

MATH 580 Problem Set 5

Qilin Ye

January 11, 2021

Problem 1

Suppose that $\{K_{ij}\}_{i,j=1}^\infty \subset \mathbb{K}$ is such that $\sum_{i,j=1}^\infty |K_{ij}|^2 < \infty$. Show that $S : \ell^2 \rightarrow \ell^2$ defined by

$$(S(x))_i := \sum_{j=1}^\infty K_{ij}x_j$$

is a compact operator.

Solution

First we verify that S is indeed bounded:

$$\begin{aligned} \|S(x)\|^2 &= \sum_{i=1}^\infty \left| \sum_{j=1}^\infty K_{ij}x_j \right|^2 \\ &\leq \sum_{i=1}^\infty \left[\sum_{j=1}^\infty |K_{ij}|^2 \sum_{j=1}^\infty |x_j|^2 \right] \\ &= \sum_{i,j=1}^\infty |K_{ij}|^2 \|x\|^2 \\ \implies \|S\| &\leq \left(\sum_{i,j=1}^\infty |K_{ij}|^2 \right)^{1/2} < \infty. \end{aligned}$$

Furthermore, notice that S is a Hilbert-Schmidt operator: using $\{e^{(i)}\}$ as the orthonormal basis, we have

$$\sum_{i=1}^\infty \|S(e^{(i)})\|^2 = \sum_{i=1}^\infty \sum_{j=1}^\infty |K_{ij}|^2 < \infty \text{ by assumption.}$$

Since ℓ^2 is a separable ($\{e^{(i)}\}$ as the countable set with dense closure) Hilbert (with the canonical inner product) space, by Proposition 9.16 we conclude that S is compact.

Problem 2

(a) Show that the operator $T : \ell^2 \rightarrow \ell^2$ that maps $e^{(j)}$ to $e^{(j+1)}$ if j is odd and $e^{(j)}$ to 0 if j is even, i.e., $T(x_1, x_2, \dots) := (0, x_1, 0, x_3, \dots)$, is not compact.

(b) Given an example of $T \in B(X, Y)$ and $S \in B(Y, Z)$, where X, Y, Z are Banach spaces, such that $S \circ T$ is compact, but neither S nor T is. (*This shows that the sufficient condition from Lemma 9.17.1 is not a necessary condition.*)

Solution

(a) For $k \geq 1$, taking the bounded sequence $\{e^{(2k-1)}\}$ and applying T , we get $\{e^{(2k)}\}$, among which the pairwise ℓ^2 -distance is $\sqrt{2}$. Therefore no subsequence can possibly converge, and we conclude that T is not compact.

(b) Simply notice that (from above) $T^2 = 0$, trivially compact.

Problem 3

Let X be an infinite dimensional normed space and $T \in K(X)$. Show that there exists a sequence $\{x_n\} \subset S_X$ (the unit sphere) such that $T(x_n) \rightarrow 0$. Given an example of such T where there is no $x \in S_X$ such that $T(x) = 0$.

Solution

Pick $x_1 \in X$ with $\|x_1\| = 1$. Since $\text{span}\{x_1\}$ is a closed subspace of X , there exists another $x_2 \in X$ such that $\|x_2 - x_1\| \geq 1/2$ by Riesz's lemma. Since X is infinite dimensional, we may repeat this process inductively and obtain a sequence $\{x_n\}_{n \geq 1}$ such that $\|x_i\| = 1$ for all i 's and $\|x_i - x_j\| \geq 1/2$ whenever $i \neq j$.

Notice that $\{x_n\} \subset S_X$. If $T \in K(X)$ then there exists a subsequence $\{x_{n_i}\}$, which we now relabel as the new $\{x_n\}$, such that $T(x_n) \rightarrow x$ for some $x \in X$. Define the difference sequence $\{y_n\} := \{x_{n+1} - x_n\}$, we have $T(y_n) \rightarrow 0$. The convergence of $T(x_n)$ implies $T(y_n) \rightarrow 0$.

Let $\epsilon > 0$ be given. There exists $N \in \mathbb{N}$ such that $\|T(y_n)\| < \epsilon/2$ whenever $n \geq N$. Recall that by construction each $y_n \geq 1/2$. Now we normalize $\{y_n\}$ by defining $\{y'_n\} := \{y_n/\|y_n\|\} \subset S_X$. If $n \geq N$, then

$$\|T(y'_n)\| = \frac{1}{\|y_n\|} \underbrace{T(y_n)}_{\leq \epsilon/2} < \epsilon,$$

from which we have obtained a sequence on the sphere that converges to 0 under T .

To think of convergence to 0, the most natural idea is to think about $\{1/n\}$. Therefore we consider

$$T : \ell^2 \rightarrow \ell^2 \text{ defined by } \{x_n\} \mapsto \{x_n/n\}.$$

(As mentioned in Example 9.20, this operator is clearly bounded with $\|T\| \leq 1$.) Now take the sequence $\{e^{(i)}\} \subset S_X$, and we have obtained $\{T(e^{(i)})\} = \{1/n\}$ that converges to 0. Yet, $T(e^{(i)}) = 1/i \neq 0$.

Problem 4

(a) Let X, Y, Z be Banach spaces. Let $K \in K(X, Y)$ and $T \in B(X, Y)$ be injective. Show that for every $\epsilon > 0$ there exists $C_\epsilon > 0$ such that

$$\|K(x)\|_Y \leq \epsilon \|x\|_X + C_\epsilon \|T(K(x))\|_Z.$$

This is the so-called Ehrling's Lemma.

