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Problem 1: 2.59 (Pugh)

Prove that every countable metric space (not empty and not a singleton) is disconnected. [Astonishingly,
there exists a countable topological space which is connected. Its topology does not arise from a metric.]

Solution

Suppose, for contradiction, that we had a connected, countable metric space (M,d) with at least two
points a and b. First thing to note is that, if there existed an d0 with 0 < d0 =< dM(a, b) satisfying

dM(a, x) ≠ d0 for all x ∈M,

then there exists a separation of M defined by

M = {x ∈M ∣ dM(x, a) < d0} ⊔ {x ∈M ∣ dM(x, a) > d0}

which contradicts M ’s being connected. Therefore such d0 cannot exist; in other words, for all d̃ ∈ (0, dM(a, b)),
there exists some x̃ ∈M satisfying dM(a, x̃) = d̃. Therefore the function f ∶M → (0, dM(a, b)) defined by

x↦ dM(a, x)

is a surjection, and this suggests that M is uncountable. Contradiction. Therefore M cannot be connected
and countable at the same time.

Problem 2: 2.71 (Pugh)

Let M and N be nonempty metric spaces.

(1) If M and N are connected, prove that M ×N is connected.
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(2) What about the converse?

(3) Answer the questions again for path-connectedness.

Solution

(1) We prove by taking the contrapositive. Suppose M ×N were disconnected, then there exists a separation
A ⊔B. Note that, for all m ∈M , we have N ≅ {m} ×N by f ∶ ñ ↦ (m, ñ) for ñ ∈ N , a homeomorphism.
Since connectedness is preserved under homeomorphisms, it follows that, for all m0 ∈ M and n0 ∈ N ,
({m0} × N) ∪ (M × {n0}) is also connected since it is the union of two “strips” whose intersection is
(m0, n0). Then, fixing m0 and consider

({m0} × n) ∪ ⋃
ñ∈N
(M × {ñ})

which is M ×N = P but also connected since each one of them is connected and that they all contain
{m0} ×N . Therefore P is connected.

(2) Suppose M ×N is connected, then the continuous projection (m,n)↦m implies that M is a continuous
image of a connected set, so it must be connected. Likewise for N .

(3) For Ô⇒ , pick any (m1, n1), (m2, n2) ∈ M ×N . Since M and N are assumed to be path-connected,
there exist continuous γ1 ∶ [0,1]→M and γ2 ∶ [0,1]→ N satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ1(0) =m1

γ1(1) =m2

and
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γ2(0) = n1

γ2(1) = n2

.

Now consider the function ψ ∶ [0,1]→M ×N defined by t↦ (γ1(t), γ2(t)). This is clearly continuous as
both components are continuous, and it also satisfies ψ(0) = (m1, n1) and ψ(1) = (m2, n2). Therefore
M ×N is path-connected.

The steps for ⇐Ô is analogous to that for connectedness, since homeomorphisms not only preserves
connectedness but also path-connectedness.
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Problem 3: 2.85 (Pugh)

Suppose that M is compact and that U is an open covering of M which is redundant in the sense that
each p ∈M is contained in at least two members of U. Show that U reduces to a finite subcovering with the
same property.

Solution

If U is finite then we are immediately done. If not, by the compactness of M we know U has a finite (open)
covering U′ = ⋃n

i=1Ui. Consider this subcovering. Notice that the subset S ⊂M in which each point is covered
by only one scrap is defined as

S =M ∖ ⋃
1⩽i<j⩽n

(Ui ∩Uj).

Since the intersection of two open sets are open and the intersection of (finitely many) open sets is open,
taking the complement suggests S is a closed subset of the compact set M . Hence S itself is also compact.

Now consider the scraps from U ∖ U′. We know that, originally, using U, every point in S is covered at
least twice; now with U′ they are only covered once. This means every point in S belongs to some scrap in
U ∖ U′. Consider the collection of such craps US . By the compactness of S, we know US also has a finite
subcovering which we call U∗S . Then the union U′ ∪U∗S covers all p ∈M at least twice and, more importantly,
it is indeed finite.

Problem 4: 2.97 (Pugh)

Is the set of dyadic rationals dense in Q? In R? Does one imply the other? Recall that A is dense in B if
A ⊂ B ⊂ A.

