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Problem 1

Show that if E is a Hamel basis of a vector space V then every v ∈ V has a unique representation as a linear
combination of elements of E. Moreover, show that if E has n ∈ N elements then

(1) every basis of V has n elements, and

(2) every linearly independent set consisting of n elements is a basis of V .

Solution

Suppose, for contradiction, that for some v ∈ V we have

v = ∑
i∈I1

αiei = ∑
i∈I2

βiei with αi, βi ∈ K, ei ∈ E

for some different index sets I1, I2 ⊂ N, i.e., v can expressed as two different linear combinations of elements
of E. Now if we define I = I1 ∪ I2,

α∗i ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αi if i ∈ I1

0 otherwise
, and β∗i ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βi if i ∈ I2

0 otherwise
,

we get

∑
i∈I1

αiei =∑
i∈I

α∗i ei and ∑
i∈I2

βiei =∑
i∈I

β∗i ei.

It follows that

0 = v − v =∑
i∈I

α∗i ei − β∗i ei =∑
i∈I
(α∗i − β∗i )ei.

Since these ei’s are from E, they are still linearly independent, and hence α∗i = β∗i for all i ∈ I. Therefore
x ∈ I1 Ô⇒ αi ≠ 0 Ô⇒ α∗i ≠ 0 Ô⇒ β∗i ≠ 0 Ô⇒ i ∈ I2, and likewise i ∈ I2 Ô⇒ I ∈ I1. Hence I1 = I2 and
αi = βi. Thus v can only be spanned by a specific subset of E with specific coefficients.

1



MATH 580 Problem Set 1 YQL

To show that if dim(V ) = n <∞ Ô⇒ basis has n elements, we assume, for contradiction, that W = {wi} is
a basis with m ≠ n elements. Since no other restrictions are imposed on E and W , WLOG assume m > n.
Since E spans V , each wi ∈W can be written as a linear combination of ei’s. Now suppose we want to solve
the equation

m

∑
i=1

βiwi = 0. With E, we can rewrite this as

[β1 ⋯ βm] [Mm×n]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e1

⋮
en

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

The middle matrix is short and wide, so its nullspace has dimension ⩾m−n > 0 and thus the whole equation
has a nontrivials solution. This contradicts ei’s being linearly independent! Hence m > n is impossible.
Likewise, n >m is impossible, so we conclude that m = n.

Suppose we have linearly independent {v1, . . . , vn} but no linear combination of this set produces v∗ ∈ V .
Then the new set {v1, . . . , vn, v∗} is again linearly independent and it consists of n + 1 elements. This is
clearly a contradiction by the part above.

Problem 2

Show that if E is a linearly independent subset of a vector space V then there exists a Hamel basis of V
containing E.

Solution

If dim(V ) = n < ∞ then we can extend E to a basis. If E is already a basis then we are done. Otherwise
there exists some v1 ∈ V that cannot be expressed as a linear combination of elements of E. Hence E ∪ {v1}
is again linearly independent. If this new set is a basis then we are again done; if not there exists some
v2 ∈ E ∖ span(E ∪{v1}). Then E ∪{v1, v2} is again linearly independent. We can proceed all the way till this
extended set contains precisely n elements. By the lemma we know a linearly independent set containing n

elements has to be a basis, and we are done.
†(This proof also works for finite-dimensional V ’s, so the previous paragraph becomes redundant.) Now
suppose V is infinite-dimensional. We know it has a Hamel basis E∗. Define E ∶= E ∪E∗. Let P ∶= {F ⊂ V ∶
E ⊂ F ⊂ E , F linearly independent} and ⊂ as a partial order.
Claim: any arbitrary chain C ⊂ P has an upper bound defined by F ∶= ⋃

Fi∈C
Fi. Clearly E ⊂ F ⊂ E . On one

hand, if we take any finite collection of elements of F , it entirely belongs to some Fi ∈ C which is linearly
independent. Hence F is linearly independent and F ∈ P . On the other hand, Fi ⊂ F for all Fi’s, so F is
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indeed an upper bound of C.
Going back to the main proof: since each chain has an upper bound, by Zorn’s lemma there exists a maximal
element Emax ∈ P . A maximally linearly independent subset of V must be a Hamel basis, and we are done.

