
Intro to ODE Part II Exercises: Chapter 11 YQL

11 Second Order Linear Equations: General Theory

Problem 11.2

Show that the Wronskian of two solutions x1(t) and x2(t) of the second order differential equation

d2x

dt2
+ p1(t)

dx

dt
+ p2(t)x = 0 (1)

satisfies
Ẇ (t) = −p1(t)W (t).

[Hint: write W (t) = x1(t)ẋ2(t) − x2(t)ẋ1(t), differentiate, and use the fact that x1(t) and x2(t) satisfy the
equation above.] Deduce either W (t) = 0 for all t or W (t) ≠ 0 for all t.

Solution

Differentiating W (t) = x1(t)ẋ2(t) − x2(t)ẋ1(t) with respect to t gives

Ẇ (t) = x1
d2x2

dt2
+ dx1

dt

dx2

dt
− x2

d2x1

dt2
− dx1

dt

dx2

dt

= x1[−p1(t)
dx2

dt
− p2(t)x2] − x2[−p1(t)

dx1

dt
− p2(t)x1]

= −p1(t)[x1
dx2

dt
+ x2

dx1

dt
]

= −p1(t)W (t).

Here we have acquired the differential equation

Ẇ (t) + p1(t)W (t) = 0.

The integrating factor is I(t) = exp(∫ p1(t) dt) and so

I(t)Ẇ (t) + I(t)p1(t)W (t) = 0
d

dt
[I(t)W (t)] = 0

W (t) = Ce− ∫ p1(t) dt.

Since eI(t) is never zero, either C = 0 Ô⇒ W (t) = 0 for all t or C ≠ 0 Ô⇒ W (t) ≠ 0 for all t.
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Problem 11.3

We have seen that if x1 and 2 are two solutions of a linear differential equation, then they are linearly
independent if and only if their Wronskian is nonzero. The simple example of this question shows that this is
not true for general functions that are not the solutions of some differential equation.

(1) Check carefully that if (t) = t2∣t∣ then df/dt = 3t∣t∣. This is easy when t ≠ 0. You will have to use the
formal definition of derivative at t = 0.

(2) Let
f1(t) = t2∣t∣ and f2(t) = t3.

Show that although these two functions are linearly independent on R, their Wronskian is identically
zero.

Solution

When t > 0, t2∣t∣ = t3 and df/dt = 3t2 = 3t∣t∣. Likewise, when < 0, t2∣t∣ = −t3 and df/dt = −3t2 = 3t∣t∣. When
t = 0,

ḟ(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0

h2∣h∣
h
= lim

h→0
h∣h∣ = 0.

Therefore df/dt = 3t∣t∣.
For the second part,

W [f1f2](t) =
RRRRRRRRRRRRR

t2∣t∣ t3

3t∣t∣ 3t2

RRRRRRRRRRRRR
= 3t4∣t∣ − 3t4∣t∣ = 0.

(They are clearly independent.)

12 Homogeneous 2nd-Order DEs with Constant Coeff.

Problem 12.2

If the roots of the auxiliary equation are k1 > 0 and −k2 < 0 then the solution is

x(t) = Aek1t +Be−k2t.
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For most choices of initial conditions

x(0) = x0 and ẋ(0) = y0

we will have x(t) → ±∞ as t → ∞. However, there are some special initial conditions for which x(t) → 0 as
t→∞. Find the relationship between x0 and y0 that ensures this.

Solution

For any nonzero A, the term Aek1t grows exponentially, and Be−k2t has no way to offset this. Therefore
if x(t)→ 0 then A = 0. Now we solve the initial condition problem

x(t) = Be−k2t with x(0) = x0 and ẋ(0) = y0.

This gives

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B = x0

−k2B = y0
Ô⇒ k2x0 + y0 = 0 being a necessary condition to prevent x(t) blowing up.

Problem 12.3

Solutions of linear equations with constant coefficients cannot blow up in finite time; it follows that their
solutions exist for all t ∈ R. To see this, we will consider

ẍ + pẋ + qx = 0 with x(0) = x0 and ẋ(0) = y0

for t ⩾ 0 (a similar argument applies for t ⩽ 0). By setting y = ẋ, we can rewrite this as a coupled pair of first
order equations

ẋ = y

ẏ = −py − qx.

