Contents

D.1 8/17 Vector Spaces €9 £F SPACET . . « v v v v v v e e e e e e e e e e e e e e e e e e e e 2
D.2  8/19 Linear Span| . . . . . . . . o e e e e e e e e e e e e e 5
D.3  8/21 Linear Maps and Normed Vector Spaced. . . . . . . . . . . . . . . . . . . e 8
0.4  8/24 Minkowski, Jensen, €9 Holder; Strong Convergencd . . . . . . . . . . . v v v i i i v v 12
D.5 8/26 Open and Closed Setd . . . . . . . . . e e e e e 15
D.6  8/28 Separable Spaces & Bounded Operatord . . . . . . . . . . . . . . ... 18
D.7  §8/351 More on Bounded Operators; Isomorphism . . . . . .. . . ... ... . ... . ... ... .. ..., 21
.5 9/2 Compact dets; Riesz’'s Lemmal . . . . . . . . . . . . . 24
0.9 9/4 Banach Spaced . . . . . . . . e e 27
DI0 9/9 BCT E PUDL . . . . . e e e e e e e e 30
DIT 9/TIT OMT G IMT] . . . . . e e e e e e e e e e e e e e e e e e e e e 33
0.12 9/14 CGT; Inner Product Spaceq . . . . . . . . 0 o e e e e 36
D.15 9/16 Hilbert Spaces; Schauder Basis; Bessel & Parseval . . ... ... ... ... ... ... .. ..... 40
D.14 9/18 Orthonormal Basis; Weierstrah Approximation Thm| . ... ... .. ... ... ... ........ 44
D.15 9/21 More on WAL 'Irig Approximations; Gram-Schmidtl . . . . . .. . ... ... ... ... ...... 47
D.16 9/25 Separable Hilbert Spaces; Closest Pointd . . . . . . . . . . . .. . . 50
D.17 9/25 Orthogonal Complement; Orthogonal Projectionf. . . . . . . ... ... ... ... ... .. ..... 53
D.18 9/28 More on Orthogonal Complement é Projection . .. . ... ... ... ... .. ... ........ 56
D.19 9/50 Dual Spaces; Riesz Representation Theorem . . . ... ... ... ... ... ... .. ........ 58
0.20 10/2 Hyperplanes; Holder’s mn £ Spaceq . . . . . . . . . . e e e e e e e e 61
D.21 10/5 LP. /¥ Dual Space Isometries; Spectral ‘Theory . . . . . . .. .. ... ... ... ... ........ 64
.22 10/7 Closedness of a(1') for 1 e 5(X ) . . . . . . . . . e 66
D.256 10/9 Spectrum Decomposition; Hilbert Adjomnt . . . . . . . . . . . . . . . . . . . L. 68
D.24 10/12 Selt-Adjoint; Spectral Theorem; Compact Operatory . . . . . . . . . . . .. . ... .. ... .... 71
D.25 10/14 Arzela-Ascoli 'T'heorem; Hilbert-Schmidt Operatory . . .. ... ... ... ... ... ....... 75
0.26 10/16 Spectral Theory of Compact Operatord. . . . . . . . . . . . . . . . . ... .. . . ... ..., 79
0.27 10/19 More on Characterizations of Compact Operatory . . . . . . .. .. .. ... .. .. ... ..... 82
0.28 10/21 Hahn-Banach Theorem & Applications; Banach Limit) . . ... ... ... .. ... ... ..... 85
0.29 10/25 Minkowski Functional; Separation of Convex Setqd . . . . . . . . . . . . . . . . ... 89
D.50 10/2606 Characterization of Banach Limitg . . . . . . . . . . . . . . . . . . . . 93
D.s1 10/28 Functional Separation by Affine Planes; Reflexivity] . . . . . . . . . . . ... .. ... ... .... 95
D.52 10/50 Reflexivity of X and X"; Weak Topologied . .. ... ... . ... .. . ... . . . ... ..... 98




D.os 11/2 Characterization of Weak Convergence . . . . . . . . . . . i v i v i i it it e e et e e 100

D.34 11/4 Schur, Mazur, Banach-Alaoglu, ¢ Navier-Stoked . . . . . . . . . . .. . ... ... . ... ...... 103
0.35 11/6 Uniform Convex Banach Spaces are Reflexivd . . . . . . .. . . .. .. ... ... ... ....... 106
D.36 11/9 More on Selt-Adjoint; Hilbert-Schmidt Theoremd . . . . . . . . . . .. .. ... ... ... ...... 109

P.37 11/116913 T'he Sturm-Liouville Problemy . . . . . . . . . . . . .. oo 112







8/17 Vector Spaces & (P Spaces MATH 580 Intro to Functional Analysis - YQL

Lecture 1: 8/17 Vector Spaces € P Spaces

Topics of the course:
(1) Basics of vector spaces & bases.
(2) Banach space.
(3) Hilbert space theory.
(4) Weak topologies; methods of weak convergence.
(5) Fixed-point theory and applications, & spectral theory, if time permits.

Spoiler: we didn’t get to fized-point theory :( No Brouwer’s FPT.

BEGIN OF COURSE

Vector Spaces

[ Definition 1.1 |

A vector space V over K (a field) is a set V, along with with notions of addition in V' and multiplication

by scalars, i.e., for all A e K and =,y € V, we have
(1) z+yeV, and
(2) AxeV.

Quick facts following from these properties:
(1) multiplication is (left) distributive: a(x +y) = ax + ay,
(2) multiplication is (right) distributive: (af)z = a(Bz),
(3) multiplication is associative: 1k -z =z,
(4) addition is associative: x + (y+2) = (z +y) + 2,

(5) addition is commutative: z +y =y + .

If a vector space is over R, we call it a real space. If it’'s over C we call it a complex space.
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Example 1.2

(1) R™ is a vector space over R but not over C: take A =i € C and x € R”, then Az ¢ R™ but C".

(2) If V1, V, are vector spaces then so is Vj x Vo, with
(z1,91) + (22,92) = (21 + 22,91 +y2) and A(z1,y1) := (Az1, Ay1).

(3) C([a,b],K):={f:[a,b] > K: f continuous} is a vector space over K. Clearly the sum of two continu-

ous functions is continuous, and any scalar multiple multiple of a continuous function is continuous.

Remark

It’s customary to define the set of continuous functions [a,b] - R simply by C([a,b]).

(4) P(I):={p: I >R |p(z) =X ,a;x'}, the set of real polynomials, is a vector space.

(5) For pe[1,00), P(K):={z:2; €K, ¥ 2¥ < oo} (all p™ power summable sequence) is a vector space.

For p = o0, £°(K) := {x : x; € K,sup|z;| < oo} (all bounded sequence) is a vector space. The addition

and multiplication are defined by

Ty = {4, +Y; biz1 and ax = {ax; fis1-
Proof. The closure of scalar multiplication is immediate, and so is the addition for p = co. For

p < oo, we have

Yolzi +yilP < - (2max(|ail, [ys]))P < 2P [Z|33i|p + Z|yi|p] < oo.

21 i1 21 21

[ Definition 1.3

We say U is a subspace of V (over the same field K) if U ¢ V and U is also closed under addition and

scalar multiplication, i.e., also a vector space itself.

Example 1.4

(1) X :={f € C([-1,1]) : /_f f(z) dz = folf(x) dx = 0}. This is a vector space and a subspace of
C([a,b]).

(2) For any y e R", U := { e R™ : x -y = 0} is a subspace of R". Clearly if x1,25 € U then (21 +x2) € U

since (1 +x2) y=x1-y+x2-y=0and (ax) -y=alz-y)=0.

(3) S(K) :={{x;}i>1 :x; > 0 as i - oo} is a subspace of L=(K). Note that this may not be a subspace of
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¢P(K) with p finite: given p, consider the following sequence

1
{171'}1‘;1 ‘T = @

which is not p*® power summable but bounded, hence {x;} € £°° \ ¢P.
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Lecture 2: 8/19 Linear Span

[ Definition 1.5 |

1) The linear span of a set E c V is the collection of all finite linear combinations of elements of E:

span(E) ={veV:v=> aje;,neN q; €K, e; € E}.
i1

2) E spans V if span(F) =V.

3) E is linearly independent if any finite collection of elements of F is linearly independent:

Zaiei:O = al=a2=---=0forallneN,a; eK,e; € E.
i=1

4) EcV is a (Hamel) basis of V if E is linearly independent and span(E) = V.

Lemma 1.6

E is a Hamel basis if and only if F is maximal linearly independent, i.e., E u{v} becomes linearly dependent

for any veV.

Proof. First for <= : We need to show span(E) = V. Clearly span(E) c V. All it suffices to show is
that V c span(F). Fix v € V. By assumption, we know E U {v} is not linearly independent. Therefore
for some n e N, {e;} c E, and {0} ¢ {e;}a,en we have
n
Z e + a1 v =0. (A)
i=1
If a1 = 0 then by the linear independence of ¢;’s, all a’s need to be 0, but this shows E u{v} is linearly
independent which contradicts E’s maximal linearly independence.
It follows that au,4+1 # 0, so we can proceed and divide both sides of A by «,, + 1 and get a way to attain
v by a linear combination of e;’s:

a;
vV =-

t€g.
i=1 On+1

Since v is arbitrary, we see that span(F) =V.
Now for == : again, for any v € V, we have

n n
V:Zaiei — zaiei—V:O.
i=1 i=1

Clearly the coefficient of v is =1 # 0, so it’s impossible that E u {v} is linearly independent. O

Lemma 1.7

n

If F is a Hamel basis of V', then v € V' has a unique representation v = Z a;e;. Furthermore, if, additionally,
i=1

F is finite and has n elements, then
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(1) every basis of V has n elements, and
(2) every n-element linearly independent set is a basis.

We call n the dimension of V| i.e., dim(V) := n. If V has no finite basis then it is infinite-dimensional.

Example 1.8

(1) ¢P(K) is infinite-dimensional for all p € [1,00) and p = oo.

Proof. Let e = (0,...,1,0,...) where e§ = 0;; with ¢ the Kronecker delta (=1 if i =j and 0
otherwise). Suppose there were a finite finite Hamel basis, then there were also a maximal basis
{e(i)}?zl. However if we expand this set by adding e(**!) we see that the new set is still linearly

independent. Hence dim ¢P(K) = oo. O

Future reference:

(2) C([0,1]) is infinite-dimensional.

Proof. For any n € N the set {1,z,...,2"} c C([0,1]) is maximal linearly independent (or some
set with ™ being the one with highest degree). [Check by inspection / by Wronskian / or the
following] For if

n
Zaixz =0 = o; =0.
i=1

But now {1,z,...,2"*'} is also linearly independent. Hence dim C([0,1]) = oco. O

[ Definition 1.9 |

A partial order on a set P is a binary relation < on P such that
(1) a<a,
(2) if a<band b<cthen a<c, and
(3) if a<band b<a then a=b.

For example, let P := all subsets of R, i.e., P:=P(R) and z <y <= x cy. Then we have (0,1) c [-1,1]
which are comparable, and [0,1] and [1,2] which are not comparable. We cannot compare everything.

Hence the name “partial”.

[ Definition 1.10

(1) For a,be P, we say a,b are comparable if a < b or b < a.
(2) C e P is a chain if any two ¢y, c2 € ¢ are comparable.

(3) t € P is an upper bound of S c P if s <t for all s € S. Some sets may not have an uppoer bound,
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e.g.: {a,b,c} with a <b and a < ¢ but no info given between b and c.

(4) m e P is maximal if (m < a for some a € P = a=m).

Remark
Notice the difference between the definitions of maximal element and upper bound. To be an
upper bound, the element need to be comparable to all other elements, but for the maximal

element it just needs to make sure a < m for all a comparable to m. It’s possible that P has

maximal elements but no upper bound.

Theorem 1.11: Zorn’s Lemma, equivalent to Axiom of Choice

If P is nonempty and partially ordered, and if every chain has an upper bound, then P has at least one

maximal element.

Furure reference: Hahn-Banach Theoreml

Theorem 1.12

Every vector space V' has a Hamel basis.
Proof. If V has a finite dimension, then it has a basis by definition. Now suppose V is infinite dimensional,
and P:={F cV : FE is linearly independent}, i.e., the collection of all linearly independent subsets of V,
and the partial order c (inclusion). By Zorn’s lemma, all it remains to show is that each chain has an
upper bound.

Let C c P be a chain and E* := | J E; (one is the collection of these linearly independent sets and the
E;eC
other the union of them). Claim: E* is an upper bound of C.

First of all, we want to show E* c P, i.e., E* is linearly independent. If we take any finite collection of
elements of E*, it belongs to some E; € C' by construction [this can be obtained by choosing the maximal
E; that contains at least one element of this finite collection], and this set is assumed to be linearly
independent, so E* € P. Clearly E; c E* for all E;’s, i.e., all elements of C, so E* is an upper bound
of the chain. Having shown this, by Zorn’s lemma, we conclude that P has a maximal element, i.e., a

maximal linearly independent set which, by definition, is a basis for V. O
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Lecture 3: 8/21 Linear Maps and Normed Vector Spaces

Linear Maps

[ Definition 1.13 |

Let X,Y be vector spaces.
(1) We say T € L(x,y) [i.e., T: X - Y is linear] if T(ax + fz') = T (x) + BT (2").

(2) If X,Y are complex spaces then T is conjugate linear if T'(ax + 32') = @T'(z) + BT (2") [where the

bar denotes the complex conjugate].

L(x,y) is itself a vector space.

If Ty, T € L(z,y) then we can define (a1 + fT2)(x) := aT1(x) + fT2(x), still a linear map X - Y.

IfTeL(X,Y)and Se L(Y,Z) then SoT e L(X, Z).

Example 1.14

(1) Consider X,Y =C and T(z) =T.

If K=R then T is linear, and if K = C then T is conjugate linear, for T = z if and only if x e R c C.

(2) Let X := C'([a,b]) (first order continuously differentiable) and Y := C([a,b]), and define T': f ~ f’.

[ Definition 1.15 |

Let T € L(x,y).
(1) The kernel of T is defined as ker(T) := {z € X : T(z) = 0}.
(2) The image of T is defined as im(T") := {y € Y : 3z € X such that T(z) = y}.
(3) T is injective if T'(z1) =T (x2) = 1 = x2.
(4) T is surjective if, for all y € Y, there exists x € X such that T(z) =y, i.e.,, im(T) =Y.

(5) T is bijective if it’s both injective and surjective. Then 7" has an inverse 77! : Y — X defined by
T71(y) := x where y = T(x). Having an inverse is not to be confused with being invertible. The

difference will be addressed later on.
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Lemma 1.16

T is injective if and only if ker(T') = 0.

Lemma 1.17

If T e L(X,Y) has an inverse, then 77! € L(Y, X), i.e., also linear.

Proof. Pick y1,y2 €Y and o, B € K. Then 3 =TT ' (y1) and yo = TT ! (y2). Then

TT ' (oys + By2) = ays + Bya =TT (1) + BTT " (y2)
=T(aT  (y1) + BT H(y2)). (since T is linear)

Since T is bijection, it is in particular injective and so
TIT " (ayr + By2)] = T(aT (y1) + BT (y2)) = T (a1 + By2) = aT ' (1) + BT (v2),

ie., Tl e L(Y, X). O

Future reference: Definifion 39, [nverse Mapping Theorem

Normed Vector Spaces

[ Definition 1.18 |

A norm isamap |+|: X ~ [0,00) such that, for all z,y € X and X € K it satisfies
(1) non-degeneracy: ||| 20 and |z| =0 < = =0,
(2) absolute homogeneity: ||Az| = |A|[|z]|, and
(3) triangle inequality /subadditivity: |z +y| < |z| + |y]-

A vector space X with a norm is a normed space.

| Definition 1.19

An open ball is defined as Bx (y,7) : {w € X : [z - y[ <r}. For convenience we write Bx (0,7) as Bx (r).
A closed ball is defined as Bx(y,7) = {z € X : |z —y| <r}. Likewise for Bx(r).

TWhen it’s clear which normed space we are in, we can drop the subscript X of By (y,r).

Lemma 1.20

Open balls and closed balls are convex. Recall that the set K is convex if Ax + (1-\)y € K for all z,y € K
and A €[0,1].
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Proof. We want to show that, for x1, 25 € Bx(y,7), [Az1 + (1= X)xs —y| < or <r. This holds because

[Azy + (1= Nza —y[ = [AMz1 -y) + (1= A)(z2 - y)
<A =)+ (1= A) (22 - y)|
= Az =yl + (1= A)z2 -y
<A+ 1-A)max{|1-y|,[z2 -y}

= max{||z1 -y, |22 - yl}-

Remark

Conversely, if we have (1), (2), and the convexity of unit ball, then they can define a norm.

To put formally, suppose that N : X — [0, 00) is non-degenerate and absolutely homogeneous, and
B:={x:N(z)<1}

is convex, then NN is a norm.

Proof. Tt only remains to show that N satisfies triangle inequality. Pick x,y € X. The case
N(z) =0 is trivial since N(z+y) = N(y) = N(z) + N(y). Now assume N(z), N(y) > 0. Notice is

that, by (2),
x _ ! z)=1an Y-
N(N<x>)‘N<w>N” ! dN(N(y)) b
y .
0 m, N@) e B. Since
z+y Nz z . N@ y
N(z)+N(y) N(z)+N(y) N(z) N(z)+N(y) N(y)
A 1-)

d o , by assumption it’s in B. Therefore

is a convex combination of x an
N(z) N(y)

T+y
N(N(x)ﬂ-N(y))gl < N(z+y)<N(x)+N(y).

Future reference: proof of Minkowski’s inequality], Cemma TO 173

10
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Example 1.21

YisilziP pell, o0
Let z € ¢? be of form {z;};51, and define ||z := sl : ), then

SUpi>1|xi| p=0
lz +yler < [z]er + ylee-

This is called the Minkowski’s inequality.
Consequently, ||« ¢ is a norm and ¢? is a normed space.
Proof. The case p = oo is obvious as sup Y. < ¥ sup. For the case p € [1,00), let B:={z: |z|e» < n}. Let
z,y € B. Then
Az + (1= N)yler = Do Azs + (1= Nyl
i>1

<[l + (1= N)yal’]

i1

<A il + (1= X) Y lwal”

i1 i>1
<max{|z|e, [yer}

ES )\.’IJ+(1 - )\)y e B.

Therefore B is convex and the claim follows from fhe equivalence of triangle inequality and convexity of
ball. O

11
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Lecture 4: 8/24 Minkowski, Jensen, € Holder; Strong Convergence

Remark

Recall that ¢ = {z : |z|¢ < co}. In order to hold true, every element of x needs to have finite norm.

Theorem 2.0: very bad numbering...

P c £? for p < q. Think of it this way: £*° denotes all bounded sequences, but clearly not all bounded
sequences are p'* power summable.

