

MATH 425a Problem Set 3

Qilin Ye

September 5, 2020

Problem 1 (1.18). Prove that real numbers correspond bijectively to decimal expansions not terminating in an infinite strings of nines, as follows. The decimal expansion of $x \in \mathbb{R}$ is $N.x_1x_2\dots$, where N is the largest integer $\leq x$, x_1 is the largest integer $\leq 10(x - N)$, x_2 is the largest integer $\leq 100(x - (N + x_1/10))$, and so on.

- (1) Show that each x_k is a digit between 0 and 9.
- (2) Show that for each k there is an $\ell \geq k$ such that $x_\ell \neq 9$.
- (3) Conversely, show that for each such expansion $N.x_1x_2\dots$ not terminating in an infinite string of nines, the set

$$\{N, N + \frac{x_1}{10}, N + \frac{x_1}{10} + \frac{x_2}{100}, \dots\}$$

is bounded and its least upper bound is a real number x with decimal expansion $N.x_1x_2\dots$.

- (4) Repeat the exercise with a general base in place of 10.

Solution.

- (1) We will prove $0 \leq x_k \leq 9$ for all k by induction. Let $\varphi(n)$ be the statement that $0 \leq x_n \leq 9$ (alternatively, since all digits are integers, $0 \leq x_n < 10$) and that

$$0 \leq 10^n \left(x - \left(N + \frac{x_1}{10} + \dots + \frac{x_n}{10^n} \right) \right) < 1.$$

First let's check $\varphi(1)$. Since N is the greatest integer not exceeding x , we have $0 \leq x - N < 1$. Therefore $0 \leq 10(x - N) < 10$. It follows that $0 \leq x_1 \leq 9$ since x_1 is the largest integer not exceeding $10(x - N)$ by definition. From this definition of x_1 we also have

$$0 \leq 10(x - N) - x_1 = 10 \left(x - \left(N + \frac{x_1}{10} \right) \right) < 1.$$

Both conditions are met, and $\varphi(1)$ holds.

Now we assume $\varphi(m)$ is true. By definition of x_{m+1} and the induction hypothesis, we have

$$\begin{cases} (1) x_{m+1} \text{ is the largest integer } \leq 10^{m+1} \left(x - \left(N + \frac{x_1}{10} + \dots + \frac{x_m}{10^m} \right) \right) \\ (2) 0 \leq 10^m \left(x - \left(N + \frac{x_1}{10} + \dots + \frac{x_m}{10^m} \right) \right) < 1 \implies 0 \leq 10^{m+1} \left(x - \left(N + \frac{x_1}{10} + \dots + \frac{x_m}{10^m} \right) \right) < 10 \end{cases}$$

from which it becomes clear that $0 \leq x_{m+1} \leq 9$ and

$$0 \leq 10^{m+1} \left(x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_m}{10^m} \right) \right) - x_{m+1} = 10^{m+1} \left(x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_m}{10^m} + \frac{x_{m+1}}{10^{m+1}} \right) \right) < 1.$$

Therefore $\varphi(m) \implies \varphi(m+1)$, and we conclude that each x_k is a digit between 0 and 9.

(2) Before proving this part, we need to introduce a lemma.

Lemma. The infinite sum $\sum_{i=1}^{\infty} \frac{9}{10^i} = \frac{9}{10} + \frac{9}{10^2} + \dots$ is equal to 1.

Proof of lemma. Suppose $\sum_{i=1}^{\infty} \frac{9}{10^i} = S$. If we multiply each term by 10, we get a new geometric series with infinite sum $10S$. Subtracting these two gives

$$\begin{aligned} 10S - S &= 9S = \sum_{i=1}^{\infty} \frac{9}{10^{i-1}} - \sum_{i=1}^{\infty} \frac{9}{10^i} \\ &= \left(9 + \frac{9}{10} + \frac{9}{10^2} + \dots \right) - \left(\frac{9}{10} + \frac{9}{10^2} + \dots \right) \\ &= 9 \end{aligned}$$

