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Problem 1

A Banach space is called uniformly convez if for every € > 0 there exists § > 0 such that
T+y
lz -yl >elz| =]yl =1 = |T‘ <1-6.

(a) Show that every Hilbert space is uniformly convex.

Applying the parallelogram law to x and y with |z| = ||ly| = 1 gives

e <z -yl =2(Jz* + |y|*) - | +y|
= 4-4|(z+y)/2*.

Therefore |(x +1vy)/2|? < 1 - €2/4, and setting 6 := 1 — /1 — €2/4 finishes the proof.

(b) Use the following Clarkson’s inequalities
1
I +9)/250 + (= 9)/200 < S UL + 9170) for p € [2,00)

1 1 q/p
15 + )20 + 17 = 9)/20L, < (3112, + 510l for pe (1,2]

(where 1/p+1/q =1) to show that LP(Q) is uniformly convex for p € (1,00) for any €.
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Suppose ||f| =[lg] =1 and | f —g| > € (all with respect to ||+|re). If p € [2, 00), the first inequality gives

IF+9)/2IE, <1-1(f - )/2I,
<1-(¢f2)",

so taking 6 :=1 - (1 - (¢/2)?)"P proves the uniform convexity. On the other hand, if p € (1,2], then

I(F+9)/2150 <1=1(f-9)/2]%s
<1-(e/2)

so, similarly, taking ¢ := (1 — (1 -¢/2)?)~? completes the proof.

(c¢) Show that any uniformly convex Banach space X is strictly convex, i.e., if x,y € X, z # y, and |z| = |y|| = 1

then |z +y| < 2.

This follows immediately from the definition. If |z| = [|y| = 1 but = # y then |z - y| > 0, and so there
exists § > 0 such that [(z-y)/2] <1-6<1,ie., |z-y| <2-25<2.

(d) In this part we will generalize the “closest point lemma” (Lemma 6.9) to the case of uniformly convex Banach
spaces. In particular, by (1), this gives another proof of Lemma 6.9. Let A be a closed and convex subset of

a uniformly Banach space X and let X \ A. Let {a,}n>1 ¢ A be such that ||z - a,| - inf‘ |z —al =:d.
ae

(d1) Set z,, := (z - an)/||z — an| and use the convexity of A to show that

|(xn+xm>/2|>d( ! ! )

+
2\|z=an| |z -anl

Hint: try writing T, + Ty = (|2 - an| ™ + |2 = am| ™) (c1(2 - an) + co(x = ay,)) for some c1,co € R.

. |z | Jz |
By the hint defi = d cg:= . Th
e P N T R R FRr oy PR
RHS = B = @y B = @y
[o=an] " o =anl
=Im + Ty
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Notice that ¢; + ¢ = 1. Therefore

[(@n +2m)/2] =

1 1
( + )(:r—(clan+62am))
e
€A by convexity

(d2) Deduce that | (2, + ) /2| = 1 as min(m,n) - oo.
d
By (d1), E(Hx —an| ™t + |z = am| ™) < | (20 + 2m) /2], and by (c), since |zn|| = ||@m | we also have

(2 + ) /2| < 1. Since

. d 1 1 d(l 1)
lim - + =—|-+=]=1,
mm=eo 2\ |z —an| |z-an|) 2\d d

we conclude that the same thing happens for |[(z, + ., )/2].

(d3) Use uniform convexity of X to show that {z,} is Cauchy.

Suppose not, then there exists € > 0 such that, for all NV € N, there exists m > n > N with

|z — 2| > €. Taking N — oo contradicts (d2) since in this case min(m,n) — oo as well. Hence

{z,} is Cauchy.
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(d4) Deduce that {a,} is Cauchy as well.

lan = am| = [(z - an) = (z - an)|
- (x—an)— |‘$_an|‘ (:L‘—(lm)+ Hx an“ Hx—amH ”:L‘—(ln”
|z = anl |z = anl
< (x—an)— Hx—anH (m_am) 4 HCU an“ H.’t am” Hx_amH
|z = aml |z = aml
1

:7_ H.’L’n—meJl‘...

where the first 0 is given by the Cauchy-ness of {z,} and the second by the construction

lim |z - a,| =lim |z — ay,|| = d. Hence {a,} is Cauchy too.

