Intro to ODE Part II Exercises: Chapter 11 YQL

11 Second Order Linear Equations: General Theory

Problem 11.2

Show that the Wronskian of two solutions x1(¢) and z2(t) of the second order differential equation

d%z dx

@ +p1(t)a +p2(t)$:0 (1)

satisfies
W (t) = —p1 ()W ().

[Hint: write W(t) = x1(t)@2(t) — z2(t)d1(t), differentiate, and use the fact that z1(¢) and x2(t) satisfy the
equation above.] Deduce either W(t) =0 for all ¢ or W(t) # 0 for all ¢.

Solution

Differentiating W (t) = x1(¢t)d2(t) — x2(¢)&1(t) with respect to ¢ gives

d%xq dx1% d?z;  dx dao

W) = oy £22 , drrdes _doy dmp
T T T T R PR
dz dzx
= 21 [-p1(t) —= — p2(t)z2] = w2[-p1 () —+ —p2(t)21]
dt dt
dl’g dl’l
= — t — R——
pr(®)[zs a ]

= -p1 ()W (2).
Here we have acquired the differential equation
W (t) +p1 ()W (t) = 0.
The integrating factor is I(t) = exp(/ p1(t) dt) and so

T(OW(t) + I(t)p1 ()W (£) = 0
d

SHOW®H]=0

W (t) = Ce /P,

Since e!®) is never zero, either C' =0 = W(t) =0 for all t or C #0 = W (t) # 0 for all ¢.
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Problem 11.3

We have seen that if 1 and 2 are two solutions of a linear differential equation, then they are linearly
independent if and only if their Wronskian is nonzero. The simple example of this question shows that this is

not true for general functions that are not the solutions of some differential equation.

(1) Check carefully that if (¢) = t*[t| then df/dt = 3t[t|. This is easy when ¢ # 0. You will have to use the

formal definition of derivative at ¢ = 0.
(2) Let
f1(8) =t and fo(t) = 1>,

Show that although these two functions are linearly independent on R, their Wronskian is identically

Zero.

Solution

When ¢ > 0, t2[t| = 3 and df/dt = 3t* = 3t|t|. Likewise, when < 0, t?|t| = —t3 and df/dt = -3t = 3t|¢t|. When
t=0,
£(0) =1i

h—0

_ 2
m f(h) - 1(0) = lim il = lim hlh| = 0.

h h—-0 h h—0
Therefore df/dt = 3tt|.

For the second part,

2

3 30 = 3¢t - 3t*t| = 0.

W{fif2](t) =

(They are clearly independent.)

12 Homogeneous 2"-Order DEs with Constant Coeff.

Problem 12.2

If the roots of the auxiliary equation are k; >0 and —ks < 0 then the solution is

x(t) = AeFit 4 Bekat,



Intro to ODE Part II Exercises: Chapter 12 YQL

For most choices of initial conditions
z(0) = zo and £(0) = yo

we will have z(t) - +oo as t - co. However, there are some special initial conditions for which z(t) — 0 as

t — oco. Find the relationship between xy and yg that ensures this.

Solution

kit

For any nonzero A, the term Ae*'* grows exponentially, and Be *2* has no way to offset this. Therefore

if (t) - 0 then A = 0. Now we solve the initial condition problem
x(t) = Be %" with 2(0) = zo and 2(0) = yo.
This gives

B= Zo
= koxo + yo = 0 being a necessary condition to prevent x(¢) blowing up.

—kgB =%Yo0

Problem 12.3

Solutions of linear equations with constant coefficients cannot blow up in finite time; it follows that their

solutions exist for all ¢ € R. To see this, we will consider
&+ pi +qx =0 with 2(0) = 2o and £(0) = yo

for t > 0 (a similar argument applies for ¢ < 0). By setting y = &, we can rewrite this as a coupled pair of first

order equations

Show that
1d
@ ) = -azy-py
and hence that

d
&(332 +y%) < (L+lgl + 2l (2 + ).
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Use the result of Exercise 9.7 to deduce that, for ¢ > 0,
2(1)” +y(t)* < (2(0)% +y(0)*)eal*2Ipl0),

showing that finite-time blowup is impossible. [Hint: zy < (2% +y?)/2.]