Solution

To show the set of dyadic rationals, S, is dense in Q, it suffices to show that Q ⊂ S (dyadic rational are,
of course, rationals and so S ⊂ Q). Pick any q ∈ Q. If q is a dyadic rational then the sequence (q, q, . . . ) shows
that it is already in S. Otherwise consider a sequence (sn)n⩾0 ∈ S ⊂ Q with s0 = ⌊q⌋ (the floor function) and
si = f(i)/2i where f(i) is defined as the following:

f(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if ∑i−1
i=0 si > q

1 if ∑i−1
i=0 si < q

.
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For example, the number 8.765̇ would be followed by the sequence (8,8.5,8.75,8.625,8.6875, . . . ). This is
a Cauchy sequence as the distance between the si−1 and si is 1/2i, which clearly converges to 0. Since this is
a sequence in R we know that it converges to q. Therefore q ∈ Q Ô⇒ q ∈ S, so Q ⊂ S; hence S is dense in Q.

From this we conclude that being dense in Q implies being dense in R, notice that

S ⊃ Q Ô⇒ S ⊃ Q Ô⇒ S ⊃ R.

This tells us S is not only dense in Q but also R.
On the other hand, if S is a subset of Q and is dense in R, then

S ⊃ R ⊃ Q Ô⇒ S ⊃ Q

which shows that S ⊂ Q is also dense in Q.

Problem 5: 2.98 (Pugh)

Show that S ⊂M is somewhere dense in M if and only if int(S) ≠ ∅. Equivalently, S is nowhere dense in
M if and only if its closure has empty interior.

Solution

We first show the Ô⇒ direction and suppose that S ⊂ M is somewhere dense. Then there exists some
open, nonempty U ⊂ M such that S ∩ U is dense in U . Pick any x ∈ U . Then since S ∩U ⊃ U , there has to
exist a sequence (pn) ∈ S ∩ U that converges to x. Clearly this sequence lies in S, which shows x ∈ S and so
U ⊂ S. The openness of U suggests that the interior of S cannot be empty, for there exists some Br(x) ⊂ S
which makes x an interior point.

For the converse, suppose int(S) is nonempty. Then there exists some p ∈ int(S) and some r > 0 such that
Br(p) ⊂ S. Pick any q ∈ Br(p) and we immediately know q ∈ S, namely there exists some (qn) ∈ S converging
to q. Therefore, there exists some N ∈ N satisfying if n ⩾ N then

dM(qn, q) < r − dM(p, q).

By triangle inequality, this implies

dM(qn, p) ⩽ dM(qn, q) + dM(p, q) = r

and so if n ⩾ N we know qn ∈ Br(p). Therefore q also happens to be a limit point of Br(p). Thus q ∈ S ∩Br(p).
Since q is arbitrary, we conclude that Br(p) ⊂ S ∩Br(p), and thus S is dense in Br(p)1.

1Linfeng sketched this proof during his office hour on Oct. 18.
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Problem 6: 2.99 (Pugh)

Let M,N be nonempty metric spaces and P =M ×N .

(1) If M,N are perfect, prove that P is perfect.

(2) If M,N are totally disconnected, prove that P is totally disconnected.

(3) What about the converses?

Solution

(1) Pick any p = (m,n) ∈ P . Since M,N are perfect we know there exist sequences (mk) ∈M and (nk) ∈ N
that converge to m ∈ M and n ∈ N , respectively. Therefore the sequence (mk, nk) ∈ P converges to
(m,n) and p is a cluster point. Hence P is perfect.

(2) Pick any connected S ⊂ P . We want to show that S must be a singleton. Consider the projection
functions P → M and P → N defined by (m,n) ↦ m and (m,n) ↦ n. Since these functions are
continuous, we know that both images of S must be connected. By the total disconnectedness of M and
N they have to be singletons {m0} ⊂M and {n0} ⊂ N . Therefore S = {(m0, n0)}, also a singleton in P .
This concludes the proof that P is indeed totally disconnected.

(3) The converge is not true in general2. If we let M be a singleton {m} and N be R, then the product
{m} ×R is perfect [any (pn)→ p also satisfies ((pn),m)→ (p,m)] while R is not.

