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Problem 2.37 (Pugh)

Construct a function f ∶ R→ R that is continuous only at points of Z.

Solution

Consider the function f ∶ R→ R defined by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sin(πx) if x ∈ Q

0 if x ∉ Q

Before we show f is only continuous at points of Z, note that sin(πx) = 0 if and only if x ∈ Z. Also, sin(πx)
is a continuous function.

We first show that f is indeed continuous at points of Z. Suppose we had a sequence (pn) ∈ R that
converges to p ∈ Z. By the continuity of sin(πx), a function defined on the entire R, we know that, for any
z ∈ Z ⊂ R and ϵ > 0, there exists δ > 0 such that

if q ∈ R and ∣ p − q ∣ < δ then ∣ sin(pπ) − sin(qπ) ∣ < ϵ, i.e., ∣ sin(qπ) ∣ < ϵ.

It’s not hard to see that ∣ f(x) ∣ ⩽ ∣ sin(πx) ∣ for all x ∈ R. Hence we now have a stronger statement: for any
z ∈ Z ⊂ R and ϵ > 0, there exists δ > 0 such that

if q ∈ R and ∣ z − q ∣ < δ then ∣ f(z) − f(q) ∣ < ϵ.

This is exactly the statement that f(x) is continuous at all points of Z.
Now, to show that f is not continuous at points of R∖Z, consider k ∈ R∖Z. We know that sin(kπ) ≠ 0. Since

(I hope we can take this for granted) Q and R ∖Q are both dense in R, we are able to construct a sequence
(kn) → k that contains infinitely many rational terms and also infinitely many irrational terms. Then we
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have two subsequences, (kn)′ and (kn)′′, of all the rational terms and irrational terms of (kn), respectively.
Therefore the sequence (f(kn)) has two subsequences (f(kn)′) and (f(kn)′′). Since sin(πx) is continuous,
it preserves sequential convergence. Since (kn)′ converges to k just like its mother sequence, we know that
the sequence (sin((kn)′π)) converges to sin(kπ), and this sequence is precisely (f(kn)′). (Notice that since
we haven’t specified whether k is rational, we cannot say (f(kn)′) → f(k); however, it is safe to say that it
converges to sin(kπ), a function defined on entire R.) On the other hand, (f(kn)′′) is the constant sequence
(0,0, . . . ) which clearly converges to 0. If f were continuous at k, then it preserves sequential convergence
and hence (f(kn)) converges. However (f(kn)) has two subsequences that converge to different limits, and
we are forced to the absurd conclusion that (f(kn)) also converges to two different limits. Therefore f is not
continuous at k, and this concludes the proof that f is continuous at x if and only if x ∈ Z.

Remark

Also consider the following g ∶ R→ R, another function that is only continuous at points of Z:

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x if x ∈ Q

⌊x + 0.5⌋ if x ∉ Q

Problem 2.47(a) (Pugh)

Suppose A,B ⊂ R2. If A ≅ B, are their complements homeomorphic?

Solution

Not necessarily. Consider A = R2 and B = R × (−π/2, π/2). Then the function f ∶ A → B defined by
(x, y) ↦ (x,arctan y) is a homeomorphism1. However, Ac = ∅ and Bc is nonempty; they have different
cardinalities. There cannot exist a homeomorphism between these two complements, so Ac ≇ Bc.

Problem 3

Let (M,d) be a metric space, and S ⊂ M a connected subset. Is the interior of S connected? Prove or
disprove.

1I posted a question here, asking for help to check if it is necessary to explicitly show that this is indeed a homeomorphism. If you
believe it is necessary, the complete proof is in the comment section.
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Solution

Not necessarily connected. Consider the union of two closed unit disks:

D =D1 ∪D2 ⩽ {(x, y) ∈ R2 ∣ x2 + y2 = 1} ∪ {(x, y) ∈ R2 ∣ (x − 2)2 + y2 ⩽ 1}.

Its interior of D would be

int(D) = {(x, y) ∈ R2 ∣ x2 + y2 < 1} ∪ {(x, y) ∈ R2 ∣ (x − 2)2 + y2 < 1} = int(D1) ∪ int(D2).