Proof. Tt suffices to show that show that |z < |z|e for p<g.

(1) If ||| ¢» = 1, we know that each component satisfies |z;| < 1 and hence

Jllen = Y lwl” < Y lal” = 1.

21 21

(2) If || =] ¢ # 1, we may normalize = by defining y := z/|z | so that |y| = 1. Then

h .
lelen = N(ylzler) es ==

lzler [yllea < la]er-
—

<1 by(1)

Theorem 2.1

Let (€2, 1) be a measurable space, then

{f:92 > K such that | f]7, ) = folf” du< o0} pe[l,00)
L7(Q) = LP(Q) Q

{f : 2 > K such that ess sup|f| < oo} P =00
Q

called the function spaces, are normed vector spaces.

(Elements of LP are defined up to u-zero measure, i.e., f = ¢ if and only if f(z) = g(z) for u-a.e.)

Proof. Non-degeneracy: | f||z» =0 if and only if f =0 p-a.e.
Absolute homogeneity: |Af|» = M| f|ze-

For triangle inequality, we again have Minkowski inequality:

|f+glee <[ flee+lgler

(which can be proven using the convexity of B again).

Lemma 2.2: Jensen’s inequality

If u(©2) =1 (a probabilistic measure) and J: R — R, a convex function, then
J(/fdu)<fJofdu.
Q Q

12
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Proof. Let C := f f dp. Because J is convex, for every z € R, there exists some € R such that
Q

J(y) 2 J(2) + B(y - z) for all y [simply take 5 = J'(2z)]. Now let z:=C and y := f(z). Then
J(f(x)) 2 J(C) +B(f () - C)

and integrating over () gives

[ I @) dut@) > HC)u() + B[, () dp(z) - Cu()
= J(C) + B(C - C) = J(C).

Hence proven. O

Lemma 2.3: Holder’s inequality

If feLP(Q) and g e LY(Q) where p~t +¢1 =1, p,ge[1,00), then

‘fﬂfgdu

Future reference: Holder’s inequality for #¥ spaced

<[ flzelglze-

Proof. Let F :=|f|lg]"%/? and 1’ = 1u(|g|?/|g]|%,) a weighted measure. Then /() = (Jo|f[P dw)/(|f]%,) =

1. Now we can apply Jensen’s inequality with the convex function FP [where F is positive and p a positive

p
Fd’)sprd’
(o aw) < [

= [ QFPIgl™) - (ol )
=gz [ 177 au

= gl 1A 12

integer]:

whereas rewriting the LHS gives (recall 1/¢+1/p=1)
~a/ -0y 4,1 A1) 12 gy
[ [ 17y ol gtz2) au] = | 170 113 d

[ furnolionzs an]
= Lol ( [ 1ol du) -

Therefore

g a(p=1)| ¢yp
([ 17l du) < hglgs1s1E

13
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Since 1/p+1/q =1 we have p+q=pq = q(p-1) =pg—-q=p. Since |[, fg dul, |g|lLs, and | f]L» are all

positive, we may take the p'" root and therefore get

‘fﬂfgdu

< [ Ifgl du<f 2z lgl e

Lemma 2.4
Now we generalize Q to () < oo. Then
LYQ)cLP(Q) ifp<yq,

opposite to the case of “small /P”. The proof is simple using Hélder’s inequality.

Strong Convergence

| Definition 2.5 |

Let X be a normed space and {z, },>1 ¢ X a sequence. Then z, - 2 as n - oo, i.e., x, strongly converges

[in the topology on X generated by the norm]| to z, if

for each € > 0, there exists N, such that n > N, = |z, —z| <e.

[ Proposition 2.6 |

If z,, > z in X then

(1) ||xn| = [=|: this follows from

lznll < |2 =] + ]| lznll = ] < Jlzn - 2|
- = lznl - |2l < |zn -]

lzl <z = zn] + |2n| |z = 2] < |2n - 2|

(2) if y, — y then (z, +y,) > = +y: this follows from €/2 + €/2 = e.
(3) {x,} is bounded: only finitely many terms are outside Bx (z,€).

(4) for {a,} c K, (apz,) » axr whenever a,, > « € K. The trick here is that

|anz, — az| < |apx, + anz| + |anx — az| = |ap ||z, - 2| + || 2||an - o

Future reference: Cemma 5, [Corollary 4.5.

14
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Lecture 5: 8/26 Open and Closed Sets

[ Definition 2.7 |

(1) Given a metric space X and A c X, we say A is open if, for all x € A, there exists some e > 0 such

that B(x,¢€) c A.

(2) The closure of A is defined by A := {z € X : there exists x,, ¢ A with {z,,} - z}. If z,, € B(y,r) and
T, — x then

lz =yl <z —zn| + 20 -y
and
limsup(|z - zn| + |2 —y|) =7 = |z -y|<r <= 2 B(y,r),
n—00

hence the notation of a closed ball.

(3) Ais closed if A= A4, i.e., it contains all its limit points.

Example 2.8

Let U be a subspace of (X, | -|) [a normed space]. Then U may or may not be closed.
(1) If dim X < oo then U is guaranteed to be closed.
(2) U is open if and only if U = X.
(3) Let coo(K) := {{xn }n>1 : Tn # 0 finitely many times}. We have the following:

(1) coo forms a subsapce of £F for p € [1,00) and also p = co.
(2) For every p € [0,00), not p = oo, coo is dense in ¢ [¢op = ¢P, closure with respect to ¢ norm; in
other words, given any € >0 and any x € £F there exists 2’ € cog such that |z — 2| < €.

Future reference:

Proof. Let « = {x,} € 7, then ) |z,[P < co. Given € >0, let N € N be large enough such that

21

Y |wnlP < € and let o’ = {z,} := (z1,%2,...,2N-1,0,...). Then
n>N

|z — x| er = ( > |xn|p)1/p <€ == cqo is dense in (P.
n>N
Note that this statement is not true for p = co: the sequence (1,1,...) is in £* but its £*
norm to any sequence in cqq is at least 1. O
(3) Obviously, for p € [1,00) we have cop # 2. From this we also see that cgo is not closed (since
Coo # P =Cqp).
(4) Let (X,[-]):= (LP(), ] - | zr(e)) with u(Q) < co. Let U := {f € L : fo =0}. Then U is a closed

subspace.

15
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Proof. Clearly U is a subspace [closure of addition and scalar multiplication]. Let {f,} c U

be a sequence such that f, — f for some f e LP. We want to show / f =0. This is because
Q

L= [5-0=[(7-5)

<[ f = Falle |12 Lo-vm (Holder)
= 1f = Falle @O (recall [lEuay = [[I71* dp)
-0 <oco

-0 asn — oo.

Future reference: [Example 2.8.4 continued (I}, Example 2.8.4 continued (IT}

[ Definition 2.9 |

A normed space (X, |- |) is separable if there exists a countable subset that is dense in S with respect to

the norm.

Lemma 2.10

Fix (X,|-|). The following are equivalent (TFAE):
(1) X is separable.
(2) The unit sphere in X, i.e., Sx = {x € X :|z| = 1}, is separable.

(3) X contains a countable subset E = {e;};>1 whose linear span is dense in X, i.e., span(E) = X.

Further reference: [Lemma 2.T0 (confrinued], [Example 5.13, [Proposition 6.9, [Example 6.7, Cemmal
[OTm

Proof. (1) = (2): to show (2), we need to find some countable subset E c Sx that is dense in Sx.

Suppose {x, }ns1 is dense in z. Given n,k € N, if B(x,,1/k)nSx #+ @, i.e., if B(x,,1/k) intersects
with the sphere, we pick one element from this intersection and add it to £. By doing so we ensure
that |E| <|N?|, and so E is countable. Now it remains to show F is dense in Sx.

Take any z € Sx and € > 0. Let k € N such that 1/k < ¢/2, and take z,, € X such that |z, - z| < 1/k
[doable because {z,} is dense in X]|. Since z € B(x,,1/k) n Sx, by construction of E there has to

exist some e € E' that belongs to this intersection. Hence

1 1
Hz—eHS||z—mn|\+|\xn—e\|<E+%:2k:e

which completes the proof.

16



8/26 Open and Closed Sets MATH 580 Intro to Functional Analysis - YQL

(2) = (3): let E ={e;} c Sx be dense in Sx. We will show that this set is what we are actually
looking for, i.e., span(E) = X. Clearly c is trivial, so it suffices to show o.
For x = 0, simply notice that

= Go

€
B=@r—
lel

Now let nonzero = € X and € > 0 be given. Then the normalized x/|x| € Sx. Therefore there exists

e € E/ such that ‘

X €
H< — Jo— laf-e] <e
E N lel-e

e span(E)

17
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Lecture 6: 8/28 Separable Spaces € Bounded Operators

Example 2.8: (4) continued

A follow-up on [Example 2.8.4: if () = oo, then U := {f € LP: fQ f =0} may not be closed.
For example, consider 2 := R. Try to show that there exist f,, f € LP(R) such that f fn=0, fn > fin
R

LP(R), but f f #0. Answer to be revealed next lecture.
R

Lemma 2.10: continued

Now we show (3) = (1) from Cemma 27T10: fix (X, | -]). If X contains a countable subset E = {e; }is1

whose linear span is dense in X then X is separable.

n

Proof. Consider the “rational span” of E, A:={x =) gie; | neN,q; € Q,¢; € E}. Tt is clear that A is
i=1

countable. Now we show it’s dense in X.

Let x € X and € > 0 be given. By assumption, since span(F) is dense in X, we have

n

for some " aje; € span(E).

€
D)
=1

n
T - Z aie;
i=1

On the other hand, since Q is dense in R, for ¢ = 1,2,...,n, we are able to find ¢; € Q such that
lg; — | < €/(2n]e;]|). Then

n n

> Slai - ailledd < 3 ——fei] = &
e — q;€Eif|l = a; —qilléqi| < — &l = =.
i=1 o i=1 o i=1 Lo = 2nles ' 2
Therefore
J;—Zqiei < x—Zoziei + Zaiei—Zqiei <§+§:e.
i=1 i=1 i=1 i=1
——
in span(FE)

Hence proven. O

Example 2.11: Seperable spaces

(1) R™ and C™ are separable: consider Q™ and Q™ + Q™.

(2) ¢P is separable for p € [1,00): the countable dense subset is coo which, in turn, is span{e’}.

(3) £= is not separable. Future reference: [Example 5.13, [Example 6.1

Proof. Let E := {x € £~ : x; € {0,1}}. It follows that, for all z,y € E, ||z - y|s~ = 1. Also, E is
uncountable: we can define a surjection f : F — [0,1] by binary expansion. [Or consider the o

argument from 425a.]

18
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We now show that every dense subset A c £°° must be uncountable by trying to approximating E
by A. Since A is dense in ¢*°, given any element of E, there exists elements of A arbitrarily close

to it. In particular we choose this distance to be 1/3. Fix x,y € FE and let 2,y € A be such that

1
lo=a'l= < 5 and Jy=y/lom <

W =

Then we have

|z = ylle= <z = 2o + 2" = ¢ o= + |y = ylle,
ie.,

! ! /A A 1

l#" =4 le= > o = yle= = o = 2lle= = ly" —ylle= > 2
—_— Y Y—
=1 <1/3 <1/3

Therefore distinct elements of E can only be approximated by distinct elements of A, and A

therefore must be uncountable. O

(4) However, cg := {x € £>°: (x;) — 0}, the space of null sequences, is separable [see PS2].

(5) Same thing for LP: LP(Q)) is separable for p € [1,00) whereas L*(f2) is not. This is true regardless of
whether () < oo or not.

Bounded Operators

[ Definition 2.12 |

Let (X,|-]x, (Y,]+]y) be two normed spaces. We say T € L(X,Y) is continuous (or bounded) if
T(xn) = T(z) (in V) whenever (z,) -z (in X). We denote the set of bounded operators as B(X,Y).

Remark: notations

If Y = X then B(X) = B(X, X).
If Y =K then X* = B(X,K), the dual space. Will be discussed [afed.
If T e X* we write T'(z) as (T,z) or x+ (T, z)y, called the duality pairing.

Lemma 2.13

TeB(X,)Y) — |T(z)||y < L|z|x for some L > 0, i.e., for a linear operator, continuity is equivalent to

Lipschitz continuity. Then the infimum of such L’s is the norm on B(z,y):

IT|5(x,y) =inf{L>0:|T(z)|y < L|z|x for all z € X}.

Proof. Lipschitz continuous = continuous is trivial. Now we show that, if T" is continuous then it’s

Lipschitz continuous.

19
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Assume T is continuous, then in particular it’s continuous at 0. Hence there exists some d > 0 such that
|z=0lx <6 = |T(z) -T(0)]y <1,

ie.,

|z]x <0 = [T(z)]y <1.

Hence, for all z # 0,

z |l 2] 6z ]
Tt = (s - 1) - Bl |r () | < L
Il o 6 =] 5
————
<1
and letting L := 1/0 completes the proof. Hence the name bounded operators. OJ
Lemma 2.14
T(x
Tl = s IT@y = swp [T(@)]y =sup - gec pa,

|z x =1 |z x <1 e20  |zlx

Proof. Proof of first equality For convenience, let |T'|; := || g(x,yy and |T'[2: sup [T'(z)]|y.

‘I ‘X =1
Pick = # 0. By the definition of supremum, we have

i

By definition of norm, |T||; = inf{|7T||2} and so |T|1 < |T|>.

<ATle = 1T @) <[T2]=]-

On the other hand, if |z| = 1 then |T'(x)| < |T|1|z| by definition of norm, so |T(z)| < |T||;. Taking

supremum gives

sup [T'(2)] = |T]2 <711
=1

Hence |T|1 = |T|2. O

Future reference: Example 3.1, hnother equivalent form of norm on 74

Example 2.15: bounded operators
Define Sy, : 7 - P by Sp(x) = (z2,23,...) and Sg: €% - P by Sp(z) = (0,z1,22,...). Then
ISr(@)70 =D lzil” =25 = 1Skl ey =1,
i1

|SL(@)[7 = Z;Ixilp <zl = [Sclr ey <1
i>
However, = can be attained by letting the first component of x to be 0, i.e., (0,22,3,...), in which case

ISz ()| = ||z Hence the supremum is indeed 1 and |[St | ey = 1.

Future reference: Example 8.7-1, [Example 3.7.2

20
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Lecture 7: 8/31 More on Bounded Operators; Isomorphism

Example 2.8: counterexample for 2.8.4 when p(2) = o

From last lecture’s [Example 2.8.4: consider

-1 ze(-1,0)
fn(x) = % ze(0,n) = /H;fn(x) dz =0.
0  otherwise
1 ze(-1,0)
Easy to verify that f, € LP(Q) for all p> 1. Then f, — f:= as n — oo but '/Rf dzx =-n=#0.

0  otherwise

Example 3.1: more on bounded operators

(1) Let p € C([a,b]) and T(f) := /abgof for f € C([a,b]). Then T € C([a,b])* with |T| = |¢llL::

b
IT(f)Iéfa lefl <fle=lelr = 1T < el

and it remains to show ||T'|| > ||| z:. Notice that if we define f :=sgn(y) then
b
()= [ el = Il

However there’s a flaw with f since it might be discontinuous if ¢ changes sign. We fix this by

introducing € > 0 and define f.(x) := ¢/(|p| + €) which is indeed continuous. Then | f|r~ <1 and

ol =700 = 161 [ oti= [ [~ )= [ <

which means T(f.) 1+ T(f) as ¢ > 0 and we’ve found a successful approximation of f. Recall from

Cemma 2 T4 that

IT] = sup [T'(y)| > sup [T(f)l = T(f) = [el s

Iyl ze<1
yeC([a,b])

so taking € — 0 gives ||T'|| > | ¢| 1. Hence |T| = [¢]z1-
Remark
For functions on C([a,b]), L* is the “usual” norm in the sense that, for a continuous function,

the supremum, maximum, and essential supremum are all the same.

(2) T(f):=f' [the derivative] is unbounded: taking f,(x) = 2™ gives | f.|r~ > 1 whereas

I |z = [nz™ | p= = n < n| fu|| L=, hence no n works as the Lipschitz constant and T is not bounded.

Future reference:
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[ Definition 3.2 |

T e B(X,Y) is invertible if
(1) it has an inverse, and
(2) the inverse T7' € L(X,Y) (linearity shown by Cemma 117) is bounded, i.e., T7' € B(Y, X).
If T and 7! are bounded, then for some c;,co we have
T bounded: |T(z)|y < ca|z|x and T bounded: |z|x < éHT(w)Hy,

ie.,

allz|x < |T(x)|y € eflz|x for all x € X.

Such invertible T is called an isomorphism between normed spaces X and Y (with corresponding norms
I “lx,lly). Wesay X,Y are isomorphic (or congruent) if there exists an isomorphism between them.

Future reference: Cemma KA

[ Definition 3.3 |

T € B(X,Y) is called an isometric isomorphism if it is isomorphic and |T(z)|| = |z| for all z € X. The
equation alone defines an isometry. In this case we write X =Y.

Lemma 3.4

If T e L(X,Y) is an isometry (i.e., |[T(x)| = |z|) and is surjective, then it is an isometric isomorphism.

Proof. If |T(x)| = ||=| we immediately know T € B(X,Y) and T7! € B(Y, X), i.e., bounded. It
remains to show that 7" has an inverse, which in turn requires T" to be bijective. Given T is
surjective it suffices to show T is injective.

Suppose T(x) = T(y). Since T is an isometry we have
0=T(z)-T(y) =T(z-y) = |T(x-y)|=0=[z-y| — z=y.

So T is bijective; it has an bounded inverse. O
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Example 3.5

(1) C™ is isometrically isomorphic to R?" via (cy,...,¢n) = (1,1, - - Tn,Yn) Where ¢; = z; + iy;.

Proof. Take c¢:=(cy,...,¢,) € C". Then

n n n n
lelgn = Y leil® = Y lai +igil® = Ylwil® + Yolyil® = I (@1, 91, - @y Yol o
i=1 i=1 i=1 i=1

which shows this map is isometric. Clearly it’s also bijective. Hence an isometric isomorphism. [

(2) Let V be a finite-dimensional vector space with basis E = {e;};51. Let

n 1/2 n
e (Sei)  where = S
i—1

i=1

Then |+ |g is a norm on V, and (V|- |g) = K" (isometrically isomorphic).

Proof. Proof of isometric isomorphism Let T : K™ — V be defined as

M

T(ar,...,an) =) ae;.

=1

Then T is a linear bijection (since each x € V' is uniquely represented by this basis). In addition,

n 1/2
||T<a17...,an>|E=(Z|az-|2) ot an) e
=1

Future reference: Mhearem 310, [Corollary 3.11

[ Definition 3.6 |

A subset K c X is (sequentially) compact if any sequence {z,},>1 ¢ K has a convergent subsequence
(with limit in K'). [Equivalent to covering compactness (every open covering has a finite subcovering) if

the topology is generated by a metric, in particular a norm.]

