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Problem 1

Show that if E is a Hamel basis of a vector space V' then every v € V' has a unique representation as a linear

combination of elements of E. Moreover, show that if ¥ has n € N elements then
(1) every basis of V has n elements, and

(2) every linearly independent set consisting of n elements is a basis of V.

Solution

Suppose, for contradiction, that for some v € V' we have

V= Z age; = Z ﬁiei with ai,ﬂi EK,GZ' el

iely 1els

for some different index sets I, I c N, i.e., v can expressed as two different linear combinations of elements
of . Now if we define I = I; U I,
(07} leEIl Bi leEIg

o = | and f; = ,
0 otherwise 0 otherwise

we get

Z Q;e; = Zafei and Z Bie; = Zﬁ;er

iely iel iely el
It follows that
O=v-v=>) aje;—Bie; = (af - B} e
i€l iel
Since these e;’s are from E, they are still linearly independent, and hence o = 3] for all ¢ € I. Therefore
zelh, = a;#0 = af #+0 = [ +0 = i€ [y, and likewise i € [y = I € I;. Hence I; = I and

«; = B;. Thus v can only be spanned by a specific subset of E with specific coefficients.
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To show that if dim(V') =n < co == basis has n elements, we assume, for contradiction, that W = {w;} is
a basis with m # n elements. Since no other restrictions are imposed on £ and W, WLOG assume m > n.
Since E spans V', each w; € W can be written as a linear combination of e;’s. Now suppose we want to solve

m
the equation Z Biw; = 0. With E, we can rewrite this as
i=1

The middle matrix is short and wide, so its nullspace has dimension > m —n > 0 and thus the whole equation
has a nontrivials solution. This contradicts e;’s being linearly independent! Hence m > n is impossible.

Likewise, n > m is impossible, so we conclude that m = n.

Suppose we have linearly independent {v1,...,v,} but no linear combination of this set produces v* € V.
Then the new set {v1,...,v,,v*} is again linearly independent and it consists of n + 1 elements. This is

clearly a contradiction by the part above.

Problem 2

Show that if E is a linearly independent subset of a vector space V then there exists a Hamel basis of V'

containing E.

Solution

If dim(V') = n < oo then we can extend E to a basis. If E is already a basis then we are done. Otherwise
there exists some v; € V that cannot be expressed as a linear combination of elements of E. Hence E U {v; }
is again linearly independent. If this new set is a basis then we are again done; if not there exists some
vy € Exspan(Eu{v;}). Then Eu{vy,vs} is again linearly independent. We can proceed all the way till this
extended set contains precisely n elements. By the lemma we know a linearly independent set containing n
elements has to be a basis, and we are done.

(This proof also works for finite-dimensional V’s, so the previous paragraph becomes redundant.) Now
suppose V is infinite-dimensional. We know it has a Hamel basis E*. Define £ := EUE*. Let P:={F cV :
E c F c &, F linearly independent} and c as a partial order.

Claim: any arbitrary chain C' ¢ P has an upper bound defined by F := | J F;. Clearly E c F c £. On one
F;eC
hand, if we take any finite collection of elements of F, it entirely belongs to some F; € C' which is linearly

independent. Hence F is linearly independent and F € P. On the other hand, F; c F for all F}’s, so F is
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indeed an upper bound of C.
Going back to the main proof: since each chain has an upper bound, by Zorn’s lemma there exists a maximal

element F,.x € P. A maximally linearly independent subset of V' must be a Hamel basis, and we are done.

Problem 3

Show that T e L(X,Y") is injective if and only if ker(7T") = {0}.

Solution

For =, assume T is injective. Suppose ker(7) # {0}, then T'(z¢) = 0 for some nonzero zy € X.
Pick any x1 € X with T'(21) = (y1). By linearity we get T'(x1 + x¢) = T(21) + T(20) = T'(x1) whereas
1 + 29 # 1. This contradicts T’s injectivity.

For <=, assume ker(T") = {0} and suppose T'(x1) = T'(x3) for z1,z2 € X. It follows that

0=T(z1)-T(x2) =T (21 - 22) = 31 - 23 €ker(T) = z1 -2 =0.

Problem 4

Show that if T'e L(X,Y") then both ker(7") and im(7") are vector spaces.