Hence $9S = 9$, $S = 1$, which finishes the proof. \square

Back to the question. Suppose, for contradiction, that there exists a k such that $x_\ell = 9$ for all $\ell \geq k$. Recall that x_{k-1} is the largest integer not exceeding $10^{k-1} \left(x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_{k-2}}{10^{k-2}} \right) \right)$. Observe that, based on the definition of x_ℓ , it's always true that $x - (N + x_1/10 + \cdots + x_\ell/10^\ell)$ is nonnegative. Therefore,

$$x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_{k-1}}{10^{k-1}} + \frac{9}{10^k} + \frac{9}{10^{k+1}} + \dots \right) \geq 0$$

By the lemma, the inequality above can be re-written as

$$x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_{k-1}}{10^{k-1}} + \frac{1}{10^{k-1}} \right) = x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_{k-2}}{10^{k-2}} + \frac{x_{k-1}+1}{10^{k-1}} \right) \geq 0$$

which tells us that $x_{k-1} + 1$ is also an integer not exceeding $10^{k-1} \left(x - \left(N + \frac{x_1}{10} + \cdots + \frac{x_{k-2}}{10^{k-2}} \right) \right)$. Contradiction.

Hence there cannot exist a non-terminating string of 9 at the end of a decimal expansion.

(3) For convenience let us denote this set as \mathcal{S} . Clearly \mathcal{S} is nonempty, and since $N.x_1x_2\dots$ is not terminating in an infinite string of 9's, \mathcal{S} is bounded above by

$$N + \frac{9}{10} + \frac{9}{10^2} + \cdots = N + \sum_{i=1}^{\infty} \frac{9}{10^i} = N + 1.$$

It follows that the L.U.B. property applies, and we may denote $x = \sup(\mathcal{S})$. From above we see $x \leq N + 1$. Again, since the x_k 's are not a string of non-terminating 9's, $x \neq N + 1$. Also note that each $x_k/10^k$ is nonnegative, so \mathcal{S} is bounded below by N . Therefore the integer part of x must be N .

Now we start working on x_1 . Since

$$x = \sup \left\{ N, N + \frac{x_1}{10}, N + \frac{x_1}{10} + \frac{x_2}{100}, \dots \right\},$$

we also have

$$10(x - N) = \sup \left\{ x_1, x_1 + \frac{x_2}{10}, x_1 + \frac{x_2}{10} + \frac{x_3}{100}, \dots \right\}.$$

Just like \mathcal{S} , this new set is nonempty and bounded below by x_1 and above by $x_1 + 1$. Furthermore, just like $x < N + 1$, $10(x - N) < x_1 + 1$ because x_2, x_3, \dots is not a string of non-terminating 9's. Therefore the largest integer not exceeding $10(x - N)$ is indeed x_1 , and we've shown that it is also the first digit of x after the decimal point.

We could have set up an induction to show that the k^{th} digit of x after the decimal point is indeed x_k , but illustrating by example is easier to follow. The L.U.B. of $\left\{ x_k, x_k + \frac{x_{k+1}}{10}, x_k + \frac{x_{k+1}}{10} + \frac{x_{k+2}}{100}, \dots \right\}$ is greater than x_k and strictly less than $x_k + 1$ as $N.x_1x_2\dots$ does not contain a non-terminating string of 9's.

Hence $x = N.x_1x_2\dots = \sup(\mathcal{S})$.

(4) The steps are almost identical and, for base n , we simply need to change the lemma to

$$\sum_{i=1}^{\infty} \frac{n-1}{n^i} = \frac{n-1}{n} + \frac{n-1}{n^2} + \dots = 1.$$

Then, the base n decimal expansion of $x \in \mathbb{R}$ that does not have a never-ending string of $(n-1)$ is $N.n_1n_2\dots$ where N is the largest integer not exceeding x , n_1 the largest integer not exceeding $n(x - N)$, and n_k the integer not exceeding $n^k \left(x - \left(N + \sum_{i=1}^{k-1} \frac{n_i}{n^i} \right) \right)$. The corresponding three parts become

- (1) each n_k is a digit between 0 and $n-1$.
- (2) for each k there exists an $\ell \geq k$ such that $n_\ell \neq n-1$.
- (3) for each expansion $N.n_1n_2\dots$ not terminating in an infinite string of $(n-1)$'s, the set

$$\left\{ N, N + \frac{n_1}{n}, N + \frac{n_1}{n} + \frac{n_2}{n^2}, \dots \right\}$$

is bounded and its supremum is precisely the real number x with decimal expansion $N.n_1n_2\dots$ (in base n).