Problem 3

Show that T ∈ L(X,Y ) is injective if and only if ker(T ) = {0}.

Solution

For Ô⇒ , assume T is injective. Suppose ker(T ) ≠ {0}, then T (x0) = 0 for some nonzero x0 ∈ X.
Pick any x1 ∈X with T (x1) = (y1). By linearity we get T (x1 + x0) = T (x1) + T (x0) = T (x1) whereas
x1 + x0 ≠ x1. This contradicts T ’s injectivity.
For ⇐Ô , assume ker(T ) = {0} and suppose T (x1) = T (x2) for x1, x2 ∈X. It follows that

0 = T (x1) − T (x2) = T (x1 − x2) Ô⇒ x1 − x2 ∈ ker(T ) Ô⇒ x1 − x2 = 0.

Problem 4

Show that if T ∈ L(X,Y ) then both ker(T ) and im(T ) are vector spaces.

Solution

Suppose x1, x2 ∈ ker(T ) and λ ∈ K. Then T (x1 +x2) = T (x1)+T (x2) = 0 Ô⇒ x1 +x2 ∈ ker(T ). Also,
T (λx1) = λT (x1) = 0. Hence ker(T ) is a vector space.
On the other hand, suppose y1, y2 ∈ im(T ) ⊂ Y and y1 = T (x1), y2 = T (x2) for some x1, x2 ∈X. Then

y1 + y2 = T (x1) + T (x2) = T (x1 + x2) Ô⇒ y1 + y2 ∈ im(T ),

and
λy1 = λT (x1) = T (λx1) Ô⇒ λy1 ∈ im(T ).

Hence im(T ) is a vector space.

Problem 5

(1) Show that mp ⩽ ∑n
i=1∣xi∣p ⩽ nmp for any n ∈ N and p ∈ [1,∞), where m ∶= max

i=1,...,n
∣xi∣.

3



MATH 580 Problem Set 1 YQL

Solution

Denote m by ∣xk ∣. Then the inequalities are immediate since

mp = ∣xk ∣p ⩽∑
i≠k
∣xi∣p + ∣xk ∣p ⩽

n

∑
i=1
∣xk ∣p = nmp.

(2) Deduce that for each n

lim
p→∞
(

n

∑
i=1
∣xi∣p)

1/p

=m.

Solution

Immediate by squeeze theorem: lim
p→∞
(mp)1/p =m and

lim
p→∞
(nmp)1/p =m lim

p→∞
[ p
√
n] =m.

It follows that lim
p→∞
(

n

∑
i=1
∣xi∣p)1/p must also be m.

(3) Show that if x ∈ ℓ1 and ϵ > 0 then there exists N ∈ N such that, for all p, we have

∥x∥ℓp − ϵ ⩽ ∥(x1, . . . , xn)∥ℓp ⩽ ∥x∥ℓp for all n ⩾ N.
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Solution

First thing to notice is that ∥(x1, . . . , xn)∥ℓ1 ∶= ∑n
i=1∣xi∣ ↑ ∑i⩾1∣xi∣ = ∥x∥ℓ1 as n → ∞. Therefore

the sequence {an} defined by an ∶= ∥(x1, . . . , xn)∥ℓp is a monotone increasing sequence that
converges to ∥x∥ℓp .
Clearly when p = 1 the problem’s statement holds since x needs to be an absolutely convergent
sequence. Hence, given ϵ > 0, there exists N ∈ N such that

n ⩾ N Ô⇒ ∥x∥ℓ1 − ϵ ⩽ ∥(x1, . . . , xn)∥ℓ1 ⩽ ∥x∥ℓ1 ,

i.e.,
∥x∥ℓ1 − ∥(x1, . . . , xn)∥ℓ1 =∑

i⩾1
∣xi∣ −

n

∑
i=1
∣xi∣ = ∑

i⩾n+1
∣xi∣ ⩽ ϵ.

