∈ C then there exists a2 ∈ E such that a2 > c so c ∈ E as well.
Now imagine 1,2 sitting on an evenly spaced axis of rational numbers. We may divide the interval between 1

and 2 into many sub-intervals, each with a rational length < ϵ/4. (We can do so by simply picking an integer > 4/ϵ
and set the interval length to 1/n.) Again, by the Archimedean property of Q, among all the endpoints of these
sub-intervals, there exists an adjacent pair, where the square of the value of the left one < 2 and the other > 2. To
visualize this, see the not-to-scale diagram below (on the next page).
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Since a < 2 and b < 2, we know a+ b < 4. Moreover, we also know b−a = ϵ/4. Therefore b2 −a2 = (b+a)(b−a) < ϵ.
Since b2 > 2 and a2 < 2, we know that the point 2 is between a and b. Therefore 2 − a2 < b2 − a2 < ϵ, and we’ve
successfully found an a such that 2 − ϵ < a2 < 2. Hence C ⊃ E and therefore C = E, x ⋅ x = 2. ◻

Problem 5 (1.15). Given y ∈ R, n ∈ N, and ϵ > 0, show that for some δ > 0, if u ∈ R and ∣u−y∣ < δ then ∣un −yn∣ < ϵ.
Hint: use induction and consider the identity

un − yn = (u − y)(un−1 + un−2y + ⋅ ⋅ ⋅ + yn−1).

Solution. I managed to finish this problem without induction. Here is my claim:

Given y ∈ R, n ∈ N, and ϵ > 0, if δ <min(1, ϵ

n(∣y∣ + 1)n−1
) , then if u ∈ R, ∣u − y∣ < δ Ô⇒ ∣un − yn∣ < ϵ.

Proof. For convenience, we prefer to limit δ < 1 using a min() function when necessary.2

If ∣u − y∣ < 1, then ∣u∣ < ∣y∣ + 1 and ∣y∣ < ∣y∣ + 1. It follows that

∣un − yn∣ ⩽ ∣u − y∣∣
n−1
∑
i=0

yiu(n−1)−i∣ (by the identity given in question)

⩽ ∣u − y∣
n−1
∑
i=0
∣yiu(n−1)−i∣ (iterations of triangle inequality)

< ∣u − y∣
n−1
∑
i=0
(∣y∣ + 1)n−1 (assumption that ∣y∣ < ∣y∣ + 1)

< δ(n)(∣y∣ + 1)n−1.

Therefore if we set δ <min(1, ϵ

n(∣y∣ + 1)n−1
) then

∣un − yn∣ < ϵ

n(∣y∣ + 1)n−1
(n)(∣y∣ + 1)n−1 = ϵ

from which we conclude that the claim holds.

2Idea came a casual chat with Prof. Andrew Manion during his office hours.
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Alternate Solution 1. This time we will actually use (strong)3 induction as suggested by the hint. Let φ(n) be
the statement

Given y ∈ R, n ∈ N, ϵ > 0, there exists δ > 0 such that if u ∈ R and ∣u − y∣ < δ then ∣uk − yk ∣ < ϵ for all integers k ∈ [0, n].

Furthermore, δ can be defined as

δ <

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min( ϵ

2n∣y∣n−1
,

1

2n∣y∣n−1
) , ∣y∣ ⩾ 1

min( ϵ

2n∣y∣n−1
,

1

2n∣y∣
) , ∣y∣ < 1.

Clearly φ(1) is trivial. To see φ(2) is true, consider the following:

∣u2 − y2∣ ⩽ ∣u − y∣∣u + y∣

= ∣u − y∣∣
1

∑
i=0

yiu1−i∣ (just written in another form)

⩽ ∣u − y∣
1

∑
i=0
∣yi∣∣u1−i∣

⩽ ∣u − y∣
1

∑
i=0
[∣yi∣ (∣y1−i∣ + ∣u1−i − y1−i∣)] (triangle inequality)

< ∣u − y∣
1

∑
i=0
[∣yi∣ (∣y(1−i)∣ + ϵ)] (by the assumption that ∣uk − yk ∣ < ϵ for all k ∈ [0,2])

⩽ ∣u − y∣
1

∑
i=0
(∣y∣ + ϵ∣yi∣)

⩽ ∣u − y∣ (2∣y∣ + 2ϵ∣y∣) < δ (2∣y∣ + 2ϵ∣y∣) .

Honestly, the case for n = 2 could have been a lot simpler. However I deliberately did so just to illustrate that the
definition of δ above works. If n = 2 then

δ <min( ϵ

4∣y∣
,

1

4∣y∣
) regardless of the magnitude of y.