(The same argument works, essentially unchanged, for
Z+p(t)z+q(t)r=0

provided that |p(¢t) <p| and |q(t)| < g for all t e R.)

Solution

Straightforward computation...

%%(zQ + y2) = %(sz +2y7)
=T + Yy
=2y +y(-py - qx)
=azy(1-q) - py’
<ay(1+ql) + Iply?

1
< 5(962 +y2)(1+q]) + Iply?

1
< [(2® +y*)(1+]a)] + Iplz® + [ply”

1
=5 (1+al+2lp)) (@® +y°).

Exercise 9.7 states that
dx

dt
Letting a := 1 + |q| + 2|p| and ¢ := 0, we have

— <ar = x(t) <x(s)e™™ for any t,s.

(first step done)

(Cauchy)

(second step done)

2(t)? +y(t)? < (2(0)? + y(0)?)eHH1ad+2PDE 55 desired.
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13 Oscillations
Problem 13.2

The acceleration due to gravity in fact depends on the distance R from the center of the Earth: g = GM/R?,
where M is the mass of the Earth and G Newton’s gravitational constant. Show that the period of oscillation

of a pendulum will increase as it is taken higher.

Solution

The ideal pendulum oscillates with period 2m+\/L/g o< R. One-liner isn’t it?

Problem 13.4

The buoyancy force on an object is equal to the weight of water that it displaces. If an object has mass M
and displaces a volume V of water then the forces on it are Mg — Vg, in units for which the density of water
is 1.

A bird of mass m is sitting on a cylindrical buoy of density p, radius R, and height h, which is floating at
rest. How much of the buoy lies below the surface?

The bird flies away. Show that the buoy now bobs up and down, with the amount below the surface
oscillating about ph with period QWW and amplitude m /7 R%.

Solution

Initially, without the bird, the buoy is floating with height ph under water: check that, while with ph
under water, the buoyancy force is 1- g - 7R%ph whereas the buoy’s weight is TR?h - p-g. They are indeed
equal and the buoy is stationary. To simplify notations we will now denote the mass of buoy as M. Thus
M = R?ph.

When the bird comes, the total weight of the buoy-bird combo is M +m. Let x(t) be the function that
describes the depth to which the buoy is immersed at time ¢. It follows that

M+m

z(0)7R?*g = (M +m)g = z(0) = I

After the bird left, the motion of buoy can be described by the differential equation

Y F=Mi = Mg-nR%*gx = nR?g(ph - ).
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The equilibrium is achieved when & = 0. Therefore setting & = 0 gives x = ph, i.e., the buoy oscillates about

depth of ph. Now if we define y := x — ph and “shift” the center of oscillation to the origin, we have

Mi = Mij=-mR*qy = Mij+nR>qy =0,

kt

a homogeneous equation. Setting the solution as y = ce™ we get the auxiliary equation

2
ME2 +mR2g =0 = j2=-"09 __ 9
M ph

Therefore k = +i\/g/ph = iw and the solution is of form
y(t) = Acoswt + Bsinwt.

Now we need to plug in the initial conditions. At ¢ =0 we know y(0) = (0) — ph = m/7R?. We also know
that the buoy starts from stationary so y’(0) = 0. Hence

A=m/nR?
wBcos=0 =— B=0

and y(t) = mcoswt/(mR?). We conclude that

m [y
t) = ——= —1 h.
z(t) s cos( oh )+p

It all becomes clear now that z(¢) indeed oscillates about ph with period 2m\/ph/g and amplitude m/mR2.

Problem 13.6

A right circular cone, of height h, density p, and with base radius R, is placed point downward in a lake.

Assuming the apex remains point vertically downwards, show that if the cone is submerged to depth x then

j_g_(x)%
~o-(3) 2.

(You need not solve this equation.) At equilibrium how far is the cone submerged?