For total disconnectedness, suppose P is totally disconnected. We start by inspecting M . Let S ⊂ M
be connected. Consider the function f ∶ m ↦ (m,n0) for some n0 ∈ N . Since the continuous image of a
connected set is connected, we know f(S) is connected. On the other hand, the total disconnectedness
of P implies f(S) has to be a singleton, and therefore S = f−1(f(S)) is also a singleton. This shows M
is totally disconnected. The proof showing N is totally disconnected is analogous and is omitted. To
sum up, P being totally disconnected implies M and N both being totally disconnected.

Problem 7

(1) Prove that a real number lies in the Cantor set C if and only if it has a ternary (i.e., base 3) expansion
without any 1’s.

(2) Is every number in the Cantor set an endpoint of one of the intervals we removed? Is every number in

2Thanks to Bruno again for pointing out that if (m,n) converges, it’s not necessarily true that there exist (mk)→m and (nk)→ n,
both of which not being the constant sequence.

5



MATH 425a Problem Set #9 YQL

the Cantor set rational?

Solution

(1) The Ô⇒ direction is obvious. Pick any x ∈ C that’s expressed by its ternary expansion. Clearly x ∈ C1.
Since C1 excludes (1/3,2/3), this rules out the possibility of x’s first (decimal) digit’s being 1. Then
since C2 excludes the middle thirds of each intervals of C1, we know that the second digit of x cannot
be 1, either. Since the way to construct each Cn is analogous, we conclude that the ternary expansion
of x does not have any 1’s.

For ⇐Ô , we want to show that everything of form
∞
∑
i=1

ai
3i

with ai ∈ {0,2},

i.e., the ternary expansion without any 1’s, is indeed in C. The key thing to to notice here is that the
sequence

(xk) = (x1, x2, x3, . . . ) ∶= (
1

∑
i=1

ai
3i
,

2

∑
i=1

ai
3i
,

3

∑
i=1

ai
3i
, . . . )

is Cauchy in R and thus convergent. Denote intervals of Cn by In. Induction — if not inspection —
suggests that each partial sum, i.e., each xn, is the left endpoint of some I ′n ∈ Cn. [We don’t know
precisely which interval it will be because that depends on whether the digits are 0 or 2, but we know
it belongs to some interval in Cn.] Then, since

∞
∑

i=n+1

ai
3i
⩽

∞
∑

i=n+1

2

3i
= 1

3n
and I ′n has length 1

3n

we know that m ⩾ n Ô⇒ am ∈ I ′n. Therefore, since I ′n is closed, it contains all its limits, and so
lim(xm)m⩾n = ∑∞i=1(ai)/(3i) ∈ I ′n. Since n is chosen arbitrarily, this limit actually lies in all I ′k for all
k ∈ N, i.e.,

lim
k→∞
(xk) =

∞
∑
i=1

ai
3i
=
∞
⋂
i=1
I ′i ∈

∞
⋂
i=1
Ci = C.

(2) No and no. For the first no, consider

∞
∑
i=1

2

32i
= 2

9
⋅ 9
8
= 1

4
= (0.0̇2̇)base 3

which is in C but not an endpoint since all endpoint are 3-adic numbers, i.e., with denominators being
powers of 3. Suppose this were an endpoint of form k/3n, then 4k = 3n, clearly a contradiction.

Alternatively, we can simply use the fact from the following part to say that, there are irrational numbers
in C whereas each endpoint represents a rational number.
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The second no is even more blatant — we know C is uncountable but [0,1] only contains countably
many rationals! For an example, consider the following ternary decimal which is nowhere periodic —
thus not rational — yet following a easy-to-spot pattern:

(0.20 200 2000 20000 . . . )3 =
∞
∑
i=1

2

3i(i+1)/2
.

Problem 8

Write out a reasonable and precise definition of the middle fifths Cantor set. Convince yourself that this
is a Cantor space but you do not need to write it down.

Solution

Let C0 = [0,1]. Removing the middle fifth of C0 gives two disjoint closed intervals. Denote their union as
C1, i.e., C1 ∶= [0,2/5] ∪ [3/5,1]. Now repeat the same process for each interval in C1, and denote the union
of the four smaller intervals of lengths 4/25 as C2. So on and so forth. Then the middle fifths Cantor set is
the nested intersection

Cfifths ∶=
∞
⋂
n=0

Cn.

