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Problem 1

Let {an}n⩾1 ⊂ (0,∞) be such that ∑
n⩾1

an <∞. In this exercise we will show that there exists an unbounded

sequence {yn}n⩾1 ⊂ (0,∞) such that ∑
n⩾1

anyn <∞.

Consider the map T ∶ ℓ∞ → ℓ1 defined by T (x1, x2, . . . ) ∶= (x1a1, x2a2, . . . ).

(1) Show that T is a continuous injection.

(2) Assuming such {yn} does not exist, deduce using IMT that T must be an isomorphism.

(3) Show that any isomorphism between normed spaces X and Y preserves separability.

(4) Use (3) to obtain a contradiction.

Solution

(1) It is clear that if (x1, x2, . . . ) ≠ (y1, y2, . . . ) then xi ≠ yi for some i ⩾ 1. Then it follows that xiai ≠ yiai
so T (x1, x2, . . . ) ≠ T (y1, y2, . . . ). Hence T is injective.

On the other hand, suppose a set of sequences {x(n)} with x(n) ∶= (x(n)1 , x
(n)
2 , . . . ) converges to x ∶=

(x1, x2, . . . ) with respect to ℓ∞ norm. It follows that ∥x − x(n)∥ℓ∞ = sup
i⩾1
∣xi − x(n)i ∣ → 0. On the other

hand we have

∥T (x) − T (x(n))∥ℓ1 =∑
i⩾1
∣xiai − x(n)i ai∣

=∑
i⩾1
∣xi − x(n)i ∣ai

⩽∑
i⩾1

sup
i⩾1
∣xi − x(n)i ∣ai

= ∥x − x(n)∥ℓ∞∑
i⩾1

an

where the first term ∥ ⋅ ∥ℓ∞ → 0 and the second is finite. Hence T (x(n)) converges to T (x) in ∥ ⋅ ∥ℓ1 and
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this shows the continuity of T .

(2) If such {yn} doesn’t exist, then ∑
i⩾1

anyn < ∞ Ô⇒ {yn} is bounded, i.e., ∈ ℓ∞. Notice that, for any

sequence (z1, z2, . . . ) ∈ ℓ1 we have

T ( z1
a1

,
z2
a2

, . . .) = (z1, z2, . . . ),

so under such assumption T is also surjective and hence bijective. Since ℓ∞ and ℓ1 are both Banach,
by IMT we conclude that T is invertible and thus an isomorphism.

(3) Assume X is separable and let T be the isomorphism. Then there exists a countable subset E ∶=
{ei}i⩾1 ⊂ X such that span(E) = X. In particular this means that, given any x0 ∈ X, there exists a
sequence of points, all of which are linear combinations of elements of E, that converges to x0, i.e.,
∥x0 −∑

i⩾1
α
(n)
i ei∥ → 0 as n → ∞ with all α’s ∈ K. Pick any y ∈ Y . Since T is an isomorphism there

indeed exists some ∈X with T (x) = y, and we may apply the result above. By the continuity of T we
also know that T(∑

i⩾1
α
(n)
i ei)→ T (x) = y as n→ 0. Notice that

T(∑
i⩾1

α
(n)
i ei) =∑

i⩾1
α
(n)
i T (ei) ∈ span{T (ei)}.

Therefore we’ve just shown that any y ∈ Y can be approximated by span{T (ei)}. Clearly this set is
countable, and so Y is separable as is X.

The other direction Y separable Ô⇒ X separable is analogous since the inverse of an isomorphism is
also continuous.

(4) From what we’ve done before we know ℓ∞ is not separable while ℓ1 is. Therefore T ∶ ℓ∞ → ℓ1 cannot
be an isomorphism, but this cannot happen unless unbounded sequences {yn} exist. In fact, consider

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{an} ∶= (1,2−3,3−3, . . . ) ∈ ℓ1

{yn} ∶= (1,2,3, . . . ) ∉ ℓ∞
Ô⇒ T ({yn}) = (1,2−2,3−2, . . . ) ∈ ℓ1.