Example 3.7

(1) A closed interval [a,b] is compact in R.

(2) Heine-Borel: a set K c R" is compact if and only if it’s closed and bounded.
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Lecture 8: 9/2 Compact Sets; Riesz’s Lemma

Lemma 3.8

(1) If K c X is compact, it is closed and bounded.

(2) If K c X is compact and f: X — Y then f(K) is also compact, i.e., the continuous image of a compact

set is compact. [Immediate since f preserves convergence of any convergent subsequence.]

(3) If K c X is compact and f: K — R is continuous then f attains its bounds, i.e., for some z,7 € K we
have
f(x) = inf f and f(z) = sup f.
Proof. ITmmediate since closed subsets of R contains its limits. To put more formally, let {z,,} ¢ K
be the sequence such that f(z,) — inf f. By (2), there exists f(z,,), a subsequence of f(z,), that

converges to f(z) for some z € K. Hence f(z) =inf f. Likewise for T and sup f. O

Future reference: Mheorem 310

| Definition 3.9 |

Two norms | - |; and |- ||2 on X are equivalent if there exists constants ¢y, ca such that
cil|z]y < |z)2 < cofz||y for all z € X,

Le, (X, ]+]1) = (X, |- ]2) [isomorphic].

Theorem 3.10

If X is finite-dimensional then all norms on X are equivalent to each other.

Proof. Let E be a basis of X, and we will show that every norm | - | is equivalent to |+ |z, the norm with

respect to the basis. Recall from that this means

n 1/2 "
lz| g = (Z|O‘i|2) where x = Zaiei.
i=1 i=1
Then (by Cauchy-Schwarz)

< Sadlled] s(zm ) (z|ei| ) - &olells.
=1

i=1 i=1

=] =

n
Y. aze;
=1

lz| & =icz a constant

Now it remains to show there exists ¢; such that ||| > ¢1|z|g. Here we need to use compactness, in
particular compactness of unit sphere with respect to |- | g, i.e., S:={z: |z|g = 1}. To see this, we can
think of S = T({a e K" : ¥ |as|? = 1}). Recall again from that T is continuous. Also,

it’s clear that the unit sphere in K" is compact. Hence S is compact.
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Since

=l =yl < |z -yl < c2llz -~ ylle

we see |+ || is continuous with respect to | - | z. Hence | - | has to attain its lower bound (infimum) on S

by Cemma 383 (with f(z) = ||| on (X, | -|g)). Therefore there exists z € S such that
= inf |z|.
Jz] = in ||
Notice that if z € S then ||z||p =1#0 = z # 0 by the properties of basis. Hence

Tl H H| H alels.

eS

|zl ==&

Hence (X, |- ]) 2 (X, ] - | &) O
Future reference:

[ Corollary 3.11

If X is finite-dimensional then K c X is compact if and only if it’s closed and bounded.

Proof. By the theorem bbhavd and [Example 3.5.9, if F is some basis on X, we have (X, ||-|) 2 (X, | |g) =
K™. O
Future reference: Mheorem 314, [Example 4.1.4), [Example 9.11|, [Proposition 9.2

[ Proposition 3.12 |

If x,, » « then it’s Cauchy. [Immediate by €/2 proof.]

Lemma 3.13: Riesz’s Lemma

Let (X, ]|-]|) be a normed space and Y a closed “proper” subspace, then there exists x € X such that ||| =1
and |z -y >1/2 forall ye Y.
Future reference: Thearem 314, [Example 3.1, Cemma 9 14, Theorem [0 1, [Proposition 10.3

Proof. Pick xg € X \Y. Define

d =d(zo,Y) := inf |20 - y|.
yeY

Note that d > 0. Otherwise, there exists {y,} c Y that converges to x¢, contradicting ¥’s being closed.
Let yo € Y be such that |zg - yo| € [d,2d] and define

_ Zo — Yo
H»"Uo —yOH
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Clearly |z| = 1. We will show it satisfies the problem’s requirements. Take y € Y. Then

Zo — Yo

lz-yl=|—"—">-
on—yoH

N | —

1
yH e T
on—yOH N —
N——— Y
>1/2d

>d

Theorem 3.14

A normed space (X, | -|) is finite dimensional if and only if By (0,1) is compact.

Future reference: Mheorem 9 T8
Proof. = is obvious by as the closed unit ball is closed and bounded.
For <=, if X is infinite-dimensional, we will construct a sequence {z,} c Bx(0,1) such that no
subsequence is Cauchy, in particular, not convergent.
We begin by taking z; € X with |z1] = 1. Now look at span{z1}, a closed, proper (otherwise dimension
= 1) subspace of X. Hence, by Riesz’s Temma there exists 2o € X such that |z3] =1 and |2zo — 21| > 1/2.
Now take span{zy,x2}. We see this is also a closed proper subspace of X [otherwise dim(X) = 2]. Hence
again there exists x3 € X such that ||z3| =1 and |z3-z;| > 1/2 for i = 1,2. We may continue this the same
way and get a sequence {x,} such that |z, | =1 and ||x,, — z;| > 1/2 for all i < n. Thus we have acquired
a sequence such that none of its subsequences is Cauchy. Thus if X is infinite-dimensional, m is

not compact. Taking the contrapositive proves «—. O
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Lecture 9: 9/4 Banach Spaces

Example 3.15: Ex. 1.8 revisited

Now we give another proof of Example 1.8.1: ¢P with p € [1,00] (either p € [1,00) or p = oo) is infinite-
dimensional.

To see this, notice that each e has norm 1, whereas |e(® — ez = 27 for all €, e(). Hence a sequence

consisting only of e(*)’s shows that the closed unit ball B (0,1) is not compact. By Rieszs Lemma this means

/P is infinite-dimensional.

Banach Spaces

[ Definition 3.16 |

(X,]l-]) is a Banach space (or X is Banach) if it is complete, i.e., every Cauchy sequence converges.

Example 3.17

Let F,(;K) :={f: Q> K| f is bounded}. Then X := F,(9;KK) is complete with respect to |« ||sup nOrm.

Proof. Let {f,} c X be Cauchy, i.e., given ¢ > 0 there exists N € N such that

[ fn = fmlsup = sug |[fr(2z) = fm(2)| < € for all m,n > N.

e
In particular, {f,(x)} is Cauchy in K for each z. Since K is complete,
F(@) = Iim £, (2)

is well defined. Now it remains to show f € X and f, — f. For m,n > N and any x € 2 we have

Ifu(z) = frn(z)| < € and | fr(z) = f(x)| > 0 as m — oo.
Hence taking m — oo gives |f,(z) — f(z)| < e. Therefore taking the supremum gives

sup | fu () = f(@)] = [ fo = fllwp €50 fo > f-

Clearly f € X Since HfHSUp < Hf - fn“sup + an“sup < €+ an“sup < 0o. D

Future reference:

Lemma 3.18

n
X is Banach if and only if Z |zi]| < 00 = Z:z:z converges in X, i.e., H Z:z:Z — z” — 0 as n — oo for some
21 21 i=1
x € X (every absolutely convergent series converges).
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n
Proof. For — , assume ) |;] < co. It follows that {Z szH} converges and is thus Cauchy. Given

i>1 i=1
m n n
€ >0, there exists N € N such that if m >n > N then ) |lz;] = > || < e. Now we want to show > ;
i=1 i=1 i=1
converges in X. Notice that

m n
Se-fa
i=1 i=1

m

5

i=n+1

m m n
<Y il =2 il = 3 il < e
i=1 i=1

i=n+1

n
which shows { Z xl} is Cauchy. Since X is Banach, this sequence is convergent.

i=1
For <=, take some Cauchy sequence {y,} c X. We'll find a convergent subsequence {y,, } - y. This,
along with {y,}’s being Cauchy, suffices to show {y,, }’s convergence [¢/2 proof].

Let ng =1 and for k > 1 let ny be such that ny > ng_; and
lyi —yi| < 27% for all 4,5 > ny.

(This is possible because {yy} is assumed to be Cauchy.) Now define a sequence {z, } such that x; = y,,

and %; = Y, — Yn, ,- LThen

Y leid < X2 =2 <00,

i>1 20

and by assumption Z x; converges. This finishes the proof since Z Zj = Yn, by construction. O
21 21

Future reference: Mhearem 3 T4, [Open Mapping Theorend, [Parseval’s Identity]

Theorem 3.19

X := LP(Q) is a Banach space for all p € [1, c0].

Proof. To make use of Cemma 318, let {f,} c L? be such that S:= > | fn]rr < co. We will show that

n>1

Z fn converges. First notice that (with Minkowski’s inequality)

n>1
N i N p (M) [N ®
/ (Zlfnl) o AN (Z |fn|Lp) <SP,
Q \n=1 n=1 L n=1
N
By the monotone convergence theorem, since Z || is nondecreasing, taking N — oo gives
n=1

L= [ (zin) <5 = rer.

n>1

In particular, F(z) < oo a.e. Therefore, for a.e.z, f(z):= ). fn(x) is well-defined (the limit exists as f)

nx1

and feLP as | frr < D, [ fallLe =S < 00 (Minkowski).

n>1
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Now that we’ve shown the existence of f and f € L?, it remains to show that Z fn actually converges to
nx1l
fin LP. For p < oo, this holds because (with triangle inequality and dominated convergence theorem)

N P N P A N p
Hf_,;f"HLp :fg‘f‘n;fn‘ <f§2(|f|+nZl|fn|) < [err®=o.
For p = oo, refer to PS2. O

Lemma 3.20

(1) Suppose X 2Y (isomorphic). Then X is Banach if and only if YV is Banach.

(2) If | - |1 and | - |2 are two equivalent norms on X, then (X, ||-|1) is Banach if and only if (X, ||-|2) also

is.
(3) If (X, ] -|) is Banach and Y ¢ X a subspace, then (Y, -|) is Banach if and only if Y is closed.
(4) If (X, ] - |x) and (Y, ] - |vy) are Banach, then (X x Y, ||z|x + |y|y) is also Banach.

Proof. (1) Let T : X - Y be an isomorphism between X and Y. WLOG assume X is Banach. Let
{yn} ¢ Y be Cauchy. It follows that {z,} :== {T"*(y,)} c X is also Cauchy (simply multiply € by
some c1). Hence z, - x for some z € X. Then again y, — y := T(z) (simply multiply e by some

other ca).

(2) The identity map id : X — X is an isomorphism between (X, |- |1) and (X, +]2). Then it just

follows from (1).

(3) For <=, assume Y is closed. Take {y,} c Y a Cauchy sequence in Y. It follows that it’s also
Cauchy in X. Hence y,, — x for some x € X. But since Y is closed, z € Y and thus {y,} converges

in Y, ie., Y is also Banach.

For = | suppose Y is Banach. Let {y,} c Y such that y, — x for some z € X. We want to show
xz €Y. Since {y,} is Cauchy, it’s in particular convergent, so y,, - y for some y € Y. Then it follows

that, since limits are unique, x =y e Y.

Future reference: Exercise 211, Closed Graph Theoren]

(4) Trivial. Left as exercise.
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Lecture 10: 9/9 BCT & PUB

Example 4.1

(1) Let X := Cp(;K) == {f: Q> K| f is continuous & bounded}. Then it’s Banach.

Proof. By it suffices to show X is a closed subspace of bounded functions from
Q->K, ie., F(K) from Exercise 3T7.

Let {f,} ¢ X be such that f, - f for some f € F,(;K), ie., [fn = flsup = 0. We need to show
f is continuous. Fix € > 0 and let N € N be such that |fnx — flsup < €/3. Pick § > 0 such that
Ifn(x) = fv(y)| < €/3 whenever |x —y| <. Then if |z —y| < §, we have

[f (@) = fI < 1f (@) = v (@) + | fv (@) = fn ()] + v () = f(y)l < e

(2) Let X := C(K;K) where K c K" is compact. Then X is Banach.

Proof. This follows from the fact that the continuous image of compact sets is bounded. Hence

C(K;K) = Cp(K;K). Then it follows from the result of (1). O
(3) Let X := C'([a,b]) where | f|c1 = | flz=|f |z=- Then X is Banach. Future reference:

Proof. Take {f,} ¢ X Cauchy. Then {f,},{f.} c C([a,b]) are both Cauchy (with respect to
|+ lsup). Hence by (2), fr, — f and f' - g in C([a,b]) for some f,g e C([a,b]).
It remains show g = f’ (then f e X and | f, — f|c: = 0). By FTC,

fa(2) = fn(0) + Lr 1} dz for all n > 0. (A)

Note that, as n — oo,

f f,’Lda:—f gdx

Hence, taking n — oo on both sides of A we get

< [T1f=gldw <1, = glap(b-a) 0.

f(a:):f(O)Jrfwgdxforallx — g=f".

O
(4) K™, any finite-dimensional normed space, and ¢?(V') for p € [1,00] where dimV < oo, are all Banach.

Second one cf. Corollary 3.11. Future reference:

Most of the time when we talk about spaces of continuous functions, we talk about functions on a compact
set. If we pick X to be the space of continuous functions defined on an open interval, it’s not Banach. In

particular it’s not even a normed space: some continuous functions don’t even have finite supremum norm.
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Theorem 4.2: Baire Category Theorem, BCT

Let {F;}i>1 be a countable collection of nowhere dense (closure having empty interior/containing no open

sets, cf. 425a PS9.5) subsets of a Banach space X, then

U F; +# X.
i>1
In particular, if each F; is closed and it so happens that U;»1 F; = X then at least one of the F;’s is somewhere

dense.

Future reference: Open Mapping Theorem

Baire categorized sets into two categories: sets of 15¢ category refers to sets that can be expressed as

countable union of nowhere dense sets, and sets of 279 category refers to sets that are not of 15 category.

Theorem 4.3: Banach-Steinhaus Theorem/Principle of Uniform Boundedness (PUB)

Let X be a Banach space and Y a normed space. Let S ¢ B(X,Y') be such that
sup |[T'(z)| < oo for all z € X,
TeS

then sup |T| < oo as well. In otherwise, pointwise boundedness everywhere implies uniform boundedness|!!]
TeS

Future reference: [Example 4.4 {continued], [Example 5.23 (extended), Future reference: CemmaTT T3

Proof. Let F;:={x e X :|T(x)| <i for all T € S}. Note that F; is closed for each i:

Fi= (N {zeX:|T()]<i}
TeS

closed: T is continuous

and arbitrary intersection of closed sets is closed. Furthermore, X = | J F} since, given x € X, we simply
need to take ¢ > sup |T'(z)| [which is doable by assumption sup < co]. %Flhis is a countable union of closed
sets. re
By BCT [in particular part], there exists n € N such that F), is somewhere dense; there exists some zy € X
and 7 > 0 such that B(zg,r) c F,,. Hence, for every x € X with |z| < r, we have

|T ()| = 1T (2o +2) +T (—z0) | < 2n

——— ——
eB(xo,r) eB(xo,r)

Hence for all y € X and T € S we have

ry ) 2yl _ dnfy| 4n
1T =T\ 5| < = |T|<—.

20yl) r r

—

=r/2<r
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Example 4.4

n

Let X =P(I):={p: I >R:p(z) =) aa*,n > 0}. Define the norm of a polynomial as |p| := max|a;|. Now
K3

i=0
k
define a sequence of operators: Ty (p) := Z a;. (If k> n then define a; := 0 for all n <7 < k. It follows that
i=0
Ty € B(X,R) because
k k
Tk ()] = | 2 ai] < Ylasl < (1+ k) ]
i=0 i=1

In particular, we've shown the operators are pointwise (polynomials as “points”) bounded with || Ty| < 1+k.
NextiTecturd we’'ll show that |Ty|| is precisely 1+ & which then implies these operators are NOT uniformly
bounded.
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Lecture 11: 9/11 OMT & IMT

Example 4.4: Continued

Continuing from [astTeciurd, now we show |Tk| = 1+ k. Now consider a polynomial with coefficients 1, i.e.,

k
p:= x;. Then
i=0
k
=>1=1+k=(1+k)|p|.
i=0

w(5)

Hence we don’t have uniform boundedness. By PIIB we conclude X is not Banach.

[ Corollary 4.5: more on PUB |

Let X be Banach and Y normed.
(1) If T, e B(X,Y) are such that lim T,,(x) exists for every x € X, then T := lim T,, € B(X,Y), i.e., also

bounded, with | 7| < liminf 7),.
Proof. Tt is easy to see T € L(X,Y):
T(axq + Bag) = lim T, (azy + Bxe) = lim T, (az1) + lim T, (Bx2) = T(axy) + T(axs).

For boundedness, notice that, for each x € X, the convergence of T,,(z) implies sup [T, (x)] < oco.
nz1

Therefore by PUB sup |1, < oo, and there exists M € N such that |T,,| < M for all n. Thus
nxl

9.
IT(@)| = lim [Tn(2)| < Mlz] = |T| <M.

(T first equality from [Proposition 2.6.1))

(2) If S c B(X,Y) is such that sup |T|| = oo, then there exists x € X such that sup |T(z)| = co.
TeS TeS

Proof. Suppose not, i.e., for each z € X, sup | T(z)|| < oo, then by PUB we also have sup |T'|| < co. [
TeS TeS

Theorem 4.6: Open-Mapping Theorem

(Banach & Schauder) Let X,Y be Banach spaces and T € B(X,Y) surjective. Then T is an open mapping,

i.e., T maps open sets in X to open sets in Y.

Proof. We will show that T'(Bx(0,1)) > By (0,r) for some r > 0. Assuming this is true, then if U c X is open,
for any y € T(U) there exists z € U with T'(x) = y, and there exists § > 0 such that Bx(z,d) c U. Then

T(U)>T(Bx(x,0)) =T(z)+T(6Bx(0,1))
=y+dT(Bx(0,1))
=y+0By(0,7)
= By (y,0r), so T(U) is open.
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Now back to the proof showing T'(Bx(0,1)) > By (0,7). The proof consists of two parts. For convenience we
define Bx = Bx(0,1).

(1)

We first show T'(Bx) contains By (0,r) for some r > 0. Notice that, since T is surjective,

U T(TLB)() =Y = U nT(Bx)

n>1 n>1

By BT, for some n > 1 we know nT'(By) is somewhere dense. Hence there exists some y € Y and r' > 0

such that nT(Bx) > By (y,r"). It’s not hard to notice that T is convex and symmetric:
z,ye B, = Az +(1-NyeBx = MNT'(2)+(1-N)T(y)eT(Bx)cT(Bx)

and

T(x) e T(Bx) = -T(z)eT(Bx).
It follows that By (-y,r") c nT(Bx). Thus for all z with ||z|y <7’ (i.e., z € By (0,7")) we have

1 1 —_—
z= §(y+ 2)+ §(y— z) enT(Bx).

