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Problem 1

Recall that we gave our definition of continuity for a function f ∶ M → N between two metric spaces
in terms of ϵ and δ. We also defined sequential continuity in class: f sends convergent sequences in M to
convergent sequences in N , with limits being sent to limits. You proved in the last problem set that the part
about limits being sent to limits is actually redundant. We proved in class that continuity is equivalent to
sequential continuity. We also defined topological continuity in class: the preimage of any open subset of N
is an open subset of M .

(1) Write out a careful proof that continuity is equivalent to topological continuity.

(2) Suppose that we were to swap “open” with “closed” in the definition of topological continuity. Prove
that the resulting definition would be equivalent.

Solution

(1) We want to show that f is continuous if and only if the preimage of open sets are open sets.

For Ô⇒ , suppose f is continuous. Further suppose S ⊂ N is open and f−1(S) ⊂M is not. By definition,
there exists p ∈ f−1(S) such that

For all r > 0 we can find some p′ ∈Mrp but p′ ∉ f−1(S).

On the other hand, since p ∈ f−1(S), we know fp ∈ S. By the openness of S, there exists ϵ > 0 such that
Mϵ(fp) ⊂ S.

Fix this ϵ. By the continuity of f , we can also find δ > 0 such that

For q ∈ f−1(S), if dM(p, q) < δ then dN(fp, fq) < ϵ.
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Also fix this δ. By the assumption of f−1(S) being not open, there exists pδ satisfying (I) dM(p, pδ) < δ,
(II) pδ ∉ f−1(S), and (III) dN(fp, f(pδ)) < ϵ. A contradiction immediately appears as (II) implies
f(pδ) ∉ S while (III) implies the contrary. Therefore the assumption that f−1(S) is not open must be
false. Hence the open set condition is satisfied.

Now we try to show ⇐Ô . Suppose f meets the open set condition. Let S ⊂ N be an open set and
pick f(s) ∈ S (as the image of some s ∈ M). Then by the openness of S there exists ϵ > 0 satisfying
Nϵ(f(s)) ⊂ S, and by the openness of f−1(S) there exists δ > 0 satisfying Mδs < δ. This is precisely
what makes f continuous: given s ∈ N and ϵ > 0, there exists δ > 0 such that

dN(s, s′) < δ Ô⇒ dM(fs, fs′) < ϵ.

Therefore open set condition Ô⇒ continuity.

(2) This is immediate from the fact that

(f−1(S))c = f−1(Sc).

(Recall that we already know openness is dual to closedness, so if f is continuous and if S and f−1(S)
are both open, then Sc and (f−1(S))c are both closed.)

Problem 2

Let (M,dM) and (N,dN) be metric spaces.

(1) Suppose that dM is the discrete metric. Describe all continuous functions from M to N .

(2) Now suppose (M,dM) is connected and dN is the discrete metric. Describe all continuous functions
from M to N .

Solution

(1) Note that if dM is a metric and if we set δ < 1, say δ = 0.5 for example, then this δ satisfies the ϵ − δ
definition of continuity for all ϵ > 0. This is because, in a discrete metric, given p ∈M , if dM(p, q) < 0.5
then the only possibility is q = p. Then dN(fp, fq) = 0 < ϵ for all ϵ > 0. Therefore all functions from M

to N are continuous.

(2) Claim: if M is connected and N is equipped with the discrete metric dN , then f ∶M → N is continuous
if and only if it is a constant function. Below I will give a proof of this claim.
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The ⇐Ô direction is obvious: dN(fp, fq) = 0 for all p, q ∈M . Therefore, regardless of the values of
ϵ and δ, the ϵ − δ condition always holds.

For the Ô⇒ direction, we will first prove a lemma:

Lemma

The continuous image of a connected set is connected.

Proof

Suppose f ∶M → N is continuous and S ⊂M is connected. For contradiction, suppose f(S) =
T ∈ N is disconnected. Then there exist a proper clopen subset T1 ⊊ T . By the topological
definition of continuity (open/closed set conditions), f−1(T1) ⊊ T must also be a clopen and proper
subset of S (T ∖ T1 being nonempty implies f−1(T ) ∖ f−1(T1) being nonempty). However, since
M is connected, it does not have a proper clopen subset. Contradiction. Therefore T must be
connected.

