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September 5, 2020

Problem 1 (1.18). Prove that real numbers correspond bijectively to decimal expansions not terminating in an infinite
strings of nines, as follows. The decimal expansion of z € R is N.x1x5 ..., where N is the largest integer < x, 7 is the

largest integer < 10(x — N), x5 is the largest integer < 100(x — (N + x1/10)), and so on.
(1) Show that each xj is a digit between 0 and 9.
(2) Show that for each k there is an ¢ > k such that xp # 9.
(3) Conversely, show that for each such expansion N.zjz5 ... not terminating in an infinite string of nines, the set

{N,N+JE—1 N2

10’ 10 ﬁ"”}

is bounded and its least upper bound is a real number = with decimal expansion N.z1zs....
(4) Repeat the exercise with a general base in place of 10.
Solution.

(1) We will prove 0 < 2 <9 for all k£ by induction. Let ¢(n) be the statement that 0 < z, <9 (alternatively, since
all digits are integers, 0 < x,, < 10) and that

0<10"(x—(N+ﬁ+~--+x—"))<1.
10 107

First let’s check ¢(1). Since N is the greatest integer not exceeding x, we have 0 < x — N < 1. Therefore
0<10(z—N) < 10. Tt follows that 0 < z1 <9 since x; is the largest integer not exceeding 10(x — N) by definition.

From this definition of x; we also have

OSlO(m—N)—xl:10(x—(N+31%))<1.

Both conditions are met, and (1) holds.

Now we assume p(m) is true. By definition of z,,,1 and the induction hypothesis, we have

. . I Tm
1) @ is the largest integer < 10" (o (V4 24 )
(1) @yp41 is the largest integer x 10 Tom

(2)Oslom(x—(N+ﬂ+...+xi))<1 — 0<10m+1(z—(N+ﬂ+-..+ Lm ))<10
10 10m 10 10m
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from which it becomes clear that 0 < 2,,41 <9 and

0g10m+1(x—(]\/v+ﬁ+"'+ Im ))_xm+1:10m+l(x_(N+ﬂ+. T + Tm+1 ))<1.
10 107 10 10m - 10m+t

Therefore p(m) = p(m+1), and we conclude that each xj, is a digit between 0 and 9.

Before proving this part, we need to introduce a lemma.

9 9
Lemma. The infinite sum Z =—+—+... isequal to 1.
106 10 102
Proof of lemma. Suppose Z T = S. If we multiply each term by 10, we get a new geometric series with infinite
i=1

sum 10S. Subtracting these two gives

oo

oo 9
105 -5=95 = —
Z 101 1 ; 10¢

( 9 9 ) (9 9 )
9+ —+ — +. “|=+—=+...
10 102 10 102

9

Hence 95 =9,S5 = 1, which finishes the proof. O

Back to the question. Suppose, for contradiction, that there exists a k such that x, = 9 for all £ > k. Recall

that zp_; is the largest integer not exceeding 1051 (x - (N + 91% et i)kkf_z )) Observe that, based on the

definition of xy, it’s always true that x — (N +x1/10+--- + a:g/loe) is nonnegative. Therefore,

xr1 Tk-1 9 9 )
_ N+7+...+ + — 4 + ... ?0
( 10 10k-1 10k~ 10k+1

By the lemma, the inequality above can be re-written as

T Tp_1 1 ) ( 1 Tp_o Tp_1+ 1)
-IN+—=+--+ + =x—-|N+—+---+ +——]20
v ( 10 101 101 ) T 10 1072 10kt

which tells us that 2j_; + 1 is also an integer not exceeding 10%7! (m - (N + % et 11:0]67_—22

Hence there cannot exist a non-terminating string of 9 at the end of a decimal expansion.

)) Contradiction.