— T

enT(Bx) enT(Bx)

Hence

T(Bx) > By (0,7'/n) = By (0,r).
Now we show that T'(2Bx) contains By (0,7), and so T(Bx) > By (0,7/2) which would complete our
proof. Take y € By (0,7). By (1), there exists some z1 € Bx such that y — T'(x1) € By (0,7/2) [there exists

some point in T (B ) arbitrarily close to y].

Iterating the same process again, there exists xo € Bx(0,7/2) such that T'(x3) is arbitrarily close to
y - T(z1), in particular y — T'(x1) — T'(z2) € By (0,7/4). In general, for all n > 3 there exists z,, €
Bx(0,1/2"7') such that

n

Y- T( le) € By (0,7/2").

i=1

Notice that > [z;] < Y2701 = 2. By Cemma 318 this implies the convergence of ¥ z; as X is Banach.
i>1 i>1
Assume z; — z for some z € T. Then

— 0 as n — oo.

ly - T(x)| < Hy—T( Zn;Tn:cl) + HT(I— é%)

r n
<5+ HTHH:[;-;:E,;

Hence y = T'(x). On the other hand, from what we’ve just shown,

n
lo] = tim || 52 < Yl <2,

which implies € 2Bx. Therefore T(2Bx) > By (0,r).
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9/11 OMT & IMT
Theorem 4.7: Inverse Mapping Theorem/Banach Isomorphism Theorem

(Banach) Let X,Y be Banach spaces and T € B(X,Y) bijective. Then T~ € B(Y, X), i.e., the boundedness

of T7! is guaranteed and so T is invertible.
Proof. First of all, T7! exists and 77! € L(Y,X) by Cemma I 12. By the Open Mapping Theorem

T(Bx) > By (0,7) for some r > 0. Applying T~! to both sides gives Bx > T~ *(By (0,7)). Then

- af v\ 2yl 2 1y 2
1T W= T 5 )| <yl = 1T <=
Iyl 2 roor r
——
€By (0,r)

Future reference: [Corollary 5.1, [Closed Graph Theorem, Cemma R4, p(T) “iff” statement
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Lecture 12: 9/14 CGT; Inner Product Spaces

[ Corollary 5.1 |

A direct reseult from IMT (easy proof taking idx as the bijection): If (X, -]1) and (X, | - |2) are Banach,
and it so happens that there exists some ¢ > 0 such that |z|s < ¢|z|; for all z € X, then the two norms are

equivalent, i.e., there exists ¢ > 0 such that |z|; <¢||z|. for all z € X.

Example 5.2

Let X := C([0,1]). Notice that
1
171 = [ 171 <1 1o for all f €.

Does there exist ¢ > 0 such that ||f|e < ¢|f]1? The answer is no. Consider

n 0,2+
fo(2) = [0, 7]

0 otherwise

= | fuli =1 but [ fo]eo =n.

This does not contradict IMT because (X, | - |1) is not Banach.

[ Corollary 5.3: Closed Graph Theorem |

Let X,Y be Banach and T € L(X,Y’). Then
TeB(X,)Y) < G:={(z,T(x)) e X xY :x € X} is closed,

i.e., graph of T is closed.
Proof. = : if (xp, T(x,)) = (2,y) € X xY, then clearly z,, > z and T(z,) - y. Since T ¢ B(X,Y) it

preserves sequential convergence so T(z,) - T(z) = y=T(z). Hence (z,y) € G.
< : since G is closed and T linear, G is actually a closed subspace of X x Y (since X is). Then by

G is also Banach (with norm ||(z,T(z)| xxy = |z|x + |T(z)]y). Now define
7+ G — X to be the projection m,(x,y) := z.

It follows that, when ||(z,T(z)|xxy = |z|x + [|T(z)|y =1, the supremum of |, (z,T(x))| = |z|x = 1.
Hence 7, € B(G,X) with ||7,|| = 1. Equally clear is that 7, is bijective.
Since G' and X are both Banach, by [N 7! € B(X, ), so there exists ¢ > 0 such that

|72 (@) | xr = 1(2, T(@) [ xr = Jollx + [ T(@) ]y < el x

and so |T(z)|ly € (¢-1)|z|x, ie, T € B(X,Y). O
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Example 5.4

Let X := C*([0,1]) and Y = C([0,1]) and equip both with | + |sup. Define T'(f) := f’. Then the graph G of
T is closed. Reason: let (f,,f) € X xY be such that f,, - f and f/ - g (in supremum norm) for some
feXandgeY,ie,

| (Frs 1) = (F:9) x5y = 0.

By this means g = f', and so (f,g) € X xY. Hence G is closed.
However, T is unbounded by [Example 3.1.4. This does not contradict the CGT because X is not Banach.

Inner Product Spaces

[ Definition 5.5 |

An inner product (dot product/scalar product) on vector space V is a map (-,+) : VxV — K such that
(1) (z,z) >0 with (z,2) =0 < =0,
(2) (linear with respect to the first argument) (z + ay, 2) = (z,2) + a(y, z), and

(3) (conjugate linear w.r.t. the second arg) (z,y) = (y,x), i.e., (z,y +az) = (z,y) + a(z, 2).

If V' has this inner product property, (V,(+,+)) is called an inner product space.

Example 5.6

(1) V=R" and (z,y) = leyl defines an inner product space. Similarly: V = C" and (z,y) := Z TiYi-
i=1 i=1

Future reference:

(2) ** Let V = ¢ and (z,y) := Y 2;J; (component-wise conjugate product of sequences). This is a key
ix1
example of an infinite-dimensional inner product space.

Lemma 5.7

Inner product induces a norm, i.e., |z| := \/(x,z) defines a norm. In addition, with such norm, for all

z,y € V, we have the Cauchy-Schwarz Inequality:

|z, I < =]yl
Proof of Cauchy-Schwarz. Observe that

0" (= =) = (05 = M) = M) = PG ) (a)
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If y = 0 the original Cauchy-Schwarz Inequality is trivial. Otherwise we may define A := (z,y) Then

ly[?
_ 2 _ 2 2
Ay,2) = \(oo) = 'ﬁ*g' , same thing for Xz,y), and \2(y,3) = (T’ﬁi ) = (f’j@ Then A
y y y
becomes

2 |(5Uay)|2 2 2 2
0< |z - T I(z,)I” < [z ]y]* = |(z,v)| < |z]]yl.

Lemma 5.8: Parallelogram Law

| - | is (can be) induced by an inner product if and only if it satisfies the parallelogram law:
le+yl? + |z =y = 2 (J=[* + |y[?)-

If so, then the inner product is given by the polarization identity

Jz +yl? - o -y ifK=R

4(z,y) = (polarization identity)

lz+ 32 = |l = y)* +i(Je +iyl* - Jo -iyl*) fK=C
Proof. == is obvious: since |z|? = (z,z), we get
o+ yl® + e -yl* = (z+y,a+y) + (@ -y -y)

=z + (2,y) + (g 2) + [y + |2)® - (=,9) - (g, 2) + |y?
=2(|z]* + JyI*).

For <= this is called the Jordan € von Neumann Theorem. We need to show that
(1) the polarization identity satisfies the properties of inner product, and
(2) ||z|? = (x,x) based on the polarization identity.

Left as an exercise.

Future reference: Example 5.11.2, Cemma 69
Remark
Unless specified, we will be assuming that | - | is induced by some inner product.
Lemma 5.9
Let V be an inner product space. If x,, - = and y,, - y in V, then
(ZTn,yn) > (z,Y).

This shows that the inner products are continuous with respect to strong convergence.
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Proof. Once again we use the “add and subtract” trick, cf. Cemma 75 4:

(@5, yn) = (@, )| < (@0, Yn) = (@, 90) | + (2, 40) - (2, 9)]
= |($n - mv?/n)' + |(x7yn - y)|
<z = 2| ynl + [z yn -yl (Cauchy-Schwarz)

— 0 since |z, |yn| are bounded and the other two terms — 0.

Future reference: Mhearem 5271, [Example 6.9, Cemma 6 10
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Lecture 13: 9/16 Hilbert Spaces; Schauder Basis; Bessel € Parseval

[ Definition 5.10 |

A Hilbert space is an inner product space that is Banach, i.e., complete with respect to the norm induced

by the inner product.
Example 5.11

(1) R™, C™ are Hilbert. Cf. Example 5.6.1.

(2) Among ¢ spaces, only ¢? is Hilbert (though all are Banach, cf. [Example 4.1.4). Notice that /7 norm
is induced by an inner product if and only if p = 2, where
(z,y) = ) 2T
izl
Proof. Consider z := (0,1,0,...) and y := (1,0,0,...). Then z+y = (1,1,0,...) and z -y =
(-1,1,0,...) and so |z +y|e = |z - y|e = 2'/P. On the other hand, 2(||z[? + |y|?) = 4. Hence
Parallelogram Law holds if and only if 2-2%/7 =4 «— p=2. O

(3) Among LP spaces, only L? is Hilbert, with (f,g) := f fg.

[ Definition 5.12 |

A sequence {e;};>1 is a Schauder basis for a normed space (X, |« |) if every, for all z € X, there exists a

unique sequence {a;};>1 € K such that

- 0.

T = Zawh ie.,

n
X — Z ;€
i1 i=1

n

Note that any Schauder basis is linearly independent: if Z aje; =0 is one representation of 0 (with
i=1

later «;’s being 0), it has to be the representation of 0 by definition. Hence «;’s are all 0’s.

Example 5.13

{e(D};51 is a Schauder basis for £ where p < co but not p = co.

Proof. For p < oo, recall from that cgg is dense in /P when p < oo. It follows that

x:=(x1,%2,...) = ine(i).

21
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For p = oo, suppose {e(?};51 is a Schauder basis of £°°. Then span{e(?} = . Since {e("} is countable,

by Cemma2T03 this means £*° is separable, but this contradicts [Example 2.11-3. O

[ Definition 5.14 |

Let V' be an inner product space.
(1) x Ly (x is orthogonal to y) if (z,y) = 0.

(2) EcV is orthonormal if (e, e2) =0 for all distinct e1,e3 € E and also e =1 for all e € E.

Example 5.15

(1) {e®};5; is orthonormal in £2.

(2) {e := €*®|\/27} ez is orthonormal in L2(-7,7):

1 m=n

1 o — 1 7o
(ém,en) = — f e dor = — / M Qg = §pn =

2 21 ™ 0 m+n

Future reference:

(3) {1} u{V2coskma}ys is orthonormal in L2(0,1): (clearly 1 doesn’t matter) if m = n then
1 1
2 f cos?(kmz) dx = / 1+ cos(2kmz) de =1
0 0
and if m # n then

/(;1 cos(mmz) cos(nmx) da = % [01 cos((m+n)mx) + cos((m —n)rz) dz = 0.

Lemma 5.16: Generalized Pythagorean Theorem

n
If {e; }:50 is orthonormal (in some inner product space) then H > aze;
i=1

2 n 9
= Z|Oéz| .
i=1

Proof. The LHS is induced by inner product so

n 2 n n n n
H Zaiei = Zaiei, Z Q€5 | = Z aich(ei,ej) = Zai@- = RHS.
i=1 i=1 J=1 i=1

n
i=1j=1 —_—
=8ij

Future reference: [Parseval’s Tdentity], Hilherf=Schmidf Theorend

41



9/16 Hilbert Spaces; Schauder Basis; Bessel & Parseval MATH 580 Intro to Functional Analysis - YQL

Lemma 5.17: Bessel’s Inequality

Let {e;} be orthonormal in V. Then Y. |(z,¢;)[* < |z>.

i1

n

n
Proof. Let x,, := Y (z,€;)e;. By the [Generalized Pythagorean Theoted, |z, |* = Y |(z,e;)|*. It follows

i=1 i=1
that
0< ||z —zn|? = (- 2p, - )
2l = (20, %) = (2,20 + |2
ol - (Z<x e )( z<x>) T

2] —i_il[(x,e»(ei,x) Z [(z,e:) (e 2)] + Jon?

2l -2 izilm,ei)ﬁ +zal?

2l - lonll?
holds for all n € N. O

Future reference: Corollary 5.19, Thearem 5 21, [Example 5.23 Fxtended, Example T1.17

Lemma 5.18: Parseval’s Identity

Let {e;}:»1 be orthonormal in a Hilbert space H (we need both inner product and completeness). Then

Zaiei converges < Z|O‘i|2 < 0.
i>1 izl

If this is true, then

H > e
721

Compare this with Cemma_3 T8 (absolutely convergent series converges).

2
=il (Parseval’s Identity)
i>1

(24

n
Proof. = : let x € H be such that Z aje; - x. Then, by [Generalized Pythagorean Theorem]

i=1
n 2 p n
[ £ Yol
i=1 i=1
and taking n — oo gives
Jz]* = Y leil* < co.
i>1
<= this follows from Cemma—3 T8 since Hilbert spaces are Banach. O

Future reference: Corollary 5.19, MThearem 5 21, Mheorem 66, [Example 6.8, Cemma G 13
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[ Corollary 5.19 |

Let {e;}>1 be orthonormal in H. Then

> (z,e;)e; converges for all z € H.
i>1

Quick proof: by Bessel’'s Inequalityl, Z|(:c, ei)|2 < o0, and so by [Parseval’s Idenfity] this implies the conver-

i1

n
gence of Z(x,ei)ei, ie., Z(x,ei)ei < 00.

i=1 i>1
Example 5.20

Let e; := e € (2. Then given z = (21,22, ... ), we have Z(:v,ei)ei = (0,29,0,24,...). It follows that the

21

convergence of Z(m, e;)e; does not always imply convergence to x itself. To be discussed next lecture.
izl
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Lecture 14: 9/18 Orthonormal Basis; Weierstrafl Approximation Thm
Theorem 5.21: Orthonormal Schauder Basis in Hilbert Space

Let H be Hilbert and {e; };>1 be orthonormal. Then TFAE:
(1) {e;} forms a Schauder basis, in particular an orthonormal basis.

(2) Forallz e H, ) (z,€e;)e; > .

i21

(3) The [Parseval’s Identity holds, i.e., |z]® = Y |(z,¢;)|* for all z € H.

21

(4) If [(x,e;) = 0 for all ’s] then x = 0.

(5) The span of {e;} is dense, i.e., span{e;} = H.

Future reference: [Example 5.23, [Proposition 6.5, Thearem 68, [Example 6.9, Cemma 9 TH, Corollary]
32

Proof. (1) = (2): by definition z = ) a;e; for some «; € K. Then, by Cemma5.d (inner products are continuous
i>1
w.r.t. strong convergence) we can take the limit out:

n n
(x,er) = (Z aiei,ek) = ( lim Zaiei,ek) Z lim Z(aiei,ek) = Zozi (ei,ex) = Q. (A)
i1 nmee o1 n=ee o >l ——
=0;k

From this it follows that Y (z,e;)e; = Y a;e; = z by assumption.
i1 i1

(2) = (1): take z € H so there exists some expansion Y (z,€;)e;. By A we know the expansion Y (z,¢;)e;
i>1 i>1

corresponds uniquely to Z ;6.
i>1

(2) = (3): this is nothing but [Parseval’s Identityl. For all z € H, Y (z,e;)e; converges, so » |(z,e;)|* is the

21 21

2
same as = |lz|?* by (2)’s assumption.

Z(x,ei)ei

21

(3) = (4): trivial by definition of norm since Y. 0=0= |z|>.

21

(4) = (2): let z € H be given, and define y,, :=x- ) _(z,€;)e;. Recall from Bessel’s Inequalityl that Y |(, ei)* <

i=1 21

|z|?. Hence Y |(z,e;)|* can be made arbitrarily small, and thus {y,} is Cauchy:

i=m

n 2 n
P
[y = yml? = | 3 @ren)es| £ 31w e <e.
i=m i=m
Since H is Hilbert, {y,} — y for some y € H. Since inner product is continuous, for all ¢ we have

(y7ei) = lim (yTMei) = (.’L‘,@i) - Z(.’I},ej) (ejvei) =0 lfj 2 1.
n—oo j:1 —_—
=5;;

Then by (4)’s assumption y = 0, and the construction of y,, implies = = Z(:r, €;)e;.

21
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- 0 by (2), but all elements of form ) (z,e;)e; belongs
i=1

(2) = (5): trivial. Given x € H, then ”x =D (w,e)e;
i=1

to the span of {e;}. Hence z is a limit point of span{e;}.

(5) = (4): suppose (z,e;) =0 for all i. By (5), let {x,,} c span{e;} be such that x,, — z. Then (again since

inner product is continuous)

|z|? = (z,2) = lim (2,,2) =0 = z=0.
n—>o00 ——
e span{e; }
Example 5.22

{e(};5; is an orthonormal basis for £2. This is immediate if we use (4) above. Also immediate since this

basis is dense in 2, i.e., (5).
Example 5.23

{eg := €™*® [\/21} is an orthonormal basis for L?(-m,7). By we know this set is orthonormal.
It remains to show it is a Schauder basis, in particular the density of its span. We’ll finish this proof [afed,

but first, some lemmas. Also refer to Example 5.23 (extended].

Future reference: [Example 12.4.7, Example 13.11

Lemma 5.24

C([a,b]) is dense in LP for p € [1,00) but not in L*.
Future reference: [Example 12.4.2, Thearem 139

Proof. Let f € L and € > 0 be given, and define g := Y a;x;, (simple functions) such that | f - g, < ¢/2. Now we
i=1

can approximate g by a continuous function g € L? by “shrinking” each I; by some § > 0 and interpolating them,
i.e., creating new I,,’s with §/2 truncated on both sides. Then we let g and g agree on each I,,” and connect the

endpoints of one I;, with another (and connecting to 0 for the leftmost and rightmost intervals, i.e., I] and I)).

n
Note that |g]e < D |a;| < 0. Hence g € L? and the same applies to g. Hence |g - 7] < 2||g] a.e. Notice
i=1

b
_glP = _gP = 2 gl )?
lg=gl= [ =37 = [ @lgl)
where the measure of [a,b] \ | J I] can be bounded by nd. Hence
i=1

p
lg =3gl5 <no(2]glle)” < (%) for sufficiently small 4,

and we are done.

Future reference: O
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Lemma 5.25: Weierstraf3 Approximation Theorem
Given f € C([0,1]),
n n e
Pu(a) =3 f (k/n) (k)xm ~z)nk
i=0

approximates f in ||« |co, i.€., | f = Pnllec = 0. These polynomials are called Bernstein polynomials.