Substituting these values into the equation we see

If ϵ

4∣y∣
< 1

4∣y∣
, then ∣u2 − y2∣ < ϵ

4∣y∣
(2∣y∣) + ϵ

4∣y∣
(2ϵ∣y∣) < ϵ

4∣y∣
(2∣y∣) + 1

4∣y∣
(2ϵ∣y∣) = ϵ

2
+ ϵ

2
= ϵ and

If 1

4∣y∣
⩽ ϵ

4∣y∣
, then ∣u2 − y2∣ < 1

4∣y∣
(2∣y∣) + 1

4∣y∣
(2ϵ∣y∣) ⩽ 1

4∣y∣
(2∣y∣) + ϵ

4∣y∣
(2ϵ∣y∣) = ϵ

2
+ ϵ

2
= ϵ.

Hence φ(2) is also true. Now assume φ(k) is true, and we expand ∣uk+1 − yk+1∣ below to show φ(k + 1) also holds:

3Linfeng suggested that I try strong induction as opposed to weak induction, and he gave me hints on how to set up φ(n).
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∣uk+1 − yk+1∣ = ∣(u − y)(
k

∑
i=0

yiuk−i) ∣ (by the provided identity)

⩽ ∣u − y∣
k

∑
i=0
[∣yi∣∣uk−i∣]

⩽ ∣u − y∣
k

∑
i=0
[∣yi∣ (∣yk−i∣ + ∣uk−i − yk−i∣)] (triangle inequality)

< ∣u − y∣
k

∑
i=0
[∣yk∣ + ϵ∣yi∣] (induction hypothesis, all ∣ui − yi∣ < ϵ)

⩽ ∣u − y∣ (
k

∑
i=0
∣y∣n +

k

∑
i=0

max(∣y∣, ∣y∣k) ⋅ ϵ) (maximizing
k

∑
i=0

ϵ∣yi∣)

= δ(k + 1)∣y∣k + δϵ(k + 1)max(∣y∣, ∣y∣k)

Note that since we don’t know if ∣y∣ ⩾ 1, we don’t know if ∣y∣ or ∣y∣k is the largest element in the sequence
∣y∣, ∣y∣2, . . . , ∣y∣k. Therefore we have to use a max() function to determine so. Since the formula for δ is highly
similar in both cases, we will only verify the former here. Suppose ∣y∣ ⩾ 1, n = k + 1, and we take

δ <min( ϵ

2(k + 1)∣y∣k
,

1

2(k + 1)∣y∣k
) .

If ϵ

2(k + 1)∣y∣k
< 1

2(k + 1)∣y∣k
, then

∣uk+1 − yk+1∣ < ϵ

2(k + 1)∣y∣k
(k + 1)∣y∣k + ϵ

2(k + 1)∣y∣k
ϵ(k + 1)∣y∣k < ϵ

2
+ 1

2(k + 1)∣y∣k
ϵ(k + 1)∣y∣k = ϵ

2
+ ϵ

2
= ϵ,

and if 1

2(k + 1)∣y∣k
⩽ ϵ

2(k + 1)∣y∣k
, then

∣uk+1 − yk+1∣ < 1

2(k + 1)∣y∣k
(k + 1)∣y∣k + 1

2(k + 1)∣y∣k
ϵ(k + 1)∣y∣k ⩽ ϵ

2(k + 1)∣y∣k
(k + 1)∣y∣k + ϵ

2
= ϵ

2
+ ϵ

2
= ϵ.

Therefore we’ve shown φ(k) Ô⇒ φ(k + 1).
Having completed the base cases and the inductive step, we claim φ(n) holds for all n ∈ N. ◻

Alternate Solution 2. Another solution uses weak induction but doesn’t use the identity provided. However it’s
much less complicated. Before coming up with this solution, I was wondering if it’s possible to express the degree
n+1 function ∣un+1 −yn+1∣ by only using degree 1 and degree n functions — specifically ∣un −yn∣. The answer turns
out to be very elegant:

∣un+1 − yn+1∣ ⩽ ∣un+1 − uyn∣ + ∣uyn − yn+1∣

⩽ ∣u∣∣un − yn∣ + ∣yn∣∣u − y∣
(1)

Similar to what we’ve done in the first proof, we may well keep ∣u− y∣ < 1 using a min() function so ∣u∣ < ∣y∣+ 1. Let
φ(n) be the statement that

Given y ∈ R, n ∈ N, and ϵ > 0, there exists δ > 0 such that if u ∈ R, ∣u − y∣ < δ Ô⇒ ∣un − yn∣ < ϵ.
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Again φ(1) is trivial. To show φ(2) holds:

