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Problem 1

Let (M,d) be a metric space and let S ¢ M be a subset.

(1) Recall that the closure of S in M, denoted by S, is by definition the set of all limits of S in M. Prove
that S is closed in M, that it contains S, and that it is the smallest closed subset of M which contains
S.

(2) A point p € M is called an interior point if there is some r > 0 such that B,(p) c S. The interior of
S, denoted by int(S), is by definition the set of all interior points of S. Prove that S is an open subset
of M if and only if S = int(.5).

Solution

(1) This part contains three questions, and we will show them one by one, in the order that they are asked.

(I) Showing S is closed is equivalent to showing that S contains all its limits. Suppose s € M is a
limit point of S, then some sequence (s,) € S converges to s. Therefore, given €/2 > 0, there exists
Ny € N such that

m2 Ny = d(sm,s) < %

Pick any m satisfying the inequality above. Since such s,, is in S, we know that there exists a
sequence ((Pm)n)neny € S that converges to s,,. Therefore, given the same €¢/2 > 0 there exists
N, € N such that

k>N, = d((pm)k,Sm) < ;

Then, by triangle inequality, we have

Ad((pm)k,8) €A((Pm) ks Sm) + d(Sm, 8) < €.
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Hence we have shown that, for any ¢ > 0, we can find a point in S, (pm )k, Wwho’s within the e-
neighborhood of s. Setting € = 1,1/2,1/3,... gives as a sequence of (p,,)r’s which converge to s.

Therefore s is a limit point of not only S but also S. This means s € S, and hence S is closed.

(IT) To show S c S, pick any s € S and consider the sequence (s, s,s...). Clearly this sequence converges

to s which implies € S. Hence S c S.

(III) To show S is the smallest closed subset of M containing S, consider any closed subset T ¢ M
containing S. Let s be a limit point of S. Then there exists a sequence (s,,) € .S that converges to
s. Since S c T, it follows that (s, ) € T. By the closedness of T we see s € T. Because s is arbitrary,
we conclude that T' contains all limit points of S, i.e., S ¢ T. Hence S is the smallest closed subset

of M containing S.

(2) For = , if S is open, then for each s € S there exists r > 0 with B,.(s) c¢ S. Therefore all s € S are
interior points of S, i.e., S cint(.S). On the other hand, int(S) c S holds by definition since int(S) is a

set of points of S satisfying certain conditions. Hence S = int(S).

Now for <=, suppose S = int(.S). Then S c int(.S); in other words, each s € S is an interior point with

some B,.(s) c S. Note that this is exactly the definition of openness of S. Hence S is open.

Problem 2: 2.28 (Pugh)

A map f: M — N is open if for each open set U c M, the image set f(U) is open in N.
(1) If f is open, is it continuous?
(2) If f is a homeomorphism, is it open?
(3) If f is an open, continuous bijection, is it a homeomorphism?
(4) If f:R - R is a continuous surjection, must it be open?
(5) If f:R - R is a continuous, open surjection, must it be a homeomorphism?

(6) If : S - Sl is a continuous, open surjection, must it be a homeomorphism?

Solution

(1) No. Consider f:R — Z. Note that any subset of Z is clopen (we just need the openness here — setting
r = 0.5 then for any x € Z, the r-neighborhood of x is simply {z} c Z). Therefore any f with codomain
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Z is always open. Consider the floor function
f:R > Z defined by z +~ |z].

Look at = =1 and pick € = 1/2. For any 6 > 0 we always have |z — 0| <1 == |z - J] <0. Therefore no
d > 0 meets the € — § criterion for € = 1/2. This means f(x) is not continuous at x = 1. More generally,

f(z) is not continuous at all integers.

(2) Yes. If f is a homeomorphism then f~! is continuous. Hence if U € M is open then (f1)™*(U) = f(U)

is open.

(3) Yes. The openness of f implies that the image of any open U ¢ M under f is open; this also means the
preimage of any U c M under f~! is open. Therefore f~! meets the open set condition and is continuous.

Now we know f is bicontinuous and bijective, so it is by definition a homeomorphism.

(4) No. Consider the piecewise function

T+T for x < -7
f(x)=1{sin(z) for z € [-m, 7]

T—T forz>m

and let U = (-2,2). Then the image is [-1,1], a closed interval.

In fact, a piecewise function with one constant interval suffices, since then we can come up with an open
U and a half-open half-closed f(U).

(5) Yes. To show f is a homeomorphism, from (3) we see that it suffices to show f is injective. Suppose for
contradiction that f is not injective. Then there exist z,y € R with f(z) = f(y). Consider U = [z, y]
and f(U) c R. Define a = min_ f(t) and b = max] f(t). Note that the values of ¢ is from [x,y] rather

te[z,y] te[z,y
than (z,y) to avoid situations in which f(t) converges as t > x or t —> y.

