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Problem 1

Given an example of a normed space X and f ∈X∗ such that ∥f∥X∗ = 1 but ∣f(x)∣ < ∥x∥ for every x ∈X∖{0}.
Why does such example not contradict Corollary 10.6 (support functionals)? Can you find such example,
but with X reflexive?

Solution

Define X to be ℓ1(R), i.e., the space of all summable sequences, but equipped with ℓ2 norm. Consider f ∈X∗

defined by

f(x) ∶=
√
6

π

∞
∑
n=1

xn

n
.

Clearly f ∈ L(X,R), and furthermore f is bounded because, by Cauchy-Schwarz and Basel’s π2/6 identity,

∣f(x)∣ = ∣
√
6

π

∞
∑
n=1

xn

n
∣⩽
√
6

π
(
∞
∑
n=1

1

n2
)
1/2

⋅ ∥x∥ℓ2 = ∥x∥ℓ2 Ô⇒ ∥f∥ ⩽ 1.

On the other hand, we consider the finite truncations of the sequence {1/n}n⩾1. Let x(n) denote the sequence
(1,1/2, . . . ,1/n,0, . . . ). Notice that

∥f∥ ⩾ ∣f(x)∣
∥x∥ℓ2

=
√
6

π

∣∑n
i=1(1/n)/n∣
√
∑n

i=1∣1/n∣2
=
√
6

π
(

n

∑
i=1

1

n2
)
1/2

.

Taking supremum on the RHS by letting n→∞ (where the RHS is clearly monotone) gives ∥f∥ ⩾
√
6

π
⋅ π√

6
= 1.

Indeed we have ∥f∥ = 1. However, if it so happens that ∣f(x)∣ = ∥x∥, we see that the ⩽ must be =, which can
only happen if x is a nonzero scalar multiple of {1/n}n⩾1. But such x ∉ ℓ1(R)!

This example does not contradict Corollary 10.6 because that corollary states the existence of some f ∈X∗

satisfying those conditions, not that every f ∈X∗ needs to have norm 1 with ∣f(x)∣ = ∥x∥ for some x.

With X reflexive we are no longer to find such example. Suppose there still exists f ∈ X∗ with ∥f∥X∗ = 1
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and ∣f(x)∣ < ∥x∥ for every x ∈X ∖ {0}. Then, by the canonical map,

∣x∗∗(f)∣ = ∣f(x)∣ < ∥x∥X = ∥x∗∗∥X∗∗ for all x∗∗ ∈X∗∗. (1)

On the other hand, treating X∗∗ as the dual of X∗, there exists a supporting functional Φ ∈X∗∗ such that

∥Φ∥X∗∗ = 1 and ∣Φ(f)∣ = ∥f∥X∗ = 1. (2)

Since X is reflexive there exists φ ∈ X such that φ∗∗ = Φ, so ∥φ∗∗∥X∗∗ = 1. Since (2) states ∣φ∗∗(f)∣ = 1 but
(1) states ∣φ∗∗(f)∣ < ∥φ∗∗∥X∗∗ = ∥Φ∥X∗∗ = 1, we have obtained a contradiction. Thus there does not exist
f ∈X∗ satisfying the conditions if X is reflexive.

Problem 2

Let X ∶= ℓ2(R),

A ∶= {
n

∑
i=1

αie
(i) ∶ n ∈ N, α1, . . . , αn−1 ∈ R, αn > 0} ⊂X,

and B ∶= −A. Show that A,B are disjoint, convex sets, and that f(A) = f(B) = R for every f ∈ X∗. Why
does it not contradict the functional separation theorem?

Solution

(1) Disjoint: if x ∶= (x1, x2, . . . , xn,0, . . . ) ∈ A ∩ B, then for any i ⩽ n, xi > 0 and xi < 0 simultaneously,
clearly a contradiction.

(2) Convex: this follows from the fact that any convex combination of positive numbers is positive and
that of negative numbers is negative.

(3) f(A) = f(B) = R: simply notice that (ℓ2)∗ = ℓ2 (since 1/2 + 1/2 = 1). Let f ∈ (ℓ2)∗ = ℓ2 and r ∈ R be
given. For any f = (y1, y2, . . . ) ∈ ℓ2 ∖ {0} (did you forget to say “nonzero” f , which I believe
is a necessary condition? Otherwise of course f(A) = f(B) = {0}, not R), there exists at least
one nonzero yn (term in sequence). Now it remains to notice that f(re(n)/yn) = ryn/yn = r, so indeed
f(A) = R. To show f(B) = R, simple add a negative sign to everything.

(4) This does not violate Theorem 10.16 since A (and B) is (are) not closed. Pick any a ∶=
n

∑
i=1

αie
(i) ∈ A

and let ϵ > 0 be given. Recall the π2/6 identity; we have

∥a +
∞
∑
n=1

6ϵe(n)

nπ2
∥ − ∥a∥ ⩽ ∥

∞
∑
n=1

6ϵe(n)

nπ2
∥ = ϵ.