Problem 2 (1.19). Formulate the definition of the **greatest lower bound** of a set of real numbers. State a G.L.B. property of \mathbb{R} and show it is equivalent to the L.U.B. property of \mathbb{R} .

Solution. Greatest Lower Bound Property:

If \mathcal{S} is a nonempty subset of \mathbb{R} and is bounded below in \mathbb{R} then \exists a G.L.B. for \mathcal{S}

where a G.L.B. is an element $x \in \mathbb{R}$ such that

- (1) $x < s$ for all $s \in \mathcal{S}$ and

(2) for all $y \in \mathbb{R}$ satisfying $y < s$ for all $s \in S$, $x \geq y$.

I am not sure what the question means by asking me to “show [the G.L.B.] property is equivalent to the L.U.B. property”. Clearly to show that two propositions are equivalent we need to show L.U.B. \implies G.L.B. and vice versa. For the forward direction, one interpretation is to show that if S is nonempty and bounded above then $\sup(S) = -\inf(-S)$. Another way is to show that if $x = \sup(S)$ then $x = \inf(\mathcal{T})$ for a set \mathcal{T} that is nonempty and bounded below. I will do both here, but please also read the paragraph labeled \dagger below.

(1) For the first interpretation, we have shown the forward direction in class. The box below is a screenshot:

Since S is nonempty and bounded from below, we know $(-S)$ is nonempty and bounded from above. Therefore $(-S)$ has a L.U.B. Suppose $\sup(-S) = b$. Claim: $-b = \inf(S)$.

First show that $-b$ is a lower bound. Since $b \geq -s, \forall s \in S$, we know $-b \leq s, \forall s \in S$. Therefore $-b$ is a lower bound for S .

Now we show that it's the greatest among all lower bounds. Let $-b'$ be another lower bound. By the same argument b' is also an upper bound for $(-S)$. Since $-b = \sup(S)$, it follows that $b \leq b'$, and $-b \geq -b'$. Therefore $-b$ is indeed $\inf(S)$.

From discussion on Tue, 9/1

For G.L.B. \implies L.U.B., suppose $x = \inf(S)$ and define $(-S) = \{-s \mid s \in S\}$. By definition, $x \leq s$ for all $s \in S$. Therefore $-x \geq -s$ for all $-s \in (-S)$. Therefore $-x$ is an upper bound for $(-S)$. Now let $-y$ also be an upper bound for $(-S)$, and we have $-y \geq -x$ for all $-x \in (-S)$. Negating both sides we have $y \leq x$ for all $x \in S$. Therefore y is a lower bound for S . Since $x = \inf(S)$ we know $y \leq x$. Therefore $-y \geq -x$ and $-x$ is indeed $\sup(-S)$.

(2) For the second interpretation, first assume S is a nonempty set bounded below and assume the existence of the L.U.B. property. Now consider the set $\mathcal{T} = \{t \in \mathbb{R} \mid t \leq s \ \forall s \in S\}$. Since S is bounded below, \mathcal{T} is nonempty. Clearly \mathcal{T} is also bounded above by any $s \in S$. Therefore the L.U.B. property applies, and there exists $t^* = \sup(\mathcal{T})$. It follows that, in addition to each $s \in S$ being an upper bound for \mathcal{T} , each $t \in \mathcal{T}$ is also a lower bound for S . Therefore t^* is not only the L.U.B. of \mathcal{T} but also the greatest among all lower bounds for S , i.e., $t^* = \sup(\mathcal{T}) = \inf(S)$.