Proof. For convenience define ri(x) := (Z):z:k(l — )" %, First, some claims of 7y (x):

(1) Recall from the binomial expansion

o) =3 (1) (1

i=0 \K

Differentiating with respect to x and then multiplying by = give

na(x+y) "t = i (n)kxky"_k. (2)

o \k

Differentiating the original binomial expansion twice and multiplying by z? give

n(n-1)(x 2y "Ve(k = 1)akynF
(1)) = 3 (et 1aty )
Letting y := 1 — x gives rg(z) = (Z)xky"’k Then from (1), (2), and (3) we get
i re(z) =1, i kri(z) = nz, and i k(k-1)ri(z) =n(n-1)z> (A)
k=0 k=0 k=0

(2) Second claim:

(k - nz)*rp(z) = nz(1 - z). (V)

M=

k=0

Rewriting (k - nx)? = k% - 2knz + n?2% = k(k - 1) + k - 2knx + n?2? and using A, we get

Yo(k- nz)?ri(z) = n(n - 1)z? +nx - 2nz - ne +nz? = nx(1 - z).
———— ——

= —_———
k=0 third second first

To be continued hextTeciurd. O
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Lecture 15: 9/21 More on WAT; Trig Approximations; Gram-Schmidt

Proof of [Weterstral Approzimation 1 heorem (continued). Since f e C([0,1]) it is bounded. Let M > 0 be such

that |f(z)| < M for all z, and fix € > 0. In addition, f is uniformly continuous, so there exists § > 0 such that

|f(z) - f(y)| < €/2 whenever |z —y| <d. Since

£(@) - Pa(@)] =1 £(2) - Pu(a)]
S| F@)re(@) - Y £ (ki) ra(a)|
k=0 k=0
=| X re@)(f @) = FGhfm)
= 3 r@)If (@) - £ (k)
k=0

n

Z re(@)|f(2) = f(k[n)] + Zrk(:v |[f () = f(k[n)|

\x—%ké |x_7|
< ZTk(l')E +> rp(z)(2M - 1) (uniform continuity & boundedness of f)
o £[<s o k|55
_2\? 2

ZT‘k(I) + Zrk(x) oIM - |k - 7;£| (since 1< (|k/n5 x|) _ |kn27;;;| )
\x—%ké \3:-%95

€ « 2M &
< § Z Tk-(l‘) + W Z“{: - nx|2’f'k($)

k=0 k=0

€ 2Mx(1-=z .

"2 i % (by Claims 1 € 2)
M

S % + ns? < ; + ; = ¢ for sufficiently large n.

[ Corollary 6.1 |

The set of polynomials, P([a,b]) c C([a,b]), is dense in C([a,b]). Future reference:

Theorem 6.2

If K c C is compact, then Pc := {) a;z' : a; € C} is dense in C'(K;C). This can be proven by Stone-

Weierstraf3 Theorem, a more genéral case of the WAT.

[ Corollary 6.3

(1) Let X := {f € C([-m,7];C) : f(-7) = f(m)}, the set of all continuous complex functions on [-7,7]
that agree at endpoints, then

:{ i ckeikw:ck E(C,TLEN},
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the set of trigonometric polynomials of above form, is dense in X.

Proof. Let f € X and € > 0 be given. Let g : S' - C (unit circle in complex plane as domain) be
such that g(e’”) = f(x). Then g is continuous [why?]. Then by CThearem 62 there exists n € N and
{¢;} c C such that

|g(z) - i cizi‘ <eforall ze St

Taking z = €'® gives
‘f(x) -y cie™®| < e for all z € [-m,7].

i=—n

O

(2) If f € X is real then it can be approximated by a real trigonometric polynomial, i.e., from T above but

such that ¢, =¢c_%.

Proof. Notice that if we write ¢, = a, + ib, then
cn€™ + c_pe' "™ = (ay, +iby, )(cos nx + isinna) + (a_y, + ib_y, ) (cosna — i sin nx)

=cosnz(a, + a_p) —sinnz(b, —b_,) +i(...)

— Re(cne™ + c_pe M) = cosna(an + a_p) — sinna (b, —b_y,).

On the other hand, notice that

i i(— 3 5= ap +a—g ,bk—b_k
Re(c e + c_nell ")I) = dpe"™ + d_,e'™M? where dj, := +1

2 2
(and so dop = Re(cp)). It follows that
n .
‘f(x) - > dre™®| < e,
k=—n
and in particular, Z de’™™® is a real trigonometric polynomial since dj, = d_. O
k=—n
Proof of [Ezample 5.23. Recall that we need to show the density of span of {e**/\/27} in L?(-m,m). Take

f e L*(-m,7) and let € > 0 be given. Let g € Co([-7,7]) (continuous functions with zero at endpoints) be
such that ||f - g|z2 < €/2 (recall C([a,b]) is dense in L? by Cemma 524). Then let h € span{e?**} such that
[h = glsup < €/(2v/27) so that |h—g| 2 < €/2. Then ||h— f||12 <€, as desired.

Remark

This exercise showed that every f e L? is the limit of its Fourier series. Cf. Thearem 5.212. In some
sense it’s a “natural” convergence of Fourier series. This holds not only for L? but also for any L? with

p < oo. On the other hand, Fourier series might not converge pointwise even for continuous f: see PS3.
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Separability of Hilbert Spaces
We will soon show that a Hilbert space H has orthonormal Schauder bases if and only if it is separable, and if yes
then H = L? (isometrically isomorphic).

Lemma 6.4: Gram-Schmidt Orthogonalization

Let F := {e;};>1 be a countable linearly independent set of an inner product space V. Then there exists
E := {&;}s>1 that is linearly independent and orthonormal with span(E) = span(E).
Proof. We use the norm induced by the inner product. Let €; := ¢;/|e;||, and for all n > 1 define

el n

én+1 = :H—l where 6;”1 =€n+l1 — 2(6"*'17 éz)éz
leral i=1
It follows that (e],.1,€;) =0 for all i <n. The rest are familiar and thus omitted. O

Future reference: [Proposition 6.9, [Example 6.8, Problem 74

[ Proposition 6.5

Let H be an infinite-dimensional Hilbert space. Then H is separable if and only if it has an (orthonormal
Schauder) basis.
Future reference: Mheorem 60, [Proposition 9.10, [Corollary 13.2

Proof. <= is obvious by the very definition of separability (Cemma2T0) and that the basis is countable.

= let E' = {e}} be a countable dense set. First we make E’ linearly independent by deleting any

e;, that is a linear combination of {ef,e5,... e/, _;}. Define this new set to be E”. Clearly span(E") =
span(E"). By Gram-Schmidil we obtain E, a linearly independent and orthonormal set with span(E) = H.
Hence F is a Schauder basis by [Theorem 5.2T parts 1/5. O
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Lecture 16: 9/23 Separable Hilbert Spaces; Closest Points

Example 5.23: Even more on

Take p € (1,00) and define
Snf = Z (fa ei)ei

i=—n

(the partial Fourier expansion until order n), where (f,e;) := / fe; (this is well-defined because f e LP
and also e; € L* bounded). Then

Snf = fasn—ooin LP if and only if | S, f]rr <l f]Le,

for some ¢, depending only on p, i.e., S, are uniformly bounded.

Proof. The case p =2 is immediate by Bessel’s Inequalityl:

P (B)
| < Sicneor i

i=-n

|i (fei)ei

1=-n

2 n
< [_Z_: ‘(ﬁei)@i

50 [Snflz2 < £l = 1S flz2 <If]Le-

For other cases, notice that = follows directly from PTIB. The convergence of S,, f implies sup |S,, f| <

Q.
For <=, let ¢ >0 be given. Let g € span{e’**} be such that |f - g|z» <e. Then g = S, g for sufficiently

large n (as long as n > degg). For large n’s, we have

=[f = Sngl +[Su(f -9

< €+ € - some constant since S,, is bounded.

This shows the convergence. O

Theorem 6.6

Any separable, infinite-dimensional Hilbert space H (over K) = ¢*(K) (isometrically isomorphic).
Proof. Let {e;}is1 be an orthonormal Schauder basis of H (by [Proposition 6.5). Define T': H — ¢2 by
T(x):=((x,e1),(x,e2),...) the sequence of Fourier coefficients.
Notice that 7' is onto by <= of Cemma 518: any such square-summable sequence in £2 leads to
the convergence of Y (z,€;)e; in H. It is also injective by Mheorem 5214 (suppose T'(z) = T(y) then

21

T(x) - T(y) =0 and the result follows from the Theorem). Hence 7! exists and is defined as

T_l(oq,ozg, .. ) = Zaiei.

i1
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On the other hand, notice the following (by Parseval) and we are done:

1/2
o]z 2 (Zl(mi)IQ) 7@

21

Example 6.7

Most Hilbert spaces (in applications) are separable (e.g. L?(£2)), but non-separable Hilbert spaces do exist.
The following is an example:

Let T' be an uncountable set and define H = {f : ' > R: f(v) = 0 a.e.}. Define | f[7 = > |f(7)[>. Then
~yel'
H is a Hilbert space just like L? (if f, is a sequence then the set of points at which all f,’s are nonzero is

countable). Notice that
|1, -1, =2 forall v+~

Similar to how f=_are not separabld, if we were to approximate H with a dense set, we have to approximate

all these indicator functions. The uncountability of I' implies the uncountability of this dense set, and by

Lemma 2.10 (definition]) this means H is not separable.

Example 6.8

Theorem 5 213 breaks down if we drop the assumption on the orthonormality of {e;}; see following.
Let {e;} be an orthonormal Schauder basis in H and let

fn :iﬁ

i=1 ¢

Notice that span{f, } = H because {f,} can be obtained by applying Gram-Schmiddl on {e;}. However, {f,}

is not a Schauder basis (not orthonormal in fact, either).

Proof. Suppose {f,} is a Schauder basis and let x := Zei/i (this is indeed in H, as guaranteed by

21

Parseval’s Identityl). By assumption there exists {o;} ¢ K such that # = )" ay f,. Then

n>1

(ek’ek) = (Z eii?ek) = (.I,Bk) = (Z anfnaek) .

121 n>1

El

1_
-

By Cemma 54, we can take the sums out and get

1 1 = 1/k n>k
~ = Zan(fn,ek):f Zan since (fn,ex) = )
ko k sk 0 n<k
This means Z ay =1 for all k’s, in which case we obtain ). 0 =1, clearly a contradiction. O

nzk
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Closest Points and Approximation in H
Lemma 6.9: Closest points
Let H be Hilbert and A ¢ H nonempty, convex, and closed. Let z € H ~ A. We define the distance
dist(z,d) := inf ||z — a|.
acA
The lemma states that there exists a unique a € A that attains this infimum. Moreover, for any other a € A,
Re(z —a,a-a) <0.

(Relate this with having obtuse angle in R™ where the cosine of the angle gives a negative inner product.)

Future reference: [Proposition 6.11], disfance Tuncfionald

Proof. First notice that d > 0. (Otherwise there exists {a,} converging to x. By the closedness of A this means

z € A, contradiction. Now let a,, € A be such that |z —a,|? < d* + 1/n. Parallelogram Law gives

2]z - an[® + |z + am|?) = 122 - an ~ am[? + lam + an[?

whereas
2 ].

1
2+~ and |z - an|? <d®+ —.
n m

Jo - an|? <d
This gives
2 2 2 2 2
lam — an||” <4d”+ — + — 4|z = (am + an)/2]".
m n
By the convexity of A, (a;, +a,)/2€ A and 5o |2 - (am +a,)/2|? > d?. Hence
2

2
l@m = an|? < =+ = -0 as m,n - oo.
m n

Thus {a,} is Cauchy and there exists some a € H to which {a,} converges. Since A is closed, d € A. It remains
to show || — @l = d: we have d < |z - a| by definition and ||z - a[? < d?. Hence the claim.

Uniqueness and the “obtuse angle” parts to be continued hextTecturd. O
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Lecture 17: 9/25 Orthogonal Complement; Orthogonal Projection

Proof: continuing on Lemma 0. For the “obtuse angle” part: let a € A. Convexness implies (1 -t)a+ta e A
for all ¢ € [0,1]. Then
lo-al*=d* < |z~ (1-t)a~tal?

= l(z-a) +t(a-a)|?

= |z - a|? + 2tRe(x - a,a - a) +t*|a - af?

= |z - a|* - 2tRe(z - a,a - a) + t*]a - a>.
This means t?[a® - a|? > 2tRe(x — G,a — a). Since t > t* when sufficiently small, the only way to ensure this
inequity holds for all ¢ € [0,1] is if Re(x —ad,a-a) <0.
Now for uniqueness of G: suppose there is some other a’ € A with || —a'| = d. From above we know Re(x —
a,a’ —a) <0 and Re(x —a’,a-a’) =Re(a’ —z,a’ —a) <0. Adding the two gives

Re(z - a,a’ —a) +Re(a’ —z,a’ —a) =Re(a' —a,a" -a) <0 = a' =a.
—_————

=[-I?

Remark

If we put v :=x —a then
Re(a,v) +d* < Re(z,v) forall ae A

since

Re(x,v) = Re(x —a+a,v)
=Re(v,v) + Re(a,v)
= d* + Re(a,z - a)

> d? +Re(a,z - a).

(The last step follows from that Re(a — a,x — a) < 0 which implies Re(a,z - a) < Re(d,x - a).)

Lemma 6.10
Let H be Hilbert and X c H. Then the orthogonal complement of X, defined as

X*t:={ueH:(u,x)=0forall ze X},

is a closed subspace.

Future reference: Cemma 6 12, [Riesz Representation Theorem

53



9/25 Orthogonal Complement; Orthogonal Projection MATH 580 Intro to Functional Analysis - YQL

Proof. Subspace: (u+av,z) = (u,z) + a(v,x) = 0 whenever u,v € X*.

Closed: if {u,} ¢ X* is such that u, - u € H, then (by Cemma )

(u,x) = ( lim un,a:) = lim (up,x) = 0.

[ Proposition 6.11

Suppose U is a closed subspace of Hilbert space H. Then for all x € H there exists a unique u € U and
v € U* such that z = u +v where u happens to the closed point to  in U. The map P, (z) :=u is called the

orthogonal projection onto U; it satisfies P2 = P, (P, is idempotent) and |P,| = 1.

Future reference: Cemma 612, Cemma 71, [Proposition 6.11 (continued), [Riesz Representation I heoremnd,
distance funcfionald, [ 'OIOH&I‘X 156.4

Proof. A closed subspace is always convex since Au + (1 — A\)v is a linearly combination of u and wv.

Therefore by Cemma 69 there exists a unique u € U closest to . The proof roughly consists of three
parts.

(1) Existence with v:=xz—-ueU*: take any w € U. It follows that if H is a real Hilbert space u+w € U;
otherwise (if K = C), in addition to the previous ones, we have u + iw € U. By Cemma 69 we have
Re(z —u,u+w —u) = Re(z —u,zw) <0 = Re(x —u,w) = 0. If H is real then we are done
since Re(z —u,w) = (x —u,w) =0 = v e U*. If K = C, notice that Re(x — u, +iw) = 0 gives
J(x —u,w) = 0 so both the real and imaginary parts of (x —u,w) = 0. Again we conclude that

v=x-ueU".
(2) Uniqueness: suppose « = uj +v1 = uz + v3. Then u; = ug = v2 —v; which implies
fu1 = ug|? = (u1 = ug,u1 —ug) = (u1 —ug,v3 —v1) = (uy,vp) +--- = 0.
Hence u; = us and likewise vy = vs.
(3) Properties of P,: P2(z) = P,(u+v)=u= P,(x). For the norm:
l2)? = Ju+o]? = Jul® + 2Re(u,v) + [0]* > Jul* = | Pu(2) |

where letting z € U gives | P, = 1.

Lemma 6.12

If X ¢ H then X c (X*)*. Equality can be achieved if and only if X is a closed subspace.
Example where c is proper: let X := unit disk on zy-plane in R®. Then X* is the z-axis and (X*)* is the

entire xy-plane.
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Proof.
(1) Inclusion: for any = € X we have (z,z) =0 for all z € X*. This means precisely that x € (X*)*.

(2) «<=: let z € (X*)*. We want to show z € X. By assumption X is closed, so by
there exist some x € X and 2’ € X* such that z =  + 2’. Then since z € (X*)* and 2’ € X* we have

(z,2") = 0. Tt follows that
0=(z,2")=(z+2",2") = (z,2') + (¢, 2')|2'|> = z=xeX.

(3) = : suppose X = (X*)* then X itself being an orthogonal complement is closed by Cemma G 10.

O
Lemma 6.13

Let {e;} be an orthonormal sequence in H and U :=span{e;}. Then

Py(z) =Y (2, ¢€)e;.

i1

If {e;} is a Schauder basis, then span{e;} = H so Py(x) = Py(z) =z. Cf. Lemma 5.21 parts 2 & 5.
Future reference: Example 7.3, Problem 74, [Riesz Representation Theorend

Proof. Since {e;} is an orthonormal Schauder basis of U, we may pick any y € H with y := Z a;e; and

21

> lai|* < 0o. Then (Parseval again)

i21

|z =yl? = 2| = Y (z, 0ue:) = D (e, @) + 3 Jou |
i1

i1 i1
= el = Yl e+ 3 (e, ) = @i, e0) - alw, ) + o)
21 21

=[x = Yl ) + Y|z, ) — il
i>1 ix1

Notice that the first two terms are o;-independent. Therefore one needs to ensure «; = (, ¢;) to minimize
|z -y, i-e., the distance. Hence P,(z) =y if and only if o; = (z,¢;) by (P, projects x
to the closest point to = in U). O
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Lecture 18: 9/28 More on Orthogonal Complement é Projection

Lemma 7.1

Let T € B(H) be such that 7% = T. TFAE:
(1) T is an orthogonal projection onto some U c H.
(2) ker(T) = (im(T))*.
@) 7] =1.

Future reference: MTheorem 7.2

Proof. (1) = (2): let T := Py for some closed subspace U. If P,(x) =0 then P,(u) + P,(v) =0 for some u e U
and v e U*. So P,(z) = P,(u) =u and z € ker(T') if and only if z € U* = (im(7T))*.

(2) = (1): note that ker(id — T') = im(7T). c because if x — T'(x) = 0 then x = T(z) € im(T). > because if
x = T(y) then since T is idempotent = = T?(y) = T(z) = = -T(x) = 0.

Notice that ker(id — T) is a closed subspace, so im(T') is also closed. Let U :=im(T"). Then U* = ker(T") by
assumption. Therefore for every x € H is of form u +v for some v € U and v € U* by [Proposition 6.11]. It follows
that T'(x) =T(u) +T(v) =T(u). Since u € im(T'), for some y € H we have u = T(y). Since T is idempotent, this
leads to T'(z) = T'(u) = T?(y) = T(y) = u.

(1) = (3): true by PTOpOSOR BT

(3) == (2): for all x € H we have T'(z - T(z)) = T(z) - T?(z) = 0. In particular, for all z € (ker(T))*,

e(ker T)*
0=(z-T(2),7) = |z]* - (T(2),2).