This is because all the points in D that are not interior points are on the two unit circles, i.e., the boundary
of D:

{(x, y) ∈ R2 ∣ x2 + y2 = 1} ∪ {(x, y) ∈ R2 ∣ (x − 2)2 + y2 = 1}.

If we remove them, then we get int(D), the (disjoint) union of two open disks, again with radius 1. This
set is disconnected because int(D1), int(D2) are open, but taking the complement suggests that they are also
closed. Hence they are proper clopen subsets of int(D), which makes int(D) disconnected.

Problem 4

(1) Find a bounded set of real numbers with exactly 3 cluster points.

(2) Find a compact set of real numbers whose set of cluster points is infinite.

Solution

(1) Consider the set S = S1 ∪ S2 ∪ S3 where S1, S2, S3 are defined by

S1 = {1 +
1

2
,1 + 1

3
,1 + 1

4
, . . .} = {1 + 1

n + 1
∣ n ∈ N}

S2 = {2 +
1

2
,2 + 1

3
,2 + 1

4
, . . .} = {2 + 1

n + 1
∣ n ∈ N}

S3 = {3 +
1

2
,3 + 1

3
,3 + 1

4
, . . .} = {3 + 1

n + 1
∣ n ∈ N}.

Obviously S is bounded and there exist sequences in S that converge to 1,2, and 3, respectively. By
Theorem 52(i) we know that 1,2, and 3 are cluster points. Now it remains to show any other points in
S is not a cluster point. Let s ∈ S be any number but an integer. By the construction it can only belong
to one among S1, S2, S3, so it must have the form i + 1/j for some i ∈ {1,2,3}. Then the closest element
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to s is i + 1/(j + 1) and i + 1/(j − 1). The distances are 1/j(j + 1) and 1/j(j − 1), respectively. If we set
ϵ to be smaller than both of them then no point in S is within the ϵ-neighborhood of s, and hence s
cannot be a cluster point. Therefore S has precisely 3 cluster points, 1,2, and 3.

(2) Consider the set

S = { 1

2m
∣m ∈ N} ∪ { 1

2m
(1 + 1

n + 1
) ∣m,n ∈ N}

which is very similar to the example in (1), except now S is the union of countably infinite such sets. By
the same reasoning, s ∈ S is a clustering point if and only if it is of form 1/2m, and there are countably
infinite such points. Note that

sup (S) = 1

2
⋅ (1 + 1

2
) = 3

4

and
inf (S) ⩾ 0 since 1

2m
> 0 and (1 + 1

n + 1
) > 0.

Hence S is bounded by [0,3/4]. Note that, in S, besides the “boring” constant convergent sequences,
the only convergent sequences are those that converge to one the clustering points, since all other points
are at least certain distance away from each other and it is impossible for them to be the limits of a
convergent sequence. Hence S contains all its limits and is closed. Therefore, by Heine-Borel Theorem,
S is compact, and this finishes the problem.

Problem 5

Prove that the function f ∶ R2 → R2 defined by

(x, y)↦ (sin(xy2),3x3y + xy2)

is continuous.

Solution

Before proving that f is continuous, we first look at a simpler case g ∶ R2 → R defined by

(x, y)↦ xy.

Pick any ϵ > 0 and (x, y) ∈ R2 and assume d((x, y), (x′, y′)) < 1 (we can always do so by using a min()
function when defining δ later on). Then it follows immediately that both ∣x − x′∣ and ∣y − y′∣ are less than 1.
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Since

∣xy − x′y′∣ = ∣xy − (x′ − x + x)(y′ − y + y)∣

= ∣−(x′ − x)(y′ − y) − (x′ − x)y − x(y′ − y)∣

= ∣(x − x′)(y − y′) + x(y − y′) + y(x − x′)∣

⩽ ∣(x − x′)(y − y′)∣ + ∣x(y − y′)∣ + ∣y(x − x′)∣ (Triangle inequality)