Similarly, we may assume \mathcal{T} is a nonempty set and assume that the G.L.B. property exists. Then if we consider the set $S = \{s \in \mathbb{R} : s \geq t \ \forall t \in \mathcal{T}\}$ and apply the G.L.B. property to S , we will reach the similar conclusion that $\sup(\mathcal{T}) = \inf(S)$.

\dagger I don't see much difference between the two approaches. Both start by assuming the existence of L.U.B. property (or G.L.B.) of \mathbb{R} and show that the G.L.B. property (or L.U.B.) applies to some subset of \mathbb{R} . If you believe the second one doesn't make much sense, please just ignore it.

Problem 3 (1.20). Prove that limits are unique, i.e., if (a_n) is a sequence of real numbers that converges to a real number b and also converges to a real number b' , then $b = b'$.

Solution. Suppose, by contradiction, that (a_n) converges to both b and b' with $b \neq b'$. Then we may set $\epsilon = |b - b'|$. Since the sequence converges to b , there exists $N \in \mathbb{Z}^+$ such that $k \geq N \implies |a_k - b| < \epsilon/2$. Likewise, since the sequence also converges to b' , there exists another $N' \in \mathbb{Z}^+$ such that $k \geq N' \implies |a_k - b'| < \epsilon/2$. Now if we set $N^* = \max(N, N')$, then if $k \geq N^*$ we have

$$|b - b'| \leq |b - a_k| + |a_k - b'| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

contradicting the assumption $|b - b'| = \epsilon$. Therefore (a_n) can't converge to two distinct limits, i.e., limits are unique.

Problem 4 (1.27). Prove that the interval $[a, b] \in \mathbb{R}$ is the same as the segment $[a, b] \in \mathbb{R}^1$. That is,

$$\begin{aligned} & \{x \in \mathbb{R} : a \leq x \leq b\} \\ &= \{y \in \mathbb{R} : \exists s, t \in [0, 1] \text{ with } s + t = 1 \text{ and } y = sa + tb\}. \end{aligned}$$

Solution. For convenience, let us denote the first set (interval) by A and the second (segment) by B . To show $A = B$ we need to show that A and B are mutually inclusive. Showing $B \subset A$ is relatively easier: for all s, t such that $s + t = 1$, we have

$$a = sa + ta < sa + tb < sb + tb = b \implies sa + tb \in [a, b].$$

For the converse, the metacognition here is that we want to create a *linear function* (we haven't defined it, but you know what I mean) that satisfies $f(a) = 0$, $f(b) = 1$, and $(f(x) - f(y))/(x - y)$ remains as a constant. Therefore we can consider the following:

$$\begin{cases} s = \frac{b - x}{b - a} \\ t = \frac{x - a}{b - a} \end{cases} \implies s + t = 1 \text{ and } f(x) = sa + tb = \frac{b - x}{b - a}a + \frac{x - a}{b - a}b = x.$$

This shows that for any $x \in [a, b]$, we are able to come up with s, t such that $s + t = 1$ and $x = sa + tb$. Hence $A \subset B$ and, together with $B \subset A$, we conclude that $A = B$.

Problem 5 (1.28). A **convex combination** of $w_1, \dots, w_k \in \mathbb{R}^m$ is a vector sum

$$w = s_1 w_1 + \dots + s_k w_k$$

such that $s_1 + \dots + s_k = 1$ and $0 \leq s_1, \dots, s_k \leq 1$.

- (1) Prove that if a set E is convex the E contains the convex combination of any finite number of points in E .
- (2) Why is the converse obvious?

Solution.

(1) We will prove by induction. Let E be a convex set, and let $\varphi(n)$ be the statement that

$$E \text{ contains all convex combinations of } n \text{ points in } E.$$

Clearly $\varphi(1)$ is trivial, and $\varphi(2)$ is also trivial since E is convex. We may proceed to the inductive step now.

