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Problem 1

Let {an}ns>1 € (0,00) be such that Z ay < oo. In this exercise we will show that there exists an unbounded
nz1

sequence {yp tns1 € (0, 00) such that Z QY < 00.

nx1

Consider the map T : £*° — ¢! defined by T(x1,22,...) = (z1a1, T20a2,. .. ).
(1) Show that T is a continuous injection.
(2) Assuming such {y,} does not exist, deduce using IMT that T must be an isomorphism.
(3) Show that any isomorphism between normed spaces X and Y preserves separability.

(4) Use (3) to obtain a contradiction.

Solution

(1) It is clear that if (z1,22,...) # (y1,Y2,...) then z; # y; for some ¢ > 1. Then it follows that z;a; # y;a;
so T'(x1,22,...) # T(y1,Y2,...). Hence T is injective.

On the other hand, suppose a set of sequences {z(™} with (") := (x&n),xén), ...) converges to x :=
(x1,22,...) with respect to £°° norm. It follows that |z — (™| = supl|z; - xE")| — 0. On the other
i1
hand we have
I7(2) =T (@) e = Yleiai - 27 ail
i>1

= S lai - zila;
i>1

< ) supla; - J:E")|ai
i1 i1

= o™= 3 an

i1

where the first term |« [ ¢~ — 0 and the second is finite. Hence T'(z("™) converges to T'(z) in |+ |, and
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this shows the continuity of 7.

If such {y,} doesn’t exist, then Y any, < 00 = {y,} is bounded, i.c., € £*. Notice that, for any
i>1

sequence (21,2s,...) €/} we have
21 22
T(f,f,...) = (21,22,...),
ay a2
so under such assumption 7T is also surjective and hence bijective. Since £>° and ¢! are both Banach,

by IMT we conclude that T is invertible and thus an isomorphism.

Assume X is separable and let T be the isomorphism. Then there exists a countable subset E :=
{e;i}i>1 € X such that span(E) = X. In particular this means that, given any zo € X, there exists a
sequence of points, all of which are linear combinations of elements of E, that converges to xzg, i.e.,
Hiﬂo - Zagn)ei

i>1
indeed exists some € X with T'(z) =y, and we may apply the result above. By the continuity of T we
also know that T( > agn)ei) - T(x) =y as n - 0. Notice that

i1

— 0 as n — oo with all a’s € K. Pick any y € Y. Since T is an isomorphism there

T( > agn)ei) => az(-n)T(ei) e span{T'(e;)}.

i>1 i>1
Therefore we’ve just shown that any y € Y can be approximated by span{T'(e;)}. Clearly this set is
countable, and so Y is separable as is X.
The other direction Y separable == X separable is analogous since the inverse of an isomorphism is

also continuous.

From what we’ve done before we know £ is not separable while ¢! is. Therefore T : £ — ¢! cannot

be an isomorphism, but this cannot happen unless unbounded sequences {y, } exist. In fact, consider

{a,}:=(1,273,373,... ) es?

{yn}:=(1,2,3,...) ¢ £

— T({y.})=(1,272,372,...) e /".

Problem 2

Show that if | « || is a norm induced by an inner product then

1
lz=2* + 12 = yl* = S|z —yl* + 2]z - (@ + ) /2]
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Solution
Multiplying the LHS by 2, we get

(0l + 1z -ol?) =2 (|- 2 - S - ) - 2 )
Saffe- T ).
2 2

Factoring out the 2 in the denominator and dividing both sides by 2 give the desired equality.

Problem 3

Consider f(x):=x defined on [-m,7].