—
eker(T)

By Cauchy-Schwarz (first inequality) and assumption |T'| =1 (second inequality) we have
l2)? = (T(2),2) < [T@)|z] < |z = |T(2)] = ||
On the other hand,

|z = T(x)|? = |z|? - 2Re (T'(z),z) + | T(z)|* =0 = z =T(z) for all z € (ker(T))".
—_— —
=[] =[]

This means (ker(7"))* c im(T"). Now it remains to show im(7") c (ker(T"))*; then (ker(7"))* = im(7T), and taking
orthogonal complements again gives (2) as the closedness of ker(T") guarantees ((ker(7"))*)* = ker(T).

Let y € im(7T") and define U := ker(T") a closed subspace. By there exists a unique v € U and
v € U* such that y = u+v. Furthermore, by what we’ve shown above, v € U* = (ker(T'))* = v ¢ im(T). Hence
v =T(h) for some h € H. Again, since T is idempotent v = T'(h) = T?(h) = T(v); likewise for some z € H we
have y = T((z) = T%(z) = T(y). Then

u=y-v=T(y-v)=T%*(y-v)=T(u) = u=0since T'(u) =0 € ker(T).
Therefore y only has a v component, i.e., y € (ker(7T"))*. This shows im(T") c (ker(T"))*, and we are done. O
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[ Remark: more on [Proposition 6.11]]

If we drop the condition “v € U”, it’s in fact true that we can find another V c X such that for all x € X
there exists a unique decomposition z = u + v for some u € U and v € V. Consider X := R? with U being the

z-axis and V' any line not horizontal.

Theorem 7.2

Let X be Banach. Then

(1) U and V are complements if and only if there exists some idempotent 7' € B(X) (with im(7T") = U
and ker(7T') = V). In addition, if X is Hilbert then V = U* <« |T| = 1, ¢f. Cemma71. Hint:
ker(id - T") = im(T).

(2) co is not complemented in £°. (See Philips 1940; Whitney 1966.)
(3) X :=/P with p > 2 contains uncomplemented subspaces. (Murray 1937.)

(4) If it so happens that every closed subspace is complemented, then X = H for some Hilbert space.

(Lindenstrauss & Tzafrini, 1971.)

(5) If an infinite-dimensional U c X := {7 is complemented then U = X for all p € [1,00]. (Lindenstrauss

1967.)
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Lecture 19: 9/30 Dual Spaces; Riesz Representation Theorem
Example 7.3

Let H = (% and e; = ). Let x:= (z1,22.,,,) be given. Then (0,z2,0,zy4,...) is the best approximation of

x in U := span{e;} by Cemma G 13:

PU(I’) = Z(z,ei)ei = (0,172,07564, ‘e )

i>1
Problem 7.4

Find the best approximation of f(z) := |z| by a 3'¢ degree polynomial in L#(-1,1) norm, i.e., H = L?(-1,1)
and U := U = span{1,z, 2% 23}.

Solution

We apply Gram=Schmidfl with respect to U to get e; = 1/\/§ Then
es —x—(m 1)1—x—1/1xdx
2 V2] V2 2 J1 '
1 1/2 )
Since |e5] = (f |2 |? dx) =\/ 3 ve get ez =+/3/2-z. Similarly,
-1
1 1 3 3
el = 2% - x27)— x27\/7x \/7£C
N k0 ko GATER Ve
1 1
:xz—lf xzdx—3—xf 23 da
2J4 2 Ja
Then since ||e}| = \/8/45 we get e = \/5/8(3z% —1). [These are the scalar multiples of the first 3 Legende
1 n

2nn! dgn

By Cemma 613 the best approximation of f3 € L?(-1,1) in U is

polynomials P, (z) := (z? = 1)™ where the function is called Rodrigues’ formulae.|

1522 +3

3
f3($):;(f,€i)67::"' 6

(the 2* term vanishes) with | f - f3||p2(_1,1) =+ = V/3/4.
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Dual Spaces

Recall from Definition 2.12 that X := B(X,K) is the dual space of X.
Example 7.5

Let p € [0,1] and define 6, : X := C([0,1]) » R with §,(f) = f(p). Then 6, € X* with [d,]|x+ = 1.
Proof. Linearity is clear as d,(f1 + af2) = f1(p) + af2(p) = 6,(f1) + adp(f2). Also,

G (NDI=1f P < flx = [p]x- <1,

while letting fo € X such that fo(p) = mIErEg>1<]|f0| gives |0, (fo)| = fo(p) = | fol, so [[0p] x+ > 1.

Lemma 7.6

If X be normed and Y Banach then B(X,Y") is Banach. In particular every dual space is Banach.

Future reference: [Every reflexive space 1s Banach

Lemma 7.7
Let H be Hilbert. Given y € H and f, : H - K such that f,(z) := (z,y) for all z € H, then

fy € H* with | fylla- = |y|a-

Proof. Letting f, act on z, we have (by Cauchy-Schwarz) |f,(x)| =|(z,y)| < |z||y] so | fyllz* < |y[. On
the other hand, letting f, act on y itself gives |f, ()| = (v, v)| = |y|* = | fylu+ > |y O

Theorem 7.8: Riesz Representation Theorem

Let H be Hilbert. Given f € H* there exists exactly one y € H such that f(x) = (z,y) for all x € H, and

| fllz+ = |y| (which we have already proved above).

In other words, the Riesz map R : H — H* defined by y ~ f (or f, as in lemma above) is a bijective
conjugate linear isometry (since y appears as the second argument in the inner product).

Future reference: [Eoliafion, Theorem &8, [Example 11.17

Proof. Define K :=ker(f) a closed subspace of H.
First claim: dim(K*) =1. Let u,v € K* and we’ll show u and v are linearly dependent. Notice that

[ (o= f)u) = f(u)f(v) - f()f(u) =0

a linear combination
so on one hand the linear combination suggests f(u)v — f(v)u € K* while f(-) =0 = it’s in K too. (Any

u e K n K* satisfies |u|? = (u,u) = 0 by treating one u € K and the other € K*.) Therefore f(u)v = f(v)u and

u, v are indeed linearly dependent.
Now back to the main proof: let z € K* be such that |z|| = 1. Notice that, for every x € H there exists a unique

decomposition = = w + (z, z)z for some w € K:

(1) we K and (x,2)z € K*, both in closed subspaces by Cemma 6 10.
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(2) The existence and uniqueness of this decomposition is guaranteed by [Proposition 6.11.

(3) Since dim(K*) =1 we have K* = span{z} = span{z} (since it’s closed). By Cemma 613 this means the

projection of x onto K* is precisely (z, z)z.

Then,
f(@) = f(w+(,2)2)
= f(w) + (2, 2)f(2)
=0+ (z, ZTZ))
and the proof follows by taking y := zm O
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Lecture 20: 10/2 Hyperplanes; Holder’s in £P Spaces

[ Definition 7.9 |

A hyperplane U in X is a codimension 1 subspace of X i.e., a maximal proper subspace of X. (If Z is a
subspace such that U ¢ Z ¢ X then either Z=U or Z = X.)
Future reference: Cemma 112

Lemma 7.10

U c X is a hyperplane if and only if:
(1) U+ X and
(2) For every x € X \U, span(Uu{z}) = X.

Future reference: CemmaTT 2
Proof. = : let Z :=span(U, {x}) for some x € X \U. Clearly U c Z c X. Clearly the first inclusion is
proper, so Z = X.
<= let Z be a subspace of X with U c Z c X. We need to show that if Z # U then Z = X. In this
case, there exists some z € Z \ U. By assumption span(U u {z}) = X. Notice that since x € Z we have
X cZ. Hence X = Z. O

Riesz Representation Theorem suggests that ker(f) is a hyperplane for all f € H* since (ker(f))* is 1-

dimensional (see proof of the theorem). More generally, if H is real, then for any y € H, {f = f(y)} is an
affine plane. The entire space can be filled by the hyperplane with its affine planes. This is called foliation
by translated hyperplanes

{z:f(z)=c},ceR.

[ Corollary 7.11 |

Let A c H be closed and convex and H real. Pick x € H \ A and let a € A be the best approximation of z in
A e, |lz-al=d= in£ |z —a|. Now define f:= f,_z, i.e., f(y) = (y,z—a) for all y € H. Then
ae

{r=1-%}

Future reference: Beparafing_convex setd, [heorem 10 T8

separates A and x.

Proof. Note that f(a) = (a,x—a) = (x,2 - a) - |z - a|? = f(z) - d*. Therefore the affine plane containing a is
given by {f = f(a) = f(x) — d*} whereas the affine plane going through z is simply {f = f(z)}. Hence taking
the plane “in the middle” (or {f = f(x) — kd?} for any k € (0,1)) separates A and z, i.e., all other a € A lie on
the other side than =z. O
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Lemma 7.12: Holder’s inequality in £P spaces

Similar to [Holder’s inequality in L? spaces:

1 1
Y lziyil < |z]ler|y]ee Whenever ) + . 1.

i>1
Proof. If p or g = co then this is trivial. Otherwise, Young’s inequality (for numbers) gives

a? bl
abg —+ —.
p q

(This is given by the convexity of the exponential function; see PS1 also)

1 p 1 e a? b
ab = €8 = exp((Ina?) /p + (Inb?) /q) < =™ + =emb" = Ly
p q

p q
Back to the proof:
iyl il il
1 zlerlylea S 1zler [ylles
afP 1yl )
< - + = (Young)
;(P l=l%  alylze

_Ll=lG  1lylg
plzly  qlvli,

Theorem 7.13
If g€ (1,00) then (£9)* = P (isometrically isomorphic, where p~! + ¢! = 1) via

x> Ly such that Ly(y) = Y zy;
i>1
where x € /P L, € (£9)*, and y € ¢9.
Future reference: bnofher Torm of norm on 74

Proof. First thing: L, is linear. By Holder,
\Le ()] < [lerlyllea = [Lalleays < |2]er
so indeed L, € (¢P)*. It remains to show that it is an isometry (bijective with operator norm 1). Let

|mz|p/xl xT; * 0
i = o

0 .TZ'ZO
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Clearly y € (7 as |y|{, = Z|yi|q = Z|zi|pq7q = Z|wi|p = ||lz||y» < 0o. To show ||Ly||(gay = ] er (isometry), it
21 i1 121
remains to show the > direction (or the existence of =). This is proven by

21
= > @i(|zal f2)
i>1
= > |mslP (even when x; = 0)
121
-1
= |zler - |15,
= |zles - [yl P2 (since |y[{, = |[%, as shown above)
= [zles - [ylles-

Clearly x — L, is injective. We’ll show it’s surjective hextTecturd.
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Lecture 21: 10/5 LP,¢P Dual Space Isometries; Spectral Theory

Proof of (£9)* = ¢P: surjective part. Recall Trom Iast Tecturd that we need to show x — L, is surjective. Let
f e (£9)*. Define x to be such that z; := f(e(?)). We first show that z € £°. Let y be defined by

|.’17l|p/33z x; #0
i =

0 $Z‘=O

and y™ := (y1,...,yn,0,...). It follows that

P = 3y f () = S P
i=1 i=1

n

So Y |xilP < 1f (™) < I £1l ceay= |y | ¢a. Notice that the last term (™ |z can be re-written as

=1
n 1/q n 1/q n 1-1/p
||y<”>|eq:(z|yi|Q) :(meq-Q) :(zw) .
7=1 =1 7=1

Therefore,

n n 1—1/p n l/p

S <1l (Sleil) = (Sheil) €Ul

i=1 i=1 i=1
for all n. This means precisely that the infinite sum (i.e., |x]¢) is no greater than | f| ), so x € €. (Notice
that we approached this sub-proof using finite sums. The problem with Z is that Z|xi|p on both sides may be

i=1 i>1
infinite as showing x € P is our very goal, and subtraction in infinity makes no sense. Be very careful when

making assumptions. What is not assumed can’t be taken for granted.)

Hence, for each y, we have

f(y) = f(z aie(i)) = Zyif(e(i)) = Zyzxz = f=L,.

21 i1 21

Theorem 7 T3 gives an equivalent norm on ¢, cf. Cemma 2 T4:

[er = | Zaleny: = sup |3 @iy

[yllea=1"i>1

Theorem 8.1

(£1)" = £ but (£=)* £ 1. Instead, (co)* = £*.

Future reference: femark of Example 10.7, [Corollary 10.12, Refexivityl, Example 11.8, Schur’s Theorem
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Theorem 8.2
If g € [1,00) then (LI(Q))* = LP(Q) via
froLpiLi()= [ fa

where f ¢ LP(Q), L € (L9(Q))*, and g € LI(Q).

Spectral Theory (for Bounded Operators)

Recall in finite dimensional cases (in linear algebra), A is an eigenvalue of T': X — X if there exists nonzero
such that T'(x) = Az. In particular, in finite-dimensional cases, (T — A\I)x = 0 if and only if T — AI is not invertible.
In these cases, the study of spectral theory is the same as the “study of eigenvalues”.

Now we will consider complex Banach spaces. Some definitions first.

| Definition 8.3 |

Let X be a complex Banach space and T a linear operator.

(1) Resolvent — S(T') := {\ € C: T — A is invertible (having an bounded inverse)}. Also see a more

detailed definifion of resolvent]

(2) Spectrum — o(T):=C~ S(T) ={AeC:T - A is not invertible}.
(3) Point spectrum — o,(T) :={A e C: (T — AI)x =0 for some z # 0}.
(4) Eigenspace — if X € 0,(T') then E) := ker(T — I ) is the eigenspace of \.

(5) Multiplicity of A — defined as dim E}.
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Lecture 22: 10/7 Closedness of o(T) for T € B(X)

Two immediate results following the definitions:
(1) op(T) co(T): if (T - A )z =0 for any = # 0 then T — AI is not bijrctive and hence not invertible.

(2) A< |7 for all A€o, (T) (actually true for the entire spectrum):

Mzl = Az = 1T (@) < [Tz

Lemma 8.4

If {\;}i>1 are distinct eigenvalues of T', then any set of {e;};51 of corresponding eigenvectors is independent.

Future reference: Proposition 10.3, Cemma T2 T4

Proof. We will prove by induction. The base case is trivial. Now suppose {ey,...,er} are linearly
independent and suppose for contradiction that {ej,...,egs1} is linear dependent. Then their exists
k+1
{ai}is1 # {0} such that )" aje; = 0. Applying T gives
i=1

k+1 k+1
(%)= Z a;T(e;) = Z a;Aie; =0,
=1 =1

k+1 k+1
whereas miultiplying Z aie; =0 by Agy1 gives Z a;Ag+1€; = 0. Subtracting gives a nontrivial (since
i=1 i=1
N’s are distinct by assumption) combination of {ej,...,ex} that produces 0, contradicting the linear
independence of {e; ... e, }. O

[ Proposition 8.5 |

If T e B(X) then o(T) is a closed subset of {\ e C: |\ <|T|}. To be proven [afed.
Future reference:
Lemma 8.6

If X,Y are Banach and T € B(X,Y) is invertible, then T + S is invertible for any S € B(X,Y) with
|S| < 1/|T71|. In particular, the set of invertible operators is open in B(X,Y).

‘Future reference: [Proposition 8.9, [Example 8.7.2

Proof. First thing to prove: if S € B(X,Y) with | S| < 1/||T7!| then T'+S is surjective. Let y € Y. Define
J(z) =T '(y-S(x)). Then

|7(2) = I ()] = 1T (S(z = )| < IT IS - '] < |z - 2.
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By Banach Contraction Theorem there exists a unique z € X with « = J(«). Therefore for some = we
have = T} (y - S(z)) < T(x)+S(z)=y < (T +S5)(z) =y. Hence surjective.

(The class did not adopt this proof: the uniqueness of such x guaranteed by Banach Contraction Theorem
also suggests the injectivity of T + .S, and by this means T + S is invertible.)

Otherwise, we could also show the inverse is bounded, i.e., there exists some ¢ > 0 such that |(T+S)(z)| >

c|z| for all a:
(T +8)(z) + (=T)(@)[ = |S(@)| < [(T + ) ()| + |T ()| = [(T+S) ()| > [T ()] - |5(=)]

where
&4

1T ()] >
174

and [[S(2)] <[ S]]

Therefore

T +8)(@)] > o] (|T1” . |S||).

Since |S|| < 1/|T7|, letting ¢ := the difference proves the (sub)claim.

Notice that this automatically shows that 7'+ .S is injective (if 1 # z2 then |(T+S5) (21 —x2)| is nonzero).

Then, by remark of Defmifion 37,
- 1 -
I(T"+5) 1(y)\|<glly|\ = (T+5)" e B(Y, X).

O

Proof. Proof of First we show that o(T") is a subset of B¢ (|T|). This is equivalent to showing
any |A| > |T| is in the resolvent, i.e., A € S(T"). Notice that if we define

T-A =XNT/A=1):=XS-1)

then || S| = |T|/\ < 1 by assumption and ||I||* = 1. Hence by Cemma &4, S - is invertible (since | S| < 1/|I71])
and so is T — AI, a scalar multiple of S —I. Hence A € S(T') whenever |A| > |T'||. We will show the closure of
o(T") Gt Tactard. O

67



10/9 Spectrum Decomposition; Hilbert Adjoint MATH 580 Intro to Functional Analysis - YQL

Lecture 23: 10/9 Spectrum Decomposition; Hilbert Adjoint

Proof of [Proposition 8.3, part 2. Now we show o(T') is closed, which is equivalent to showing S(T") is open. Let
Ae S(T), ie., T — A is invertible. By Cemma =8, T — (A + §)I is invertible whenever
1
ML) =16] < vy
(T = A1)~
hence the openness of S(T") and the closedness of o(T'). O

Aeo(T) if and only if im(7 - AI) # X or ker(T - AI) # {0}.

<= is trivial since (T — AI)™" does not exist if T — AI is not surjective or injective.

For =, we look at the contrapositive. If ker(7 - AI) = {0} and im(7 — AI) = X, then T - A is bijective.
In addition it’s also bounded. Hence T'— AI is invertible by [MTI.

Future reference: p(Sg) = B(1), [Example 8.7.2

One can divide o(T") \ 0,,(T) into two classes:

(1) The continuous spectrum where 7' — Al is “almost surjecrive”:
0o(T) := {\ e C:T - X is injective and im(7T - AI) c X is dense but (7' — AI)~! is not bounded}.
This is possible when im(7 - AI) # X.

(2) The residual spectrum where T'— A is “essentially non-surjective”:

o (T):={XeC:T -\ is injective but im(7 - AI) c X is not dense}.

Also see Bmore formal definition of resolvendl & comparisons between resolvent and spectrum decomposition.

