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Problem 1

A Banach space is called uniformly convex if for every ϵ > 0 there exists δ > 0 such that

∥x − y∥ > ϵ, ∥x∥ = ∥y∥ = 1 Ô⇒ ∣x + y
2
∣ < 1 − δ.

(a) Show that every Hilbert space is uniformly convex.

Solution

Applying the parallelogram law to x and y with ∥x∥ = ∥y∥ = 1 gives

ϵ2 < ∥x − y∥2 = 2(∥x∥2 + ∥y∥2) − ∥x + y∥2

= 4 − 4∥(x + y)/2∥2.

Therefore ∥(x + y)/2∥2 < 1 − ϵ2/4, and setting δ ∶= 1 −
√
1 − ϵ2/4 finishes the proof.

(b) Use the following Clarkson’s inequalities

∥(f + g)/2∥pLp + ∥(f − g)/2∥pLp ⩽
1

2
(∥f∥pLp + ∥g∥pLp) for p ∈ [2,∞)

∥(f + g)/2∥qLp + ∥(f − g)/2∥qLp ⩽ (
1

2
∥f∥pLp +

1

2
∥g∥pLp)

q/p
for p ∈ (1,2]

(where 1/p + 1/q = 1) to show that Lp(Ω) is uniformly convex for p ∈ (1,∞) for any Ω.

1



MATH 580 Problem Set 4 YQL

Solution

Suppose ∥f∥ = ∥g∥ = 1 and ∥f −g∥ > ϵ (all with respect to ∥ ⋅ ∥Lp). If p ∈ [2,∞), the first inequality gives

∥(f + g)/2∥pLp ⩽ 1 − ∥(f − g)/2∥pLp

< 1 − (ϵ/2)p,

so taking δ ∶= 1 − (1 − (ϵ/2)p)−p proves the uniform convexity. On the other hand, if p ∈ (1,2], then

∥(f + g)/2∥qLp ⩽ 1 − ∥(f − g)/2∥qLp

< 1 − (ϵ/2)q

so, similarly, taking δ ∶= (1 − (1 − ϵ/2)q)−q completes the proof.

(c) Show that any uniformly convex Banach space X is strictly convex, i.e., if x, y ∈ X, x ≠ y, and ∥x∥ = ∥y∥ = 1
then ∥x + y∥ < 2.

Solution

This follows immediately from the definition. If ∥x∥ = ∥y∥ = 1 but x ≠ y then ∥x − y∥ > 0, and so there
exists δ > 0 such that ∥(x − y)/2∥ < 1 − δ < 1, i.e., ∥x − y∥ < 2 − 2δ < 2.

(d) In this part we will generalize the “closest point lemma” (Lemma 6.9) to the case of uniformly convex Banach
spaces. In particular, by (1), this gives another proof of Lemma 6.9. Let A be a closed and convex subset of
a uniformly Banach space X and let X ∖A. Let {an}n⩾1 ⊂ A be such that ∥x − an∥→ inf

a∈A
∥x − a∥ =∶ d.

(d1) Set xn ∶= (x − an)/∥x − an∥ and use the convexity of A to show that

∥(xn + xm)/2∥ ⩾
d

2
( 1

∥x − an∥
+ 1

∥x − am∥
) .

Hint: try writing xn + xm = (∥x − an∥−1 + ∥x − am∥−1)(c1(x − an) + c2(x − am)) for some c1, c2 ∈ R.

Solution

By the hint, we may define c1 ∶=
∥x − an∥−1

∥x − an∥−1 + ∥x − am∥−1
and c2 ∶=

∥x − am∥−1

∥x − an∥−1 + ∥x − am∥−1
. Then

RHS = x − an
∥x − an∥

+ x − am
∥x − am∥

= xm + xn.
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Notice that c1 + c2 = 1. Therefore

∥(xn + xm)/2∥ =
1

2
( 1

∥x − an∥
+ 1

∥x − am∥
) ((c1 + c2)x − (c1an + c2am))

= 1

2
( 1

∥x − an∥
+ 1

∥x − am∥
) (x − (c1an + c2am)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈A by convexity

)

⩾ d

2
( 1

∥x − an∥
+ 1

∥x − am∥
) .

(d2) Deduce that ∥(xn + xm)/2∥→ 1 as min(m,n)→∞.