For convenience let us denote this set as S. Clearly S is nonempty, and since N.zjzs ... is not terminating in

an infinite string of 9’s, S is bounded above by

N+ 2+i+...:N+Z 9.
10 102 100

It follows that the L.U.B. property applies, and we may denote x = sup(S). From above we see x < N +1. Again,
since the x’s are not a string of non-terminating 9’s, x # N + 1. Also note that each ar:k/lO’~C is nonnegative, so

S is bounded below by . Therefore the integer part of  must be N.
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Now we start working on x;. Since

9::sup{]\7,]\7+E,N+E+£,...}7
10 10 100

we also have

To T2 I3
10(x-=N) =s — — + —, ... 7.
(z ) bup{xl,x1+10,x1+10+100, }

Just like S, this new set is nonempty and bounded below by x; and above by z; + 1. Furthermore, just like
x < N+1,10(z - N) < 21 + 1 because x9,x3,... is not a string of non-terminating 9’s. Therefore the largest
integer not exceeding 10(x — N) is indeed z1, and we’ve shown that it is also the first digit of « after the decimal

point.

We could have set up an induction to show that the k" digit of z after the decimal point is indeed zj, but

Th+1 Th+1 Tk+2
, T + + .
10 10 100

x) and strictly less than zp + 1 as N.zixso ... does not contain a non-terminating string of 9’s.

illustrating by example is easier to follow. The L.U.B. of {zk,xk + } is greater than

Hence z = N.zjxa--- =sup(S).

(4) The steps are almost identical and, for base n, we simply need to change the lemma to

n-1 n-1 n-1
= + +.o=1.

L

o o n n?

Then, the base n decimal expansion of z € R that does not have a never-ending string of (n—1) is N.nins...

where N is the largest integer not exceeding x, n; the largest integer not exceeding n(x - N), and ny the integer

k-1 n;

not exceeding n* (x - (N + i1 o )) The corresponding three parts become

(1) each ny is a digit between 0 and n — 1.
(2) for each k there exists an £ > k such that ny #n - 1.

(3) for each expansion N.njng... not terminating in an infinite string of (n —1)’s, the set

ni ny N2
{N,N+—,N+—+—,...}
n n  n?

is bounded and its supremum is precisely the real number x with decimal expansion N.njng... (in base n).

Problem 2 (1.19). Formulate the definition of the greatest lower bound of a set of real numbers. State a G.L.B.
property of R and show it is equivalent to the L.U.B. property of R.

Solution. Greatest Lower Bound Property:

’ If § is a nonempty subset of R and is bounded below in R then 3 a G.L.B. for S‘

where a G.L.B. is an element x € R such that

(1) x < s forall seS and
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(2) for all y € R satisfying y < s for all s€ S, z > y.

I am not sure what the question means by asking me to “show [the G.L.B.] property is equivalent to the L.U.B.

property”. Clearly to show that two propositions are equivalent we need to to show L.U.B. == G.L.B. and vice

versa.

For the forward direction, one interpretation is to show that if & is nonempty and bounded above then

sup(S) = —inf(-S). Another way is to show that if = sup(S) then x = inf(7) for a set T that is nonempty and

bounded below. I will do both here, but please also read the paragraph labeled 1 below.

(1)

For the first interpretation, we have shown the forward direction in class. The box below is a screenshot:

Since S is nonempty and bounded from below, we know (—&) is nonempty and bounded from above. Therefore

(=8) has a L.U.B. Suppose sup(-S) = b. Claim: -b = inf(S).

First show that —b is a lower bound. Since b 2 —s,Vs € &, we know —-b € 5,Vs € §. Therefore —b is a lower

bound for S.

Now we show that it’s the greatest among all lower bounds. Let —b' be another lower bound. By the same
argument o’ is also an upper bound for (=8). Since —b = sup(8), it follows that b < ', and —=b > -b". Therefore
-b is indeed inf(S).

From discussion on Tue, 9/1

For GL.B. = L.U.B,, suppose z = inf(S) and define (-S) = {-s | s € S}. By definition, x < s for all s € S.
Therefore —z > —s for all —s € (-S). Therefore —x is an upper bound for (-S). Now let —y also be an upper
bound for (-§), and we have —y > —x for all -z € (-S). Negating both sides we have y < x for all z € S. Therefore

y is a lower bound for S. Since z = inf(S) we know y < x. Therefore —y > —z and —z is indeed sup(-S).

