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Problem 1 (1.18). Prove that real numbers correspond bijectively to decimal expansions not terminating in an infinite
strings of nines, as follows. The decimal expansion of x ∈ R is N.x1x2 . . . , where N is the largest integer ⩽ x, x1 is the
largest integer ⩽ 10(x −N), x2 is the largest integer ⩽ 100(x − (N + x1/10)), and so on.

(1) Show that each xk is a digit between 0 and 9.

(2) Show that for each k there is an ℓ ⩾ k such that xℓ ≠ 9.

(3) Conversely, show that for each such expansion N.x1x2 . . . not terminating in an infinite string of nines, the set

{N,N + x1

10
,N + x1

10
+ x2

100
, . . .}

is bounded and its least upper bound is a real number x with decimal expansion N.x1x2 . . . .

(4) Repeat the exercise with a general base in place of 10.

Solution.

(1) We will prove 0 ⩽ xk ⩽ 9 for all k by induction. Let φ(n) be the statement that 0 ⩽ xn ⩽ 9 (alternatively, since
all digits are integers, 0 ⩽ xn < 10) and that

0 ⩽ 10n (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xn

10n
)) < 1.

First let’s check φ(1). Since N is the greatest integer not exceeding x, we have 0 ⩽ x − N < 1. Therefore
0 ⩽ 10(x−N) < 10. It follows that 0 ⩽ x1 ⩽ 9 since x1 is the largest integer not exceeding 10(x−N) by definition.
From this definition of x1 we also have

0 ⩽ 10(x −N) − x1 = 10(x − (N +
x1

10
)) < 1.

Both conditions are met, and φ(1) holds.

Now we assume φ(m) is true. By definition of xm+1 and the induction hypothesis, we have
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1) xm+1 is the largest integer ⩽ 10m+1 (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xm

10m
))

(2) 0 ⩽ 10m (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xm

10m
)) < 1 Ô⇒ 0 ⩽ 10m+1 (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xm

10m
)) < 10
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from which it becomes clear that 0 ⩽ xm+1 ⩽ 9 and

0 ⩽ 10m+1 (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xm

10m
)) − xm+1 = 10m+1 (x − (N +

x1

10
+ ⋅ ⋅ ⋅ + xm

10m
+ xm+1

10m+1
)) < 1.

Therefore φ(m) Ô⇒ φ(m + 1), and we conclude that each xk is a digit between 0 and 9.

(2) Before proving this part, we need to introduce a lemma.

Lemma. The infinite sum
∞
∑
i=1

9

10i
= 9

10
+ 9

102
+ . . . is equal to 1.

Proof of lemma. Suppose
∞
∑
i=1

9

10i
= S. If we multiply each term by 10, we get a new geometric series with infinite

sum 10S. Subtracting these two gives

10S − S = 9S =
∞
∑
i=1

9

10i−1
−
∞
∑
i=1

9

10i

= (9 + 9

10
+ 9

102
+ . . .) − ( 9

10
+ 9

102
+ . . .)

= 9

Hence 9S = 9, S = 1, which finishes the proof.

Back to the question. Suppose, for contradiction, that there exists a k such that xℓ = 9 for all ℓ ⩾ k. Recall
that xk−1 is the largest integer not exceeding 10k−1 (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xk−2

10k−2
)). Observe that, based on the

definition of xℓ, it’s always true that x − (N + x1/10 + ⋅ ⋅ ⋅ + xℓ/10ℓ) is nonnegative. Therefore,

x − (N + x1

10
+ ⋅ ⋅ ⋅ + xk−1

10k−1
+ 9

10k
+ 9

10k+1
+ . . .) ⩾ 0

By the lemma, the inequality above can be re-written as

x − (N + x1

10
+ ⋅ ⋅ ⋅ + xk−1

10k−1
+ 1

10k−1
) = x − (N + x1

10
+ ⋅ ⋅ ⋅ + xk−2

10k−2
+ xk−1 + 1

10k−1
) ⩾ 0

which tells us that xk−1 + 1 is also an integer not exceeding 10k−1 (x − (N + x1

10
+ ⋅ ⋅ ⋅ + xk−2

10k−2
)). Contradiction.

Hence there cannot exist a non-terminating string of 9 at the end of a decimal expansion.

(3) For convenience let us denote this set as S. Clearly S is nonempty, and since N.x1x2 . . . is not terminating in
an infinite string of 9’s, S is bounded above by

N + 9

10
+ 9

102
+ ⋅ ⋅ ⋅ = N +

∞
∑
i=1

9

10i
= N + 1.