∣u2 − y2∣ ⩽ ∣u2 − uy∣ + ∣uy − y2∣

⩽ ∣u∣∣u − y∣ + ∣y∣∣u − y∣

⩽ (∣y∣ + 1)∣u − y∣ + ∣y∣∣u − y∣

< δ(2∣y∣ + 1)

Therefore if we set δ < min(1, ϵ

2∣y∣ + 1
) then ∣u2 − y2∣ < ϵ

2∣y∣ + 1
(2∣y∣ + 1) = ϵ. Now, for the inductive step, if we

assume φ(k) to be true, then there exists δk such that if ∣u − y∣ < δk then ∣uk − yk ∣ < ϵ

2(∣y∣ + 1)
. (This fraction is

particularly useful because we’ve set ∣u∣ ⩽ ∣y∣+ 1 and the (∣y∣+ 1) would cancel each other out during multiplication,

leaving us with a neat ϵ/2.) If we let

δk+1 <min(1, δk,
ϵ

2(∣y∣k + 1)
†
)

†2 to create ϵ/2, ∣y∣k to cancel out ∣yk ∣ in inequality (1), +1 to avoid zero denominator.

then

∣uk+1 − yk+1∣ ⩽ ∣u∣∣uk − yk ∣ + ∣yk ∣∣u − y∣ (by the inequality (1) above)

< (∣y∣ + 1) ϵ

2(∣y∣ + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(< ∣uk − yk ∣ by hypothesis)

+ (∣yk ∣ + 1) ϵ

2(∣y∣k + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(by the construction of δk+1)

= ϵ

2
+ ϵ

2
= ϵ.

Therefore φ(k) Ô⇒ φ(k + 1) and the induction is done. Hence question proven. ◻

Problem 6 (1.16). Given x > 0 and n ∈ N, prove that there is a unique y > 0 such that yn = x. That is, the nth

root of x exists and is unique. Hint: consider y = sup(S) where S ∶= {s ∈ R ∣ sn ⩽ x} and then show that yn can
neither < x or > x.

Solution. (I’m not sure if it’s necessary to show the existence of sup(S) for this question, since the hint already
takes it as granted. Anyway, it’s clear that 0n = 0 < x and (x + 1)n ⩾ x + 1 > x. Therefore S is nonempty and
bounded from above, and we may safely proceed to assume y = sup(S).)4

As suggested by the hint, the proof of existence divides into two parts. We first suppose, by contradiction, that
yn < x, and we pick ϵ < x − yn (so yn + ϵ < x). Now, by the conclusion of the previous problem, we know that

δ < ϵ

n(y + δ)n−1
Ô⇒ (y + δ)n − yn < ϵ.

4Idea comes from a casual chat with Jiayue who believes that it’s necessary to show the existence of sup(S).
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(Note that we no longer need to use (∣y∣+1)n−1 because we know that 1) both y and y+ δ are positive and therefore
their absolute values are the same as themselves and 2) we know max(y, y + δ) = y + δ.) Therefore

(y + δ)n < yn + ϵ < x

from which we can immediately tell that y + δ ∈ S. Therefore y cannot be sup(S) because it’s not even an upper
bound of S.

Now for the other part, suppose yn > x and we pick ϵ < yn − x (so that yn − ϵ > x). Similarly, by the conclusion
of the previous problem, we have

δ < ϵ

nyn−1
Ô⇒ yn − (y − δ)n < ϵ.

Therefore
(y − δ)n > yn − ϵ > x

from which the existence of y − δ shows y is not the L.U.B. of S. Hence it’s impossible that yn > x.
By trichotomy, yn /< x and yn /> x implies yn = x.
Now we try to prove the uniqueness of such y. Two proofs below, both supposes that y′ ∈ R and (y′)n = x.

First proof. Clearly y′ is also an upper bound of S. It’s also clear that y′ is the L.U.B. because for any z ∈ R,
z < y′ Ô⇒ zn < x and thus z cannot be an upper bound of S as shown above. By trichotomy exactly one among
y < y′, y = y′, y > y′ is true. If y < y′ then y′ isn’t the least upper bound, whereas if y > y′ then y isn’t the least upper
bound. Therefore the only possibility is if y = y′. Hence proven.

Second proof. We will first need a lemma.

Lemma. If 0 < a < b, then an < bn for all n ∈ Z+.
Proof of lemma. Suppose 0 < a < b. Let φ(n) be the statement that an < bn. Clearly φ(1) is true. Now suppose

φ(k) holds, i.e., ak < bk. Then since R is a well-ordered field, we have ak+1 < b ⋅ ak+1 < bk+1. ◻

Back to the question. By trichotomy, if y′ ≠ y, then either y < y′ or y′ < y, and either x = yn < (y′)n or
(y′)n < yn = x. Therefore if (y′)n = x then y′ = y, i.e., y is unique.
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