Show that
1

2

d

dt
(x2 + y2) = (1 − q)xy − py2

and hence that
d

dt
(x2 + y2) ⩽ (1 + ∣q∣ + 2∣p∣)(x2 + y2).
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Use the result of Exercise 9.7 to deduce that, for t ⩾ 0,

x(t)2 + y(t)2 ⩽ (x(0)2 + y(0)2)e(1+∣q∣+2∣p∣t),

showing that finite-time blowup is impossible. [Hint: xy ⩽ (x2 + y2)/2.]
(The same argument works, essentially unchanged, for

ẍ + p(t)ẋ + q(t)x = 0

provided that ∣p(t) ⩽ p ∣ and ∣q(t)∣ ⩽ q for all t ∈ R.)

Solution

Straightforward computation...

1

2

d

dt
(x2 + y2) = 1

2
(2xẋ + 2yẏ)

= xẋ + yẏ

= xy + y(−py − qx)

= xy(1 − q) − py2 (first step done)

⩽ xy(1 + ∣q∣) + ∣p∣y2

⩽ 1

2
(x2 + y2)(1 + ∣q∣) + ∣p∣y2 (Cauchy)

⩽ 1

2
[(x2 + y2)(1 + ∣q∣)] + ∣p∣x2 + ∣p∣y2

= 1

2
(1 + ∣q∣ + 2∣p∣) (x2 + y2). (second step done)

Exercise 9.7 states that
dx

dt
⩽ ax Ô⇒ x(t) ⩽ x(s)ea(t−s) for any t, s.

Letting a ∶= 1 + ∣q∣ + 2∣p∣ and t ∶= 0, we have

x(t)2 + y(t)2 ⩽ (x(0)2 + y(0)2)e(1+∣q∣+2∣p∣)t as desired.
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13 Oscillations

Problem 13.2

The acceleration due to gravity in fact depends on the distance R from the center of the Earth: g = GM/R2,
where M is the mass of the Earth and G Newton’s gravitational constant. Show that the period of oscillation
of a pendulum will increase as it is taken higher.

Solution

The ideal pendulum oscillates with period 2π
√
L/g ∝ R. One-liner isn’t it?

Problem 13.4

The buoyancy force on an object is equal to the weight of water that it displaces. If an object has mass M
and displaces a volume V of water then the forces on it are Mg − V g, in units for which the density of water
is 1.

A bird of mass m is sitting on a cylindrical buoy of density ρ, radius R, and height h, which is floating at
rest. How much of the buoy lies below the surface?

The bird flies away. Show that the buoy now bobs up and down, with the amount below the surface
oscillating about ρh with period 2π

√
ρh/g and amplitude m/πR2.

Solution

Initially, without the bird, the buoy is floating with height ρh under water: check that, while with ρh

under water, the buoyancy force is 1 ⋅ g ⋅ πR2ρh whereas the buoy’s weight is πR2h ⋅ ρ ⋅ g. They are indeed
equal and the buoy is stationary. To simplify notations we will now denote the mass of buoy as M . Thus
M ∶= πR2ρh.

When the bird comes, the total weight of the buoy-bird combo is M +m. Let x(t) be the function that
describes the depth to which the buoy is immersed at time t. It follows that

x(0)πR2g = (M +m)g Ô⇒ x(0) = M +m
πR2

.

After the bird left, the motion of buoy can be described by the differential equation

∑F =Mẍ =Mg − πR2gx = πR2g(ρh − x).
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The equilibrium is achieved when ẍ = 0. Therefore setting ẍ = 0 gives x = ρh, i.e., the buoy oscillates about
depth of ρh. Now if we define y ∶= x − ρh and “shift” the center of oscillation to the origin, we have

Mẍ =Mÿ = −πR2gy Ô⇒ Mÿ + πR2gy = 0,

a homogeneous equation. Setting the solution as y = cekt we get the auxiliary equation

Mk2 + πR2g = 0 Ô⇒ k2 = −πR
2g

M
= − g

ρh
.