Solution

Suppose 1,25 € ker(T') and A € K. Then T'(x1 +2z2) =T (x1) +T(x2) =0 = x1 +x2 € ker(T). Also,
T(Ax1) = AT(z1) =0. Hence ker(T') is a vector space.
On the other hand, suppose y1,y2 € im(7T) c Y and y; = T(x1),y2 = T'(x2) for some x1, 29 € X. Then

y1+y2 =T(x1) + T(x2) = T (21 +22) = 31 +y2 €im(T),

and

M1 = AT (x1) =T(Ax1) = Myp € im(T).
Hence im(T") is a vector space.

Problem 5

(1) Show that mP? < Y14 |z;|P < nmP for any n € N and p € [1, 00), where m := max |-
i=1,...,n
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Solution

Denote m by |x|. Then the inequalities are immediate since

n
mP = |z P < Z|xi|p+ |z |P < Z|33k|p =nmP.
ik i=1

(2) Deduce that for each n
n 1/p

lim (Z|xz|p) =m.
i=1

p—>00

Solution

Immediate by squeeze theorem: lim (mP)? = m and

p—)oo
lim (nm?)? = m lim [ ¥/n] = m.

p—>00 p—>00

It follows that lim (Z|xi|p)1/p must also be m.
p=ee i

(3) Show that if z € #! and € >0 then there exists N € N such that, for all p, we have

lzller —€ < (21, Zn)|ler < |x|er for all n > N.
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Solution
First thing to notice is that |(z1,...,2n)|n = Xisi|zs| 1 Tis1l@i| = 2] as n - co. Therefore
the sequence {a,} defined by a, = |(x1,...,2,)|e is a monotone increasing sequence that

converges to ||z]|¢».
Clearly when p = 1 the problem’s statement holds since x needs to be an absolutely convergent

sequence. Hence, given € > 0, there exists IV € N such that
n2N = |z|n —e<|[(z1,. ., 2)|e <|2]e,

ie.,

n
lzle =11, zn) o = Yolwil = Dlaal = 3 Jaal <e
i=1

i1 izn+1

If p>1 we have |z| e < |2[,. Then it follows that

lzller = | (x1y-- s 20)|er = |Z]er = | (21,520, 0,... ) |er
<0, ... i1, Tnsa, - - - )||ew (triangle inequality)
<0, ..., Tns1, Tnsa, - - )|
= Z |z;] <€,
isn+l
and so
n2N,p21l = |z|ew—e< (@1, 20) e < ||T]er,
as desired.

(4) Deduce that if 2 € £! then |z[¢= = lim |z|¢.
paoo
Solution

By (2) we know |(x1,...,2,)|e converges in p, and by (3) we see that it actually converges

uniformly with respect to p [whatever works for p = 1 works for p > 1 as well]. Clearly

[(z1,-..,2n)|ler converges with respect to n too. Then, by Moore-Goode Theorem* we have
lim |z[ e = lim [lim H(:cl,...,xn)ng] Z lim [m_ax|:£i|] =sup |z;| = |z gee
p—>00 p—>00 | n—>00 n—oo | 1<i<n i1
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Problem 6
Give another proof of the Holder’s inequality (i.e., not using Jensen’s),

Ifgler <1 flzelglre where p™' +q7" =1,

and prove the Minkowski’s inequality, i.e.,
IF+glee <[ flze +lglLe-
Proof: Holder

First normalize f and g by defining F := |f|/| f|rr and G :=|g|/|lg|L». It follows that |F|r» = |G|L» = 1. By

the convexity of exponential function we have

T oy
() e Lot
P g
Letting x := In(F?) and y := In(G?) gives
FP q
exp(E + y) =exp(In(FG))=FG< — + G—,
p q p q

Sol P, gl
[FTeelgler < plfTee " algle

Integrating gives

1 Ifgl L
FGdM:i[lfglduzi
fﬂ I flzellglze Jo Iflze gl e
and
FP GY 1 1 11
—+G—d,u:fprd,u-rfqudu:f.Ff:l.
ap q p Jo qJo » q
Hence
falo
Mgler 3 gl <1 Lo gl
Iflze gl za

and we’ve proven Holder’s inequality without using Jensen’s inequality.
Proof: Minkowski
First we need to verify whether f + g e LP(Q):

17+ gl = [17+gl du< [ 2max{ifl,Igh1” du<2? [ |f+1gl du= 221115 + lglhe) < oo.