In the degenerate case where a = b we see that f(x) is a constant function on the interval (x,y). Then

f(U) is a singleton which is not open with respect to standard Euclidean metric. Contradiction.

Other than the degenerate case we have a # b, so it’s impossible that { f~(a), f~1(b)} = {z,y}. Therefore,
either a or b (or both), has to have a preimage from [a,b] ~ {a,b} = (a,b), the closed interval. Therefore
f(U) will be at least half-closed — either of form x,a] (we don’t know what the other bracket and

endpoint are, but they don’t matter) or of form [b, x. This again contradicts f’s being open.

Therefore f must be injective, and by (3) we see that it is a homeomorphism.

(6) No. Each point on the unit circle has form (cos#,sin#), and S* can be defined as

{(cos8,sin6) | 6 €[0,27)}.
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If we define f:S' - S* by
(cosf,sinf) — (cos(20),sin(20))

it follows that this function is continuous, open, and surjective’. Yet it is not a homeomorphism since

it is not injective — (cos0,sin0) = (1,0) = (cos(27),sin(27)) while (cos0,sin0) # (cos7,sin).

Proof of continuity, openness, and surjectivity of the last example above

Clearly if we define S = {(cos#,sinf) | 6 € [0,7)} then f(S) is already S*. Hence f is surjective.

Now we will show that f is continuous using the e — § definition. Pick ¢ >0 and a point (cos#,sinf) e S!
with 6 € [0,27). Note that 6 > sin6 for all 6 € (0,27). (This can be justified using Taylor expansion, but an
easier way is to think of a unit circle. 8 is the arc length corresponding to a central angle 6 with one side on

the z-axis whereas sin @ is the distance between the other endpoint and the z-axis. See figure below.

A
14
0754
0 (arc length)
05
sin 6
0.25 1
0 (angle)
0 0.25 0.5 0.75 i

Furthermore, notice that, since sinx is concave down on the interval (0,7/2), it takes the graph longer to
double its value. Hence arcsin(2z) > 2arcsin(z)T.

fSince you asked for this:

% [arcsin(2z) — 2 arcsin(z)] = \/1_247 - \/12_? >0 for z € (0,%)
arcsin(2-0) = 2 arcsin(0)

The two equations above imply that arcsin(2z) > 2 arcsin(z) indeed holds for z € (0,7/2).

Now, pick any p = (cosf,sin) € S* the domain, and pick e > 0. We want to show that

there exists 6 > 0 such that d(p,q) <6 = d(fp, fq) <e.

First notice that, given r > 0, all the points on S! whose distance to p < r all have form (cosa,sina) where

a € (0 —2arcsin(r/2),0 + 2arcsin(r/2)). Refer to the following diagram:
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0.54
0.4}
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0.3 +
r/2 \)

0.2}

e r/z

2 arcsin(r/2) VPRI
0.1} e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 J. 1.1 1.2 1.3 1.4

The two radii with a third side of length r form an isosceles triangle. The median from the apex to the base
is perpendicular to the base, thus creating two right triangles, both with hypotenuse 1 and one cathetus /2.
Hence the apex angle is 2arcsin(r/2). It is clear that any « € (6 — 2arcsin(r/2),0 + 2 arcsin(r/2)) is enclosed
within B,(p) and, with respect to S!, the line segment marked in red. It’s also clear that if « is not in this
interval then d(p,q) > r.

Now, we will define ¢’ = min(e,|cosf|). Doing so ensures that B (p) never crosses the x-axis so we don’t

have to deal with the 0 = 27 issue for circles. If we set § = €//2, we see that
€ €
d(p,q) <6 = q=(cosq,sina) for some « € (6 — 2arcsin(z), 0+ 2arcsin(z)).

Previously, we’ve deduced that arcsin(e’/2) > 2arcsin(€'/4), so if
€ € € €
ae(f- 2arcsin(z), 0+ Qarcsin(z)) then o e (6 - arcsin(a), 0+ arcsin(g)).

Recall that our function f maps (cos#,sinf) to (cos(26),sin(26)). Therefore

! !

fq = (cos(2ar),sin(2«)) for some 2« € (26 — 2 arcsin(%), 20 +2 arcsin(%)).

This is precisely the statement that d(fp, fq) < € < e. Hence we've shown, with the help of parametrization
by 6, that

d(p,q) <6 = |0 -a| < something = |0 - a| < something larger = d(fp, fq) <e.

This concludes that f is continuous.
The openness of f follows immediately that if, for the domain, the r-neighborhood of s € S* is a subset of
St then the (2r)-neighborhood of f(s) is a subset of S, the codomain. Therefore the image of an open set

is open.