Therefore k = ±i
√
g/ρh ∶= iω and the solution is of form

y(t) = A cosωt +B sinωt.

Now we need to plug in the initial conditions. At t = 0 we know y(0) = x(0) − ρh =m/πR2. We also know
that the buoy starts from stationary so y′(0) = 0. Hence

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A =m/πR2

ωB cos = 0 Ô⇒ B = 0

and y(t) =m cosωt/(πR2). We conclude that

x(t) = m

πR2
cos(

√
g

ρh
t) + ρh.

It all becomes clear now that x(t) indeed oscillates about ρh with period 2π
√
ρh/g and amplitude m/πR2.

Problem 13.6

A right circular cone, of height h, density ρ, and with base radius R, is placed point downward in a lake.
Assuming the apex remains point vertically downwards, show that if the cone is submerged to depth x then

ẍ = g − (x
h
)
3 g

ρ
.

(You need not solve this equation.) At equilibrium how far is the cone submerged?

Solution

On one hand the weight of the cone is given by 1

3
πR2hρg. On the other hand, the buoyancy force is
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1

3
π (xR

h
)
2

xg. Therefore

∑F = 1

3
πR2hρẍ = 1

3
πR2hρg − 1

3
π (xR

h
)
2

xg

which simplifies to

hρẍ = hρg − x3

h2
g Ô⇒ ẍ = g − (x

h
)
3 g

ρ
.

At equilibrium we would have ẍ = 0, so

g = (x
h
)
3 g

ρ
Ô⇒ x = h 3

√
ρ.

Problem 13.7

A dashpot is a device designed to add damping to a system, consisting essentially of a plunger in a cylinder
of liquid or gas. It produces a resisting force proportional to the velocity, precisely the kind of damping that
we used in our model

mẍ + µẋ + kx = 0, (2)

with µ indicating the “strength” of the dashpot. Dashpots are used in a variety of applications, for example,
cushioning the opening mechanism on a tape recorder, or in car shock absorbers. A mass-spring-dashpot
system consists of a mass attached to a spring and a dash- pot, and is shown in the figure. A weight of mass
10 kg is attached to a spring with spring constant 5, and to a dashpot of strength µ. How strong should the
dashpot be to ensure that the system is over-damped? What would the period of oscillations be if µ = 14?

Solution

Recall that the auxiliary equation needs to have no real root for the system to be over-damped, in this
case µ ⩾

√
4 ⋅ 5 ⋅ 10 = 2

√
50.

For the second part, if m = 10, µ = 14, and k = 5, assuming the solution is of form x(t) = cekt, we have

10k2 + 14k + 5 = 0 Ô⇒ k1,2 =
−7 ± i
10

.
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Therefore the general solution is

x(t) = e7t/10 [A cos(0.1t) +B sin(0.1t)]

which gives a period of 20π.

Problem 13.9

In the case of critical damping (see Section 13.3), the general solution of

ẍ + λẋ + ω2x = 0

is of the form
x(t) = (A +Bt)e−λt/2

Show that if λA < 2B then x(t) increases initially, reaching its maximum value at

t = 2

λ
− A

B
.

Solution

More computation...

ẋ(t) = −λ
2
Ae−λt/2 +Be−λt/2 − λ

2
tBe−λt/2

= e−λt/2 (B − λ

2
(A +Bt))

= 1

2
e−λt/2(2B − λA − λBt).

Therefore if λA < 2B we have
ẋ(0) = 1

2
e−1(2B − λA
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

positive

+0) > 0.

Since ẋ(t) is strictly decreasing, when 2B − λA = λBt, i.e., when t = 2

λ
− A

B
(assuming B,λ ≠ 0), x(t)

reaches its maximum.
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14 Inhomogeneous Second Order Linear Equations

Problem 14.1.3

Find the general solution to
ẍ + ẋ − 2x = 3e−t

and also find the solution with x(0) = 3 and ẋ(0) = 0.

Solution

We first need to find the complementary function, i.e., the solutions of

ẍ + ẋ − 2x = 0.