Now back to proving Minkowski’s inequality. If p = 1 then by triangle inequality |f + g| < |f| + |g| we have

fQIf+g| du<f9|f|+lgl dp = | f+gler <|flelglzr-
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If p = oo then
Spi={z e Q:|f(x)| > | f|L=} and Sz :={z € Q:|g(z)| > [g] L=}

are null sets and so is their union. Hence
|[f (z) + g(@)| < |f (@) +1g(x)] = |f +glr= <[flr=+ gl
In the most common case where p € (1,00), we have
If + 915 = [1f+gP du= [ 1f+gPIf +gl dp
< [17 4911+ lgl) du
= 17+ gt dus [ 1F +gP gl dp
(Holder’s) < ([ flze + [glLe)IIf + 9P~ | 2a

1/q
- (HfHLpHglqu)( [1r+gle dﬂ)

The last integral evaluates to 0 if and only if f and g are both 0 p-a.e. If that is the case, then Minkowski’s
reduces to 0 < 0, trivial. Otherwise, we may divide by it. Since (p—1)g=(p—-1)-p/(p—1) = p, we get

fg|f+g|p du . o
([Q|f+g|(p—1)q d,u)l/q - (/;2|f+g|i’ d,u,)

Then it follows that Y
p
(f1r+gPan) =15+ gler <1710 + lgler.

hence we’ve shown Minkowski’s inequality.

Problem 7

Show that if u(2) < oo then LI(Q) c LP(Q2) whenever p < q. Moreover, given p € [1,00] find a function f €
LP(R™), with Lebesgue measure, such that f ¢ LI(R™) for any ¢ # p. [Consider f(z) := |z[~/?(1 +In?[z|)~'/

for p < 00.] This shows that there is no inclusion LP c LY when Q := R™.

Solution

The first part can be shown using Holder’s inequality. Suppose f € L1(Q), i.e., | f|Ls« < oo. Define g := 1.
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The case p = q is trivial; if not, by Hoélder’s inequality we have

I1£12, = L1771 dp

<( [ arpy du)p/q ([ du)l_p/q
(o (1o

= FIB, - p()' P/

< 00.

Hence f e LY(Q)) = f e LP(Q), i.e., LI(Q) c LP(Q).

For the second part, if p = co simply define f := 1. Clearly | f|r~ =1 whereas || f||z» = u(R™) = oo whenever

€[1,00). For p< oo, let f(x):=|z|P) (1 +In®|z|)-*/P). Then

J1sP du= [ 15 da

1
:/ ————dx
R [z]™ (1 +In"|z])
o0 1
T:f f i ldrdd
sr=1Jo (1 +1n°(r))

- [ [m%drde
sn=tJo  r(1+1In*(r))

o)

= 8,1 [arctan(In(r)) + C]

S o (n+1)/2 .
= _ = — (ee]
T T (n2)

r=0

and so f e LP(R™).

Now if g # p, we have

n-1

“du=5, foo r e
/;2|f| # ' Jo rnq/p(1+1n2(r))q/p

o 1 d
0 r”‘I/P*(”*l)(]_ o ]nz(r))Q/P "

If ¢ < p, then ng/p - (n-1) <1 and there exists € > 0 satisfying ng/p—(n-1) +e <1 and € # 1 [used in

L’Hépital later]. Then,

f ...dr>f L dr
0 1

) 1 ,rnq/p—(n—l)+e g
- fl pnafp=(n-1)+e rra/p=(n=1)(1 + In?(r))a/p "
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Notice that, since ng/p — (n—1) + € < 1, the integral f 1/7'""/”7(”’1)+€ dr diverges. On the other hand,
0

applying L’Hoépital’s rule to the second term twice gives

,rnq/p—(n—l)+e re

lim ——

r—oo (1 +1n”(r))a/P

i T (-2)
r>eo ] +In"(r) \ o0

H .. ere ( oo)
= lim =
r—oo 2Inr %)