Now we assume $\varphi(k)$ is true, and we try to show $\varphi(k) \implies \varphi(k+1)$. Suppose we have $w_1, \dots, w_k, w_{k+1} \in \mathbb{R}^m$, and we want to show that $\lambda_1 w_1 + \dots + \lambda_{k+1} w_{k+1} \in E$ as long as $\sum \lambda_i = 1$. Note that currently the sum of all coefficients excluding λ_{k+1} is $1 - \lambda_{k+1}$. If we focus on the first k terms and let $s_i = \lambda_i / (1 - \lambda_{k+1})$, then $\sum_{i=1}^k s_i = (1 - \lambda_{k+1}) / (1 - \lambda_{k+1}) = 1$. Therefore, by the induction hypothesis, the convex combinations of the first k vectors is also in E , i.e.,

$$\mathbf{w} = \frac{\lambda_1}{1 - \lambda_{k+1}} w_1 + \frac{\lambda_2}{1 - \lambda_{k+1}} w_2 + \dots + \frac{\lambda_k}{1 - \lambda_{k+1}} w_k = \sum_{i=1}^k \frac{\lambda_i w_i}{1 - \lambda_{k+1}} \in E.$$

Then, our arbitrary convex combination $\lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_{k+1} w_{k+1}$ becomes

$$(\lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_k w_k) + \lambda_{k+1} w_{k+1} = (1 - \lambda_{k+1}) \mathbf{w} + \lambda_{k+1} w_{k+1},$$

a convex combination of merely two vectors in E . Since E is convex, this combination is also in E . Hence $\varphi(k+1)$ holds, and we are done with the proof. \square

(2) Because the converse doesn't require $\varphi(n)$ to be true for all $n \in \mathbb{N}$: $\varphi(2)$ alone is already sufficient to show that E is convex.

Problem 6 (1.29 (a)). Prove that the ellipsoid

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1 \right\}$$

is convex. [Hint: E is the unit ball for a different dot product.]

Solution. First I will provide two ways to define an inner product. (Why not when we can have a bit of fun?)

(1) We can rewrite the equation of an ellipsoid in matrix form:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1/a^2 & 0 & 0 \\ 0 & 1/b^2 & 0 \\ 0 & 0 & 1/c^2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{x}^T Q \mathbf{x} \leq 1.$$

To see $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^T Q \mathbf{w}$ is an inner product, we verify its symmetry, linearity, and positive definiteness:

(I) Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^T Q \mathbf{w} = (\mathbf{v}^T Q \mathbf{w})^T = \mathbf{w}^T Q^T (\mathbf{v}^T)^T = \mathbf{w}^T Q \mathbf{v} = \langle \mathbf{w}, \mathbf{v} \rangle$.

(II) Linearity: $\langle c\mathbf{v}, \mathbf{w} \rangle = (c\mathbf{v})^T Q \mathbf{w} = c(\mathbf{v}^T Q \mathbf{w}) = c \langle \mathbf{v}, \mathbf{w} \rangle$ and

$$\langle \mathbf{v} + \mathbf{v}', \mathbf{w} \rangle = (\mathbf{v} + \mathbf{v}')^T Q \mathbf{w} = \mathbf{v}^T Q \mathbf{w} + (\mathbf{v}')^T Q \mathbf{w} = \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{v}', \mathbf{w} \rangle.$$

(III) Positive definiteness: $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T Q \mathbf{v}$ is positive definite because the eigenvalues of Q are $1/a^2, 1/b^2$, and $1/c^2$, all of which are positive.

(2) Alternatively, given $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, we can consider the map $\langle \mathbf{x}, \mathbf{y} \rangle \rightarrow \mathbb{R}$ defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{x_1 y_1}{a^2} + \frac{x_2 y_2}{b^2} + \frac{x_3 y_3}{c^2}.$$