Problem 9: (extra credit) 2.68 (Pugh)

List the closed convex sets in R2 up to homeomorphism. There are nine. How many are compact?

Solution

The nine “types” of sets are: ∅ the empty set; (x, y) a point; {x} × [a, b] a line segment; {x} × [0,∞) a
ray3, {x}×R a line; D1 a closed disk; [a, b]×R a strip; [0,∞)×R a closed half plane; and R2 the entire plane.

By Heine-Borel theorem, the compact ones are closed and bounded. This corresponds to the empty set,
the point, the line segment, and the closed disk.

3I talked with Prof. Andrew Manion [the one teaching 425b this spring]about this one. He reminded me that rays and lines aren’t
homeomorphic yet they are bost closed convex sets in R2.
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Problem 10: *fake extra credit* 2.31 (Pugh)

Prove the following:

(1) If U is an open subset of R then it consists of countably many disjoint [open?] intervals U = ∐Ui. Unbounded intervals
(−∞, b), (a,∞), and (−∞,∞) are permitted.

(2) These intervals Ui are uniquely determined by U . In other words, there is only one way to express U as a disjoint union
of open intervals.

(3) If U,V ∈ R are both open so that U = ∐Ui and V = ∐Vj where Ui and Vj are open intervals, then U ≅ V if and only if
there are equally many Ui’s and Vj ’s.

Solution

(1) Let U be an open set and pick x ∈ U . Consider the following sets:

Ax ∶= {a ∈ R ∣ a < x and t ∈ U for all t ∈ (a, x)}

and
Bx ∶= {b ∈ R ∣ b > x and t ∈ U for all t ∈ (x, b)}.

Since U is open and x ∈ U we know that there exists some ϵ > 0 satisfying (x − ϵ, x + ϵ) ⊂ U . Therefore A and B are
nonempty. Define inf (A) = −∞ if A is not bounded from below and sup (B) =∞ if it is not bounded from above. Other
than these extreme cases we get inf (A) =m and sup (B) = n by the LUB property. Then we claim (m,n) is the “largest”4

interval containing x.

Notice that
U ′ ∶= ⋃

x∈U
( inf (Ax) , sup (Bx) ) = U.

U ′ ⊂ U is immediate since each ( inf (Ax) , sup (Bx) ) is a subset of U . On the other hand, if x ∈ U then
x ∈ ( inf (Ax) , sup (Bx) ) ⊂ U ′. Hence U ′ = U .

Now we will show that these intervals are disjoint: suppose inf (Ax) < inf (Ay) < sup (Bx) < sup (By) and ( inf (Ax) , sup (By) )
forms an interval. Then it immediately follows that sup (By) would be the supremum of Bx and inf (Ax) would be the in-
fimum of Ay , contradiction. Hence for x ≠ y, either ( inf (Ax) , sup (Bx) ) = ( inf (Ay) , sup (By) ) or ( inf (Ax) , sup (Bx) )∩
( inf (Ay) , sup (By) ) = ∅. Since sets ignore duplicate values, the intervals of U ′ — and also U — are disjoint.

Now it remains to show that U ′ consists of countably many intervals. Since Q is dense in R, each interval contains at least
one rational number. Since rationals are countable, the number of intervals must also be countable, and this concludes
our proof.

(2) Suppose that

U =
m

∐
i=1

Ui =
n

∐
j=1

Vj .

where Ui’s and Vj ’s are open. [Not to be confused with part (3), here we are simply assuming that the disjoint unions of
Ui’s and of Vj ’s are both equal to U .] Now fix U1 and consider the following equality:

U1 =
n

⋃
j=1
(U1 ∩ Vj) .

Clearly U1 is connected, while on the other hand each U1 ∩ Vj is disjoint from each other since the Vj ’s are disjoint. This
means all but one intersection are empty, and the nonempty one satisfies U1 ∩ Vj1 for some 1 ⩽ j1 ⩽ n. Therefore we have
U1 ⊂ Vj1 .
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On the other hand, we can apply the same logic and argue that Vj1 is a subset of some U ′1. Then we have U1 ⊂ Vj1 ⊂ U ′1,
the only possibility being U1 = Vj1 = U ′1 since the Ui’s are disjoint and it’s impossible that U1 is a subset of some disjoint
interval.