Solution

To simplify the inequality, WLOG let $\{x_n\} \subset X$ be a sequence with $\|x_n\| = 1$. Suppose the opposite of the claim is true, then there exists $\epsilon_0 > 0$ such that, for all $n \in \mathbb{N}$,

$$\|K(x_n)\|_Y > \epsilon_0 + n \|T(K(x_n))\|_Z.$$

Since $K \in K(X, Y)$, $\{K(x_n)\}$ is bounded. Therefore $\|T(K(x_n))\|_Z < (\|K(x_n)\|_Y - \epsilon_0)/n \rightarrow 0$. On the other hand, since K is compact, there exists a subsequence $\{x_{n_i}\}$ that converges under K and hence under $T \circ K$ as well. However, since $T \circ K$ is injective (as both T and K are), we have $\|T(K(x_n))\|_Z \rightarrow 0 \implies x_n \rightarrow 0$, contradicting our assumption that $\|x_n\| = 1$ uniformly. \square

(b) Let $\Omega \in \mathbb{R}^n$ be an open and bounded set with smooth boundary. Show that for all $u \in C^2(\bar{\Omega})$

$$\|\nabla u\|_{C(\bar{\Omega})} \leq \epsilon \|D^2 u\|_{C(\bar{\Omega})} + C_\epsilon \|u\|_{C(\bar{\Omega})}.$$

Hint: recall a fact from real analysis that if $f_n \rightarrow f$ and $\nabla f_n \rightarrow g$ uniformly on a compact subset of \mathbb{R}^n , then $g = \nabla f$.

(c) Let $u \in C^2([0, 1])$ be a solution to the differential equation

$$a\ddot{u} + b\dot{u} + du = 0 \text{ in } (0, 1),$$

where $a, b, d \in C([0, 1])$ with $a \geq c$ for some $c > 0$. Show that for some $C > 0$ (depending only on a, b, c, d)

$$\|u\|_{C^2([0, 1])} \leq C \|u\|_{C([0, 1])}.$$

Problem 5

Let X be a separable normed space. Show that X is isometrically isomorphic to a subspace of ℓ^∞ . *Hint: let $\{x_n\}$ be a dense sequence in the unit sphere of X , and consider $T(x) := (\varphi_1(x), \varphi_2(x), \dots)$ where φ is the support functional of x_n .* When is the resulting subspace of ℓ^∞ closed?

Solution

(1) T is linear: trivial, since the support functionals are linear.

(2) T is injective: suppose $T(x) = 0$ for some nonzero x . Since $\{x_n\}$ is dense in S_X , for any $\epsilon > 0$ there exists $x_k \in \{x_n\}$ such that $\|x_k - \frac{x}{\|x\|}\| < \epsilon$.

By triangle inequality $|\varphi_k(x_k)| \leq |\varphi_k(x_k - x/\|x\|)| + |\varphi_k(x/\|x\|)|$. Therefore,

$$\begin{aligned} \left| \varphi_k \left(\frac{x}{\|x\|} \right) \right| &\geq \underbrace{\left| \varphi_k(x_k) \right| - \left| \varphi_k(x_k - \frac{x}{\|x\|}) \right|}_{=1} \\ &\leq \|\varphi_k\| \|x_k - x/\|x\|\| \\ &\geq 1 - 1 \cdot \epsilon. \end{aligned}$$

This contradicts with $T(x/\|x\|) = (T(x))/\|x\| = 0$. Hence T is injective.

(3) $\|T\| = 1$: we first show $\|T\| \leq 1$:

$$\|T\| = \sup_{\|x\|=1} \|T(x)\| = \sup_{\|x\|=1} \sup_{n \in \mathbb{N}} |\varphi_n(x)| \leq \sup_{\|x\|=1} \sup_{n \in \mathbb{N}} \|x\| = 1.$$

On the other hand, from the previous part, letting $\epsilon \downarrow 0$ we have

$$\|T(\frac{x}{\|x\|})\| = \sup_{n \in \mathbb{N}} |\varphi_n(\frac{x}{\|x\|})| \geq |\varphi_k(\frac{x}{\|x\|})| \geq 1 - \epsilon \rightarrow 1.$$

Therefore $\|T\| \geq 1$, and the two parts suggest that $\|T\| = 1$.

(4) If X is Banach then the resulting subspace of ℓ^∞ is closed: let $(T(x^{(1)}), T(x^{(2)}), \dots)$ be a sequence in the range(T) that converges to some $y \in \ell^\infty$. Clearly $\{T(x^{(n)})\}$ is Cauchy by triangle inequality. Since T is an isometry, $\|T(x^{(n)}) - T(x^{(m)})\|_{\ell^\infty} \rightarrow 0$ as $\min(m, n) \rightarrow \infty$ suggests $\|x^{(n)} - x^{(m)}\|_X \rightarrow 0$ as well. Assuming X is Banach, $\{x^{(n)}\} \rightarrow x$ for some $x \in X$. Then since T is bounded, $T(x^{(n)}) \rightarrow T(x)$. By the uniqueness of limit we conclude that $y = T(x) \in \text{range}(T)$, i.e., the range(T) is closed.