“Guessing” x would be of form ekt gives

k2ekt + kekt − 2ekt = (k2 + k − 2)ekt = 0 Ô⇒ k2 + k − 2 = (k − 1)(k + 2) = 0,

and so xh(t) = Aet +Be−2t. Now for the particular integral we “guess” it’s of form Ce−t. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẍp = Ce−t

ẋp = −Ce−t
Ô⇒ ẍp + ẋp − 2xp = −2Ce−t = 3e−t.

Therefore C = −3/2, the particular solution is xp = −3e−t/2, and the general solution is

x(t) = Aet +Be−2t − 3

2
e−t.

Now plug in the initial conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(0) = 3 Ô⇒ A +B = 4.5

ẋ(0) = 0 Ô⇒ A − 2B = −1.5
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A = 2.5

B = 2
Ô⇒ x(t) = 5

2
et + 2e−2t − 3

2
et.

Problem 14.1.4

Find the general solution to
ẍ + ω2x = sin(αt) where α ≠ ω.

Also find the solution with x(0) = 6 and ẋ(0) = 0.
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Solution

Again, for the complementary function, we “guess” it’s of form ekt. Then

k2ekt + ω2ekt = (k2 + ω2)ekt = 0 Ô⇒ k2 + ω2 = 0 Ô⇒ k = ±ωi.

Therefore xh(t) = A cos(ωt) +B sin(ωt). Now we “guess” the particular integral is of form
C sin(αt) +D cos(αt). Then its second derivative is −α2(C sin(αt) +D cos(αt)). Therefore

(ω2 − α2)(C sin(αt) +D cos(αt)) = sin(αt) Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C = 1

ω2 − α2

D = 0

and thus the general solution is

x(t) = A cos(ωt) +B sin(ωt) + sin(αt)
ω2 − α2

.

Now plug in the initial conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(0) = A = 6

ẋ(0) = ωB + α

ω2 − α2
= 0 Ô⇒ B = − α

ω(ω2 − α2)

and so the solution to this initial condition problem is

x(t) = 6 cos(ωt) + ω sin(αt) − α sin(ωt)
ω(ω2 − α2)

.

Problem 14.1.7

Now find the general solution to

ẍ + ω2x = sin(αt) but with α = ω.
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Solution

The complementary function is still xh(t) = A cos(ωt) +B sin(ωt). Now that sin(ωt) = sin(αt), our
“guess” for particular integral becomes Ct sin(αt) +Dt cos(αt). Then

ẋp = Ctα cos(αt) +C sin(αt) −Dtα sin(αt) +D cos(αt)

and

ẍp = −Ctα2 sin(αt) +Cα cos(αt) +Cα cos(αt) −Dtα2 cos(αt) −Dα sin(αt) −Dα sin(αt)

= 2Cα cos(αt) − 2Dα sin(αt) −Ctα2 sin(αt) −Dtα2 cos(αt).

Therefore
ẍp + ω2xp = 2Cα cos(αt) − 2Dα sin(αt) = sin(αt)

which gives C = 0 and D = −1/2α, so the general solution is

x(p) = A cos(ωt) +B sin(ωt) − t cos(ωt)
2ω

.

15 Resonance

Problem 15.1

For α ≠ ω show that the solution of the equation

ẍ + ω2x = cos(αt)

with x(0) = ẋ(0) = 0 is
x(t) = 1

ω2 − α2
(cos(αt) − cos(ωt)).
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Solution

First, the complementary function to ẍ + ω2x = 0 is provided by xh(t) = A cos(ωt) +B sin(ωt). Now,
for the particular integral, we “guess” that it is of form xp(t) = C cos(αt) [no need to include a term
D sin(αt) because ẋ does not appear in the equation]. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋp = −Cα sin(αt)

ẍp = −Cα2 cos(αt)
Ô⇒ ẍp + ω2xp = C(ω2 − α2) cos(αt).

It follows that C = 1/(ω2 − α2) and so the general solution is

x(t) = A cos(ωt) +B sin(ωt) + cos(αt)
ω2 − α2

.