Solution

1
On one hand the weight of the cone is given by §7TR2hpg. On the other hand, the buoyancy force is
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1 (zR\?
§7r(xh ) xg. Therefore 2
1 1 1
ZF = gwRthfi = gszhpg— gw(%) g

which simplifies to
3

T . (x)gg
g =—=>T=9g-|-) =.
p

hpi:hpg—ﬁ N

At equilibrium we would have & =0, so

Problem 13.7

A dashpot is a device designed to add damping to a system, consisting essentially of a plunger in a cylinder
of liquid or gas. It produces a resisting force proportional to the velocity, precisely the kind of damping that
we used in our model

ma + ud + kx =0, (2)

with g indicating the “strength” of the dashpot. Dashpots are used in a variety of applications, for example,
cushioning the opening mechanism on a tape recorder, or in car shock absorbers. A mass-spring-dashpot
system consists of a mass attached to a spring and a dash- pot, and is shown in the figure. A weight of mass
10 kg is attached to a spring with spring constant 5, and to a dashpot of strength p. How strong should the
dashpot be to ensure that the system is over-damped? What would the period of oscillations be if p = 147

Fig. 13.9. A mass-spring-dashpot system.

Solution

Recall that the auxiliary equation needs to have no real root for the system to be over-damped, in this
case (2> V4-5-10 = 24/50.

For the second part, if m = 10, = 14, and k = 5, assuming the solution is of form z(t) = ce**, we have

-T+1
10

10k* + 14k +5=0 = k1o =
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Therefore the general solution is
z(t) = "0 [Acos(0.1¢) + Bsin(0.1¢)]

which gives a period of 207.

Problem 13.9

In the case of critical damping (see Section 13.3), the general solution of
F+ A +w?r=0

is of the form
z(t) = (A + Bt)e M2

Show that if AA < 2B then z(t) increases initially, reaching its maximum value at

2 A
t=2-=.
A B

Solution

More computation...
z(t) = —%Ae’”/2 + Be M2 - %tBe’)‘t/2
S (B _ %(A ; Bt))
- %e’)‘t/Q(QB ~ M - ABt).

Therefore if AA < 2B we have
1
#(0) = —e (2B - AA +0) > 0.
2 N—

positive

Since #(t) is strictly decreasing, when 2B — AA = ABt, i.e., when ¢ =

>
|
WS

reaches its maximum.

(assuming B, X # 0), z(t)
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14 Inhomogeneous Second Order Linear Equations

Problem 14.1.3

Find the general solution to

F+d-2x=3e"

and also find the solution with z(0) =3 and 4(0) = 0.

Solution

We first need to find the complementary function, i.e., the solutions of
T+2—-2x=0.
“Guessing”  would be of form e** gives
E2eM + keFt —2eF = (K2 + k-2)ef =0 = K*+k-2=(k-1)(k+2) =0,
and so z,(t) = Ae' + Be™!. Now for the particular integral we “guess” it’s of form Ce™. Then

‘(Ep = Ceit .. . —t —t
= &, +Tp—2x,=-2Ce" =3e™".

ip=-Ce™*
Therefore C = -3/2, the particular solution is x, = —3e™*/2, and the general solution is

z(t) = Ae’ + Be ' - ge_t.

Now plug in the initial conditions:

2(0)=3 = A+B=45 A=25 5,
= :>a:(t):§e +2e

i(0)=0 = A-2B=-15 B=2

2t 3 4

Problem 14.1.4

Find the general solution to

2

Z +w*z =sin(at) where o # w.

Also find the solution with 2(0) =6 and #(0) = 0.
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Solution

Again, for the complementary function, we “guess” it’s of form e**. Then
k2ekt 4 w2kt = (B2 +w?)ef =0 = k*+w? =0 = k= zwi.

Therefore xp(t) = Acos(wt) + Bsin(wt). Now we “guess” the particular integral is of form

Csin(at) + D cos(at). Then its second derivative is —a?(C'sin(at) + D cos(at)). Therefore

1

—a?

(w? - a?)(Csin(at) + Dcos(at)) = sin(at) — w
D=0

2

and thus the general solution is

i t
x(t) = Acos(wt) + Bsin(wt) + 81;1(04 )
w? -«
Now plug in the initial conditions:
2(0)=A=6
« @
£(0) =wB+———-=0 B=——7—
#(0)=w w? - a? - w(w? - a?)

and so the solution to this initial condition problem is

wsin(at) — asin(wt)

z(t) = 6cos(wt) + w(@? —a?)

Problem 14.1.7

Now find the general solution to

i +w?x = sin(at) but with a = w.