(1) Find the Fourier coefficients in the expansion

1

f(z) = N k:ioo cpet™®,

(2) Use the Parseval identity to show that

Solution

(1) ¢o is simply 0 and ¢, for k # 0 is 1/27 times the conjugate integral:

T ik
ck:[ ze " dz
=TT
xe—ikx 0 - eikx
=|-— + — dx
ik ). J-m ik
Iefikz 0 eikm ‘”
— + [ —
ik k2
—Tr —T

_,/Tezkﬂ _ 7'('672]677 ezkﬂ' _ e—zkw

ik k2
2w coskm  2isinkw

ik k2
B 2km cos km — 2sinkw |
= kQ 1
2k k
_ SN CoskT T, (since sinkm = 0 for k € Z)

k2
2i(-1)*
T

(2) Recall that {e?**/\/27} is an orthonormal Schauder basis for L?(~, 7). Applying Parseval’s inequality
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to the Fourier expansion derived in (1) gives

™ 9 st
de =
[ﬂx v k;w‘ k21

2 4 &1
— Z — . Therefore
7 =

Problem 4

Let V' be an inner product space and let {e;};>1 be an orthonormal sequence in V'

(1) Use Bessel’s inequality to show that for any z € V
H:CHQ

#{i:|(z,e;)|>M} <

(2) Let E be an uncountable orthonormal set in V. Use (1) to show that then for each z € V the set
{ee E:(x,e) +0} is at most countable.
Now let H be a Hilbert space and {e;};>1 an orthonormal Schauder basis
(3) Show that
(u,v) = Z(u,ei)(ei,v)
i>1

the inner product then equals the €% inner product of the Fourier coefficients)

for every u,v e H (i.e.,

(4) Show that the Hilbert cube

ad 1
=1 aiei o] < =

i=1 ¢
is a compact subset of H.

Solution

(1) Let [:={ieN:|(z,e;)| > M} be an index set. Suppose for contradiction that #{i:|(z,e;)| > M} is at
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2

least V;‘[L J+ 1 where |-| denotes the floor function. Then,
Dl ) = Yl (z, el + Y |(x, )
i>1 iel il
2 (| 1]
> M (\‘]\42 +1]+0
[
> Q‘W = ||,

contradicting Bessel’s inequality. Therefore the original inequality must be true.

(2) (Attempt 1) Since
{ecE:(z,e) #0} =|J{ec E:|(z,e€)|> %},

i>1
our target set is therefore a countable union of countable sets and is therefore countable.
(Attempt 2) Let E be an uncountable basis of V. Then for any x € V we have = ) (,¢;)e; where I

i€l
is some index set and each e; € E. Applying Parseval’s identity gives

lz)? = Yl(z, e)l?,

i€l
and it again becomes clear that, for each M > 0, there can only be finitely many e;’s with |(x,e;)| > M.

Taking M :=1,1/2,1/3,... implies that there are at most countably many e;’s whose inner product

with z is nonzero.

(3) This is because
Z;(U, e;)(ei,v) = Z;((%ei)ei,v)
= (Z(u,ei)ei,v)

21

= (u7 U)

since {e; }i>1 is a Schauder basis.
Problem 5

In this exercise we will show that there exists f € X := g € C([w,7];R) : g(-7) = g(7) (equipped with the

| + || max norm) whose Fourier series does not converge at = = 0. Let f,, denote the n'® Fourier sum of f,
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and set S, f = f,(0) = o [ﬂ f@&)K,(t) dt where K, (t) := i et

1
™ k=—n

1 ™
(1) Show that S,, € B(X,R) for every n with |S,| = = f | K (t)| dt. It’s sufficient to point out why the
™ J-7
proof of Fx. 3.1.1 could be used here.
(2) Show that
sin(n + 1/2)t

Kn(t) = sint/2

fort+0
and K,,(0) =2n + 1.
(3) Show that ||S,| = oo as n — oo.

(4) Deduce from (a) and (c) that there exists f € X such that |f,(0)] > oo as n » oco. This proves the

claim.