Plugging in x(0) = 0 gives A + 1/(ω2 − α2) = 0 Ô⇒ A = −1/(ω2 − α2). Plugging in ẋ(0) = 0 gives

[−Aω sin(ωt) +Bω cos(ωt) + α sin(αt)
α2 − ω2

]
t=0
= Bω = 0 Ô⇒ B = 0.

Therefore the solution to the given initial conditions is

x(t) = 1

ω2 − α2
(cos(αt) − cos(ωt)), as stated.

Problem 15.2

Use the double angle formulae

cos(θ ± ϕ) = cos θ cosϕ ∓ sin θ sinϕ

to find an expression for cosx−cos y as a product of two sine functions, and hence the solution to the previous
problem becomes

2

ω2 − α2
sin((ω + α)t

2
) sin((ω − α)t

2
) .

If α is close to ω then ∣ω+α∣≫ ∣ω−α∣; one of the two terms oscillates much faster than the other. A graph
of such an expression when ω = 1 and α = 0.8 is shown below. The periodic variation of the amplitude of the
basic oscillation is known as beating. You can hear this when, for example, two flutes play slightly out of
tune with each other.
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Solution

Simple:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cos(x + y) = cosx cos y − sinx sin y

cos(x − y) = cosx cos y + sinx sin y
Ô⇒ cos(x − y) − cos(x + y) = 2 sinx sin y.

Letting αt = x − y and ωt = x + y gives

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = (ω + α)t/2

y = (ω − α)t/2
Ô⇒ x(t) = 2

ω2 − α2
sin((ω + α)t

2
) sin((ω − α)t

2
) .

Problem 15.3

When α = ω show that the solution of 15.1 with x(0) = ẋ(0) = 0 is

x(t) = t sin(ωt)
2ω

.

Also recover this solution from by letting a→ ω (α ≠ ω) in 15.1’s solution and using L’Hôpital’s rule.

13



Intro to ODE Part II Exercises: Chapter 15 YQL

Solution

Even simpler:

lim
α→ω

1

ω2 − α2
(cos(αt) − cos(ωt)) = lim

α→ω

∂
∂α
[cos(αt) − cos(ωt)]

∂
∂α
[ω2 − α2]

= lim
α→ω

−t sin(αt)
−2α

= t sin(ωt)
2ω

.

[Why?]

Problem 15.4

A model for the vibrations of a wine glass is

ẍ + λẋ + ω2x = 0,

where λ and ω are constants. Suppose that when struck the glass vibrates at 660 Hz. Show that

√
4ω2 − λ2 = 2640π.

If it takes about 3 seconds for the sound to die away, and this happens when the original vibrations have
reduced to 1/100 of their initial level, show that

λ = 2 log 100

3
,

and hence that λ = 3.07 and ω = 4.15 ⋅ 103 (to 3 significant figures).
The glass can stand deforming only to x ≈ 1. A pure tone at 660 Hz is produced at D decibels and aimed

at the glass, forcing it at its natural frequency, so that the vibrations are now modelled by

ẍ + λẋ + ω2x = 100.1D−8

3
cos(1320π)t.

How loud should the sound be in order to shatter the glass? (The strange factor in front of the forcing
produces roughly the correct volume level.)
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Solution

“Guessing” that x(t) is of form ekt gives

k2 + λk + ω2 = 0 Ô⇒ k = −λ
2
±
√
λ2 − 4ω2

2
.

Since we are given that the glass vibrates, this must be an under-damping and the second term must be
imaginary. Then

k = −k
2
± i
√
4ω2 − λ2

2
Ô⇒ x(t) = e−λt/2 [A cos(t

√
4ω2 − λ2

2
) +B sin(t

√
4ω2 − λ2

2
)] .

It follows that the frequency is given by (
√
4ω2 − λ2/2)/2π = 660 Hz, and so

√
4ω2 − λ2 = 2640π, as desired.

To reduce the magnitude to 1/100 in 3 seconds, we want

e−3λ/2 = 1

100
Ô⇒ −3λ

2
= ln( 1

100
) Ô⇒ λ = 2 ln 100

3
,

and plugging this into
√
4ω2 − λ2 = 2640π gives ω = 4.15 ⋅ 103.

