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Problem 1. Let A and B be sets, and suppose that we have maps f: A— B and ¢g: B — A.

(1)
(2)
3)
(4)

If g o f is injective, is f necessarily injective? What about g7
If g o f is surjective, is f necessarily surjective? What about g7
If f is injective and g surjective, is g o f necessarily injective? Surjective?

If f is injective and ¢ injective, is g o f necessarily injective?

Solution.

(1)

Suppose f is not injective, then there exist a;,as € A with f(a1) = f(az2). It follows that g(f(a1)) = g(f(az2))

which implies g o f is not injective. Therefore f is necessarily injective.

However, g is not necessarily injective: the thinking here is that maybe g(b1) = g(b2) for some by, bs € B, but

one of the two elements does not get mapped by f. Then we are safe. Example:

:{0,1 0,1,2 0)=0 A 0))=0
f‘{7}—>{v7} with f()_ and g(]_):l Then g(f( ))_
9:{0,1,2} > {0,1} f)=1 g(f(1)) =1

9(2) =1

Suppose ¢ is not surjective, then there exists some a* € A such that no b € B satisfy g(b) = a*. Therefore there
exists no a € A satisfying g(f(a)) = a*, which means g o f is not surjective. Hence g must be surjective.
However, f need not be surjective: the thinking here is that maybe some elements of B don’t get mapped to
by f, but if |B| > |A] it’s still possible that each element of B gets mapper to by g. The same example above
applies to this part as well.

Neither is necessarily true. Consider the following:

10,1 0,1,2 0)=1 5(0)=0 0)) =1
f:{0,1} - {0,1,2} with f(0) = and Lg(1)=1 Then 9(f(0)) =
9:{0,1,2} - {0,1} f(1)=2 g(f(1)) =1

g(2) =1

f is injective, g surjective, but g o f neither injective nor surjective.
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(4) YES. By the contrapositive of injectivity of g, if g(f(a1)) # g(f(a2)) then f(ai) # f(az). Then by the

injectivity of f, the result becomes a; # as. Hence g(f(a1)) # g(f(a2)) = a1 # as, so go f is injective.

Before moving forward, I'd like to list all the lemmas that would be helpful for this problem set. Most of them

come directly from Pugh’s book.

Lemma 1. Each infinite set S contains a denumerable subset. (Pugh 1.12)
Lemma 2. The denumerable union of denumerable sets is denumerable. (Pugh 1.18)
Lemma 3. For m e N, Q™ and N are denumerable. (Pugh 1.15, 1.20)

Lemma 4. For m e N, Z™ is denumerable.

Proof. Immediate from lemma 3 and the fact that Z ~ N~ Q. O

Lemma 5. If S is countably infinite, 7 is finite, and they are disjoint (for convenience), then S ~SuT.

Proof. Since S is countably finite, there exists bijection f: N - S. Also, since T is finite, there exists bijection
g:{1,2,...,|T|} = T. Then the function h: N> SuT defined by

k), for k < [T
hk) = g(k), for k <[T]

f(k+]|T)), for k>|T|

is a bijection from N onto Su7. Hence S ~N~SuT. O

Lemma 6. If disjoint S,7 are both countably infinite, then so is Su T.

Proof. Since §,7T are both countably infinite, there exist bijections f: N - S and g : N —» 7. If we define
h:N—>SuT by
T+l :
=) if x is odd
ey 175D
g(5) if x is even

then the h is bijective with image {f(1),9(1), f(2),9(2),...} ={f(1), f(2),...}u{g(1),9(2),...} =SuT. O

Remark. This lemma can be generalized to the union of countable union of countably infinite sets. If it’s a

finite union then induction applies. If it’s a countably infinite union then it’s equivalent to a subset of N x N.

Lemma 7. If Ac B with A countably infinite and B uncountable, then B \ A is still uncountable.

Proof. The contrapositive is obvious: suppose B \ A is countably infinite, then by lemma 6 we have

(B~ A)u A = B is countably infinite. O
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Remark. A stronger statement for lemma 7: |A] = |A\ B|.

Problem 2. Let A be any infinite set and B be any countable set. Prove that A~ Au B.

Solution. Since the question did not explicitly state that A and B are disjoint, it’s possible that they are not. We
can address this issue by defining B’ = BN A. Then A and B’ are disjoint and their union Au B’ = Au B. Therefore
to show A ~ Au B it suffices to show A~ Au B’

(1) If B is denumerable, then by lemma 1 we may find and construct S c A, also a denumerable set. Then by
lemma 6, S U B’ is also denumerable. Therefore there exists a bijection f: Su B’ - S. If we extend the
domain of f by A\S (to make Au B’ the new domain) and define f(z) = x for all z € A\ S, then we have
constructed a bijection from Au B’ onto A. Hence AuB’' = AuB ~ A.

(2) The proof when B is finite is analogous. Again we can find denumerable S ¢ A and construct a bijection

g:SuU B’ - S by lemma 5.After extending the domain we again have Au B’ ~ Au B ~ A.

Problem 3 (1.38). Let S be a set and let P = P(S) be the collection of all subsets of S. [P(S) is called the power
set of S.] Let F be the set of functions f: S — {0,1}.