(d5) Deduce the existence of G € A such that |z —af =d.

Since X is Banach, {a,} converges to some G € X. Then because A is closed, a € A. Such a is

precisely the one we are looking for.

(e) Suppose that X is a strictly convex Banach space. Let A ¢ X be closed and convex and « € X \ A. Show that

if there exists a closest point @ € A to x then it’s unique. In other words, the closest point a € A that we have

found in (d5) is unique even in strictly convex Banach spaces.

Suppose, for contradiction, that there exists a different a’ € A with |z—d| = |z-a'||. By strict convexity

of A, we know that
_ Al
:||2:E a aH<2-
d

T—a z—a

|z=al  Jz-d]

Therefore |z — (a +a")/2|| < d. But this gives a contradiction as & is assumed to be a closest point.

(f) Deduce that L*(0,1) is not uniformly convex.

Simply take f,g € L*(0,1) with f =1 and g(x) = x. It follows that (with |« |sup) | f] = [¢] = 1 whereas

|f+ gl =2. This means L*=(0,1) is not strictly convex, which implies it’s not uniformly convex.
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Problem 2

Let H be a real Hilbert space and B : H x H - R is such that:
(i) B(z,y) is linear in both z and y,
(ii) |B(z,y)| < c|z]|ly| for some ¢ >0, for all x,y € H,
(iii) B(x,y) > b|z|? for some b>0 and all x € H, and
(iv) B(z,y) = B(y,z) for all z,y € H.

In other words, B(:,+) is an inner product on H but not ncessarily the one that induces the norm | - |.

(a) Show that u € H minimizes
1
F(u) = B(u,u) ~ f(u),

where f e H* is given, if and only if

B(u,v) = f(v) for every v € H.

(Hint: consider F(u+tv) where t € R.)

For =, assume u is the minimizer. Then for all v € H and all ¢t € R we have
F(u+tv) - F(u) > 0. (1)
On the other hand,

F(u+tv) - F(u) = =[(B(u+tv,u+tv) - B(u,u)] = (f(u+tv) - f(u))

N~ N~

for some x € H by
[2tB(u,v) + B(tv,tv)] — (u + tv,x) + (u, x)

Riesz Representation Thm

1
=tB(u,v) + §B(tv,tv) - (tv,x)

1
<tB(u,v) + §Ct2HU”2 - (tv,x)

¢ >0, by applying (ii), since
B(tv,tv) = |B(tv, tv)]

_ ol

2

+ (B(u,v) = f(v))t = h(t).

Clearly h is concave up and taking derivative gives h'(t) = c||v||*t + (B(u,v) - f(v)), so h(t) attains its
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minimum at ¢y = W Substituting to back into the equation we see that the minimum is
_ lP(Bu,v) - f(v)? (B(u,0) - f(v))*
T T
_c(B(u,v) = f(v))? - 2(B(u,v) - f(v))*
2¢|v]
_ (B(u,v) - f(v))?
S oL <0. (2)

Therefore should (1) and (2) be both true, it must be the case that

_(B(u,v) - f(v))?

2¢|v]?

=0 for all ve H = B(u,v) = f(v) for all ve H.

For <, suppose B(u,v) = f(v) for all v e H. Then,
Flu+tv) - F(u) = %[QtB(u, v) + Btv, tv)] - t£(v)
=tB(u,v) + %B(tv,tv) - tB(u,v)
= %B(tv,tv) 20,

which shows w is a minimizer.

(b) Let A c H be a closed, convex (and nonempty) set. Show that F' is bounded below on A, and that there exists
a unique minimizer of F' on A. Hint: try using Riesz Representation Theorem and the closest point lemma.

Hint 2: consider B as the inner product.