If p > 1 we have ∥x∥ℓp ⩽ ∥x∥ℓ1 . Then it follows that

∥x∥ℓp − ∥(x1, . . . , xn)∥ℓp = ∥x∥ℓp − ∥(x1, . . . , xn,0, . . . )∥ℓp

⩽ ∥(0, . . . , xn+1, xn+2, . . . )∥ℓp (triangle inequality)

⩽ ∥(0, . . . , xn+1, xn+2, . . . )∥ℓ1

= ∑
i⩾n+1

∣xi∣ ⩽ ϵ,

and so
n ⩾ N,p ⩾ 1 Ô⇒ ∥x∥ℓp − ϵ ⩽ ∥(x1, . . . , xn)∥ℓp ⩽ ∥x∥ℓp ,

as desired.

(4) Deduce that if x ∈ ℓ1 then ∥x∥ℓ∞ = lim
p→∞
∥x∥ℓp .

Solution

By (2) we know ∥(x1, . . . , xn)∥ℓp converges in p, and by (3) we see that it actually converges
uniformly with respect to p [whatever works for p = 1 works for p > 1 as well]. Clearly
∥(x1, . . . , xn)∥ℓp converges with respect to n too. Then, by Moore-Goode Theorem∗ we have

lim
p→∞
∥x∥ℓp = lim

p→∞
[ lim
n→∞

∥(x1, . . . , xn)∥ℓp]
∗= lim

n→∞
[max
1⩽i⩽n

∣xi∣] = sup
i⩾1
∣xi∣ = ∥x∥ℓ∞ .
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Problem 6

Give another proof of the Hölder’s inequality (i.e., not using Jensen’s),

∥fg∥L1 ⩽ ∥f∥Lp∥g∥Lq where p−1 + q−1 = 1,

and prove the Minkowski’s inequality, i.e.,

∥f + g∥Lp ⩽ ∥f∥Lp + ∥g∥Lp .

Proof: Hölder

First normalize f and g by defining F ∶= ∣f ∣/∥f∥Lp and G ∶= ∣g∣/∥g∥Lp . It follows that ∥F ∥Lp = ∥G∥Lp = 1. By
the convexity of exponential function we have

exp(x
p
+ y

q
) ⩽ ex

p
+ ey

q
where 1

p
+ 1

q
= 1.

Letting x ∶= ln(F p) and y ∶= ln(Gq) gives

exp(x
p
+ y

q
) = exp (ln(FG)) = FG ⩽ F p

p
+ Gq

q
,

i.e.,
∣fg∣

∥f∥Lp∥g∥Lp

⩽ ∣f ∣p

p∥f∥Lp

+ ∣g∣q

q∥g∥Lq

.

Integrating gives

∫
Ω
FG dµ = 1

∥f∥Lp∥g∥Lq
∫
Ω
∣fg∣ dµ = ∥fg∥L1

∥f∥Lp∥g∥Lq

and

∫
Ω

F p

p
+ Gq

q
dµ = 1

p
∫
Ω
F p dµ + 1

q
∫
Ω
Gq dµ = 1

p
+ 1

q
= 1.

Hence
∥fg∥L1

∥f∥Lp∥g∥Lq

⩽ 1 Ô⇒ ∥fg∥L1 ⩽ ∥f∥Lp∥g∥Lq ,

and we’ve proven Hölder’s inequality without using Jensen’s inequality.

Proof: Minkowski

First we need to verify whether f + g ∈ Lp(Ω):

∥f + g∥pLp = ∫
Ω
∣f + g∣p dµ ⩽ ∫

Ω
[2max{∣f ∣, ∣g∣}]p dµ ⩽ 2q ∫

Ω
∣f ∣ + ∣g∣ dµ = 2q(∥f∥pLp + ∥g∥qLq) <∞.