Solution

By (d1), d

2
(∥x − an∥−1 + ∥x − am∥−1) ⩽ ∥(xn + xm)/2∥, and by (c), since ∥xn∥ = ∥xm∥ we also have

∥(xn + xm)/2∥ < 1. Since

lim
n,m→∞

d

2
( 1

∥x − an∥
+ 1

∥x − am∥
) = d

2
(1
d
+ 1

d
) = 1,

we conclude that the same thing happens for ∥(xn + xm)/2∥.

(d3) Use uniform convexity of X to show that {xn} is Cauchy.

Solution

Suppose not, then there exists ϵ > 0 such that, for all N ∈ N, there exists m > n > N with
∥xm − xn∥ > ϵ. Taking N →∞ contradicts (d2) since in this case min(m,n) →∞ as well. Hence
{xn} is Cauchy.
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(d4) Deduce that {an} is Cauchy as well.

Solution

∥an − am∥ = ∥(x − an) − (x − am)∥

=
XXXXXXXXXXX
(x − an) −

∥x − an∥
∥x − am∥

(x − am) +
∥x − an∥ − ∥x − am∥

∥x − am∥
∥x − an∥

XXXXXXXXXXX

⩽
XXXXXXXXXXX
(x − an) −

∥x − an∥
∥x − am∥

(x − am)
XXXXXXXXXXX
+ ∣ ∥x − an∥ − ∥x − am∥

∥x − am∥
∣∥x − am∥

= 1

∥x − an∥
∥xn − xm∥ + . . .

→ 0 + 0 = 0

where the first 0 is given by the Cauchy-ness of {xn} and the second by the construction
lim ∥x − an∥ = lim ∥x − am∥ = d. Hence {an} is Cauchy too.

(d5) Deduce the existence of â ∈ A such that ∥x − â∥ = d.

Solution

Since X is Banach, {an} converges to some â ∈ X. Then because A is closed, â ∈ A. Such â is
precisely the one we are looking for.

(e) Suppose that X is a strictly convex Banach space. Let A ⊂X be closed and convex and x ∈X ∖A. Show that
if there exists a closest point â ∈ A to x then it’s unique. In other words, the closest point â ∈ A that we have
found in (d5) is unique even in strictly convex Banach spaces.

Solution

Suppose, for contradiction, that there exists a different a′ ∈ A with ∥x−â∥ = ∥x−a′∥. By strict convexity
of A, we know that

XXXXXXXXXXX

x − â
∥x − â∥

+ x − a′

∥x − a′∥

XXXXXXXXXXX
= ∥2x − â − a

′∥
d

< 2.

Therefore ∥x − (â + a′)/2∥ < d. But this gives a contradiction as â is assumed to be a closest point.

(f) Deduce that L∞(0,1) is not uniformly convex.

Solution

Simply take f, g ∈ L∞(0,1) with f ≡ 1 and g(x) = x. It follows that (with ∥ ⋅∥sup) ∥f∥ = ∥g∥ = 1 whereas
∥f + g∥ = 2. This means L∞(0,1) is not strictly convex, which implies it’s not uniformly convex.
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Problem 2

Let H be a real Hilbert space and B ∶H ×H → R is such that:

(i) B(x, y) is linear in both x and y,

(ii) ∣B(x, y)∣ ⩽ c∥x∥∥y∥ for some c > 0, for all x, y ∈H,

(iii) B(x, y) ⩾ b∥x∥2 for some b > 0 and all x ∈H, and

(iv) B(x, y) = B(y, x) for all x, y ∈H.

In other words, B(⋅, ⋅) is an inner product on H but not ncessarily the one that induces the norm ∥ ⋅ ∥.

(a) Show that u ∈H minimizes
F (u) ∶= 1

2
B(u,u) − f(u),

where f ∈H∗ is given, if and only if

B(u, v) = f(v) for every v ∈H.

(Hint: consider F (u + tv) where t ∈ R.)