10
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Solution

The complementary function is still 2, (t) = Acos(wt) + Bsin(wt). Now that sin(wt) = sin(at), our

“guess” for particular integral becomes Ctsin(at) + Dt cos(at). Then
&p = Ctacos(at) + Csin(at) — Dtasin(at) + D cos(at)
and

i, = ~Cta®sin(at) + Cacos(at) + Cacos(at) — Dta® cos(at) — Dasin(at) — Dasin(at)
= 2Cacos(at) — 2Dasin(at) — Cta® sin(at) — Dta? cos(at).
Therefore
i, +w?r, = 2Cacos(at) — 2Dasin(at) = sin(at)

which gives C'=0 and D = -1/2a, so the general solution is

t cos(wt)

2(p) = Acos(wt) + Bsin(wt) - — >

15 Resonance

Problem 15.1

For a # w show that the solution of the equation
& +w?x = cos(at)

with 2(0) =%(0) =0 is
1

W2 — a2

a(t) =

(cos(at) — cos(wt)).

11
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Solution

First, the complementary function to i + w?x = 0 is provided by x,(t) = Acos(wt) + Bsin(wt). Now,
for the particular integral, we “guess” that it is of form z,(t) = C cos(at) [no need to include a term
Dsin(at) because & does not appear in the equation]. Then

&, = —Casin(at)

= i, +wr, = O(w? - a?) cos(at).
&, = —Ca? cos(at)

It follows that C = 1/(w? - a?) and so the general solution is

cos(at)

z(t) = Acos(wt) + Bsin(wt) + —
w

—a2
Plugging in 2(0) = 0 gives A+ 1/(w? -a?) =0 == A =-1/(w? - a?). Plugging in ©(0) = 0 gives

asin(at)

—Awsin(wt) + Bw cos(wt) + L =Bw=0 = B=0.

t=0

Therefore the solution to the given initial conditions is

1
z(t) = ——— (cos(at) - cos(wt)), as stated.
w? -«

Problem 15.2

Use the double angle formulae
cos(0 + @) = cos 6 cos ¢ F sin @ sin ¢
to find an expression for cosx —cosy as a product of two sine functions, and hence the solution to the previous

2 . w+a)ty . w-a)t
()5

If « is close to w then |w + a| > |w - al; one of the two terms oscillates much faster than the other. A graph

problem becomes

of such an expression when w =1 and « = 0.8 is shown below. The periodic variation of the amplitude of the
basic oscillation is known as beating. You can hear this when, for example, two flutes play slightly out of

tune with each other.

12
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0.8 / b
06 / \ , \
04 / \

0.2

Solution

Simple:
cos(x +y) = cosxcosy —sinzsiny
cos(x —y) = coszcosy +sinzsiny

Letting at = x —y and wt = x + y gives

x=(w+a)t/2

y= (-2

Problem 15.3

= cos(xz —y) —cos(x +y) =2sinxsiny.

2

= x(t) = 2 % o2 sin((w ;a)t)sin((w_a)t).

When « = w show that the solution of 15.1 with z(0) = #(0) =0 is

(1)

Also recover this solution from by letting ¢ - w (« # w) in 15.1’s solution and using L’Hépital’s rule.

_ tsin(wt)

2w

13
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Solution

Even simpler:

9 Tcos(at) - cos(wt)]

. 1 . Pa
il_I)I‘lu m(cos(at) —cos(wt)) = il_)n; % 7~ o?]
- lim —tsin(at)
asw  —2a
_ tsin(wt)
2w

[Why?]

Problem 15.4

A model for the vibrations of a wine glass is
P+ +w’r =0,

where A\ and w are constants. Suppose that when struck the glass vibrates at 660 Hz. Show that
V4w? — A2 = 26407.

If it takes about 3 seconds for the sound to die away, and this happens when the original vibrations have
reduced to 1/100 of their initial level, show that

A\ o 2log 1007
3

and hence that A = 3.07 and w = 4.15-10% (to 3 significant figures).

The glass can stand deforming only to x ~ 1. A pure tone at 660 Hz is produced at D decibels and aimed
at the glass, forcing it at its natural frequency, so that the vibrations are now modelled by

1 0.1D-8
F+ A+ wir = — cos(1320m)t.
How loud should the sound be in order to shatter the glass? (The strange factor in front of the forcing

produces roughly the correct volume level.)