Now back to proving Minkowski’s inequality. If p = 1 then by triangle inequality ∣f + g∣ ⩽ ∣f ∣ + ∣g∣ we have

∫
Ω
∣f + g∣ dµ ⩽ ∫

Ω
∣f ∣ + ∣g∣ dµ Ô⇒ ∥f + g∥L1 ⩽ ∥f∥L1∥g∥L1 .
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If p =∞ then
S1 ∶= {x ∈ Ω ∶ ∣f(x)∣ > ∥f∥L∞} and S2 ∶= {x ∈ Ω ∶ ∣g(x)∣ > ∥g∥L∞}

are null sets and so is their union. Hence

∣f(x) + g(x)∣ ⩽ ∣f(x)∣ + ∣g(x)∣ Ô⇒ ∥f + g∥L∞ ⩽ ∥f∥L∞ + ∥g∥L∞ .

In the most common case where p ∈ (1,∞), we have

∥f + g∥pLp = ∫
Ω
∣f + g∣p dµ = ∫

Ω
∣f + g∣p−1∣f + g∣ dµ

⩽ ∫
Ω
∣f + g∣p−1(∣f ∣ + ∣g∣) dµ

= ∫
Ω
∣f + g∣p−1∣f ∣ dµ + ∫

Ω
∣f + g∣p−1∣g∣ dµ

(Hölder’s) ⩽ (∥f∥Lp + ∥g∥Lp)∥∣f + g∣p−1∥Lq

= (∥f∥Lp∥g∥Lq) (∫
Ω
∣f + g∣(p−1)q dµ)

1/q
.

The last integral evaluates to 0 if and only if f and g are both 0 µ-a.e. If that is the case, then Minkowski’s
reduces to 0 ⩽ 0, trivial. Otherwise, we may divide by it. Since (p − 1)q = (p − 1) ⋅ p/(p − 1) = p, we get

∫Ω∣f + g∣
p dµ

(∫Ω∣f + g∣(p−1)q dµ)
1/q = (∫Ω

∣f + g∣p dµ)
1/p

.

Then it follows that
(∫

Ω
∣f + g∣p dµ)

1/p
= ∥f + g∥Lp ⩽ ∥f∥Lp + ∥g∥Lp ,

hence we’ve shown Minkowski’s inequality.

Problem 7

Show that if µ(Ω) <∞ then Lq(Ω) ⊂ Lp(Ω) whenever p ⩽ q. Moreover, given p ∈ [1,∞] find a function f ∈
Lp(Rn), with Lebesgue measure, such that f ∉ Lq(Rn) for any q ≠ p. [Consider f(x) ∶= ∣x∣−n/p(1+ ln2∣x∣)−1/p

for p <∞.] This shows that there is no inclusion Lp ⊂ Lq when Ω ∶= Rn.

Solution

The first part can be shown using Hölder’s inequality. Suppose f ∈ Lq(Ω), i.e., ∥f∥Lq < ∞. Define g ∶= 1.
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The case p = q is trivial; if not, by Hölder’s inequality we have

∥f∥pLp = ∫
Ω
∣f ∣p ⋅ 1 dµ

⩽ (∫
Ω
(∣f ∣p)q/p dµ)

p/q
⋅ (∫

Ω
1 dµ)

1−p/q

= (∫
Ω
∣f ∣q dµ)

p/q
⋅ (∫

Ω
1 dµ)

1−p/q

= ∥f∥pLq ⋅ µ(Ω)1−p/q

<∞.

Hence f ∈ Lq(Ω) Ô⇒ f ∈ Lp(Ω), i.e., Lq(Ω) ⊂ Lp(Ω).

For the second part, if p =∞ simply define f ∶= 1. Clearly ∥f∥L∞ = 1 whereas ∥f∥Lp = µ(Rn) =∞ whenever
x ∈ [1,∞). For p <∞, let f(x) ∶= ∣x∣(−n/p)(1 + ln2∣x∣)(−1/p). Then

∫
Ω
∣f ∣p dµ = ∫

Rn
∣f ∣p dx

= ∫
Rn

1

∣x∣n(1 + ln2∣x∣)
dx

† = ∫
Sn−1 ∫

∞

0

1

rn(1 + ln2(r))
rn−1dr dθ

= ∫
Sn−1 ∫

∞

0

1

r(1 + ln2(r))
dr dθ

= Sn−1 [arctan(ln(r)) +C] ∣
∞

r=0

= πSn−1 (=
2π(n+1)/2

Γ(n/2)
) <∞

and so f ∈ Lp(Rn).