Problem 2

Show that if ∥ ⋅ ∥ is a norm induced by an inner product then

∥z − x∥2 + ∥z − y∥2 = 1

2
∥x − y∥2 + 2∥z − (x + y)/2∥2.
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Solution

Multiplying the LHS by 2, we get

2(∥z − x∥2 + ∥z − y∥2) = 2(∥(z − x + y
2
) − x − y

2
∥
2

+ ∥(z − x + y
2
) + x − y

2
∥
2

)

= 4(∥z − x + y
2
∥
2

+ ∥x − y
2
∥
2

) .

Factoring out the 2 in the denominator and dividing both sides by 2 give the desired equality.

Problem 3

Consider f(x) ∶= x defined on [−π,π].

(1) Find the Fourier coefficients in the expansion

f(x) = 1√
2π

∞
∑

k=−∞
cke

ikx.

(2) Use the Parseval identity to show that

∑
k⩾1

1

k2
= π2

6
.

Solution

(1) c0 is simply 0 and ck for k ≠ 0 is 1/2π times the conjugate integral:

ck = ∫
π

−π
xe−ikx dx

= [−xe
−ikx

ik
]
π

−π
+ ∫

π

−π

eikx

ik
dx

= [−xe
−ikx

ik
]
π

−π
+ [−e

ikx

k2
]
π

−π

= −πe
ikπ − πe−ikπ

ik
− eikπ − e−ikπ

k2

= −2π coskπ

ik
− 2i sinkπ

k2

= 2kπ coskπ − 2 sinkπ
k2

i

= 2kπ coskπ

k2
i (since sinkπ = 0 for k ∈ Z)

= 2i(−1)k

k
.

(2) Recall that {eikx/
√
2π} is an orthonormal Schauder basis for L2(−π,π). Applying Parseval’s inequality
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to the Fourier expansion derived in (1) gives

∫
π

−π
x2 dx =

∞
∑

k=−∞
∣2i(−1)

k

k
√
2π
∣
2

.

The LHS evaluates to 2π3/3, and the RHS is 2 ⋅
∞
∑
k=1

2

k2π
= 4

π
⋅
∞
∑
k=1

1

k2
. Therefore

∑
k⩾1

1

k2
= 2π3

3
⋅ 1
4π
= π2

6
, as desired.

Problem 4

Let V be an inner product space and let {ei}i⩾1 be an orthonormal sequence in V .

(1) Use Bessel’s inequality to show that for any x ∈ V ,

#{i ∶ ∣(x, ei)∣ >M} ⩽
∥x∥2

M2
.

(2) Let E be an uncountable orthonormal set in V . Use (1) to show that then for each x ∈ V the set
{e ∈ E ∶ (x, e) ≠ 0} is at most countable.

Now let H be a Hilbert space and {ei}i⩾1 an orthonormal Schauder basis.

(3) Show that
(u, v) =∑

i⩾1
(u, ei)(ei, v)

for every u, v ∈H (i.e., the inner product then equals the ℓ2 inner product of the Fourier coefficients).

(4) Show that the Hilbert cube

Q ∶= {
∞
∑
i=1

αiei ∶ ∣αi∣ ⩽
1

i
}

is a compact subset of H.

Solution

(1) Let I ∶= {i ∈ N ∶ ∣(x, ei)∣ >M} be an index set. Suppose for contradiction that #{i ∶ ∣(x, ei)∣ >M} is at
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least ⌊∥x∥
2

M2
⌋ + 1 where ⌊⋅⌋ denotes the floor function. Then,

∑
i⩾1
∣(x, ei)∣2 =∑

i∈I
∣(x, ei)∣2 +∑

i∉I
∣(x, ei)∣2

>M2 (⌊∥x∥
2

M2
⌋ + 1) + 0

>M2 ⋅ ∥x∥
2

M2
= ∥x∥2,

contradicting Bessel’s inequality. Therefore the original inequality must be true.