Again, to see whether this is an inner product, we must check its symmetry, linearity, and positive definiteness:

$$(I) \text{ Symmetry: } \langle \mathbf{x}, \mathbf{y} \rangle = \frac{x_1 y_1}{a^2} + \frac{x_2 y_2}{b^2} + \frac{x_3 y_3}{c^2} = \frac{y_1 x_1}{a^2} + \frac{y_2 x_2}{b^2} + \frac{y_3 x_3}{c^2} = \langle \mathbf{y}, \mathbf{x} \rangle.$$

$$(II) \text{ Linearity: } \langle c\mathbf{x}, \mathbf{y} \rangle = \frac{c x_1 y_1}{a^2} + \frac{c x_2 y_2}{b^2} + \frac{c x_3 y_3}{c^2} = c \left(\frac{x_1 y_1}{a^2} + \frac{x_2 y_2}{b^2} + \frac{x_3 y_3}{c^2} \right) = c \langle \mathbf{x}, \mathbf{y} \rangle \text{ and}$$

$$\langle \mathbf{x} + \mathbf{z}, \mathbf{y} \rangle = \frac{(x_1 + z_1) y_1}{a^2} + \frac{(x_2 + z_2) y_2}{b^2} + \frac{(x_3 + z_3) y_3}{c^2} = \frac{x_1 y_1 + z_1 y_1}{a^2} + \frac{x_2 y_2 + z_2 y_2}{b^2} + \frac{x_3 y_3 + z_3 y_3}{c^2} = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{z}, \mathbf{y} \rangle.$$

$$(III) \text{ Positive definiteness: } \langle \mathbf{x}, \mathbf{x} \rangle = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} \geq 0 \text{ since the numerators are all nonnegative and the denominators are all positive.}$$

In either case, the ellipsoid E is the unit ball with norm ≤ 1 . To show it's convex, suppose $\mathbf{v}, \mathbf{w} \in E$. It follows that $0 < \|\mathbf{v}\|, \|\mathbf{w}\| \leq 1$. We want to show that $\lambda \mathbf{v} + (1 - \lambda) \mathbf{w} \in E$ for all $\lambda \in [0, 1]$, i.e., its norm ≤ 1 . Since

$$\begin{aligned} \langle \lambda \mathbf{v} + (1 - \lambda) \mathbf{w}, \lambda \mathbf{v} + (1 - \lambda) \mathbf{w} \rangle &= \lambda^2 \langle \mathbf{v}, \mathbf{v} \rangle + 2\lambda(1 - \lambda) \langle \mathbf{v}, \mathbf{w} \rangle + (1 - \lambda)^2 \langle \mathbf{w}, \mathbf{w} \rangle && \text{(applying linearity)} \\ &= \lambda^2 \|\mathbf{v}\|^2 + (1 - \lambda)^2 \|\mathbf{w}\|^2 + 2\lambda(1 - \lambda) \langle \mathbf{v}, \mathbf{w} \rangle && \text{(definition of norm)} \\ &\leq \lambda^2 \|\mathbf{v}\|^2 + (1 - \lambda)^2 \|\mathbf{w}\|^2 + 2\lambda(1 - \lambda) \|\mathbf{v}\| \|\mathbf{w}\| && \text{(Cauchy-Schwarz inequality)} \\ &\leq \lambda^2 + (1 - \lambda)^2 + 2\lambda(1 - \lambda) && (\|\mathbf{v}\|, \|\mathbf{w}\| \leq 1) \\ &= 1 \end{aligned}$$

we conclude that the ellipsoid is indeed convex. \square

Problem 7 (1.29 (b)). Prove that all boxes in \mathbb{R}^m are convex.

Solution. All boxes in \mathbb{R}^m have the form

$$[a_1, b_1] \times \cdots \times [a_m, b_m]$$

Suppose $\mathbf{x}, \mathbf{y} \in [a_1, b_1] \times \cdots \times [a_m, b_m]$, then $a_i \leq x_i, y_i \leq b_i$. It follows that if $0 \leq \lambda \leq 1$, then

$$a_i \leq \min(x_i, y_i) \leq \lambda \min(x_i, y_i) + (1 - \lambda) \max(x_i, y_i) \leq \max(x_i, y_i) \leq b_i,$$

from which we see that any convex combinations of two points in the box produce another point in the box. Hence all boxes in \mathbb{R}^m are convex.