Now if q ≠ p, we have

∫
Ω
∣f ∣q dµ = Sn−1 ∫

∞

0

rn−1

rnq/p(1 + ln2(r))q/p
dx

∼ ∫
∞

0

1

rnq/p−(n−1)(1 + ln2(r))q/p
dr.

If q < p, then nq/p − (n − 1) < 1 and there exists ϵ > 0 satisfying nq/p − (n − 1) + ϵ < 1 and ϵ ≠ 1 [used in
L’Hôpital later]. Then,

∫
∞

0
. . . dr > ∫

∞

1
. . . dr

= ∫
∞

1

1

rnq/p−(n−1)+ϵ
⋅ rnq/p−(n−1)+ϵ

rnq/p−(n−1)(1 + ln2(r))q/p
dr.
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Notice that, since nq/p − (n − 1) + ϵ < 1, the integral ∫
∞

0
1/rnq/p−(n−1)+ϵ dr diverges. On the other hand,

applying L’Hôpital’s rule to the second term twice gives

lim
r→∞

rnq/p−(n−1)+ϵ

rnq/p−(n−1)(1 + ln2(r))q/p
= lim

r→∞

rϵ

(1 + ln2(r))q/p

> lim
r→∞

rϵ

1 + ln2(r)
(= ∞
∞
)

H= lim
r→∞

ϵrϵ

2 ln r
(= ∞
∞
)

H= lim
r→∞

ϵ2rϵ

2
=∞.

Hence ∫
∞

1
. . . dr =∞ and f ∉ Lq(Rn) if q < p.

If ∞ > q > p, we can find 0 < ϵ < 1 such that nq/p − (n − 1) − ϵ > 1. Then

∫
∞

0
. . . dr = ∫

∞

0

1

rnq/p−(n−1)−ϵ
⋅ rnq/p−(n−1)−ϵ

rnq/p−(n−1)(1 + ln2(r))q/p
dr

< ∫
1

0

1

rnq/p−(n−1)−ϵ
dr∫

1

0

r−ϵ

(1 + ln2(r))q/p
dr.

The first integral diverges since lim
x↓0

1

rnq/p−(n−1)−ϵ
=∞. The second integral also diverges since

lim
x↓0

r−ϵ

(1 + ln2(r))q/p
∼ lim

x↓0

r−ϵ

(ln2(r))q/p
> lim

x↓0

r−ϵ

(ln2(r))q

= lim
x↓0

r−ϵ

(ln(r))2q
(= ∞
∞
)

H= . . . H=
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
2q times

lim
x↓0

(−ϵ)2qr−ϵ

(2q)!
=∞.

Hence ∫
1

0
. . . dr diverges and f ∉ Lq(Rn) if ∞ > q > p, either.

If q =∞, simply notice that

lim
x→0
∣f ∣p = lim

r↓0

1

rn(1 + ln2(r))
∼ lim

r↓0

r−n

ln2(r)
H= lim

r↓0

−nr−n

2 ln(r)
H= lim

r↓0

n2r−n

2
=∞.

This means lim
x→0
∣f ∣ =∞ as well, and so ess sup∣f ∣ = ∥f∥L∞ =∞, i.e., f ∉ L∞(Rn).
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Problem 8

Show that ∥ ⋅ ∥Lp is a norm on C([0,1]) for any p ∈ [1,∞], and that ∥ ⋅ ∥L∞ is the same as the “maximum
norm” ∥f∥max ∶= max[0,1]∣f ∣. Moreover, show that if f, fn ∈ C([0,1]) for every n ⩾ 1 and ∥fn − f∥max → 0,
i.e., fn converges “uniformly” to f , then ∥fn − f∥Lp(0,1) → 0 for every p, i.e., fn → f “in Lp” and that
fn(x)→ f(x) for every x ∈ [0,1], i.e., fn → f “pointwise”.