Boundedness:

1
F(u) = L Bu,w) - f(u)
> blu)? - (u,x) (For some b > 0, by (iii) and Riesz RT)

> blu)? - |ul|z] (By Cauchy-Schwarz (on the induced norm))

which is bounded from below by F'(ug) where ug satisfies F'(ug) = 0 (since the leading coefficient of
this quadratic polynomial is b > 0, positive).
Existence & uniqueness: we first show that there exists a unique element of H that acts as a minimizer

of F on the entire H. Since B(+,-) can be seen as an inner product and f € H*, there exists « € H such
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that f(v) = B(v,x) for all v e H. By (a), B(u,v) = f(v) for every v € H if and only if u minimizes
F(u). However, since f(v) = B(v,z) and B(u,v) & B(v,u), and B(v,z) = B(v,u) for all v € H if

and only if v = u, we conclude that
u minimizes F(u) < u =x.

Hence the existence and uniqueness of minimizer. Now it remains to show x € A. If this is the case
then we are immediately done. Otherwise we claim that the orthogonal projection of x onto A, i.e.,
the “closest point”; is the minimizer of F' on A. Let xy be such point, i.e., |z — zo| = (111€1£ |u-a|. We
will show that F'(a) > F(xg) for all a € A:

F(a) - F(xo) = %[B(a’a) - B(zo,20)] - (f(a) - f(20))
- %[B(a,a)—B(:co,sco)] _ (B(a-10,7)) (Riesz)
- %[B(a,a) ~ B(xo,a) + B(z0,a) - B(wo, 7o) - B(a-w0,7) - B(z,a - 0)]
_ %[B(a—xma) + B(xo,a-10) - B(a - 20,2) - B(z,a - 0)]
1

= §[B(a—xo,a—x) +B(xg—2x,a—120)]
1
= §[B(a—x0,a—x0) +B(a-x9,20 —2) + B(xg—x,a—xq)]-

The first term is nonnegative by definition of | - | and positive whenever a # z9. The second and third
are nonnegative because (a —xg,x —xo) < 0 by Lemma 6.9. Furthermore, 0 can only be attained when

a = xg. Hence x( is indeed the unique minimizer of F' on A, done.

—_—>0 (=D 0

Problem 3

Let M be a closed subspace of a Hilbert space H. Show that H/M (recall PS2.5) is isometrically isomorphic to
M+ viat he mapping T': H/M — M* defined by T'([x]) := P*x, where P* is the orthogonal projection onto M*.

The proof roughly divides into four parts:
njectivity of T'. Suppose z|) = y]), i.e., z = Py. en (since is close
1) I fT. S T T Ptz =P'y. Th M is closed!

P (z-y)=0 = z-ye(M")* L r-ye M = [z]=[y].
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(2) Surjectivity of T. For any m € M*, simply notice that T'([m]) = P*m =m.
(3) |T| = 1. For any z € H, there exists a decomposition z = 21 + x5 where x1 € M and x5 € M*. Then,
|T[z]le = 1P =l a = lz2la = Il2]l/m
where the last equality is because

- inf I = inf |z’ = inf 2 2 - .
I@llzya = inf o+ = inf |2+ 2] = inf /T2 + [l = |22l

(4) |T7Y| = 1. First, its boundedness is guaranteed by IMT since H/M is complete (H is Banach and so
is H/M; cf. PS2.5). Then
1M pne = 1T T([@Dlyne = 1T (2]

and we conclude that 7T is indeed an isometry; H/M = M*.

ﬁo%o&

Problem 4

Let X be a normed space and U,Y two subspaces of X.

(a) Show that every z € X can be uniquely decomposed into x = u +y, where v € U and y € Y, if and only if

U+Y=Xand UnY ={0}.

For =, suppose the unique decomposition exists.

(1) X =U+Y: clearly U+Y c X, so it suffices to show X c U +Y, but this is precisely what the

existence of decomposition means, since any x € X is also in U + Y.
(2) UnY ={0}: suppose not so there exists nonzero ze UnY. Since 2=0+z=2+0and 0eUNnY,
z=2+0=0+z,
N
eU €Y eU €Y
a contradiction to the uniqueness of decomposition. Hence U nY = {0}.

For <=, suppose U+Y =X and UnY = {0}.

(1) Existence: since X cU +Y, for any x € X there exists u € U and y € Y such that z = u+y.