Name Injective | Surjective (onto X)? Inverse Exists? | Inverse Bounded?
Resolvent Yes Yes Yes Yes
Spectrum Maybe Maybe No (not bijective) N/A

Point Spectrum No Maybe No N/A
Cont. Spectrum Yes No (but dense) Yes (im - X) No
Res. Spectrum Yes No No N/A

An informal diagram of different sets; see more below.

68



10/9 Spectrum Decomposition; Hilbert Adjoint MATH 580 Intro to Functional Analysis - YQL

[ Remark: More on the definitions |

Upon checking online resources, I've found more detailed definitions of the terms above (Iesoluenl and specy
Erum_decompositionl), regarding what the image of T — A should be. The following is from [Wikipedia:

Let X be Banach and T: D ¢ X - X be a linear operator. Below are three criteria:
(1) T - M is injective. Define (T — AI)™" := the inverse of T — A\I from im(T - A\I) - D.

(2) (T - MI)™! is bounded.
(3) The domain of (T — AI)~! is a dense subspace of X, i.e., im(7 - A\I) is dense in X.

If A € C meets all three criteria, it’s called a regular value. The resolvent is the set of regular values.

For others, see the table below.

Set M 1 (©2) | 3
Resolvent Yes | Yes | Yes
Point spectrum No

Continuous Spectrum | Yes | No | Yes

Residual Spectrum Yes No

Example 8.7

(1) Recall from Example Z.15: Sr, : £? —» ¢? defined by Sr(x1,22,...) = (z2,73,...) the left shift. Then

every A € C with |A| <1 is an eigenvalue of Sy,.
Proof. Sp(z) = Mz <= (w2,23,...) = (Ax1,A\20,...) <= x = (21, A\x1,\%z1,...). Therefore,

O

using the definition of /2 norm we get x € £2 <= [z1[|> Y |A* <00 < |\ < L.

i=1
Remark

Here we’ve shown B(1) c 0,(SL). But recall from that o(SL) 2 0,(SL) is a
closed subset of {A € C: |\ < |T|}, whereas gives |Sp| =1. Hence

B(1) cop(Sp) co(Sp) c B(1) = o(SL) = B(1).
Future reference: see Cemma 34 for another proof (of S; and Sg).

(2) What about Sg? It has no eigenvalues because (z1,23...) = (0,21,22,...) = x =0. However, the
spectrum o(Sg) is still B(1). The direction o(Sg) c B(1) is given by [Proposition 3.9 and Exercisd

D13, It remains to show o. Recall that it suffices to show im(Sg—AI) # 2. If A = 0 the clearly nothing
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gets mapped to (1,0,0,...) € 2. Now assume A # 0. Take some y € 2. Then,

(ylayQa"') = (SR—)\I)Z’: (_Axlvxl _Ax27"')

1
= 21=-3u
1
T2 —ﬁ(yl + Aya)
1 u -1
T = =g D YA
AR
1 A! 2
Now we may construct the sequence y := {f . ﬁ} € (. Then,
i 1 )i

1 & (1Nt 1 &1
=— - >— Y =
|| I[P Z(z i1 |>\|Z

i=1 ¢

and so (w1,T2,...) diverges. It is therefore not in 2, i.e., im(Sg — A\I) # £2, and we are done.

Theorem 8.8

Let H, K be Hilbert and T € B(H,K). Then there exists a unique T € B(K, H), called the (Hilbert)
adjoint, such that
(T(x),y)k = (2, T (y))u for all z € H and y € K.

In addition, T** and HT*HB(K,H) = ”THB(H,K)~

Future reference: Cemma 94, Cemma. 9 14, Cemma 9 14

Proof. Take some y € K and f € H* defined by f(z) := (T(x),y)x. (This is indeed well-defined because

(T(2), ) <T@yl < [yl T[] = feH".)
N

By [Riesz Representation Theoren] there exists a unique z € H such that f(z) = (z, 2)u.
If we define T*(y) := z then (T'(x),y) = (z,2) = («,T*(y)). Now it remains to show that T ¢ B(K, H).

Clearly it is linear by the very properties of inner products. To see that it is bounded:

I7* (W% = (T (), T ()

=(TT"(y),y) (property of adjoint)
<[TT* (W)Yl (Cauchy-Schwarz)
<[THT* @) Hyl- (applying norm of T))

Assuming |T*(y)| # 0, we can divide both sides by it and obtain |[T*(y)| < |T|||y| and so [T*| < |T].
Next Tecturd we will show 1) the uniqueness of 7* and 2) that 7** =T, which then implies
|T] = [T < |T*] and so | T = [T"]. O
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Lecture 24: 10/12 Self-Adjoint; Spectral Theorem; Compact Operators

Proof: continuing on [Chearem ¥ 8. Now we show the uniqueness of T* and that T** =T
(1) Uniqueness: see below.

(2) T** =T: since (T(z),y)x = (x,T*(y))u, taking complement gives (for all y ¢ K,z € H)

(T(2),y)k = (@, T"(Y)u = (T*(y),x) g = (4, T**(2))k = (T (), y) k-

Hence for all y € K we have (T'(x) = T**(z),y) =0. Then for any x € H, taking y := T(z) - T**(x) gives a

zero norm. Hence we conclude T'(x) = T**(x) for all z, i.e., T =T**. This also proves the uniqueness.

Lemma 9.1

Two properties of the Hilbert adjoint:
(1) Conjugate linearity: (aT + 8S)* =aT™ + BS*.
(2) (TS)* =5*T".

Future reference: Cemma 94

[ Definition 9.2 |

T is called self-adjoint if T € B(H) and T = T*. Also see definition of umerical Tangd.

Example 9.3

(1) If T:= Sg, then T* = Sg:
(Sc(2),y) = z2y1 +x3y2 + - =21 -0+ 2201 + -+ = (2, Sr(Y)).
(2) For some €2, suppose K € C (Q X Q) (continuous in closure), and let T : L?(2) - L?(2) be defined as

T(f@)= [ K(2.9)f(y) dy.

Then
T (g(@)) = [ K(y.a)g(y) dy.

and, in particular, T is self-adjoint if and only if K is symmetric, i.e., K(z,y) = K(y,x) for all z,y.

Future reference: [Example 9.13, Thearem 139
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Lemma 9.4
Let H be Hilbert and T € B(H) Then

a(T*)={\: Xea(T)} = o(T) (conjugate, not closure).
Proof. Suppose A ¢ o(T), i.e., A€ S(T). Then T — A is invertible, i.e.,

(T-AN)(T =N =T=(T-\)"(T-\I).
Now take adjoint of everything (recall from Cemma @1 that (T'S)* = S*T™*):
(T-A)) (T-M)* =T =T=(T-\)" ((T-A)7")".

This by definition means ((T'-AI)™)" = ((T - AI)*)"". By Chearem =8 we have | ((T-AI)™)" | =
(T = AI)™| bounded, and so is ((T = AI)*)". Hence A ¢ o(T*) == (T -AI)* =T* - X invertible. [

From this lemma we see that, since Sg has adjoint Sg, o(Sg) = 0(SL) = {|A\| € 1} where the overline

denotes the complex conjugate. Cf. Example 8.7.1 & 3.

Lemma 9.5
IfT,...,T, € B(X) commute, i.e., T;T; = T;T; for all 4, j, then

ThTy...T, is invertible <= each T; is invertible.

Future reference: ppectral 1 heorem tor Folynomialg

This is not true in general if the 7’s do not commute:
S1Sk =id € B(¢?), invertible,

but Sy, is not injective, and Sg is not surjective.
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Theorem 9.6: Spectral Theorem for Polynomials

Let P(2):= Z arz", a complex polynomial of degree n, and T € B(X), then
k=0

o(P(T)) = P(o(T)).

Future reference: [Corollary 9.

Proof. First note that, given X € C, we can decompose A — P(z) = into its roots:
A=P(z)=a(B1-2)(Ba—2z...)(Bn-2) for o, 3; € C,

ie., A= P(f;) for all 1 <i <n. Furthermore, this is true only for these 8;’s (obvious). Therefore, in terms
of operators,

A - P(T) = a(Bil -T) (B =T)... (81 -T).

Notice that the terms on the RHS commute, so by Cemma 03 AJ — P(T') is invertible if and only if each
B;I — T is invertible.

Therefore, if we take A € o(P(T)), i.e., A\I — P(T) is not invertible, then some 3;I — T is not invertible,
i.e., B; € a(T). Thus A= P(f;) € P(c(T)) and so o(P(T)) c P(o(T)).

For o, If A ¢ o(P(T)), by Cemma™@3, the invertibility of A\I - P(T") implies that each §;I-T is invertible.
This means §; ¢ o(T') for all 1 <i<n.

(Notice that, unlike above where 5; € o(T) implies P(3;) € P(a(T)), here A ¢ o(P(T)) does NOT imply
A=P(5;) ¢ o(P(T)). For example, -1 ¢ {1} but squaring both sides gives €.)

Recall from the root decomposition that A = P(2) only when % is of form ;. Notice that

AeP(o(T)) < A= P(2) for some z € o(T),

so it must be the case that §; € o(T) for some 3;. But this contradicts 8; ¢ o(T'), our assumption. Hence

A¢o(P(T)) = A¢ P(o(T)), and we are done. O

[ Corollary 9.7 |

If T € B(H) is self-adjoint, then either |T| or —||T'| € o(T).
Future reference: Lemma T2 T3
Proof. WLOG assume |T'| =1 (otherwise we may simply scale it). By definition of norm, there exists a

sequence {x, } such that ||z, | =1 and |T'(z,)| = 1. Then
HT2(xn) ~Tn H2 = (Tz(xn) - man2($n) ~ Tn)
= |1T%(@n)I? + |2nl? = (20, T?(2n)) = (T%(2n), z0)
Tl + 1 - 2(T(20), T(2n)) (last one b/c of adjoint)
=1+1-2|T(z,)|?* 0.

73



10/12 Self-Adjoint; Spectral Theorem; Compact Operators MATH 580 Intro to Functional Analysis - YQL

Therefore T2 - I is not invertible: for if it were, we would be able to find ¢ such that |z| < c|(T%-1I)(z)]|

for all . So 1 € o(T?), and by Bpectral Theorem for Polynomiald, this is the same as (o(7"))%. Hence
either 1 or -1 € o(T). O

Theorem 9.8: Spectral Theorem

If T e B(X) and f holomorphic on an open neighborhood of ¢(T'), then

a(f(T)) = f(a(T)).

Proof: see Yoshida’s book, p.227.

| Definition 9.9 |

Let X,Y be normed. Then T € L(X,Y") is compact, denoted as T € K(X,Y) if, for all bounded sequence
{zp} c X, {T(x,)} has a convergent subsequence (with limit in Y).
Alternatively, T e K(X,Y) if T(Bx(1)) cY is precompact (i.e., closure is compact).

74



10/14 Arzela-Ascoli Theorem; Hilbert-Schmidt Operators MATH 580 Intro to Functional Analysis - YQL

Lecture 25: 10/14 Arzela-Ascoli Theorem; Hilbert-Schmidt Operators

Lemma 9.10

If Y is Banach then K(X,Y) is a closed subspace of B(X,Y).

Future reference: [Proposition 9.16, [Proposition 9.21]

Proof. First claim: K(X,Y) c B(X,Y) because, if not, then there exists {x,} such that |z,| = 1 with
|T(x)|| = oo, but then {T'(x,)} does not have a convergent subsequence.

Clearly K(X,Y") is a vector space; for addition simply consider the overlapping terms of the convergent
subsequence, and scalar multiplication is trivial.

Now we show K (X,Y) is closed. Let {T,,} ¢ K(X,Y') be a sequence of compact operators that converges
to T eB(X,Y) (ie., |Tn| = |T]). We want to show T € K(X,Y) as well.

Let {z,} be such that |z,| < M (i.e., bounded). It follows that, since each T, is bounded, we can find a
subsequence of {z,, ,} such that {T1(z,, )} is convergent; then we can find a sub-subsequence {z, ,}

such that {T5(xy, )} is convergent, and so on inductively. If we take the diagonal sequence defined by

{yn} YYi =Ty

we get a sequence that converges for all T;,’s. Now we perform the “3e-trick”.

1TCyi) = T(yp) | <IT(yi) = Tuy) |+ 1T (i) = Tu (i) + 1 T0Cys) = T(y;)|
ST =Tl Nyill 1T (i) = TuCy) |+ 170 = T Nyl

<M <M

€
o Mrstag

for n,i, j large enough such that |T-T,,| < ¢/3M and | T, (y;) - Tn(y;)| < €/3 (both of which are possible;

the first by convergence of T;, — T and the second by Cauchy-ness of {T,(y»)}, which is implied by its

assumed convergence).

Now since Y is Banach, the Cauchy-ness of T'(y,) implies its convergence. Hence T is compact, and we

are done. 0
Example 9.11

If T e B(X,Y) is such that im(7") has finite dimension, then 7" is compact.

Future reference:
Proof. f T(Bx (1)) is bounded in a finite dimensional space then it is precompact by Corollary 3.11. [
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Theorem 9.12: Arzela-Ascoli Theorem

This theorem gives a characterization of compact sets in spaces of continuous functions. If A ¢ C(Q;K),
then

A is precompact <= A is bounded and equicontinuous,
i.e., for all € > 0 there exists § > 0 such that |z —y|<d = |f(z) - f(y)| <€ for all f € A.

Proof. Similar to the “3e-trick” above, along with the diagonalization argument. O

Example 9.13

Define T'(f(x)) := L K(z,y)f(y) dy (from Example 9:3.2) where K € C'(Q2 x Q). This operator is compact,
ie, TeK(L?L?).
Proof. By Arzela-Ascoli above, it suffices to show that T'(Bp2(q)(1)) is a bounded and equicontinuous
subset of C(Q,K). (This shows something even stronger: not only does it have a convergent subsequence

in L? but it’s also continuous.)

If f € Br2(o)(1) then (by Hélder and by LP > LY for p < q)

1/2
(@) < ( [ 1@ E dy) " 1715 < K]~ |9? < oo, bounded.

—
<1

On the other hand,

1/2
(@) - T ([ K ) - K@ )P dy) 112

|Q|1/2

< -|Q\1/2=6

whenever |z — 2’| < § for some & > 0, since K is (uniformly) continuous on  x ). Hence we’ve shown

uniform continuity. O

[ Definition 9.14 |

T € B(H), where H is separable, is called a Hilbert-Schmidt operator if the following holds:
IT|fs = > |T(ei)||* < oo for some orthonormal Schauder basis {e;} of H.
izl

If this holds then we call |T|ngs the Hilbert-Schmidt norm.
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Lemma 9.15

(1) ||+ |las is independent of the choice of the basis.
Proof. Let {e;}, {f:} be orthonormal Schauder bases of H. Recall [hearem 5 71 that this means

Parseval’s identity applies; also recall that T' € B(H) admits an hdjoinf. Thus we have

2 IT(e)|? = 3 21T (es), fi)lP = 3 Yol(e, T (i)l

21 k>1 21 k>1

=3 T ()P

21 k>1

= 2 1T (f)l?

k>1

so Y | T(e)|> = Y| T*(fi)|. We can apply this approach one more time and deduce

21 21

AT )P = 3T () )P = 2 IT (I

i>1 ig>1 i1
Therefore Y. |T(e;)[* = Y. |T(f:)|, as desired. O
i>1 i>1

(2) 1T Bcay < |T|ns, ie., the Hilbert-Schmidt norm is an upper bound for the operator norms.

Proof. Let w € H and rewrite it as Z(u,ei)ei by Theorem 5 21. Applying A-inequality (first <)
izl
amd Cauchy-Schwarz (second), we have

i1 i>1 i>1
S —
flw]? 1T

1/2 1/2
IT(U)I<Zl(u7ei)llT(ei)|<(Zl(u,ei)2|) (ZIT(ei)Iz) = | Tls wll-

(Compare this with [Proposition 9.10) O

[ Proposition 9.16

Any Hilbert-Schmidt operator T acting on a separable Hilbert space H is compact.
Proof. Recall that H is seperable if and only if it has a Schauder basis (Proposition 6.9). Let {e;} be a

Schauder basis of H. Then, if we take u € H and expand the Fourier coefficients,
TU)= Z(Uaei)T(ei)-
i>1

n

Let T,, the truncation of the sum be defined as T}, (u) := Z(u, e;)e;. Notice that T), has finite-dimensional
i=1

range. By we know that each T), is compact. Now we show |T,,| — |T||:
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(T -To)ul = 3 (ue)T(e:)]

i2n+1
< ) (we)|T(e)] (A-ineq)
2n+1
1/2
< Iull( > IIT(ez-)IIZ) (similar to Cemma 015 7)
izn+1

whereas the last term tends to 0 as n — oo because T is Hilbert-Schmidt and the infinite sum finite.
Therefore |T,,| — ||T|. Obviously each T, ¢ K(H), so by Cemma 910 the closure of K(H) implies
TeK(H),ie., T is compact. O

Lemma 9.17

(1) fT e B(X,Y) and S € B(Y, Z), then if one of T, S is compact then SoT € K(X,Z). Proof is obvious

since boundedness preserves sequential convergence.

Future reference: Mheorem 9 18

(2) If T e K(H) then T* € K (H).
Proof. Recall Theorem 88. Since T € B(H), so is T*. Thererfore by (1) we get TT* ¢ K(H).
Hence if {x,} ¢ H is bounded by |z, | < M, then TT* has a convergent subsequence (in H) which

we now relabel. Thus

1T* (20 = ) |? = (T (25 = Tn ), T (T1 = Trm)) (induced by inner product)
= (I'T*(zn = Tm), Tn = Tm) (adjoint)
<NTT* (@n —zm) | |20 — 2 (Cauchy-Schwarz)

convergent @M

— 0 as min(m,n) — oco.

Hence {T*(x,)} is Cauchy and it converges in H. This proves the lemma. O
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Lecture 26: 10/16 Spectral Theory of Compact Operators

Theorem 9.18

Let X be an infinite-dimensional Banach space. If T' € K(X) then 0 € o(T).

Proof. Suppose 0 ¢ o(T) then T is invertible. In particular 77! exists and is bounded. Since T € K (X)
and T € B(X), by Cemma 9171 we see that I = TT! is compact. Then by the very definition of

compact operators, Bx (1) is precompact, i.e., Bx (1) is compact. But then by Theorem 3 T4 X must be

finite-dimensional, contradiction. Hence 0 € o(T). O

Lemma 9.19

If T e K(X) (X normed is sufficient) and A # 0, then dim F) := dimker(7 — AI) < oo, i.e., any nonzero
eigenvalue of a compact operator has finite multiplicity.