⩽ ∣x − x′∣∣y − y′∣ + ∣x∣∣y − y′∣ + ∣y∣∣x − x′∣

<
√
∣x − x′∣2 + ∣y − y′∣2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

+∣x∣∣y − y′∣ + ∣y∣∣x − x′∣ (Cauchy-Schwarz)

< d + ∣y∣d + ∣x∣d (Since d2 > ∣x − x′∣2, ∣y − y′∣2)

= d(1 + ∣x∣ + ∣y∣),

if we define
δ ∶=min(1, ϵ

1 + ∣x∣ + ∣y∣
) > 0

then
d((x, y), (x′, y′)) < δ Ô⇒ d(xy, x′y′) < (1 + ∣x∣ + ∣y∣)δ ⩽ ϵ.

Therefore the function f(x, y) = xy from R2 to R is continuous.
Likewise, the functions R2 → R defined by (x, y) ↦ xy2 is continuous because it is simply the composite

function s(t, y) ∶ R2 → R defined by (t, y)↦ ty whereas t(x, y) ∶ R2 → R is defined by (x, y)↦ xy. By the same
token, the functions R→ R defined by (x, y)↦ 3x3y and (x, y)↦ xy2 are also continuous.

Notice that sin(xy2) is the composite of two continuous functions (sin and the one we’ve shown above), so
it is continuous. On the other hand, (x, y)↦ 3x3y +xy2 from R2 to R is also continuous because it is the sum
of two continuous functions: given ϵ > 0 we can pick two δ’s for the two functions that correspond to ϵ/2, and
then picking the smaller one between the two δ’s ensures that the sum function is also continuous.

Finally, if we look at f ∶ R→ R defined by (x, y)↦ (sin(xy2),3x3y + xy2), we know that both components
are continuous. Therefore f is continuous. (This can once again be easily shown using sequential continuity,
but Prof. Siegel said what I’ve done above suffices.)

Problem 6

Does a continuous function between two metric spaces send closed subsets to closed subsets? Prove or
disprove.
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Solution

No. For simplicity consider f ∶ R → R. We know that continuous functions map compact sets to compact
— and thus closed — sets, so in order to come up with a counterexample for this problem we can make the
domain unbounded so it is not compact. Consider the exponential function f(x) = ex for x ∈ R. The
domain is R, clopen, but the range is (0,R), not closed since 0 is a limit point outside the interval.

Problem 7

Give an example of an open cover of (0,1) which has no finite subcover. Conclude that (0,1) is not
compact.

Solution

Similar to the example provided in the textbook, consider the covering

U = {( 1
n
,
n − 1
n
) ∣ n ⩾ 2} .

For any finite covering U′, suppose the scrap with the largest index has index m, then

U′ ⊂
m

⋃
i=2
(1
i
,
i − 1
i
)

which fails to cover (0,1/i) and ((i− 1)/i,1). Therefore U does not have a finite subcovering and (0,1) is not
covering compact.

Problem 8

Let S ⊂ R2 be the “closed topologist’s sine curve”, defined by

S ∶= {(x, sin(1/x) ∈ R2 ∣ x ∈ (0,1]} ∪ {0} × [−1,1].

Prove that S is connected but not path connected.
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Solution

For notations, denote the topologist’s sine curve by S+ and {0} × [−1,1] by S0. It is obvious that S+ is
connected since it is a continuous image of a connected set (0,1]. Recall Pugh’s Theorem 49 states if S+ is
connected, so is its closure. We will now show that S+ = S.

Lemma

The closure of the (original) topologist’s sine curve is the union of the curve with {0} × [−1,1].

Proof. Using the previous notation, we first show that S+ ∪S0 ⊂ S+. Pick any s ∈ S+ ∪S0. Either s ∈ A+,
i.e., s is on the topologist’s sine curve, or it is of form (0, y0) for some y0 ∈ [−1,1]. Clearly, for the
former case, the sequence (s, s, . . . ) converges to s. For the latter, first notice that y0 = sin θ for some
θ ∈ [π,3π] (we are not picking the interval [0,2π] as we usually would because 0 is not in the domain
of the topologist’s sine function). Therefore we know that (1/θ, sin θ) ∈ S+. Recall that sin is periodic
with period 2π, so all points of form (1/(θ + 2kπ), sin(θ + 2kπ)) are also in S+, and these points all have
y-coordinate y0. If we take k = 1,2, . . . then we have constructed a sequence that converges to (0, y0).
This shows s ∈ S+ as well. Hence S+ ∪ S0 ⊂ S.