MATH 425a Problem Set 7 YQL

Original Attempt

Given any € > 0 and pick any (cos@,sinf), let § = ¢/2 and define Af = 2—\6/5 (we’ll see the reason soon). If |§’ — 0] < Af, then

d((cosf,sin ), (cosd’,sin b)) = \/|cos 6 — cos 0|2 + |sin 6 — sin /|2

L (O0+0"\ . (0-0 o+6'\y . (60-06
= —251n( )sm( ) 2cos( )sm( )
2 2 2 2

0+6 0+6
Using the fact that sin( 3 ) 7Cos( ) <1 and sinz < z for all z € (0,27), we have

2
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. P . (A0
d((cos0,sin@), (cosd’,sinb")) SJ ‘—25111(7)
<VI(A0)2 + (A0)2
= V240

=—=4.
2

On the other hand,

d((cos(26),sin(26), (cos(26"),sin(20")) = v/|cos(26) — cos(26")|2 + |sin(26) — sin(26")|2
=/|-2sin(8 + 6") sin(0 — 67)|2 + |2 cos(# + 0") sin(6 — 67)2|
<V/|-2sin(0 - 0")]2 +|2sin(6 - 0")]2
< V|20 + 22602

=2V2A0 = e.

Therefore, given any € >0 and any z € S' the domain, we can always find § => 0 such that if
d(z,y) < 6,d(fx, fy) < e. In particular, since each point on S is determined by 6, we’ve found a sufficiently small Af that allows

the 6 to meet the € — § condition. Hence f is continuous.

To see that f is open, consider an open subset S € S!. By this assumption, if we pick a point
z = (cosfi,sinf1) € S, we can find r > 0 satisfying d(z,y) <+ == y € S. From the previous computation we see that if
|02 — 61] < 7/+/2 then d(z, (cosfa,sinf2)) < . Therefore, (cosfa,sinbs) € S for all
02 € (61 —r/\/§,91 +7“/\/§).

Now let go of the previous notations and consider any p = (cosa, sina) € f(S). Clearly
q = (cosa/2,sina/2) is a preimage of p (not inverse image because f is not bijective). By what we’ve said in the last paragraph,
there exists € > 0 such that, for all s € ST, if d(q,s) <, then s € S. In particular, all such s’s are of form (cos 3/2,sin 3/2) where
B/2 € ((aw—€)/2,(a+€)/2). Therefore, all points of form (cos3,sin3) where 8¢ (a—¢€,a+¢) are in f(S). This means we’ve just
found a neighborhood of an arbitrary point in f(S) that lies entirely in f(S). Hence S open implies f(S) open, and f is indeed

an open mapping.

An Even Easier Way from 10/7’s Discussion

Suppose a sequence (cos(py),sin(p,)) € S* converges to (cos(p),sin(p)) € S*. Then the sequence must also
converge component-wise, i.e., cos(p,) — cos(p) and sin(p,) — sin(p). The continuity of arcsin (and arccos)
guarantees that (p,) — p. On the other hand, by the continuity of cos,sin, and the mapping = — 2z, we know

that the composite mappings = — cos(2z) and x ~ sin(2z) are both continuous. Hence cos(2(p,)) — cos(2p)



MATH 425a Problem Set 7 YQL

and sin(2(py,)) — sin(2p). Therefore (cos(2(py)),sin(2(pr))) = (cos(2p),sin(2p)), from which we see that f
preserves sequential continuity.

O

Problem 3: 2.30 (Pugh)

Consider a two-point set M = {a,b} whose topology consists of the two sets, M and the empty set. Why

does this topology not arise from a metric on M?

Solution

In this topology, since {a},{b} ¢ T we know that these two sets are not open. Suppose this topology did

arise from some metric space (M, dys). If we define dps(a,b) = r and set € = /2, we see that
{reM|zeB(a)}={a} c{a}

which suggests {a} is open. Contradiction. Therefore T does not arise from any metric.

Problem 4: 2.34 (Pugh)
Use the Inheritance Principle to prove the following:
Corollary
Assume that N is a metric subspace of M and also is a closed subset of M. A set L c N is closed in

N if and only if it is closed in M. Similarly, if NV is a metric subspace of M and also is an open subset

of M then U c N is open in N if and only if it is open in M.

Solution
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(When writing the paragraph above, I didn’t assume inheritance principle to hold for closed sets. Now

that I know I may freely use it, the proof above is no longer necessary.)

First assume N c M is closed. Note that we have the following propositions:
(1) Inheritance: U c N is closed in N if and only if U = N nV for some closed V c M.
(2) WTS: U c N is closed in N if and only if U is closed in M

Therefore it suffices to show the following statement:

U is closed in M if and only if U = N nV for some closed V c M.