It follows that the L.U.B. property applies, and we may denote x = sup(S). From above we see x ⩽ N +1. Again,
since the xk’s are not a string of non-terminating 9’s, x ≠ N + 1. Also note that each xk/10k is nonnegative, so
S is bounded below by N . Therefore the integer part of x must be N .
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Now we start working on x1. Since

x = sup{N,N + x1

10
,N + x1

10
+ x2

100
, . . .} ,

we also have
10(x −N) = sup{x1, x1 +

x2

10
, x1 +

x2

10
+ x3

100
, . . .} .

Just like S, this new set is nonempty and bounded below by x1 and above by x1 + 1. Furthermore, just like
x < N + 1, 10(x −N) < x1 + 1 because x2, x3, . . . is not a string of non-terminating 9’s. Therefore the largest
integer not exceeding 10(x−N) is indeed x1, and we’ve shown that it is also the first digit of x after the decimal
point.

We could have set up an induction to show that the kth digit of x after the decimal point is indeed xk, but

illustrating by example is easier to follow. The L.U.B. of {xk, xk +
xk+1

10
, xk +

xk+1

10
+ xk+2

100
. . .} is greater than

xk and strictly less than xk + 1 as N.x1x2 . . . does not contain a non-terminating string of 9’s.

Hence x = N.x1x2 ⋅ ⋅ ⋅ = sup(S).

(4) The steps are almost identical and, for base n, we simply need to change the lemma to
∞
∑
i=1

n − 1
ni
= n − 1

n
+ n − 1

n2
+ ⋅ ⋅ ⋅ = 1.

Then, the base n decimal expansion of x ∈ R that does not have a never-ending string of (n − 1) is N.n1n2 . . .

where N is the largest integer not exceeding x, n1 the largest integer not exceeding n(x−N), and nk the integer
not exceeding nk (x − (N +∑k−1

i=1
ni

ni )). The corresponding three parts become

(1) each nk is a digit between 0 and n − 1.

(2) for each k there exists an ℓ ⩾ k such that nℓ ≠ n − 1.

(3) for each expansion N.n1n2 . . . not terminating in an infinite string of (n − 1)’s, the set

{N,N + n1

n
,N + n1

n
+ n2

n2
, . . .}

is bounded and its supremum is precisely the real number x with decimal expansion N.n1n2 . . . (in base n).

Problem 2 (1.19). Formulate the definition of the greatest lower bound of a set of real numbers. State a G.L.B.
property of R and show it is equivalent to the L.U.B. property of R.

Solution. Greatest Lower Bound Property:

If S is a nonempty subset of R and is bounded below in R then ∃ a G.L.B. for S

where a G.L.B. is an element x ∈ R such that

(1) x < s for all s ∈ S and
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(2) for all y ∈ R satisfying y < s for all s ∈ S, x ⩾ y.

I am not sure what the question means by asking me to “show [the G.L.B.] property is equivalent to the L.U.B.
property”. Clearly to show that two propositions are equivalent we need to to show L.U.B. Ô⇒ G.L.B. and vice
versa. For the forward direction, one interpretation is to show that if S is nonempty and bounded above then
sup(S) = − inf(−S). Another way is to show that if x = sup(S) then x = inf(T ) for a set T that is nonempty and
bounded below. I will do both here, but please also read the paragraph labeled † below.

(1) For the first interpretation, we have shown the forward direction in class. The box below is a screenshot:

From discussion on Tue, 9/1

For G.L.B. Ô⇒ L.U.B., suppose x = inf(S) and define (−S) = {−s ∣ s ∈ S}. By definition, x ⩽ s for all s ∈ S.
Therefore −x ⩾ −s for all −s ∈ (−S). Therefore −x is an upper bound for (−S). Now let −y also be an upper
bound for (−S), and we have −y ⩾ −x for all −x ∈ (−S). Negating both sides we have y ⩽ x for all x ∈ S. Therefore
y is a lower bound for S. Since x = inf(S) we know y ⩽ x. Therefore −y ⩾ −x and −x is indeed sup(−S).

(2) For the second interpretation, first assume S is a nonempty set bounded below and assume the existence of
the L.U.B. property. Now consider the set T = {t ∈ R ∣ t ⩽ s ∀s ∈ S}. Since S is bounded below, T is
nonempty. Clearly T is also bounded above by any s ∈ S. Therefore the L.U.B. property applies, and there
exists t∗ = sup(T ). It follows that, in addition to each s ∈ S being an upper bound for T , each t ∈ T is also a
lower bound for S. Therefore t∗ is not only the L.U.B. of T but also the greatest among all lower bounds for S,
i.e., t∗ = sup(T ) = inf(S).