(5) Explain why the existence of such f does not contradict Corollary 6.3.2.
Solution

(1) The claim follows from the fact that K, (t) € C([-m,7]).

n
(2) Notice that Ko(t) = > 1=2n+1. Otherwise we can transform this sum into a geometric series:
k=-n

n
Z ezkt :ez(—k)t+._.+e—zt+1+ezt+_”+ezkt
k=—n

= > ety

ez(n+1)t _ emint

et -1
(i (n+0.5)t _ i(n+0.5)t

€4(0.5)t _ 0i(-0.5)t
_ 2isin[(n +1/2)t]
© 2isin(t/2)

(3) Here we use the fact that f |-| is & monotone increasing function so that it’s not larger than its right
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endpoint Riemann sum:

1 T |sin[(n + 1/2)t
Ial= 5 (2L D8 g
21 J-n sin(t/2)
™ | si 1/2)t
N [ M dt (~: ignoring the constant)
- sin(t/2)
™ | si 1/2
N f s1n[(.n +1/2)t] dt (even function)
0 sin(t/2)
> fﬂ sin[(n + 1/2)t] dt (Jsinz| < |x|)
0 t/2
_ Zﬁj—m'“' dt
j=1 2n+1
2 2n+ 1| o
>3 = ﬁ |sin[(m + 0.5)t]| dt (taking the max denominator for all)
J=1 Jm™ Zz;?lw
2n 9 1 1 Jjm/2 . ~
_ Z ”.+ . . |sin#| dt (simple chain rule with ¢ := (z + 0.5)t)
o1l Jm | n+0.5 J@G-1n/2
=1
2n

B Z 2n+1
- 4 jm(n+0.5)
2n 1

~Z—_—>ooasn—>oo.
j=11J

(4) Recall that C([-7,7];R) c Cyp(R;R) is Banach. Suppose the opposite of the claim is true. Then
because sup|f,,(0)| < co we know that S, is also bounded, contradicting (3).

(5) Because Corollary 6.3.2 doesn’t require the approximating family of functions to be uniformly bounded.
Problem 6

Use the WAT to show that any f € C'([0,1];R) can be approximated (in || + | max) by a cosine polynomial,
i.e., an element of

C:= {Zakcos(knm;) :n e N ag GR}.
k=0

Problem 7

Let X := C([-1,1]) equipped with the supremum norm and let

onfpex flae flae1)



MATH 580 Problem Set 3 YQL

0 1
a closed subspace of X. Let f € X be any function with f f=1and f f=-1
=il 0

(1)
2)

Show that dist(f,U) =1 but |f —g| > 1 for all g € U, i.e., there is no closest point to [ in U.

Explain why the previous part does not contradict Lemma 6.9.

Solution

(1)

Let {g,} be a sequence of functions such that

2%1 me[—l,—%]
2
f(@) —gn(z)=4-22 ge(-11).
_272177—11 xe[#l]

One can easily check that f(x) — g, () is piecewise linear and also continuous, so g, (x) € C([-1,1]).

It is obtained by connecting (-1,-1), (=, 522-), (%, --2%-), and (1,-1). Notice that

Tnr2n-1/'\n " 2n-1

[fg:[ff‘[f(f—g):1—1:0

1

and likewise f g = 0. Therefore {g,} ¢ U. Since |g, — f| = (2n - 1)/2n, letting n - oo gives
0

sup ||gn — f| = 1, which suggests that dist(f,U) < 1.

Now we first show | f —g| > 1 for all g € U. Suppose there exists some g € U such that |f-g| <1. If
it’s strictly <1 then

0 1
[ r-a< [ =gl <if-gla-0)<1,
0
which means [ g > 0, contradiction. On the other hand, similar tot he second < above, if | f-g| = 1, to
-1

0
make sure f g =0 it must be the case that f(z)-g(x) =1 for all z € [-1,0]. Likewise, g(z)-f(z) =1
-1

for all z € [0,1]. Then we have g(0) - f(0) = £(0) — g(0) = 1, clearly a contradiction. This proves both

claims of part 1 (i.e., distance = 1 and no closest point exists).

In C([-1,1]), the supremum norm is not induced by the inner product, hence (C([-1,1]),] * [sup)
is not Hilbert and the Lemma does not apply. Simply consider f := z — 1 and g := = + 2 so that
If +gl*+|f-gl?=3%+3% = 18 whereas 2(|f|? + |lg]|)? = 2(2% + 3%) = 26 which fails to satisfy the

parallelogram law.