Coming back to the main proof, first of all, it is not hard to see that all subsets of the discrete metric
space (N,dN) are clopen. Pick an arbitrary S ⊂ N . It is closed because, if a sequence (pn) ∈ S converges
in N , then all sufficiently late terms are all one single point which is already in the subset S. On the
other hand, it is open because, if we pick r = 1/2 and pick an arbitrary p ∈ s, then Nrp = {p} which is a
subset of S. We will soon need the fact that singletons in a discrete metric space are clopen.

The next thing to notice is that singletons are the only connected subsets of a discrete metric
space. Singletons are connected because they do not have proper clopen subsets1. On the other hand,
each (sub)set containing more than one element has singleton proper clopen subsets and are therefore
disconnected.

If we look at the problem now, since M is connected and f is continuous, it follows that f(M) is
also connected. Hence the only possibility is that f(M) is a singleton, i.e., f is a constant function.

Problem 2.18 (Pugh)

Is R homeomorphic to Q? Explain.

1In Pugh’s book, a proper subset of M is a subset of M that is “neither the empty set nor M” (Pugh 86).
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Solution

No, R is not homeomorphic to Q — they don’t even have the same cardinality, and no bijection can exist
between them, not to mention the existence of bicontinuous function.

Problem 2.19 (Pugh)

Is Q homeomorphic to N? Explain.

Solution

Again, no. Suppose Q ≅ N, then there exists a bicontinuous bijection f ∶ Q → N. Suppose f(x) = 1. By
the injectivity of f we know that f(y) = 1 only if y = x.

To derive a contradiction, consider ϵ = 1. Then we want to find δ > 0 satisfying

If ∣y − x∣ < δ then ∣f(y) − f(x)∣ < ϵ.
We know that if ∣f(y) − f(x)∣ < ϵ = 1 then f(y) = f(x), since the “distance” between natural numbers are

all integers. Yet, no matter how small we set δ to be, we can always find a rational y with ∣y−x∣ < δ and y ≠ x.
(Recall that we’ve proven in a previous problem set that, given x ∈ Q, there’s no smallest y ∈ Q satisfying
y > x.) Therefore the ϵ− δ condition cannot be met, and f is not continuous at x. We conclude that Q and N

are not homeomorphic.

Problem 2.23 (Pugh)

Prove that (0,1) is an open subset of R but not R2 when we think of R as the x-axis in R2.

Solution

To show (0,1) is open in R, pick arbitrary p ∈ (0,1). If we set r = max(p,1 − p), then Rr(p) ⊂ (0,1). A
quick justification:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 < x ⩽ 0.5 Ô⇒ Rr(p) = (p − p, p + p) = (0, p) ⊂ (0,1)

0.5 < x < 1 Ô⇒ Rr(p) = (2p − 1,1) ⊂ (0,1)
.
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However, it is not open open in R2 because, if we pick q ∈ (0,1), no matter how small r > 0 is, the point
q′ = (q, r/2) is not on the x-axis and thus q ∉ (0,1). On the other hand, dR(q, q′) = r/2 < r.
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Problem 2.25 (Pugh)

Prove directly from the definition of closed set that every singleton subset of a metric space M is a closed
subset of M . Why does this imply that every finite set of points is also a closed set?

Solution

If we were to build a sequence out of a singleton {p}, the only possibility is (p, p, p . . . ) which clearly
converges to p ∈ {p}. Hence the singleton contains all its limit points and is therefore closed.

Now suppose we are give a finite set S = {s1, s2, . . . , sn}. If we set

ϵ < inf
1⩽i,j⩽n

(dM(si, sj))

then it is shorter than the distance between any two (distinct) points in the set. Now suppose (sn) is an
arbitrary convergent sequence in S that converges to s ∈ M . Fix ϵ as constructed above. By the definition
of convergence there exists N ∈ N such that m ⩾ N Ô⇒ dM(sm, s) < ϵ. Since ϵ is already smaller than the
distance between any two (distinct) points in the set, sm and s cannot be distinct. Hence we are left with the
conclusion that all sm’s after sN are the same and they are precisely s, the limit point. Therefore s ∈ S and
this set is closed.
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