Therefore the red term is always in the ball (closed, but can be made open by using 2ϵ) centered at a

with radius ϵ. However, this red term is not in A since it is an infinite sequence whereas all elements
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of A are finite sequences. Hence A is not open, and the Theorem does not apply.

Problem 3

Let X be reflexive and T ∈K(X). Suppose that {xn} ⊂X is such that

c1 ⩽ ∥xn∥ ⩽ c2 for all n ⩾ 1,

where 0 < c1 ⩽ c2, and
∥T (xn) − xn∥→ 0 as n→∞.

Show that T has a nontrivial fixed point, i.e., that T (x) = x for some x ≠ 0.

Solution

By Theorem 12.10 there exists a subsequence {xnk
}, which we relabel as {xn}, that converges weakly to

some y ∈ X. Then Lemma 12.2 says T (xn) → T (y) (strongly). On the other hand, by the compactness
of T , there exists a sub-subsequence {xnk

} (recall we’ve relabeled the original subsequence as {xn}) that
converges (strongly) to some z ∈X under T . Hence z = T (y). On one hand,

∥xnk
− z∥ ⩽ ∥T (xnk

) − xnk
∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 by assumption

+

→0 by compactness of T
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∥T (xnk

) − z∥→ 0, (∆)

which implies ∥z∥ ≠ 0 since inf ∥xn∥ ⩾ c1 > 0. On the other hand,

∥T (z) − z∥ ⩽ ∥T (xnk
) − T (z)∥ + ∥T (xnk

) − z∥

⩽ ∥T ∥
°
<∞

→0 by (∆)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∥xnk

− z∥+ ∥T (xnk
) − z∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 by compactness of T

→ 0,

so indeed we have found a nontrivial fixed point z.

Problem 4

Let X be reflexive, A ⊂ X be a closed and convex subset and x ∈ X ∖A. Show that there exists a ∈ A such
that

∥x − a∥ = inf
a′∈C
∥x − a′∥.

Deduce that X ∶= C([−1,1]) is not reflexive.
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Remark

This generalizes the existence (and uniqueness) of minimizer in Hilbert spaces (Lemma 6.9) and (more
generally) in uniformly convex Banach spaces (PS4.1). Recall Milmlan-Pettis Theorem, i.e., every uniformly
convex Banach spaces are reflexive.

Solution

Define d ∶= inf
a′∈C
∥x − a′∥. It follows that there exists {an} ⊂ A such that ∥x − an∥ → d. Again, since {an} is

bounded, by Theorem 12.10 there exists some subsequence, which we now relabel and call it the new {xn},
such that {xn} ⇀ y for some y ∈ X. Since A is convex and closed in X, so is x −A ∶= {x − a ∶ a ∈ A}, and by
Lemma 12.7, x −A is weakly closed. Therefore y ∈ x −A, i.e., there exists some a ∈ A such that y0 = x − a.
Now it remains to show that this a ∈ A is actually the one we are looking for. Applying the definition if
infimum and Lemma 11.3.4 gives

d = inf
a′∈C
∥x − a′∥ = ∥x − a∥ = ∥y∥ ⩽ lim inf

n→∞
∥x − an∥ = d

which implies ∥y∥ = d and a ∈ A is indeed the minimizer.

X ∶= C([−1,1]) is not reflexive; one counterexample is PS 3.7, where UL = {g ∈X ∶ ∫
1

−1
g = ∫

1

0
g = 0} is a

closed and convex (obvious) subspace of X, but there does not exist a minimizer by PS 3.7(a).

Problem 5

Show that the characterization of weak convergence in ℓp spaces from Ex. 12.4.1 (i.e., that x(n) ⇀ 0 in ℓp

if and only if {x(n)} is bounded and x
(n)
k → 0 for all k) does not hold in ℓ1 or ℓ∞, but it does hold for c0.

Hint: for ℓ∞ consider Banach limits.

Solution

(1) ℓ1: consider {e(i)}— clearly bounded and each component converges (something like (0, . . . ,0,1,0, . . . ))
whereas the sequence itself does not converge to 0: ∥e(i)∥ℓ1 = 1 for all i ⩾ 1. By Schur’s theorem this
means en ⇀̸ 0 in ℓ1.

(2) ℓ∞: now consider {x(n)} ∶= {
∞
∑
i=n

e(i)}
n⩾1

(i.e. the set of sequences of form (0, . . . ,0,1,1, . . . ), starting

from the nth component). Again, this sequence is clearly bounded in ∥ ⋅ ∥ℓ∞ and each component

converges (of form (1, . . . ,1,0, . . . )). By the hint, since the Banach limit lim
n→∞

L(x(n)) ⩾ lim
n→∞

e(n)n = 1,
the sequence does not converge weakly to 0, where L(0) = 0.