Solution

For Ô⇒ , assume u is the minimizer. Then for all v ∈H and all t ∈ R we have

F (u + tv) − F (u) ⩾ 0. (1)

On the other hand,

F (u + tv) − F (u) = 1

2
[(B(u + tv, u + tv) −B(u,u)] − (f(u + tv) − f(u))

= 1

2
[2tB(u, v) +B(tv, tv)] − (u + tv, x) + (u,x)

⎧⎪⎪⎨⎪⎪⎩

for some x ∈H by
Riesz Representation Thm

= tB(u, v) + 1

2
B(tv, tv) − (tv, x)

⩽ tB(u, v) + 1

2
ct2∥v∥2 − (tv, x)

⎧⎪⎪⎨⎪⎪⎩

c > 0, by applying (ii), since
B(tv, tv) = ∣B(tv, tv)∣

= c∥v∥2t2

2
+ (B(u, v) − f(v))t =∶ h(t).

Clearly h is concave up and taking derivative gives h′(t) = c∥v∥2t+ (B(u, v)− f(v)), so h(t) attains its
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minimum at t0 =
B(u, v) − f(v)

c∥v∥2
. Substituting t0 back into the equation we see that the minimum is

h(t0) =
∥v∥2(B(u, v) − f(v))2

2c2∥v∥4
− (B(u, v) − f(v))

2

c∥v∥2

= c(B(u, v) − f(v))2 − 2(B(u, v) − f(v))2

2c∥v∥2

= −(B(u, v) − f(v))
2

2c∥v∥2
⩽ 0. (2)

Therefore should (1) and (2) be both true, it must be the case that

−(B(u, v) − f(v))
2

2c∥v∥2
= 0 for all v ∈H Ô⇒ B(u, v) = f(v) for all v ∈H.

For ⇐Ô , suppose B(u, v) = f(v) for all v ∈H. Then,

F (u + tv) − F (u) = 1

2
[2tB(u, v) +B(tv, tv)] − tf(v)

= tB(u, v) + 1

2
B(tv, tv) − tB(u, v)

= 1

2
B(tv, tv) ⩾ 0,

which shows u is a minimizer.

(b) Let A ⊂H be a closed, convex (and nonempty) set. Show that F is bounded below on A, and that there exists
a unique minimizer of F on A. Hint: try using Riesz Representation Theorem and the closest point lemma.
Hint 2: consider B as the inner product.

Solution

Boundedness:

F (u) = 1

2
B(u,u) − f(u)

⩾ b∥u∥2 − (u,x) (For some b > 0, by (iii) and Riesz RT)

⩾ b∥u∥2 − ∥u∥∥x∥ (By Cauchy-Schwarz (on the induced norm))

which is bounded from below by F (u0) where u0 satisfies F ′(u0) = 0 (since the leading coefficient of
this quadratic polynomial is b > 0, positive).
Existence & uniqueness: we first show that there exists a unique element of H that acts as a minimizer
of F on the entire H. Since B(⋅, ⋅) can be seen as an inner product and f ∈H∗, there exists x ∈H such
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that f(v) = B(v, x) for all v ∈ H. By (a), B(u, v) = f(v) for every v ∈ H if and only if u minimizes
F (u). However, since f(v) = B(v, x) and B(u, v) (iv)= B(v, u), and B(v, x) = B(v, u) for all v ∈ H if
and only if v = u, we conclude that

u minimizes F (u) ⇐⇒ u = x.

Hence the existence and uniqueness of minimizer. Now it remains to show x ∈ A. If this is the case
then we are immediately done. Otherwise we claim that the orthogonal projection of x onto A, i.e.,
the “closest point”, is the minimizer of F on A. Let x0 be such point, i.e., ∥x − x0∥ = inf

a∈A
∥u − a∥. We

will show that F (a) ⩾ F (x0) for all a ∈ A:

F (a) − F (x0) =
1

2
[B(a, a) −B(x0, x0)] − (f(a) − f(x0))

= 1

2
[B(a, a) −B(x0, x0)] − (B(a − x0, x)) (Riesz)

= 1

2
[B(a, a) −B(x0, a) +B(x0, a) −B(x0, x0) −B(a − x0, x) −B(x, a − x0)]

= 1

2
[B(a − x0, a) +B(x0, a − x0) −B(a − x0, x) −B(x, a − x0)]

= 1

2
[B(a − x0, a − x) +B(x0 − x, a − x0)]

= 1

2
[B(a − x0, a − x0) +B(a − x0, x0 − x) +B(x0 − x, a − x0)].

The first term is nonnegative by definition of ∥ ⋅ ∥ and positive whenever a ≠ x0. The second and third
are nonnegative because (a−x0, x−x0) ⩽ 0 by Lemma 6.9. Furthermore, 0 can only be attained when
a = x0. Hence x0 is indeed the unique minimizer of F on A, done.