The text provides the derivation of finding the particular integral of

ẍ + λẋ + ω2x = a cos(αt)

and its magnitude, but nevertheless I’d like to derive it on my own one more time. “Guessing” that the
particular integral is of form xp(t) = C sin(αt) +D cos(αt) we get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋp = Cα cos(αt) −Dα sin(αt)

ẍp = −Cα2 sin(αt) −Dα2 cos(αt)

and
ẍ + λẋ + ω2x = a cos(αt) = [−Cα2 − λDα +Cω2] sin(αt) + [−Dα2 + λCα +Dω2] cos(αt).

Solving the equation gives

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C(ω2 − α2) = λDα

D(ω2 − α2) = a − λCα
Ô⇒ [C(ω

2 − α2)
λα

] (ω2 − α2) = a − λCα Ô⇒ C = aλα

(ω2 − α2)2 + (λα)2
.

Thus
C = aλα

(ω2 − α2)2 + (λα)2
and D = a(ω2 − α2)

(ω2 − α2)2 + (λα)2

15
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and the particular integral is given by

xp(t) =
aλα

(ω2 − α2)2 + (λα)2
sin(αt) + a(ω2 − α2)

(ω2 − α2)2 + (λα)2
cos(αt).

Since

X cos(αt) + Y sin(αt) =
√
X2 + Y 2[ X√

X2 + Y 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sinϕ

sin(αt) + Y√
X2 + Y 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cosϕ

cos(αt)]

=
√
X2 + Y 2(sinϕ sin(αt) + cosϕ cos(αt))

=
√
X2 + Y 2 cos(αt − ϕ),

the amplitude of xp(t) is

√
C2 +D2 =

¿
ÁÁÀ(aλa)2 + a2(ω2 − α2)2
[(ω2 − α2)2 + (λα)2]

= a√
(ω2 − α2)2 + (λα)2

.

Back to the question: here a = 100.1D−8/3, λ = 3.07, ω = 4150, and α = 1320π. We want to find D such that
the amplitude of the oscillation is 1, i.e.,

100.1D−8

3
⋅ 1√
(41502 − 13202π2)2 + (3.07 ⋅ 1320π)2

= 1 Ô⇒ D ≈ 129 dB.

16 Higher Order Linear Equations

Problem 16.1.4

Find the general solution to
d4x

dt2
− 5d

2x

dt2
+ 4x = et.
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Solution

We first solve for the complementary function by “guessing” x(t) is for form ekt. Then the auxiliary
equation gives

k4 − 5k2 + 4 = 0 Ô⇒ (k2 − 4)(k2 − 1) = 0.

Therefore the complementary function is

xh(t) = Ae2t +Be−2t +Cet +De−t.

For the particular integral, since et is already part of the complementary solution we “guess” it’s now
of form xp(t) =Ktet. Then

ẋp =K(t + 1)et, ẍp =K(t + 2)et,
...
x p =K(t + 3)et,

....
x p =K(t + 4)et.

Therefore the original equation becomes

[K(t + 4) − 5K(t + 2) + 4Kt]et = et Ô⇒ K = −1
6

and the general solution is
x(t) = Ae2t +Be−2t +Cet +De−t − tet

6
.

Problem 16.2 (partial)

Deduce that, for f1, f2, and f3 on an interval I, if the Wronskian

W [f1, f2, f3](t) ∶=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

f1 f2 f3

df1
dt

df2
dt

df3
dt

d2f1
dt2

d2f2
dt2

d2f3
dt2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

is nonzero for some t ∈ I then f1, f2, and f3 are linearly independent.
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Solution

Denote the matrix by W (t) so that det[W (t)] = W [f1, f2, f3](t). Suppose W [f1, f2, f3](t0) ≠ 0.
Then the matrix W (t0) is invertible. Solving W (t0)α = 0 gets easy:

W (t0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ô⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [W (t0)]−1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore

[f1 f2 f3]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0 Ô⇒ α1 = α2 = α3 = 0,

and thus f1, f2, and f3 are linearly independent.
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