The == direction is immediate because, if U is closed, then setting V =U gives U = NnV = NnU. For

<=, since both N and V are closed in M, so is their intersection. Hence U is closed in M.

If we replace “closed” with “open”, we get U c N is open in N if and only if U is open in M.

Problem 5: 2.38 (Pugh)

Let X,Y be metric spaces with metrics dx,dy, and let M = X xY be their Cartesian product. Prove that

the three natural metrics dg, dmax, and dgym are actually metrics.

Solution

It is very clear that all three metrics are symmetric and nonnegative, and they all satisfy d(p, ¢) = 0 if and

only if p = ¢q. Therefore all that remains is to show that all three metrics satisfy the triangle inequality.
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(1) For Euclidean product metric:

de((x1,91), (22,92)) = Vdx (21,22)% + dy (y1,y2)?

< \/[dX(fﬂlans) +dx (23,22)]° + [dy (y1,y3) + dy (y3,52)]? (TT of dx,dy)

= Vdx(x1,73)2 + dx (23,22)% + dy (y1,y3)2 + dy (3, y2)?

+2[dx (w1, 23)dx (23, 72)] + 2[dy (y1,Y3)dy (y3,y2)]

<Vdx (z1,23)2 + dx (23, 22)2 + dy (y1,93)% + dy (Y3, y2)?
+2v/dx (21, 23)2 + dy (y1,93)2\ dx (23, 22)2dy (Y3, Y2)? (Cauchy)
3
= \/(\/dX(J’HvJUZ%)2 +dy (y1,y3)2 +\/dx (w3,22)2 + dy(yg,y2)2)

=Vdx (z1,73)2 + dy (y1,y3)% + Vdx (x3,22)% + dy (y3,92)2

=de((z1,91), (¥3,93)) + de((23,93), (T2,92)).

(2) For dpax:

dmax ((21,91), (22,92)) = max{dx (z1,22),dy (y1,¥2)}
<max{[dx (z1,23) + dx (23,22)], [dy (y1,93) + dy (y3,92)]} (Tl of dx,dy)
<max{dx (z1,23),dy (y1,y3)} + max{dx (z3,22),dy (y3,92)}
= dmax ((21,91), (¥3,Y3)) + dmax((23,Y3), (22, 92))-

(3) For dgym:

dsum ((21,91), (¥2,92)) = dx (z1,22) + dy (y1,2)
<dx(z1,w3) + dx (23, 22) + dy (y1,93) + dy (y3,92) (TT of dx, dy)
= [dx (w1, 23) +dy (y1,y3)] + [dx (w3, 22) + dy (y3,y2)]
= doum (21, 91), (23, 93)) + dsum (%3, y3), (¥2,2))-

Therefore all three metrics are indeed metrics.

Problem 6: 2.39 (Pugh)

(1) Prove that every convergent sequence is bounded. That is, if (p,) converges in the metric space M,

prove that there is some neighborhood M,.q containing the set {p, | n € N}.

(2) Is the same true for a Cauchy sequence in an incomplete metric space?
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Solution

(1) The first part is exactly the same as problem 3 in HW5. By the convergence of (p,), suppose (p,) -
pe M and if we pick any € > 0, then we can always find N € N satisfying

n2 N = dy(pn,p) <e.

Therefore there are only finitely many terms, the (n — 1) terms to be exact, whose distance to p is not

guaranteed to be < e. If we set

r=max{dr (p1,p),drr (P2, ), - - -, drr (P(n-1),P), €} + 1
then all points in the sequence is enclosed in M,.p, and this finishes the proof that (p,) is bounded.

(2) Yes, and the same logic still applies! Suppose (p;,) is Cauchy. Let us pick any € > 0. It follows that we
can always find N € N satisfying

m,n2 N = dpy(pm,pn) <E€.

If we fix either m or n to be exactly N, we see that all terms of (p,), starting from py, is enclosed in
M.(pn). Again, there are only finitely terms — (NN - 1) to be precise — whose distance to py is not

guaranteed to be < e. If we set

r=max{dn (p1,pN),dry (P2, PN ), - - s A (P(v-1), PN ), €5 + 1

then the entire sequence (p,,) is enclosed in M,.(py). Hence it is bounded.

Problem 7: 2.43 (Pugh)

Assume that the Cartesian product of two nonempty sets A c M and B c N is compact in M x N. Prove
that A and B are compact.

Proof

Pick any sequence (a,) € A and any b € B. Consider the sequence (a,,b) € A x B. By the compactness
of A x B we know that this sequence has a convergent subsequence, which we call (ay,,br). Note that by
is constant. Since (an,,by) converges, it converges component-wise. Thus (a,,) converges. Therefore any
arbitrarily chosen (a,) € A has a convergent subsequence and we conclude A is compact. The proof of the

compactness of B is analogous. O
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