Problem 3

Let M be a closed subspace of a Hilbert space H. Show that H/M (recall PS2.5) is isometrically isomorphic to
M⊥ viat he mapping T ∶H/M →M⊥ defined by T ([x]) ∶= P ⊥x, where P ⊥ is the orthogonal projection onto M⊥.

Solution

The proof roughly divides into four parts:

(1) Injectivity of T . Suppose T ([x]) = T ([y]), i.e., P ⊥x = P ⊥y. Then (since M is closed†)

P ⊥(x − y) = 0 Ô⇒ x − y ∈ (M⊥)⊥
†
Ô⇒ x − y ∈M Ô⇒ [x] = [y].
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(2) Surjectivity of T . For any m ∈M⊥, simply notice that T ([m]) = P ⊥m =m.

(3) ∥T ∥ = 1. For any x ∈H, there exists a decomposition x = x1 + x2 where x1 ∈M and x2 ∈M⊥. Then,

∥T [x]∥H = ∥P ⊥x∥H = ∥x2∥H = ∥[x]∥H/M

where the last equality is because

∥[x]∥H/M = inf
x′∈M

∥x + x′∥ = inf
x′∈M

∥x′ + x2∥ = inf
x′∈M

√
∥x′∥2 + ∥x2∥2 = ∥x2∥H .

(4) ∥T −1∥ = 1. First, its boundedness is guaranteed by IMT since H/M is complete (H is Banach and so
is H/M ; cf. PS2.5). Then

∥[x]∥H/M = ∥T −1T ([x])∥H/M = ∥T [x]∥H

and we conclude that T is indeed an isometry; H/M ≡M⊥.

Problem 4

Let X be a normed space and U,Y two subspaces of X.

(a) Show that every x ∈ X can be uniquely decomposed into x = u + y, where u ∈ U and y ∈ Y , if and only if
U + Y =X and U ∩ Y = {0}.

Solution

For Ô⇒ , suppose the unique decomposition exists.

(1) X = U + Y : clearly U + Y ⊂ X, so it suffices to show X ⊂ U + Y , but this is precisely what the
existence of decomposition means, since any x ∈X is also in U + Y .

(2) U ∩ Y = {0}: suppose not so there exists nonzero z ∈ U ∩ Y . Since z = 0+ z = z + 0 and 0 ∈ U ∩ Y ,

z = z
®
∈U

+ 0
®
∈Y

= 0
®
∈U

+ z
®
∈Y

,

a contradiction to the uniqueness of decomposition. Hence U ∩ Y = {0}.

For ⇐Ô , suppose U + Y =X and U ∩ Y = {0}.

(1) Existence: since X ⊂ U + Y , for any x ∈X there exists u ∈ U and y ∈ Y such that x = u + y.

(2) Uniqueness: suppose x = u1 + y1 = u2 + y2. It follows that u1 − u2 ∈ U and y2 − y1 ∈ Y are equal.
Hence u1 − u2 = y1 − y2 ∈ U ∩ Y = {0} and so indeed u1 = u2, y1 = y2. Hence unique.
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(b) Now let X be a Banach space. Show that U,Y are complements (i.e. U,Y are closed and every x admits a
unique decomposition in (a)) if and only if there exists T ∈ B(X) such that T 2 = T and im(T ) = U . (This
shows Theorem 7.2.1.)

Solution

For Ô⇒ , assume U is complemented by Y . By (a), each x ∈ X can be uniquely decomposed into
x = u + y for some u ∈ U, y ∈ Y . Define a mapping T ∶X → U by x↦ u.

(1) T ∈ B(x, y): linearity is trivial; it suffices to show boundedness. Since X is not ncessarily Hilbert,
the original proof of ∥PU∥ = 1 breaks down. Neither does sequential continuity work. Hence we
resort to the Closed Graph Theorem. Let {(xn, T (xn))} ⊂ G(T ) be a sequence that converges
to (x,u) ∈X ×U . We want to show that it converges in G(T ) (the graph), i.e., u = T (x).