(2) (Attempt 1) Since
{e ∈ E ∶ (x, e) ≠ 0} = ⋃

i⩾1
{e ∈ E ∶ ∣(x, e)∣ > 1

i
},

our target set is therefore a countable union of countable sets and is therefore countable.

(Attempt 2) Let E be an uncountable basis of V . Then for any x ∈ V we have x =∑
i∈I
(x, ei)ei where I

is some index set and each ei ∈ E. Applying Parseval’s identity gives

∥x∥2 =∑
i∈I
∣(x, ei)∣2,

and it again becomes clear that, for each M > 0, there can only be finitely many ei’s with ∣(x, ei)∣ >M .
Taking M ∶= 1,1/2,1/3, . . . implies that there are at most countably many ei’s whose inner product
with x is nonzero.

(3) This is because

∑
i⩾1
(u, ei)(ei, v) =∑

i⩾1
((u, ei)ei, v)

= (∑
i⩾1
(u, ei)ei, v)

= (u, v)

since {ei}i⩾1 is a Schauder basis.

Problem 5

In this exercise we will show that there exists f ∈ X ∶= g ∈ C([π,π];R) ∶ g(−π) = g(π) (equipped with the
∥ ⋅ ∥max norm) whose Fourier series does not converge at x = 0. Let fn denote the nth Fourier sum of f ,

fn(x) ∶=
1

2π

n

∑
k=−n
(∫

π

−π
f(t)eikt dt) e−ikx
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and set Snf ∶= fn(0) =
1

2π
∫

π

−π
f(t)Kn(t) dt where Kn(t) ∶=

n

∑
k=−n

eikt.

(1) Show that Sn ∈ B(X,R) for every n with ∥Sn∥ =
1

2π
∫

π

−π
∣Kn(t)∣ dt. It’s sufficient to point out why the

proof of Ex. 3.1.1 could be used here.

(2) Show that
Kn(t) =

sin(n + 1/2)t
sin t/2

for t ≠ 0

and Kn(0) = 2n + 1.

(3) Show that ∥Sn∥→∞ as n→∞.

(4) Deduce from (a) and (c) that there exists f ∈ X such that ∣fn(0)∣ → ∞ as n → ∞. This proves the
claim.

(5) Explain why the existence of such f does not contradict Corollary 6.3.2.

Solution

(1) The claim follows from the fact that Kn(t) ∈ C([−π,π]).

(2) Notice that K0(t) =
n

∑
k=−n

1 = 2n + 1. Otherwise we can transform this sum into a geometric series:

n

∑
k=−n

eikt = ei(−k)t + ⋅ ⋅ ⋅ + e−it + 1 + eit + ⋅ ⋅ ⋅ + eikt

=
2n

∑
j=0

e−ikt(eit)j

= ei(n+1)t − e−int

eit − 1

= ei(n+0.5)t − ei(n+0.5)t

ei(0.5)t − ei(−0.5)t

= 2i sin[(n + 1/2)t]
2i sin(t/2)

(3) Here we use the fact that ∫ ∣⋅∣ is a monotone increasing function so that it’s not larger than its right
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endpoint Riemann sum:

∥Sn∥ =
1

2π
∫

π

−π
∣ sin[(n + 1/2)t]

sin(t/2)
∣ dt

∼ ∫
π

−π
∣ sin[(n + 1/2)t]

sin(t/2)
∣ dt (∼: ignoring the constant)

∼ ∫
π

0
∣ sin[(n + 1/2)t]

sin(t/2)
∣ dt (even function)

⩾ ∫
π

0
∣ sin[(n + 1/2)t]

t/2
∣ dt (∣sinx∣ ⩽ ∣x∣)

=
2n

∑
j=1
∫

jπ
2n+1

(j−1)π
2n+1

∣∼∣ dt

⩾
2n

∑
j=1
∣2n + 1

jπ
∣∫

jπ
2n+1

(j−1)π
2n+1

∣ sin[(x + 0.5)t]∣ dt (taking the max denominator for all)

=
2n

∑
j=1
∣2n + 1

jπ
∣ ⋅ 1

n + 0.5
⋅ ∫

jπ/2

(j−1)π/2
∣sin t̃∣ dt̃

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

(simple chain rule with t̃ ∶= (x + 0.5)t)

=
2n

∑
j=1

2n + 1
jπ(n + 0.5)

∼
2n

∑
j=1

1

j
→∞ as n→∞.