(2) Uniqueness: suppose & = u1 +y1 = Uz + yo. It follows that u; —us € U and yo —y1 € Y are equal.

Hence u; —us =y1 —y2 e UNY = {0} and so indeed u; = us,y; = y2. Hence unique.
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(b) Now let X be a Banach space. Show that U,Y are complements (i.e. U,Y are closed and every x admits a
unique decomposition in (a)) if and only if there exists T € B(X) such that 7% = T and im(T) = U. (This
shows Theorem 7.2.1.)

For ==, assume U is complemented by Y. By (a), each € X can be uniquely decomposed into

x=u+y for some ueU,yeY. Define a mapping 7: X - U by z ~ w.

(1) T € B(x,y): linearity is trivial; it suffices to show boundedness. Since X is not ncessarily Hilbert,
the original proof of |Py| = 1 breaks down. Neither does sequential continuity work. Hence we
resort to the Closed Graph Theorem. Let {(z,,T(x,))} ¢ G(T) be a sequence that converges
to (z,u) € X x U. We want to show that it converges in G(T') (the graph), i.e., u=T(x).

Decompose z,, into u, + y,. It follows that T'(z,) = u, - u € X. Hence y, >z —u € X. On the

other hand, by assumption, the closures of U and Y suggest that u € U and z —wu € Y. Therefore

x=u+(x-u)
T e———

eU Y

is a decomposition of x, and by assumption it is the decomposition of x. Therefore T(z) = u as

desired, and G(T) is closed. By the Closed Graph Theorem this means T € B(X).
(2) T? = T: immediate since T(T(x)) = T'(u) = u.
(3) im(7T") = U: c by definition of decomposition and of T'; > because for all u € U we have T'(u) = u.
For <=, simply take U :=im(T") and Y := ker(T"). We want to show U+Y =X and UnY = {0}.

(1) U+Y = X: the direction im(7T") + ker(T") c X is trivial. To show X cim(7T") + ker(7"), we use the
idempotency of T for all z € X,

z=(x-T(x))+T(z)
where T'(z) € im(T') and z — T'(x) € ker(T") since

T(x-T(z))=T(x)-T?(z) = 0.

(2) UnY ={0}: since ker(id-T') = im(T), the claim is equivalent to ker(id —7") nker(7") = {0}. This
is indeed true because if (id - T)(x) =T (z) =0 then id(z) =0 = z =0.

—_—>0 (=D 0<
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Problem 5

In this problem we show that the projection theorem, Proposition 6.10, is not true in inner product spaces that are

not Hilbert. Let X := cgp be equipped with the ¢? norm, and
U := {{xn}nﬂ € oot Z Tpfn = O}.
nx1l

(a) Show that there exists a unique x* € X* such that U = ker(z*) and deduce that U is a closed linear subspace

of Co0-

Intuitively we think of z* € X* defined by z* : {z,} » Y @, /n. Indeed z* is well-defined and linear,
nx1

and it is bounded because (by Cauchy-Schwarz)

71_2
> mfnl < [ X a2 [T () = 1 e

nz1 nx1

It follows that U = ker(z*), and since * € X*, the kernel is indeed closed.
Now it remains to show uniqueness. Suppose there exists some y* € X* with ker(z*) = ker(y*). By

Riesz Representation Theorem, if we define #* on the entire £2 (which is then Hilbert), there exists

a = {an}ns1 € 02 such that y*({z,}ns1) = Z AL,

nxz1

Notice that, for all n € N, the sequence with first term 1, n*® term (-n), and 0 everywhere else, is in
the kernel of z*, i.e., (1,0,...,0,-n,0,...) € ker(z*). By assumption this sequence is also € ker(y*).

Therefore a3 — na, =0 = a, = a;/n. Hence

a1Tn

v ({zn}) = 2

nx1

= a1z ({zn}),
and so indeed x* is unique.

(b) Show that there is no y € ¢op such that x*(z) = (z,y) for all z € X, i.e., the claim of the Riesz Representation

Theorem is not valid in X.

Suppose there exists some x = {z,,} that satisfies " yn/n =" x,y,. Taking e() suggests that y; = 1/i.
i>1 ix1
But then y ¢ cog, contradiction.