14
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Solution

“Guessing” that x(t) is of form e* gives

VIAZ - 402

H+Ak+w2:0:=>k:-5i
2 2

Since we are given that the glass vibrates, this must be an under-damping and the second term must be

imaginary. Then
k 42_)\2 42_)\2 42_ 2
R R [A (th) + Bsin (tW)]

Tt follows that the frequency is given by (V4w? - A2/2)/27 = 660 Hz, and so V4w? — A2 = 26407, as desired.

To reduce the magnitude to 1/100 in 3 seconds, we want

e%MQZQL::3_§5zm(;L)::>A:2mlm,
100 2 100 3

and plugging this into V4w? — A2 = 26407 gives w = 4.15-103.

The text provides the derivation of finding the particular integral of

2

I+ At +w x = acos(at)

and its magnitude, but nevertheless I'd like to derive it on my own one more time. “Guessing” that the

particular integral is of form z,(t) = C'sin(at) + D cos(at) we get
&p = Caccos(at) — Dasin(at)
i, = —Ca?sin(at) — Da? cos(at)

and

&+ \i +w?z = acos(at) = [-Ca? = ADa + Cw?]sin(at) + [-Da? + \Ca + Dw?] cos(at).

Solving the equation gives

C(w?-a?) = A\Da P-a?
( ) _, |Cw-a%) (w-a®)=a-ACa — C=— (21)\2a 2
D(w? -a?) =a-ACa Aa e
Thus P-a?
a o a(w” ~a)
C= D=
(@ -2+ (ha) 7T (W2 a?)? 4 (a)?

15
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and the particular integral is given by

ala . a(w? - a?)
xp(t) = (@ o)+ (a)? sin(at) + (@ = 0D+ (ha)? cos(at).
Since
X cos(at) +Ysin(at) =VX2+Y?2 X sin(at) + N cos(at)
VX2+Y?2 VX2+Y2
| |
sin ¢ cos ¢

=V X2 +Y?2(sin¢sin(at) + cos ¢ cos(at))
=VX2+Y2cos(at — ¢),

the amplitude of z,(¢) is

T (ara)? + a?(w? — a?)? _ a
A i (=R e oY) ) By o e p Yo ol

Back to the question: here a = 10%1P78/3 X\ = 3.07, w = 4150, and « = 13207. We want to find D such that

the amplitude of the oscillation is 1, i.e.,

100.1D78 1
3 /(41502 - 1320272)2 + (3.07 - 13207)2

=1 = D~ 129 dB.

16 Higher Order Linear Equations

Problem 16.1.4

Find the general solution to

16
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Solution

We first solve for the complementary function by “guessing” x(t) is for form e**. Then the auxiliary
equation gives

E*=5k?+4=0 = (K*-4)(k*-1)=0.

Therefore the complementary function is
zp(t) = Ae* + Be™ + Ce' + De™".

For the particular integral, since e’ is already part of the complementary solution we “guess” it’s now

of form x,(t) = Kte'. Then
i, = K(t+1)e', &, = K(t+2)e', ¥, = K(t+3)e", @, = K(t+4)e".

Therefore the original equation becomes

1
[K(t+4) -5K(t+2)+4Kt]e' = ¢! — K:—6

and the general solution is

t
z(t) = Ae* + Be™®' + Ce' + De™" - t%.

Problem 16.2 (partial)

Deduce that, for fi, fo, and f3 on an interval I, if the Wronskian

fi f2 f3

dfi  dfe  dfs
Wit fo. 100 = "¢t @&t “ar

d?fy d*fs d*fs
d¢? dt? dt?

is nonzero for some t € I then fi, fo, and f3 are linearly independent.

17
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Solution

Denote the matrix by W(t) so that det[W(t)] = W|[f1, f2, f3](t). Suppose W[ f1, f2, f3](to) # O.
Then the matrix W (tg) is invertible. Solving W (ty)cx = 0 gets easy:

aq 0 Qi of |0
W(to) [az|=[0] = |az[=[W(to)] " |0|=]0].
Qas 0 Qs 0 0
Therefore
aq
[fl J2 f3] az|=0 = a1 =az=a3=0,
e%}

and thus f1, f2, and f3 are linearly independent.

18
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