Similarly, we may assume T is a nonempty set and assume that the G.L.B. property exists. Then if we consider
the set S = {s ∈ R ∶ s ⩾ t ∀t ∈ T } and apply the G.L.B. property to S, we will reach the similar conclusion that
sup(T ) = inf(S).

† I don’t see much difference between the two approaches. Both start by assuming the existence of L.U.B. property
(or G.L.B.) of R and show that the G.L.B. property (or L.U.B.) applies to some subset of R. If you believe the second
one doesn’t make much sense, please just ignore it.
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Problem 3 (1.20). Prove that limits are unique, i.e., if (an) is a sequence of real numbers that converges to a real
number b and also converges to a real number b′, then b = b′.

Solution. Suppose, by contradiction, that (an) converges to both b and b′ with b ≠ b′. Then we may set ϵ = ∣b − b′∣.
Since the sequence converges to b, there exists N ∈ Z+ such that k ⩾ N Ô⇒ ∣ak − b∣ < ϵ/2. Likewise, since the sequence
also converges to b′, there exists another N ′ ∈ Z+ such that k ⩾ N ′ Ô⇒ ∣ak−b′∣ < ϵ/2. Now if we set N∗ =max(N,N ′),
then if k ⩾ N∗ we have

∣b − b′∣ ⩽ ∣b − ak ∣ + ∣ak − b′∣ <
ϵ

2
+ ϵ

2
= ϵ,

contradicting the assumption ∣b − b′∣ = ϵ. Therefore (an) can’t converge to two distinct limits, i.e., limits are unique.

Problem 4 (1.27). Prove that the interval [a, b] ∈ R is the same as the segment [a, b] ∈ R1. That is,

{x ∈ R ∶ a ⩽ x ⩽ b}

={y ∈ R ∶ ∃s, t ∈ [0,1] with s + t = 1 and y = sa + tb}.

Solution. For convenience, let us denote the first set (interval) by A and the second (segment) by B. To show A = B
we need to show that A and B are mutually inclusive. Showing B ⊂ A is relatively easier: for all s, t such that s+ t = 1,
we have

a = sa + ta < sa + tb < sb + tb = b Ô⇒ sa + tb ∈ [a, b].

For the converse, the metacognition here is that we want to create a linear function (we haven’t defined it, but
you know what I mean) that satisfies f(a) = 0, f(b) = 1, and (f(x) − f(y))/(x − y) remains as a constant. Therefore
we can consider the following:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s = b − x
b − a

t = x − a
b − a

Ô⇒ s + t = 1 and f(x) = sa + tb = b − x
b − a

a + x − a
b − a

b = x.

This shows that for any x ∈ [a, b], we are able to come up with s, t such that s + t = 1 and x = sa + tb. Hence A ⊂ B
and, together with B ⊂ A, we conclude that A = B.

Problem 5 (1.28). A convex combination of w1, . . . ,wk ∈ Rm is a vector sum

w = s1w1 + ⋅ ⋅ ⋅ + skwk

such that s1 + ⋅ ⋅ ⋅ + sk = 1 and 0 ⩽ s1, . . . , sk ⩽ 1.

(1) Prove that if a set E is convex the E contains the convex combination of any finite number of points in E.

(2) Why is the converse obvious?
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Solution.

(1) We will prove by induction. Let E be a convex set, and let φ(n) be the statement that

E contains all convex combinations of n points in E.

Clearly φ(1) is trivial, and φ(2) is also trivial since E is convex. We may proceed to the inductive step now.

Now we assume φ(k) is true, and we try to show φ(k) Ô⇒ φ(k + 1). Suppose we have w1, . . . ,wk,wk+1 ∈ Rm,
and we want to show that λ1w1 + ⋅ ⋅ ⋅ + λk+1wk+1 ∈ E as long as ∑ λ = 1. Note that currently the sum of
all coefficients excluding λk+1 is 1 − λk+1. If we focus on the first k terms and let si = λi/(1 − λk+1), then
∑k

i=1 si = (1 − λk+1)/(1 − λk+1) = 1. Therefore, by the induction hypothesis, the convex combinations of the first
k vectors is also in E, i.e.,

w = λ1

1 − λk+1
w1 +

λ2

1 − λk+1
w2 + ⋅ ⋅ ⋅ +

λk

1 − λk+1
wk =

k

∑
i=1

λiwi

1 − λk+1
∈ E.

Then, our arbitrary convex combination λ1w1 + λ2w2 + ⋅ ⋅ ⋅ + λk+1wk+1 becomes

(λ1w1 + λ2w2 + ⋅ ⋅ ⋅ + λkwk) + λk+1wk+1 = (1 − λk+1)w + λk+1wk+1,

a convex combination of merely two vectors in E. Since E is convex, this combination is also in E. Hence
φ(k + 1) holds, and we are done with the proof. ◻

(2) Because the converse doesn’t require φ(n) to be true for all n ∈ N: φ(2) alone is already sufficient to show that
E is convex.