(c¢) Show that U* = {0}, and deduce that it is not true that every = € X can be uniquely decomposed as x = u+v

where w € U and v e U*.

10
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(1) U* = {0} : take any x = {z,} € U*. We have > z,y, =0 for any y = {y,} € U. Recall the set
i>1

of sequences with first term 1, n*® term (-n), and 0 everywhere else. These sequences are in
ker(z*) = U, so applying the equality above gives x,, = 21/n. The sequence {x1/n},s1 is in ¢gq if

and only if {z,} = 0. Therefore U* = {0}.
(2) Decomposition not guaranteed: simply consider x := (1,0,...). If there exists a decomposition,

since U* = {0} we must have v =0 and u =z, but z ¢ U since »_ z,/n=1%0.

n>1

e G—— [T

Problem 6
Let a = {a;}is1 € £°(C) and consider D, € B(¢*(C)) defined by
Dy (z1,22,...) = (c1x1,a09,...).
Show that:
(a) op(Da) ={ai}it.
We first show {a;} c 0,(D,). For any «;, simply consider e(:

D —o;l e(D) = Qy, — Oy el =0 but e % 0.
( )( n

nx1l

For the other direction, i.e., o,(Dy) € {a}, suppose for contradiction that there exists some A ¢ {«;}

such that (D, — AI)(x) =0 for some z # 0. It follows that
(alxl,agxg, e ) = ()\3’,‘1, )\1‘2, cee )

Since z # 0, there exists some n € N such that a,z, = A\x,, = X = a,, € {a;}, contradiction. Therefore

we conclude that o,(Dg) = {a;}.

(b) 9(Da) = 0p(Da)-

11
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Recall that o,(Dy) c 0(D,) and that o (D, ) is closed. Therefore it suffices to show (D) ¢ 0p(Dy),

and this is equivalent to showing the other inclusion of the complements, i.e., if A ¢ o,(D,) then

At o(Dy), e, AeS(D,). Fix this A\. We need to show D, — A\ is invertible.
(1) Injectivity: suppose (Dy —AI)(z) = (Do — AI)(y). Then

((ag = Nz1, (2= N)za,...) = (a1 = Ny1, (e = Mg, ...) = (x1,22,...) = (y1,Y2,---)-
(2) Surjectivity: for any y = {y,} € £2(C), define
x':( Y1 Y2 )
o ovm )

This is well-defined because A ¢ {c;} by assumption, which means 11)1{ |ce; = A| = d for some d > 0.
12

Furthermore, x € ?(C) because

> lyil® wil*  lyl7
H$||z222|a,_)\|2 SZ 42 = d2 <o
7

i1 i1

(3) Boundedness: trivial.

(4) Boundedness of inverse: immediate by IMT since £>°(C) and ¢?(C) are both Banach.

(c) For every compact set K c C there exists « € £°°(C) such that K = o(D,,).

Since K c C and C is separable, the set {a+bi:a,beQ and a+bi € K} forms a countable dense subset
of K. Furthermore, since K is compact, it is closed and bounded. Enumerating this set as « = {a; }i»1
we have therefore obtained a sequence in ¢°(C). By (a), op(Dqo) = {@;}, but since « is dense in K,

op(Da) :@ = K, and by (b), K = 0,(Dqs) =0(D,).

—_—>0 =D 0<

Problem 7

Let X be a complex Banach space. Let T € B(X) and let

ro(T) = sup |A
Xea (T)

12
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denote the spectral radius of T. Show that

1o (T) < liminf |77 /.

To prove this inequality, it’s natural to think about showing |\ < | 77"/ or equivalently [A"| < |T™]. Now

suppose A € o(T'), i.e., T — A is not invertible. Therefore,
T" = (A" =T" - X"I = (T -X) Y [T"(A)"]
i=1

is also not invertible by lemma 9.5 since the terms on the RHS commute. Therefore \™ € o(T™), and by
proposition 8.5 we claim |A"| < [T™|. Taking the supremum of A’s and letting n — oo, we conclude that

ro(T) = sup |A| < liminf | 77|"™.
Aeo(T) n—oo

13
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