(3) c0: since (c0)∗ = ℓ1, if we let E ∶= span{e(i)} we see that E ⊂ (c0)∗ = ℓ1 is dense, and the claim follows.
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Problem 6

Let X be a real Banach space. A theorem due to James (Israel J. Math., 1964 ) says that if X is not reflexive
then there exists θ ∈ (0,1) and sequences {fn} ⊂X∗, {xn} ⊂X such that ∥fn∥X∗ = ∥xn∥X = 1 for all n and

fn(xi)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⩾ θ n ⩽ i,

= 0 n > i.

Let Cn ∶= conv{xn, xn+1, . . .}, i.e., the closure of the set of all convex combinations of {xn, xn+1, . . .}.

(a) Suppose that X is not reflexive. Show that {Cn} is a nonincreasing sequence of nonempty, closed,
bounded, convex sets such that ⋂k Ck = ∅. Hint: show that if x ∈ Ck for some k then fn(x) → 0 as
n→∞, but if x ∈ ⋂k Ck then fn(x) ⩾ θ for all n.

Proof.

(1) Nonincreasing, nonempty, closed: trivial.

(2) Bounded: for any x ∶=
k

∑
i=1

λixni ∈ conv{xn, xn+1, . . .} where n1, . . . , nk ⩾ n, we have

∥x∥ ⩽
k

∑
i=1
∥λixni∥ =

∞
∑
i=n

λi = 1

so conv{xn, xn+1, . . .} is bounded. Hence so is Cn the closure.

(3) Convex: for any x, y ∈ Cn, there exist sequences {x(i)} and {y(i)} in conv{xn, xn+1, . . .} that
converge to x and y, respectively. Let λ ∈ [0,1] be given. It follows that λx(i)+(1−λ)y(i) ∈ Cn

by convexness. Therefore taking i→∞ we see λx(i) + (1− λ)y(i) → λx+ (1− λ)y. Since Cn is
closed we conclude that λx + (1 − λ)y ∈ Cn, and so Cn is convex.

(4) ⋂k Ck = ∅:

(I) Hint 1: let ϵ > 0 be given. Since x ∈ conv{xk, xk+1, . . .}, there exists x̃ in the set of convex

combinations such that ∥x − x̃∥ < ϵ. Suppose x̃ =
j

∑
i=1

λixkiwhere the λ’s add up to 1 and

xki are from {xk, xk+1, . . .}. It follows that whenever n >max(xk1 , . . . , xkj) we have

fn(x̃) =
j

∑
i=1

λi fnxki

²
=0

by assumption

= 0

whereas, by triangle inequality and assumptions on ∥fn∥,

∣fn(x)∣ ⩽ ∣fn(x − x̃)∣ + ∣fn(x̃)∣ ⩽ ∥fn∥∥x − x̃∥ + ∥fn(x̃)∥ < ϵ.
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Therefore fn(x)→ 0, as desired.

(I) Hint 2: for any n, consider k > n. Let x ∈ Ck and pick x̃ ∶=
j

∑
i=1

λixki from the set of

convex combinations of {xk, xk+1, . . .} with x ≠ x̃. Then

fn(x̃) =
j

∑
i=1

λi fn(xki)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
⩾θ

by construction

⩾ θ.

Therefore fn(x) = fn(x − x̃) + fn(x̃) ⩾ fn(x̃) ⩾ θ.

Having shown both hints, we see that no x meets both hints, Hence ⋂k Ck = ∅.

(b) Now suppose that every bounded sequence in X has a weakly convergent subsequence. Show that if
{Cn} is a nonincreasing sequence of nonempty, closed, bounded, convex subsets of X then ⋂k Ck ≠ ∅.
Hint: use the characterization of convex setse in terms of the envelope of supporting hyperplanes.

Proof. Pick xn ∈ Cn for each n. Since the Cn’s are bounded by (a), here by assumption we have
a weakly convergent subsequence {xnk

} that converges weakly to some x ∈ X. By the hint, since
xn1 ∈ Cn1 , for all f ∈X∗

f(xn1) ⩾ inf
y∈Cn1

f(y).

By weak convergence f(xn1) → f(x0). Since Cn1 ⊃ Cn2 ⊃ . . . we see that xn1 , xn2 , . . . are also in
Cn1 . Therefore f(xni) ⩾ inf f(y) for all i ⩾ 1, and we see f(x) ⩾ inf f(y) Ô⇒ x ∈ Cn1 . Likewise
x ∈ Cni for all i ⩾ 1. Once again, since the Cn’s (not just Cni ’s but all of them) are nested, we see
that x ∈ ⋂k Ck; hence ⋂k Ck ≠ ∅.

(c) Deduce from (a) and (b) that if the closed unit ball BX(0,1) ⊂X is weakly compact then X is reflexive.
This gives the ⇐Ô implication in Theorem 12.10 for real Banach spaces.

Proof. Since the unit ball is weakly compact, every bounded sequence in X has a weakly convergent
subsequence. By (b), if {Cn}n⩾1 is a noncreasing sequence of nonempty, closed, bounded, convex
subsets of X then ⋂k Ck ≠ ∅, whereas if X is nonempty, the contrary is also true by (a). Thus X

must be reflexive!
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