For the other direction, we want to show that S+ ⊂ S+ ∪ S0. Pick any p = (x1, y1) ∈ S+ and we know
that some sequence of points (pn) = ((xn), (yn)) in S+ converges to p ∈ R2. First notice two things:

(1) x1 is nonnegative because each term of (xn) is positive, and

(2) ∣y1∣ ⩽ 1 since each term of (yn) is between [−1,1].

If x1 = 0 then we know p is on the y-axis. By the observations above we know p ∈ S0. From the first
part of the proof we know there actually exists a sequence converging to p.

Now we are left with the case x1 ≠ 0. Since x↦ sin(1/x) for x ∈ (0,1] is a composite of two continuous
functions, we know that this mapping is also continuous. Hence if (xn)→ x1 then

(yn) = (sin(x−1n ))→ sin(1/x1) which we call y1.

Therefore ((xn), (yn))→ (x1, y1) ∈ S+, and we’ve shown that S+ ⊂ S+ ∪ S0 and also S+ = S+ ∪ S0.

Now, it follows that, since S+ is connected, so is its closure S+ which is exactly the one given by the
problem.

To show that S is not path connected, it suffices to show that no path exists between (0,0) and any point
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(x, y) ∈ S+. Suppose there existed a continuous function γ ∶ [0,1] → R2 with γ(0) = (0,0) and γ(1) = (x, y).
Since γ is continuous, if we set ϵ = 1/2 then there exists a δ > 0 such that

if t < δ then d(γ(t), γ(0)) < ϵ = 1
2
.

To visualize this statement, refer to the following diagram:

Figure 1: The 1/2 neighborhood of origin and the topologist’s sine curve on (0,3] × [−1,1].

The intuition here is that, since the topologist’s sine curve keeps jumping in and out of the disk Bϵ(0,0),
it is never possible to find a δ.

Back to the proof — suppose γ were continuous, then there exists a δ > 0 corresponding to the ϵ = 1/2.
Call the point γ(δ) = (x∗, y∗). Now we narrow our focus down to [0, δ]. Since γ restricted to this domain is
still continuous, and since the mapping R2 → R defined by (x, sin(1/x)) ↦ x is continuous, their composite
ψ ∶ [0, δ] → R is also continuous. Recall that continuous functions map connected sets to connected sets, so
the image ψ([0, δ]) must also be connected. On one hand, ψ(0) = 0; on the other hand, ψ(δ) = x∗. Therefore
the entire interval [0, x∗] must be contained in the image of ψ. Hence for any x′ ∈ [0, x∗], there exists t ∈ [0, δ]
satisfying ψ(t) = x′.

Now we proceed to construct a contradiction. Recall that sin((k + 0.5)π) = 12 for k ∈ Z. Given x∗ above,
we can find a k′ ∈ Z large enough such that

1

(k′ + 0.5)π
= x′ < x∗ while sin(1/x′) = sin((k′ + 0.5)π) = 1.
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This shows that, even though x′ is close enough to 0, d(γ(x′), γ(0)) = d((x′,1), (0,0)) > 1 > ϵ. Therefore
our assumption of γ being continuous must be false, and no path exists between (0,0) and any point on S+.
Therefore S is not path-connected.

Remark

For a stronger argument, pick any s ∈ S0 = {0} × [−1,1] is at least 1. If its coordinate is (0, y) then if we
set ϵ < 1− y we can actually use the same ϵ− δ argument to show that there does not exist any path between
any point on the curve and any point in S0. This again shows that S is not path-connected.

2I originally wrote something similar but wrong; credits to Yizhen Wu.
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