Likewise, we can show that U2 = Vj2 and so on, and eventually we would get to the conclusion that i = j and {Ui} = {Vj},
i.e., the representation of U is unique.

(3) This immediate from the fact that the preimage of (a′, b′) under a homeomorphism f ∶ R→ R is an open interval (a, b).

For the ⇐Ô direction, we can set up a one-to-one correspondence between the intervals of Ui’s and Vj ’s and define a
homeomprhism between each pair of intervals:

f ∶ (a, b)→ (a′, b′) defined by x↦ a′ +
x − a
b − a

(b′ − a′).

For Ô⇒ , suppose, by contradiction, that ∣{Ui}∣ ≠ ∣{Vj}∣. WLOG assume u ∶= ∣{Ui}∣ < ∣{Vj}∣ ∶= v. We know that the
preimage of V1, . . . , Vu must all be open intervals, and that exhausts {Ui}. Yet we still have v − u open intervals in {Vj}
that don’t get matched to a open preimage (clearly ∅ does not count). This means a homeomorphism cannot exist,
contradiction. Hence ∣{Ui}∣ = ∣{Vj}∣.

Problem 10: (extra credit) 3.31 (Pugh)

Consider the “middle fourth Cantor set” by each time removing the middle interval of length 1/4n in the
nth iteration. Denote each set of intervals after n iterations as Fn.

(1) Prove that F = ⋃ Fn is a Cantor set but not a null set. It is referred to as a fat Cantor set.

(2) Infer that being a zero set is not a topological property. If two sets are homeomorphic and one is a null
set then the other need not be a zero set.

Solution

For the first part, I’m assuming that we are using the following definition:

We say M is a Cantor Space if, like the standard Cantor set C,
it is compact, nonempty, perfect, and totally disconnected.

(1) The compactness of F comes from the fact that F is the union of intersections of compact sets (closed
intervals) and is therefore compact. It is nonempty — observe that 0,1 ∈ F .

Before we move to perfectness and totally disconnectedness, notice that the main difference between
C and F is that the lengths of intervals in Fn are no longer 1/3n but is something more complicated.
“Inspection” suggests that, after the first iteration, intervals have length 3/8; after the second, intervals
have length 5/32, and after the third, 9/128, and so on. More generally, the length of intervals after nth

4Credit to Prof. Manion again for reminding me that the existence of “largest” intervals should be justified using supremum and
infimum.
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iteration can be described as
L(n) = 2n + 1

22n+1
.

A simple calculation suggests that

lim
n→∞

L(n) = lim
n→∞

2n + 1
22n+1

= lim
n→∞

2n

22n+1
+ lim

n→∞

1

22n+1
= 0 + 0 = 0.

Having shown this, we can proceed with the proof of F ’s perfectness and total disconnectedness.

Pick any f ∈ F and any ϵ > 0. Then there exists n ∈ N large enough such that intervals in Fn is smaller
than ϵ. This tells us that the point f lies in one of the 2n intervals in Fn, which we denote as I, and we
also know I is completely contained in the neighborhood (f − ϵ, f + ϵ). Therefore F clusters at f and so
F is perfect.

For total disconnectedness, again recall the proof related to C. Since I is closed in R, it is also closed
in Fn. The complement Fn ∖ I is the union of finitely many closed intervals and is also closed. Hence
I and Fn ∖ I are clopen in Fn. By the inheritance principle, F ∩ I is a clopen neighborhood of f ∈ F
contained entirely in (f − ϵ, f + ϵ). This shows F is totally disconnected.

Now, to show that F has positive outer measure, notice that the total length of intervals removed is the
infinite sum

1

4
+ 2 ⋅ 1

16
+ ⋅ ⋅ ⋅ =

∞
∑
i=1

2i−1
1

4i
= 1

4
⋅ 2 = 1

2
.

This means the total remaining length is 1 − 1/2 = 1/2 > 0 which shows that F is not a null set.

(2) This follows from Moore-Kline theorem.
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