For the second interpretation, first assume S is a nonempty set bounded below and assume the existence of
the L.U.B. property. Now consider the set 7 = {t €e R |t < s Vs € S}. Since § is bounded below, T is
nonempty. Clearly 7 is also bounded above by any s € S§. Therefore the L.U.B. property applies, and there
exists t* = sup(7T). It follows that, in addition to each s € S being an upper bound for T, each t € T is also a
lower bound for §. Therefore ¢* is not only the L.U.B. of 7 but also the greatest among all lower bounds for S,
ie., t* =sup(7) =inf(S).

Similarly, we may assume 7T is a nonempty set and assume that the G.L.B. property exists. Then if we consider
the set S ={seR:s>tVteT} and apply the G.L.B. property to S, we will reach the similar conclusion that
sup(7) = inf(S).

t I don’t see much difference between the two approaches. Both start by assuming the existence of L.U.B. property

(or G.L.B.) of R and show that the G.L.B. property (or L.U.B.) applies to some subset of R. If you believe the second

one doesn’t make much sense, please just ignore it.
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Problem 3 (1.20). Prove that limits are unique, i.e., if (a,) is a sequence of real numbers that converges to a real

number b and also converges to a real number &', then b=10'".

Solution. Suppose, by contradiction, that (a,) converges to both b and b" with b # b'. Then we may set € = |b - b'|.
Since the sequence converges to b, there exists N € Z* such that k > N = |a;, —b| < ¢/2. Likewise, since the sequence
also converges to o', there exists another N’ € Z* such that k > N' = |a; - b'| < ¢/2. Now if we set N* = max(N, N'),
then if k> N* we have

b-b| < |b-ak|+ax -] < = + < =¢,
| | <|b—ak| +|ak \ 979 €

contradicting the assumption |b - b| = €. Therefore (a,) can’t converge to two distinct limits, i.e., limits are unique.

Problem 4 (1.27). Prove that the interval [a,b] € R is the same as the segment [a,b] € R!. That is,

{reR:a<z<b}

={yeR:3s,t€[0,1] with s+t =1 and y = sa + tb}.

Solution. For convenience, let us denote the first set (interval) by A and the second (segment) by B. To show A = B
we need to show that A and B are mutually inclusive. Showing B c A is relatively easier: for all s,¢ such that s+¢ =1,
we have

a=sa+ta<sa+thb<sb+thb=b = sa+tbe[a,b].

For the converse, the metacognition here is that we want to create a linear function (we haven’t defined it, but
you know what I mean) that satisfies f(a) =0, f(b) =1, and (f(z) - f(y))/(x - y) remains as a constant. Therefore

we can consider the following:

b-=x
Thoa b-z x-a
= s+t=1and f(z)=sa+th= ——a+ b=uz.
T—a b-a -a
t:
b-a

This shows that for any z € [a,b], we are able to come up with s,¢ such that s +¢ =1 and = = sa + th. Hence A c B

and, together with B c A, we conclude that A = B.

Problem 5 (1.28). A convex combination of wy,...,w; € R™ is a vector sum
W= S1Wy + -+ SpW
such that s+ +sp=1and 0<sq1,...,8, < 1.
(1) Prove that if a set E is convex the E contains the convex combination of any finite number of points in E.

(2) Why is the converse obvious?
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Solution.

(1)

We will prove by induction. Let E be a convex set, and let ¢(n) be the statement that

’ FE contains all convex combinations of n points in E.

Clearly (1) is trivial, and ¢(2) is also trivial since F is convex. We may proceed to the inductive step now.