Decompose xn into un + yn. It follows that T (xn) = un → u ∈ X. Hence yn → x − u ∈ X. On the
other hand, by assumption, the closures of U and Y suggest that u ∈ U and x−u ∈ Y . Therefore

x = u
®
∈U

+ (x − u)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Y

is a decomposition of x, and by assumption it is the decomposition of x. Therefore T (x) = u as
desired, and G(T ) is closed. By the Closed Graph Theorem this means T ∈ B(X).

(2) T 2 = T : immediate since T (T (x)) = T (u) = u.

(3) im(T ) = U : ⊂ by definition of decomposition and of T ; ⊃ because for all u ∈ U we have T (u) = u.

For ⇐Ô , simply take U ∶= im(T ) and Y ∶= ker(T ). We want to show U + Y =X and U ∩ Y = {0}.

(1) U +Y =X: the direction im(T )+ ker(T ) ⊂X is trivial. To show X ⊂ im(T )+ ker(T ), we use the
idempotency of T : for all x ∈X,

x = (x − T (x)) + T (x)

where T (x) ∈ im(T ) and x − T (x) ∈ ker(T ) since

T (x − T (x)) = T (x) − T 2(x) = 0.

(2) U ∩Y = {0}: since ker(id−T ) = im(T ), the claim is equivalent to ker(id−T )∩ker(T ) = {0}. This
is indeed true because if (id − T )(x) = T (x) = 0 then id(x) = 0 Ô⇒ x = 0.
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Problem 5

In this problem we show that the projection theorem, Proposition 6.10, is not true in inner product spaces that are
not Hilbert. Let X ∶= c00 be equipped with the ℓ2 norm, and

U ∶= {{xn}n⩾1 ∈ c00 ∶ ∑
n⩾1

xn/n = 0} .

(a) Show that there exists a unique x∗ ∈X∗ such that U = ker(x∗) and deduce that U is a closed linear subspace
of c00.

Solution

Intuitively we think of x∗ ∈ X∗ defined by x∗ ∶ {xn} ↦ ∑
n⩾1

xn/n. Indeed x∗ is well-defined and linear,

and it is bounded because (by Cauchy-Schwarz)

∣∑
n⩾1

xn/n∣ ⩽
√
∑
n⩾1

x2
n

√
∑
n⩾1
(1/n2) = π2

6
∥{xn}∥ℓ2 .

It follows that U = ker(x∗), and since x∗ ∈X∗, the kernel is indeed closed.
Now it remains to show uniqueness. Suppose there exists some y∗ ∈ X∗ with ker(x∗) = ker(y∗). By
Riesz Representation Theorem, if we define x∗ on the entire ℓ2 (which is then Hilbert), there exists
a = {an}n⩾1 ∈ ℓ2 such that y∗({xn}n⩾1) = ∑

n⩾1
anxn.

Notice that, for all n ∈ N, the sequence with first term 1, nth term (−n), and 0 everywhere else, is in
the kernel of x∗, i.e., (1,0, . . . ,0,−n,0, . . . ) ∈ ker(x∗). By assumption this sequence is also ∈ ker(y∗).
Therefore a1 − nan = 0 Ô⇒ an = a1/n. Hence

y∗({xn}) = ∑
n⩾1

a1xn

n
= a1x∗({xn}),

and so indeed x∗ is unique.

(b) Show that there is no y ∈ c00 such that x∗(x) = ⟨x, y⟩ for all x ∈X, i.e., the claim of the Riesz Representation
Theorem is not valid in X.

Solution

Suppose there exists some x = {xn} that satisfies ∑
i⩾1

yn/n =∑
i⩾1

xnyn. Taking e(i) suggests that yi = 1/i.

But then y ∉ c00, contradiction.

(c) Show that U⊥ = {0}, and deduce that it is not true that every x ∈X can be uniquely decomposed as x = u+ v
where u ∈ U and v ∈ U⊥.
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Solution

(1) U⊥ = {0} : take any x = {xn} ∈ U⊥. We have ∑
i⩾1

xnyn = 0 for any y = {yn} ∈ U . Recall the set

of sequences with first term 1, nth term (−n), and 0 everywhere else. These sequences are in
ker(x∗) = U , so applying the equality above gives xn = x1/n. The sequence {x1/n}n⩾1 is in c00 if
and only if {xn} = 0. Therefore U⊥ = {0}.

(2) Decomposition not guaranteed: simply consider x ∶= (1,0, . . . ). If there exists a decomposition,
since U⊥ = {0} we must have v = 0 and u = x, but x ∉ U since ∑

n⩾1
xn/n = 1 ≠ 0.