(1) Prove that there is a natural bijection from F onto P by
fr{seS:f(s)=1}.
(2) (Extra credit) prove that the cardinality of P is greater than that of S, even when S is empty or finite.

Solution.

(1) Tt’s easy to see that the set of all f’s constitute F. On the other hand, the set of all sets of form {s € S: f(s) =1}
constitute P(S) because the P(S) is the collection of all subsets of S. We can think of the value of fi(s) as
a criterion on whether to “pick” or not “pick” that s as an element of a specific subset corresponding to that

function f;.
To show the mapping is bijective, we need to show it’s both injective and surjective.

For injectivity, we look at the contrapositive. Suppose &; ¢ S is the image of both f; and f5. It follows that
both functions map all elements of S; to 1 and, since the image is {0, 1}, they both map all elements of S\ S;
to 0. Since f1, fo have the same domain (F) and codomain (P(S)) and f1(s) = fa(s) for all s € S, it follows
that f; = fo. Hence the mapping is injective.

Now, for surjectivity, consider any Sy ¢ S. We can always define a function f*:8 — {0,1} as

" 1if8€82
f7(s) =

0 otherwise
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It becomes clear that, based on its domain and codomain, f* € F. Equally clear is that, under our mapping of

interest, f* gets mapped to S. Hence this mapping is both injective and bijective and is therefore bijective.
Suppose S and P(S) have equal cardinality, then there must exist a bijection between the sets. Of course a
bijection is also a surjection. We will show that there is no surjective function from S onto P(S).
Suppose, by contradiction, that there exists a surjection f: S — P(S). Consider the set X = {seS:s¢ f(s)}.
Clearly this is a subset of S, so it is an element of P(S). By assumption on surjectivity, there exists y € S
satisfying f(y) = X. Where can y be?

(1) If y € X, then by the definition of X we have y ¢ f(y) = X. Contradiction.

(2) If y ¢ X, then by the definition of X we have f(y) € X. Another contradiction.

Therefore there is no place for y, i.e., X € P(S) does not have a pre-image. Hence f cannot be surjective, and

the cardinality of P(S) is greater than that of S. ]

Problem 4 (1.39). A real number is algebraic if it is a root of a nonconstant polynomial with integer coefficients.

(1)
(2)

3)
(4)

Prove that the set A of algebraic numbers is denumerable.

Repeat the exercise for roots of polynomials whose coefficients belong to some fixed, arbitrary denumerable

set S cR.
Repeat the exercise for roots of trigonometric polynomials with integer coefficients.

Real numbers that are not algebraic are said to be transcendental. Trying to find transcendental numbers

is said to be like looking for hay in a haystack. Why?

Solution.

(1)

First we look at the cardinality of sets of polynomials of different degrees. Let A, denote the set of all

polynomials of degree < n with integer coefficients. A; is countable in the sense that
Ay~ (ZN{0}) xZ~Z? ~N* ~ N

because all degree 1 polynomials with integer coefficients have the form ax + b where a € Z ~ {0} and b € Z.

The rest of the equivalence chain simply uses lemma 4 and the fact that Z ~ N.

For As, observe that
Ay~ (ZN{0}) x 22 ~ 2P ~N* ~ N

because all quadratic polynomials have the form az? + bx + ¢ where a € Z \ {0} and b,c € Z.
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It follows that, for a degree n polynomial with integer coefficients, the only restriction is that the coefficient

corresponding to the degree n term needs to be nonzero. Hence
Ap ~ (Z~{0}) x Z™ ~ Z™ ~ N"*1 © N,

Therefore A,, is countable for all n € N. In other words, the set of roots of polynomials of degree n with
integer coefficients is countable. Clearly we can list these sets in the pattern Ay, Ao, ..., and this shows that
the set {41, Ay,...} is also countably infinite. By lemma 2, their union, the set A of roots of all nonconstant

polynomials with integer coefficients, is also countably infinite / denumerable.
Highly analogous to the previous part. The bulk of the proof relies on the chain A,, ~ S™*! ~ N™*1 v N.
!

By lemma 8, removing all algebraic numbers from the real, we still have an uncountable set R \ A: the set
of transcendental numbers. Sine the set of transcendental numbers is uncountable and the set A of algebraic

numbers is countable, we know that there are “much more” transcendental numbers than algebraic numbers.

Problem 5 (1.40). A finite word is a finite string of letters, say from the Roman alphabet.

(6)

What is the cardinality of the set of all finite words, and thus of the set of all possible poems and mathematical

proofs?
What if the alphabet had only two letters?
What if it had countably many letters?

Prove that the cardinality of the set ., of all infinite words formed using a finite alphabet of n letters, n > 2,

is equal to the cardinality of R.

Give a solution to Ex. 37 by justifying the equivalence chain

R2:RXR~22X22~24~R.

How many decimal expansions terminate in an infinite string of 9’s? How many don’t?

Solution. First note that, since finite words have finite length, there exists n € N such that all finite words have

lengths < n. (Set of lengths is nonempty and bounded above and hence has a L.U.B.)