(4) Recall that C([−π,π];R) ⊂ Cb(R;R) is Banach. Suppose the opposite of the claim is true. Then
because sup∣fn(0)∣ <∞ we know that ∥Sn∥ is also bounded, contradicting (3).

(5) Because Corollary 6.3.2 doesn’t require the approximating family of functions to be uniformly bounded.

Problem 6

Use the WAT to show that any f ∈ C([0,1];R) can be approximated (in ∥ ⋅ ∥max) by a cosine polynomial,
i.e., an element of

C ∶= {
n

∑
k=0

ak cos(kπx) ∶ n ∈ N, ak ∈ R} .

Problem 7

Let X ∶= C([−1,1]) equipped with the supremum norm and let

U ∶= {g ∈X ∶ ∫
0

−1
g = ∫

1

0
g = 0}
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a closed subspace of X. Let f ∈X be any function with ∫
0

−1
f = 1 and ∫

1

0
f = −1.

(1) Show that dist(f,U) = 1 but ∥f − g∥ > 1 for all g ∈ U , i.e., there is no closest point to f in U .

(2) Explain why the previous part does not contradict Lemma 6.9.

Solution

(1) Let {gn} be a sequence of functions such that

f(x) − gn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2n
2n−1 x ∈ [−1,− 1

n
]

− 2n2x
2n−1 x ∈ (− 1

n
, 1
n
)

− 2n
2n−1 x ∈ [ 1

n
,1]

.

One can easily check that f(x) − gn(x) is piecewise linear and also continuous, so gn(x) ∈ C([−1,1]).
It is obtained by connecting (−1,−1), (− 1

n
, 2n
2n−1), (

1
n
,− 2n

2n−1), and (1,−1). Notice that

∫
0

−1
g = ∫

0

−1
f − ∫

0

−1
(f − g) = 1 − 1 = 0

and likewise ∫
1

0
g = 0. Therefore {gn} ⊂ U . Since ∥gn − f∥ = (2n − 1)/2n, letting n → ∞ gives

sup ∥gn − f∥ = 1, which suggests that dist(f,U) ⩽ 1.

Now we first show ∥f − g∥ > 1 for all g ∈ U . Suppose there exists some g ∈ U such that ∥f − g∥ ⩽ 1. If
it’s strictly < 1 then

∫
0

−1
f − g ⩽ ∫

1

0
∣f − g∣ ⩽ ∥f − g∥(1 − 0) < 1,

which means ∫
0

−1
g > 0, contradiction. On the other hand, similar tot he second ⩽ above, if ∥f−g∥ = 1, to

make sure ∫
0

−1
g = 0 it must be the case that f(x)−g(x) = 1 for all x ∈ [−1,0]. Likewise, g(x)−f(x) = 1

for all x ∈ [0,1]. Then we have g(0)− f(0) = f(0)− g(0) = 1, clearly a contradiction. This proves both
claims of part 1 (i.e., distance = 1 and no closest point exists).

(2) In C([−1,1]), the supremum norm is not induced by the inner product, hence (C([−1,1]), ∥ ⋅ ∥sup)
is not Hilbert and the Lemma does not apply. Simply consider f ∶= x − 1 and g ∶= x + 2 so that
∥f + g∥2 + ∥f − g∥2 = 32 + 32 = 18 whereas 2(∥f∥2 + ∥g∥)2 = 2(22 + 32) = 26 which fails to satisfy the
parallelogram law.
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