Problem 6 (1.29 (a)). Prove that the ellipsoid

E = {(x, y, z) ∈ R3 ∣ x
2

a2
+ y2

b2
+ z2

c2
⩽ 1}

is convex. [Hint: E is the unit ball for a different dot product.]

Solution. First I will provide two ways to define an inner product. (Why not when we can have a bit of fun?)

(1) We can rewrite the equation of an ellipsoid in matrix form:

x2

a2
+ y2

b2
+ z2

c2
= [x y z]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/a2 0 0

0 1/b2 0

0 0 1/c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= xTQx ⩽ 1.

To see ⟨v,w⟩ = vTQw is an inner product, we verify its symmetry, linearity, and positive definiteness:

(I) Symmetry: ⟨v,w⟩ = vTQw = (vTQw)T =wTQT (vT )T =wTQv = ⟨w,v⟩.

(II) Linearity: ⟨cv,w⟩ = (cv)TQw = c(vTQw) = c ⟨v,w⟩ and
⟨v + v′,w⟩ = (v + v′)TQw = vTQw + (v′)TQw = ⟨v,w⟩ + ⟨v′,w⟩.
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(III) Positive definiteness: ⟨v,v⟩ = vTQv is positive definite because the eigenvalues of Q are 1/a2,1/b2, and
1/c2, all of which are positive.

(2) Alternatively, given x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,we can consider the map ⟨x,y⟩→ R defined by

⟨x,y⟩ = x1y1
a2
+ x2y2

b2
+ x3y3

c2
.

Again, to see whether this is an inner product, we must check its symmetry, linearity, and positive definiteness:

(I) Symmetry: ⟨x,y⟩ = x1y1
a2
+ x2y2

b2
+ x3y3

c2
= y1x1

a2
+ y2x2

b2
+ y3x3

c2
= ⟨y,x⟩.

(II) Linearity: ⟨cx,y⟩ = cx1y1
a2

+ cx2y2
b2
+ cx3y3

c2
= c(x1y1

a2
+ x2y2

b2
+ x3y3

c2
) = c ⟨x,y⟩ and

⟨x + z,y⟩ = (x1 + z1)y1
a2

+ (x2 + z2)y2
b2

+ (x3 + z3)y3
c2

= x1y1 + z1y1
a2

+ x2y2 + z2y2
b2

+ x3y3 + z3y3
c2

= ⟨x,y⟩+⟨z,y⟩ .

(III) Positive definiteness: ⟨x,x⟩ = x2
1

a2
+x

2
2

b2
+x

2
3

c2
⩾ 0 since the numerators are all nonnegative and the denominators

are all positive.

In either case, the ellipsoid E is the unit ball with norm ⩽ 1. To show it’s convex, suppose v,w ∈ E. It follows that
0 < ∥v∥, ∥w∥ ⩽ 1. We want to show that λv + (1 − λ)w ∈ E for all λ ∈ [0,1], i.e., its norm ⩽ 1. Since

⟨λv + (1 − λ)w, λv + (1 − λ)w⟩ = λ2 ⟨v,v⟩ + 2λ(1 − λ) ⟨v,w⟩ + (1 − λ)2 ⟨w,w⟩ (applying linearity)

= λ2∥v∥ + (1 − λ)2∥w∥ + 2λ(1 − λ) ⟨v,w⟩ (definition of norm)

⩽ λ2∥v∥ + (1 − λ)2∥w∥ + 2λ(1 − λ)∥v∥∥w∥ (Cauchy-Schwarz inequality)

⩽ λ2 + (1 − λ)2 + 2λ(1 − λ) (∥v∥, ∥w∥ ⩽ 1 )

= 1

we conclude that the ellipsoid is indeed convex. ◻

Problem 7 (1.29 (b)). Prove that all boxes in Rm are convex.

Solution. All boxes in Rm have the form
[a1, b1] × ⋅ ⋅ ⋅ × [am, bm]

Suppose x,y ∈ [a1, b1] × ⋅ ⋅ ⋅ × [am, bm], then ai ⩽ xi, yi ⩽ bi. It follows that if 0 ⩽ λ ⩽ 1, then

ai ⩽min(xi, yi) ⩽ λmin(xi, yi) + (1 − λ)max(xi, yi) ⩽max(xi, yi) ⩽ bi,

from which we see that any convex combinations of two points in the box produce another point in the box. Hence
all boxes in Rm are convex.
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