Now we assume (k) is true, and we try to show (k) = ¢(k+1). Suppose we have wy, ..., ws, wrs1 € R™,
and we want to show that Ajw;i + -+ + Agr1wg+1 € E as long as > A = 1. Note that currently the sum of
all coefficients excluding Agy1 is 1 — A\gr1. If we focus on the first & terms and let s; = \;/(1 — A\gt1), then
YF 185 = (1= Aie1)/(1 = Agsr) = 1. Therefore, by the induction hypothesis, the convex combinations of the first
k vectors is also in F, i.e.,

A1 N A2 N Ak
W = w w e [ —
1- )\k+1 ! 1- )\k+l 2

Then, our arbitrary convex combination A\jw; + Asws + -+ + Ay Wg+1 becomes
(Aqwr + Aowa + -+ + Agwg) + A1 Wit = (1 = Aps1 )W + Mg Wrat,

a convex combination of merely two vectors in F. Since F is convex, this combination is also in E. Hence

@(k +1) holds, and we are done with the proof. ]

Because the converse doesn’t require ¢(n) to be true for all n € N: ¢(2) alone is already sufficient to show that

FE' is convex.

Problem 6 (1.29 (a)). Prove that the ellipsoid

2,2 L2
_ 3 Y z
E—{(x,y,z)eR |a2 TEta <1}

is convex. [Hint: E is the unit ball for a different dot product.]

Solution. First I will provide two ways to define an inner product. (Why not when we can have a bit of fun?)

(1)

We can rewrite the equation of an ellipsoid in matrix form:

1/a*> 0 0 (|
1,2 y2 22

T
?+b—2+c—2:[a; y z] 0 1/* 0 ||y]=x @x<1.
0 0 1/2||=
To see (v,w) = vI' Qw is an inner product, we verify its symmetry, linearity, and positive definiteness:
(I) Symmetry: (v,w)=vIQw = (vIQw)T =wT QT (v)T =wTQv = (w, V).

(IT) Linearity: {cv,w) = (cv)TQw = c(vIQw) = ¢ (v, w) and

(v+v ,w)=(v+Vv)TQw=vIQw+ (v))TQw = (v,w) + (v/,w).
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(ITI) Positive definiteness: (v,v) = vI'Qv is positive definite because the eigenvalues of Q are 1/a?,1/b%, and

1/c%, all of which are positive.
T Y1
(2) Alternatively, given x = [ x5 | and y = | y, |[,we can consider the map (x,y) - R defined by
L3 Y3

T1Y1  T2Y2 = T3Y3

c2

Again, to see whether this is an inner product, we must check its symmetry, linearity, and positive definiteness:

(I) Symmetry: (x,y) = :E;gl + 3312)32 + migg = y;zl + beZZ + y?;fzs =(y,x).
(IT) Linearity: {(cx,y) = ca;zyl cacng;yg ch;;ng = (x;gl + 1‘12732 + ngg) =c(x,y) and
(x+2,y) = (71 ‘;jl)yl + (w2 2222)112 . (w3 +C2Z3)y3 _ 33191;221?/1 + $2y2b+2 22Y2 " 3031/3; Z3Y3 _ (x,y)+{z,y).
(III) Positive definiteness: (x,x) = z—§+z—§+i—§ > 0 since the numerators are all nonnegative and the denominators

are all positive.

In either case, the ellipsoid E is the unit ball with norm < 1. To show it’s convex, suppose v,w € E. It follows that

0 < |v|,||lw| < 1. We want to show that Av+ (1-X)w € F for all A €[0,1], i.e., its norm < 1. Since

AV + (1 =)W, v+ (1= N)w) = A2 (v, v) + 2X(1 = \) (v, w) + (1 = \)* (w, w) (applying linearity)
= Mv] + (1= X)?|w| +2A(1 = \) (v, w) (definition of norm)
SO v] + (1 =22 w| +2X(1 = N)|v][|w]| (Cauchy-Schwarz inequality)
<A+ (1-2)?+2M0(1-2) (vl [wl < 1)
=1
we conclude that the ellipsoid is indeed convex. O

Problem 7 (1.29 (b)). Prove that all boxes in R™ are convex.

Solution. All boxes in R™ have the form
[alv bl] Xoeee X [am; bm]

Suppose X,y € [a1,b1] x -+ X [@m,bm ], then a; < x;,y; < b;. It follows that if 0 < A <1, then
a; <min(z;, y;) < Amin(z;, y;) + (1 = A) max(x;,y;) < max(z;, y;) < by,

from which we see that any convex combinations of two points in the box produce another point in the box. Hence

all boxes in R™ are convex.