(0)

This is what I was originally thinking about. I will call this part (0) because my actual solution
for part (1) is below. Similar to the previous proof on the cardinality of the set of algebraic numbers, here
we let W,, denote the cardinality of the set of words with lengths n. Then the set of one-letter words contains

26 elements, i.e., [IW1] = 26. The set of two-letter words contains 262 elements, i.e., [Ws| = 262. The set of
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k-letter words contains 26* words, i.e., W] = 26%. Since we are talking about finite words, we can find n e N
such that n is an upper bound for all word lengths. It follows that any string of letters with length < n can

be a finite word. Hence the cardinality of the set W of all finite words is defined by

n 26n+1 -1
W= |W;|=1+26++26" = ——.
i=1 25
If poems and mathematical proofs are believed to be finitely long, then there exists m € N such that all poems
and mathematical proofs have word counts < m. Then the set S of all poems and mathematical proofs is a

proper subset of the set of all “literature” with word counts < m (since not all combinations of words generate

poems or mathematical proofs). This set is finite with cardinality |[W|™, and so |S| < [W|™.

Suppose poems and proofs need not to have finite length. Then this question becomes analogous to the fourth

part. See Y,, below.

Note that there exists a bijection from N onto the set of all words created from Roman letters. Consider the

following list of words / strings of letters
0(a word of zero length), a,b,...,z,aa,ab,...,az,ba,...,zz,a¢a,aab, ..., zzz,aaab, . ..

In this list, we first list all “words” that consists simply of one letter in lexicographical order, then all “words”
consisting of two letters in lexicographical order, and so on. It becomes clear that each “word” appears

precisely once. Then we can define f(n) to be the n'" term that appears on this list.

For poems and mathematical proofs, I assume that there is a certain word limit — a proof or poem can be
thousands of pages long like Paradise Lost, but it cannot be infinitely long. Furthermore, there must exist
some n € N such that all proofs and poems have < n words. Then the cardinality of the set of all poems and

proofs is [N™| since we can treat each proof or poem as an m-tuple of “words”. This in turn equals |N| = Rg.

If the alphabet had only two letters then the answers remain the same since the list
0,0,1,00,01,10,11,000,001,...,111,0000,...

is also in bijection with N.

Let A,, denote the set of all words with lengths n constructed from an alphabet with countably infinite letters.
Clearly A; ~N. It’s also clear that Ay ~ A; x A1 ~ N x N~ N. Now assume Aj, is denumerable, then Ag,q is
also denumerable in the sense that Ap,1 = Ax x A1 ~ N x N ~ N x N, since every word of length k + 1 can be
constructed by appending one letter at the end of a word with length k. Hence the set of all words with finite

length is a denumerable union of denumerable sets A;, and this is indeed denumerable by lemma 2.

Showing equal cardinality requires a bijection or injections in both directions. Below is one proof, but first
note that the set {1,2,...,n} is equivalent to the finite alphabet with n letters. From now on we will abstract

the alphabet and let each number between 1 and n denote one letter in such alphabet. Then, each infinitely
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()

long word becomes an infinitely long string with each digit between 1 and n, inclusive. Denote the set of all

these strings by S.

Proof. i All such strings either belong to S,_1, the set of strings with an infinite string of (n —1)’s at
the end, or §*, the set of strings without such string of (n—1) at the end. (Think of this analogously as
an infinite string of 9’s in base 10.) Hence $* U S,,-1 =S. From the first question of HW3 we know that
there exists a bijection f:S8* - R.
To see that S,,_1 is countable, if we omit the (n —1)’s at the end, we get a string of finite length. Then
this set is the same as the set of all words of finite length. By part a), S,—1 ~ N and is denumerable.
Pick another denumerable set D that is disjoint from R (we’ll see why soon), then there exists a bijection
g:Sp_1—>D.
Now consider the function h:S* U S,,_1 > RuD defined by

flz)ifzeS”

h(x) = (note that R and D need to be disjoint to guarantee the bijectivity of h)
g(x) if x €Sy

which is a bijection. Hence & ~ RuD. Now by problem 2 we have RuD ~ R. Hence S ~ R. O

The first part of the chain is immediate from the result above: R ~ X9 = R xR ~ ¥ ~ ¥5. For the
second part, consider what Y5 x X5 means: instead of choosing one letter from the alphabet for each position
in the string, now we create a pair for each position in the string. Both components of the pair are from
that alphabet, so each pair has 2-2 = 4 possibilities. Therefore the outcome is equivalent to an infinite string
generated by an alphabet with 4 letters. For example, suppose the old alphabet has two letters: a and b.
Then the new alphabet has four letters: aa, ab, ba, and bb. Therefore ¥ x 39 ~ 3y, The last part is again

immediate from the result in the previous part. Hence

RZ=RxR~¥5xXy~3;~R.

The cardinality of decimal expansions not terminating in 9’s is the same as |R| = ¢, whereas the cardinality of

decimal expansions with an infinite string of 9’s is |N| = ®g. Both have been proven above.

!dea from a chat with Linfeng. I had my own solution but it involves a complicated construction of bijection. Not as elegant as this

one.