li
TLIg an/p—(n—l)(]_ i lnz(r))q/p

Hence[ ...dr=o00 and f ¢ LY(R™) if ¢ < p.
1

If o0 > ¢ > p, we can find 0 < € < 1 such that ng/p—(n—-1) —e> 1. Then

o oo 1 ng/p—(n-1)-e
/ coodr= / . !
0 0

rna/p=(n-1)=€  .ng/p-(n-1) (1+ IDQ(T))q/p

1 1 1 7"_6
By Ry . .
0o rna/p-(n-1)-e 0 (1+1In®(r))alr

1
The first integral diverges since lim ————— = oo. The second integral also diverges since
zl0 rna/p—(n-1)—¢

=E —€ =E
r

lim = ~ lim 27“ > lim ;
20 (1+1n (r))q/p 20 (In (r))q/p 210 (In“(r))4

-t ey o)

ooy (20T

——z0  (2¢)!
2q times

1

Hence f ... dr diverges and f ¢ LI(R"™) if oo > ¢ > p, either.
0

If ¢ = oo, simply notice that

lim|f|P = lim —————— ~ lim ——
=0 ™0 rn(1+1n"(r)) ri0 In“(r)
—nr-"

21In(r)
o, nir"
= lim

rl0 2

H ..
= lim
rl0

= 0Q.

This means lirr(1)|f| = oo as well, and so ess sup|f| = ||f|r= = o0, i.e., f ¢ L= (R™).
xr—
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Problem 8

Show that ||+ |r» is @ norm on C([0,1]) for any p € [1,00], and that |« |y~ is the same as the “maximum
norm” || f|max = maxpg 13| f|. Moreover, show that if f, f,, € C([0,1]) for every n > 1 and | f, — f|max = 0,
ie., f, converges “uniformly” to f, then |f, = f|rr(0,1) = O for every p, ie., f, - f “in LP” and that

fu(x) = f(z) for every x € [0,1], i.e., f, = f “pointwise”.
Solution

For p < co, we show |+ ||» defines a norm by definition:

1
(1) Non-degeneracy: [0 |ff dz >0 = |f|%, >0 = |f|zr > 0. Furthermore, |f|zr =0 <=

[01|f|p dz =0 < |f|=0 for all z €[0,1] (since f is continuous).

(2) Absolute homogeneity:

= ([ srae) = (e [ aa) " = s

(3) Triangle inequality: immediate from Minkowski’s inequality.

Hence || - ||z» defines a norm on C([0,1]).

Since |f| is continuous and [0, 1] compact, it attains maximum at |f(m)| for some m € [0,1]. If the maximum

is 0 then f =0 and obviously esssup|f| =0 = 1[%af]<|f| Otherwise |f(m)| > 0. By the continuity of |f|, given
[0.1] ,

€ > 0 there exists § > 0 satisfying |f(m)| —e < |f(n)| < |f(m)] for all n € (m—-3§,m+ ) n[0,1]. Clearly this

interval has positive measure, so

esssuplf| =nf{b € R (v £(2) > 6)) = 0} 3 [ ().

)

On the other hand |f(m)| does satisfy this condition. Hence | f| L~ = esssup|f| =|f(m)|= r[réal>]<|f| = || f | max-

)

Now assume p < oo and f,, converges “uniformly” to f (if p = oo this entire statement becomes since | |

and | - |max are equivalent, as shown above). It follows that

T T

1 1/p
< (f max|f, - f|” d:z:)
0 [0,1]
= an - f“max - 07

and
|fn(2) = f(2)] < I[Ié?i}](|fn - fl >0 for all z €[0,1].

10
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Problem 9

Let (X, -]) be a normed space and A c B c X. Show that if A is dense in B and B is dense in X then A

is dense in X.

Let € > 0 be given. Pick any z € X. Tt follows that there exists b € B such that ||b— x| < /2. Simlarly,

there exists a € A such that |a - b| < €/2. Therefore by triangle inequality we have

la-z| < a-b]+[b-2| <=+ =e

€
2 2
Hence A is dense in X.

Problem 10

Show that if U is an open subspace of a normed space X then U = X.

We need to show mutual inclusion between U and X, and U c X is trivial. Hence it suffices to show

XcU.
Clearly 0 € U (the additive identity). Then there exists r > 0 such that B(0,7) c U. Pick any = € X,
and define’ 2’ := = . 2. Then we have
2 |zl
Hle: zi :£:>$/EB(0,7’):$'EU.
2 el 2

Since U is a subspace, ' e U = r/(2|z|) 2" =2 €U. Hence X c U and we’ve shown U = X.

11