Problem 6

Let α = {αi}i⩾1 ∈ ℓ∞(C) and consider Dα ∈ B(ℓ2(C)) defined by

Dα(x1, x2, . . . ) ∶= (α1x1, α2x2, . . . ).

Show that:

(a) σp(Dα) = {αi}i⩾1.

Solution

We first show {αi} ⊂ σp(Dα). For any αi, simply consider e(i):

(D − αiI)(e(i)) = ∑
n⩾1
(αn − αi)e(i)n = 0 but e(i) ≠ 0.

For the other direction, i.e., σp(Dα) ⊂ {αi}, suppose for contradiction that there exists some λ ∉ {αi}
such that (Dα − λI)(x) = 0 for some x ≠ 0. It follows that

(α1x1, α2x2, . . . ) = (λx1, λx2, . . . ).

Since x ≠ 0, there exists some n ∈ N such that αnxn = λxn Ô⇒ λ = αn ∈ {αi}, contradiction. Therefore
we conclude that σp(Dα) = {αi}.

(b) σ(Dα) = σp(Dα).
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Solution

Recall that σp(Dα) ⊂ σ(Dα) and that σ(Dα) is closed. Therefore it suffices to show σ(Dα) ⊂ σp(Dα),
and this is equivalent to showing the other inclusion of the complements, i.e., if λ ∉ σp(Dα) then
λ ∉ σ(Dα), i.e., λ ∈ S(Dα). Fix this λ. We need to show Dα − λI is invertible.

(1) Injectivity: suppose (Dα − λI)(x) = (Dα − λI)(y). Then

((α1 − λ)x1, (α2 − λ)x2, . . . ) = ((α1 − λ)y1, (α2 − λ)x2, . . . ) Ô⇒ (x1, x2, . . . ) = (y1, y2, . . . ).

(2) Surjectivity: for any y = {yn} ∈ ℓ2(C), define

x ∶= ( y1
α1 − λ

,
y2

α2 − λ
, . . .) .

This is well-defined because λ ∉ {αi} by assumption, which means inf
i⩾1
∣αi − λ∣ = d for some d > 0.

Furthermore, x ∈ ℓ2(C) because

∥x∥2ℓ2 =∑
i⩾1

∣yi∣2

∣αi − λ∣2
⩽∑

i⩾1

∣yi∣2

d2
=
∥y∥2ℓ2
d2
<∞.

(3) Boundedness: trivial.

(4) Boundedness of inverse: immediate by IMT since ℓ∞(C) and ℓ2(C) are both Banach.

(c) For every compact set K ⊂ C there exists α ∈ ℓ∞(C) such that K = σ(Dα).

Solution

Since K ⊂ C and C is separable, the set {a+ bi ∶ a, b ∈ Q and a+ bi ∈K} forms a countable dense subset
of K. Furthermore, since K is compact, it is closed and bounded. Enumerating this set as α ∶= {αi}i⩾1
we have therefore obtained a sequence in ℓ∞(C). By (a), σp(Dα) = {αi}, but since α is dense in K,
σp(Dα) = {αi} =K, and by (b), K = σp(Dα) = σ(Dα).

Problem 7

Let X be a complex Banach space. Let T ∈ B(X) and let

rσ(T ) ∶= sup
λ∈σ(T )

∣λ∣

12
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denote the spectral radius of T . Show that

rσ(T ) ⩽ lim inf
n→∞

∥Tn∥1/n.

Solution

To prove this inequality, it’s natural to think about showing ∣λ∣ ⩽ ∥Tn∥1/n or equivalently ∣λn∣ ⩽ ∥Tn∥. Now
suppose λ ∈ σ(T ), i.e., T − λI is not invertible. Therefore,

Tn − (λI)n = Tn − λnI = (T − λI)
n

∑
i=1
[T i(λI)n−i]

is also not invertible by lemma 9.5 since the terms on the RHS commute. Therefore λn ∈ σ(Tn), and by
proposition 8.5 we claim ∣λn∣ ⩽ ∥Tn∥. Taking the supremum of λ’s and letting n → ∞, we conclude that
rσ(T ) = sup

λ∈σ(T )
∣λ∣ ⩽ lim inf

n→∞
∥Tn∥1/n.
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