Solution

For p <∞, we show ∥ ⋅ ∥Lp defines a norm by definition:

(1) Non-degeneracy: ∫
1

0
∣f ∣p dx ⩾ 0 Ô⇒ ∥f∥pLp ⩾ 0 Ô⇒ ∥f∥Lp ⩾ 0. Furthermore, ∥f∥Lp = 0 ⇐⇒

∫
1
0 ∣f ∣

p dx = 0 ⇐⇒ ∣f ∣ = 0 for all x ∈ [0,1] (since f is continuous).

(2) Absolute homogeneity:

∥λf∥Lp = (∫
1

0
∣λf ∣p dx)

1/p
= (∣λ∣p ∫

1

0
∣f ∣p dx)

1/p
= ∣λ∣∥f∥Lp .

(3) Triangle inequality: immediate from Minkowski’s inequality.

Hence ∥ ⋅ ∥Lp defines a norm on C([0,1]).

Since ∣f ∣ is continuous and [0,1] compact, it attains maximum at ∣f(m)∣ for some m ∈ [0,1]. If the maximum
is 0 then f ≡ 0 and obviously ess sup

[0.1]
∣f ∣ = 0 = max

[0,1]
∣f ∣. Otherwise ∣f(m)∣ > 0. By the continuity of ∣f ∣, given

ϵ > 0 there exists δ > 0 satisfying ∣f(m)∣ − ϵ < ∣f(n)∣ < ∣f(m)∣ for all n ∈ (m − δ,m + δ) ∩ [0,1]. Clearly this
interval has positive measure, so

ess sup
[0,1]

∣f ∣ = inf{b ∈ R ∶ µ({x ∶ f(x) > b}) = 0} ⩾ ∣f(m)∣.

On the other hand ∣f(m)∣ does satisfy this condition. Hence ∥f∥L∞ = ess sup
[0,1]

∣f ∣ = ∣f(m)∣ =max
[0,1]
∣f ∣ = ∥f∥max.

Now assume p <∞ and fn converges “uniformly” to f (if p =∞ this entire statement becomes since ∥ ⋅ ∥L∞

and ∥ ⋅ ∥max are equivalent, as shown above). It follows that

∥fn − f∥Lp = (∫
1

0
∣fn − f ∣p dx)

1/p

⩽ (∫
1

0
max
[0,1]
∣fn − f ∣p dx)

1/p

= ∥fn − f∥max → 0,

and
∣fn(x) − f(x)∣ ⩽max

[0.1]
∣fn − f ∣→ 0 for all x ∈ [0,1].
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Problem 9

Let (X, ∥ ⋅ ∥) be a normed space and A ⊂ B ⊂ X. Show that if A is dense in B and B is dense in X then A

is dense in X.
Proof

Let ϵ > 0 be given. Pick any x ∈X. It follows that there exists b ∈ B such that ∥b−x∥ < ϵ/2. Simlarly,
there exists a ∈ A such that ∥a − b∥ < ϵ/2. Therefore by triangle inequality we have

∥a − x∥ ⩽ ∥a − b∥ + ∥b − x∥ < ϵ

2
+ ϵ

2
= ϵ.

Hence A is dense in X.

Problem 10

Show that if U is an open subspace of a normed space X then U =X.

Proof

We need to show mutual inclusion between U and X, and U ⊂X is trivial. Hence it suffices to show
X ⊂ U .
Clearly 0 ∈ U (the additive identity). Then there exists r > 0 such that B(0, r) ⊂ U . Pick any x ∈ X,
and define† x′ ∶= r

2
⋅ x

∥x∥
. Then we have

∥x′∥ = ∥r
2
⋅ x

∥x∥
∥ = r

2
Ô⇒ x′ ∈ B(0, r) Ô⇒ x′ ∈ U.

Since U is a subspace, x′ ∈ U Ô⇒ r/(2∥x∥) ⋅ x′ = x ∈ U . Hence X ⊂ U and we’ve shown U =X.
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