Future reference: [Proposition 9.21, Banach=-Schmidf Theorem

Proof. Suppose dim Ey = co. We want to find {w;} c E; such that |w;| = 1 whereas |w; —w;|| > 1/2.
(If this is true, then T takes {w;} into a precompact set. However the sequence {T(w;)} cannot have a
convergent subsequence since |T'(w;) - T'(w;)| = A|jw; —w;| > A/2.)

Let w; € Ey be such that |wi| = 1. Notice that for all n € N, span{ws,...,w,} is a closed, finite-

dimensional subspace of E. Therefore, by Riesz’s Lemma (not RRTY, we can inductively pick w1 € E)

such that |wpe1] =1 and |wpe —w;| > 1/2 for all 1 <4 < n. Hence we have constructed a sequence as

mentioned above which leads to a contraction, and thus dim F) < oo. O

Example 9.20

T € B(X) may or may not have closed range. Consider T : £? — ¢? defined by

To I3
T = —, = ...
(SC) (xlv 2 ’ 3 ) )

Obviously T is bounded: |T'| < 1. Now consider {3} where

1 1
y™ ::T(l,...,l,O,O,...):(177,...,7,0,0,...).
—_——— 2 n

1
Then y(™ - y = {;}Wl € (* (recall that Y 1/i* = 7°/6 as shown in PS2), but clearly y ¢ im(T) as
i>1

(1,1,...) ¢ £%. Hence im(T') is not closed.

The same argument also works for T' € K(X). (Note that T above is actually compact.) However, T — I has
closed image for all T' € K(X), and if this is true, the same holds for T'— A\I where A # 0 (since T/\ € K(X)
and T — A = A(T'/\)). See proposition below.
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[ Proposition 9.21 |

If T e K(X) (again, X normed is sufficient), then im(7" - TI) is closed.

Proof. Let {y,} cim(T - I) be such that y, — some y € X. Define x,, € X to be such that (T —I)(xn) = Yn.
Define

dp:=  inf |z, -wl|.
weker(T-1)

Since ker(T - I) is Enife-dimensional, the infimum is attained, i.e., there exists z, € ker(T — I) such that
lzn = zn| = dn. (Let {wg} < ker(T - 1) be such that kh_)nolo |z, — wg| = dn. Then ||wg| is bounded and, by
[Corollary 3-T1, since balls in finite-dimensional spaces are precompact, has some subsequence wy; — w for some
weker(T-1I). Then ||x, —wi| = |xn —w| = dy.)

Our next claim: |z, — 2, is bounded.

Proof. Suppose not, then there exists {n;} such that |z,, — z,,| - co. Notice that

ynl:(T_I)(‘T’ﬂl):(T_I)(xnl_znl) (D)
since z,, € ker(T —I). Now let
nim T g, [ =1
|0, = 2n,
Then,
(T - 1)(wn,) = Hyi
T, — Zn,

Since {y,, } is convergent, the numerator y,,, is bounded. On the other hand, the denominator |z,,-z,, | =
oo by assumption. Hence the entire thing, i.e., (7' - I)(ws,), tends to 0.

Also, since T' € K(X) and {w,, } bounded (norm 1), {T'(w,,)} is precompact. Hence there exists some
subsequence that converges to some g € X. To avoid cumbersome notation, we relabel this subsequence

as the new T'(w,,). Furthermore, not only does T'(wy,) — ¢, but w,, - ¢q as well:

+ |7 (wn,) =l -

-0 by (O) —0 by convergence

[wn; =gl < wn, =T (wn,)

Recall that T ¢ K(X) = T € B(X) by Cemma910. Hence T(w,,) converges to T'(¢) and thus
q=T(q). Therefore q € ker(T —I). It follows that since {w,,} converges to g € ker(T - 1),

lim inf  Jwn, —w||=0.
i—oo | weker(T-1)

On the other hand, for all w € ker(T - I), by construction we have

Hmm ~ Rn; — w”xm — Zn;

” Ln; = Zn,

[wn, —wl =

1
= 7“‘7"% - (Zm + wdm)

-1
dn, )

|. (where d,, := |Tn, — 2n,
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However, notice that since both z,, and d,,, are in ker(T — I), so is their linear combination z,, + wd,, .
Therefore |z, — (zn, +wdy, )| > |€n, —2n, || by assumption of infimum, and so ||w,, —w| > 1. Contradiction;

|2 — 2, | must have been bounded instead. O

Back to the main proof: the claim above, along with the compactness of T', shows that {T'(x,,—z, )} is precompact,
so there exists some convergent subsequence (likely different from above; but we’ll use the same notation)

T(xpn, — 2n,) > p € X. Recall (O); we have the following equality:
Ty — 2, = T (T, = 2n,) — Yn, -
Also recall that by assumption y,, - y. If we define z := p -y, we get that
(T-1)(x) = Z411)12)(T = I)(xp, — 2zn;)
= ilirg(T -I)(zy,)-0 (since z,, € ker(T - 1))
-

e, yeim(T - 1), as desired. Hence im(7T" - I) is closed. O
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Lecture 27: 10/19 More on Characterizations of Compact Operators

Theorem 10.1

If T e K(X), where X is Banach, and ker(7 - I) = {0}, then T - I is invertible.

Future reference:
Proof. Tt suffices to show T - I is onto (because ker(7T —I) = {0} implies injectivity and T'— I € B(X) is
bounded just like T is; then by [MT we see T — I is invertible).
Note that

(T-D)"= é(—n"—k(;‘) Tk
- (-1 + é(—n”k(;l) T".

=8
Since T € K(X) and S, is simply linear combinations of T* (all of which are compact by Cemma 9 171),

it is compact as well. Then we have

(T-D)"=(-1)""((=Sn) -1)

——
eK(X)
and by we see that X, :=im (T - I)" is closed for all n. It is clear that if y € X,,41 then

there exists some x € X such that (T - I)"*!(y) = 2. Then (T - )"[(T-1)(x)] =y = y e X,, as well.

Hence we have a nested sequence of sets
XoXi22X,2Xn412... (0)

We will now show that it’s impossible for all these o’s to be 2. Suppose, for contradiction, that no two
sets are the same. Then, by Riesz’s Lemmad, for all n € N there exists x,, € X,, such that ||z, ]| = 1 and
|zn —yll 2 1/2 for all y € X,,11. Now pick any m >n. We have that
|7 (2n) =T (@m)| = |lzn + (T - 1) (2n) = Tm = (T = 1) (zm) |
—_— v e
Xoi1 Xpm s
= || &, —something ||
—~ —
eXn €Xm+1

> — by Riesz’s Lemma.

N | =

This means {T(z,)} does not admit a convergent subsequence. Hence our assumption that all >’s are
2 must have been false, and there exists n € N (different from the meaning of previous n) such that

X1 = X,,. It remains to notice that X,,.1 = X,, = X,,, =X, for all m > n:
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T-1:X, - X, is injective + surjective = (T —I)¥ is bijective Vk.

Now take any x € X and consider X,, and Xs,; we have
(T -1)"(z) = (T - I)*"(y) for some y € X. (A)
Since ker(T - I') = 0, the same holds for ker(T - I)™:
(T-1)"(z)=0 = (T-D[(T-1)""(2)]=0 = (T-1)""(2)=0 = ...

Therefore (T —I)™ is injective, and by (A) we see z = (T'—I1)"(y). Hence X cim(T -I)" and X = X,,.
Now recall (0): X o X; o X, and X = X, together imply X = X;, soim(7T-1) = X, i.e., T—1 isonto. O

[ Corollary 10.2 |

IfTeK(X)and Aeo(T), then A #0 = Aeo,(T), ie., if T is compact, the only nonzero elements of
o(T) are eigenvalues.
Future reference: Cemma T2 TH
Proof. We simply apply Mheorem 101 to T'/A. If nonzero A ¢ 0,(T"), we have ker(T - AI) = {0} and so
is ker(T'/\ - I). It follows that T'/\ — I is invertible, and so is T - A\ == X\ ¢ o(T'). This shows the

contrapositive. O

[ Proposition 10.3 |

If T e K(X) and {\;} c 0p,(T) is a sequence of nonzero (distinct) eigenvalues, then \; — 0, i.e., eigenvalues

of T € K(X) cannot have any accumulation points, except 0.

Future reference: Hilberf=Schmidt Thearem, Theorem 139

Proof. Let e; € B, (an eigenvector) be such that [e;| = 1. Also define F,, = span{ey,...,e,}. It follows
that

(T -\ 1)F, = F,_1 (A)
as (T — A\, 1) gives 0 only when acting on e,,.
Now we know that dim F;, = n and each F), is closed in X. We also know that F,,.; 2 F,, (recall Cemmad
Bd — different eigenvalues correspond to linearly independent eigenvectors). Once again we can use
Riesz’s Temma: for all n > 0, there exists @11 € Fjy1 with |zp41] =1 and |21 —y| > 1/2 for all y € F,.
(Define Fy :={0}.)

Then, for n >m > 1, using the same “adding and subtracting® trick and applying Riesz’s lemma, we have
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T(zn) T(m)| [(T-MI+XD)(@) (T =And + And)(@m)
)\n >\m - )\n >\m
GFTL,1
2 (T = AD) (@) (T = A D) (2m)
= ||y —s L=y = ————— L
An — Am
[ S — EFm —
eF,_1 eF 1

Vv
| =

N {T(xn)

} does not admit a convergent subsequence
Tn

x
e {—n} is not bounded for any subsequence (since T is compact)
n

= |\,| = 0 because ||z, | = 1, fixed by assumption.
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Lecture 28: 10/21 Hahn-Banach Theorem & Applications; Banach Limit

[ Definition 10.4 |

Let V be a vector space.
(1) p:V - R is sublinear if p(z + y) < p(z) + p(y) and p(Az) = Ap(x) for A > 0.

(2) pis called a seminorm if p(x +y) < p(x) + p(y) and p(Ax) = |Alp(x) for all A e K.

Consider V = R? and p(z1,22) = 1. This is sublineear but it clearly does not define a seminorm.

Theorem 10.5: Hahn-Banach Theorem

(1) (Real version) Let X be any real vector space and U ¢ X any subspace. Let ¢ : L(U,R) be such that
@ <pon U for some sublinear function p: X - R. Then there exists f € L(X,R) such that

fly=¢pand f<pin X.

If it so happens that p is a seminorm then |f| <p in X.

(2) (Complex version) let X be a complex vector space and U ¢ X a subspace. Let p be a seminorm on

X. If there exists ¢ € L(U,C) and |¢| < p on U, then there exists f € L(X,C) such that

fly =¢ and |f|<pin X.

For both cases: in particular if X is normed then any ¢ € U* can be extended to some f ¢ X* with

[ flx* < llellus (ie., take p(z) = |¢|)-
Future reference: Histance funcfionald, [Banach Timiil, [Proposition 10.15, Mheorem TO T8

Proof. Proof is by Zarn’s Temma; see Lax, p.19 € 23. O

[ Corollary 10.6: Support functionals |

Let X be a normed vector space. Given x € X, there exists f € X* with | f||x+ =1 and f(x) = |z|.

Proof. Let ¢ : U :=span{z} — K defined by ¢(azx) = a|z|. Note that p(z) = ||| and |p(2)| < |z| for all
zeU. Hence |p|y+ =1. Then Hahn-Banach gives the existence of f € X* that we seek.
Future reference: Corollary 10.8, Cemma TT 4 1 Future reference: Lemma TT 13 O
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Example 10.7

For all f e X* with |[f|x+ <1, |z]| S M = |f(x)|< M.

Proof. = is trivial. So is <= by the corollary of support functionals right above. O

In particular, we can define equivalent norms:

|| =sup |f(x)|, cf. Thearem 1.
feX*
[ £llg*=1

[ Corollary 10.8: X* separates points

If distinct x,y € X, then there exists f € X* such that f(z) # f(y). In particular, if z,y € X and f(z) = f(y)
for all f € X* then z =y.

Future reference: Cemma 11 13

Proof. If  +y then by Fupporting tunctional corollary gives an f € X* such that |f]x+ = 1 such that

0#|z-y|=Ff(z-y)=f(z)-f(y).

Hence x +y = f(x) # f(y) for some f.

[ Proposition 10.9: Distance functionals |

Let X be normed and Y ¢ X a closed subspace, and let € X \Y. Define

d:=inf |z -y|.
inf Jlz -]

Then there exists f € X* such that ||f|x+=1, f(y) =0 for all ye Y, and f(x) =d.

(Compare this with projection theorem on Hilbert spaces. Indeed there we had a distance minimizer back then,

but here since X is not necessarily Hilbert the “projection” is not defined. Also see this following example.)

Future reference: Cemma 10 11, Cemma 10 15 2. Theorem 114

Proof. Note that d > 0 (due to closedness of Y similar to Cemma64). Now define U := span(Y u {z})
and define p: U - K by ¢(y + Azx) := M\d for y € Y and X € K. Notice that
lo(y + Az)[ = Ad < [M[z = (=y/A) | = [Az +y| =[] <L
—
€Yy

To show |¢| > 1, let sequence {y,} ¢ Y be such that |z —y,| <d(1+1/n). Then

n

QO(]-':lj_yn)zd2

gl

This means |¢| >n/(n+1), and taking n — oo gives || = 1. Now already we have p(y) =0 for all ye Y

and ¢(x) = d. By Hahn-Banach Theoren (the “in particular” part) we can extend ¢ to f e X*.

O
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Example 10.10

If X is Hilbert then d = |v| where 2 = u + v for some u €Y and ve Y™,

Proof. Since u €Y and v e Y, we have
20 _ s _ 2 _ _ 2
1621 = inf Ju+ - y? = inf o+ u— ]

= inf (Jo]? + (v u—y) + (u=y.0) + fu-y[?)
yEY M N——

eyt €Y

= inf (o) + [u-y]?) = o]
yeY

Therefore d = ||v| and we simply take y := u.
(Follow the italic remarks in the previous proposition: now instead of talking about projections as we did

in Hilbert spaces, we talk about linear functionals. The ideas are similar.) O

Lemma 10.11

If X* is separable then so is X (assuming it’s normed). The converse is NOT true: (£1)* = £°°.

Future reference: Mheorem T2 10
Proof. If X* is separable then so is the unit sphere: Sx» := {f € X*: | f|x+ = 1} (Cemma—2Td). Then
there exists {f,}ns1 € Sx» (countable) which is dense in Sx+. Since these f,,’s have operator norm 1,
there exisets {a, }n>1 € X such that |f, (2, )| > 1/2 (use the supremum definition of operator norms). We

will show that X =span{x,} =: M. (Then the countable set with dense span shows separability.)

Suppose not, i.e., M # X, then the distance Tunciional proposition gives f € X* such that || f|x+ =1 and
f(z) =0 for all z € M. In particular, f(x,) =0 for all n and so
1
5 SHfa(@n)l = fa(an) = f@n)l <1 fa = fll 2al,
——
-1

contradicting the assumed density of {f,} in Sx«. O

[ Corollary 10.12 |

(6=)* % ¢* and (L*)* ¢ L*. Recall [heorem X1,
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Banach Limits in £*(R)

Let X :=£=(R),c(R) := {z € X : x,, converges} (notice that co c ¢), and let £ € (¢(R))* be defined by ¢(z) = lim .

n—>o00
Notice that we can extend ¢ to X by Hahn-BanacH, but we want to extend it in a particular way that preserves the
most important properties of the usual limit.

[ Definition 10.13 |

A Banach limit in X is any £ € X* such that, for all x € X,
(1) £(x) >0 if x, >0 for all n,

(2) £=2£(SL(z)) (invariant under shifting), and

Lemma 10.14

The Banach limit is bounded by limsup and liminf: liminf z,, < £(2) < limsup z,, for all z € X = ¢~ (R). In

n—oo

particular, £(x) = £(x) on ¢(R) (where the liminf and limsup agree and the Banach limit gets sandwiched).
To be proven hextTecturd.
Future reference: Cemma T THh 2
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Lecture 29: 10/23 Minkowski Functional; Separation of Convex Sets

Proof of [Lemma TU.1j. Notice that liminf is “the largest lower bound such that only finitely many z.,,’s are

smaller” and likewise for limsup. Since £ is invariant under (finite times of) shifting, it suffices to show that
inf z,, < £(x) < sup x,.
n n

Let € > 0 be given. There exists some ng such that supz,, — € < x,, < supx,. Hence z,, —x, +¢€> 0 for all n.
n n
Applying £ gives

(1)
0 < ({Tng —Tn+€})=mxp, - L(x) +e€

(since £ is linear; £({zn, }) = Zn, and likewise for € by (3)). Therefore £(z) —€ < zp, < supz,. Taking € | 0 gives

£(x) <supxy,. The other case is analogous. O
n

[ Proposition 10.15 |

Banach limits exist. See Goffman € Pedrick (1983), Prop.5, p.67, or berd, for uniqueness of Banach
limits (under some conditions). Such sequences (that converge to some Banach limit) are called “almost

convergent”.

Proof. Let p: X - R be defined by

) T1+ T+ + Iy
p(z) = limsup ————.

n—oo n

(We need limsup as opposed to simply lim because x € £, and there is no guarantee that Y /n will

converge. Take, for example, the alternating sequence of 1’s and 0’s.) Note that p is sublinear, and

P 2 B! 3 T e o 4
-p(-z) = liminf ——~— ",
n—>00 n

In particular, recall £ € (¢(R))* and so

{(x) = lim T ¥ here o c(R),
n

n—o00

i.e., if &, -  then (z1 +---+ 2,,)/n — z (there will only be finitely many terms that’s far away from x).

By Hahn-BanacH , there exists £ € X* such that

L(z) <p(x)
I = —p(-2) < £(z) <p(2). (A)
L(-z) <p(-x)

Now it remains to show that £ is a Banach limit. Criterion (1) is guaranteed by (A): if z,, > 0 for all n

then p(z) 2 0 and p(-z) <0 = -p(-z) > 0. Hence so is £(x). Criterion (3) is trivial in this problem.

Now it remains to show (2):

£(x) - £(S1(x)) = £(x - Sp(x)) < p(e - Sz(2)) = limsup " -0,
n—»o0 n
and likewise 0 < £(x) - £(Sr(«)). Hence £ is the Banach limit we have been looking for. 0
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Separating Convex Sets

Now we no longer restrict ourselves to £*°. Instead, we look at any normed space. Recall where we
separated closed convex set A from x ¢ A in a real Hilbert space. We shall now generalize this and separate convex

sets in any normed space.

| Definition 10.16

Let C' be an open, convex subset of X, a normed space with 0 € C. Then
pe(z) =inf{A>0: X'z eC}

is the Minkowski functional of C'.
(Think of R? and an open unit disk centered at the origin. Given any point not in the open disk, the
Minkowski functional is the reciprocal of the infimum of “scaling factors” that transform the point into the

disk. In particular, if x is on the boundary of C' (though we haven’t defined), p.(x) =1 for obvious reasons.)

Lemma 10.17

Denoting p := p., we have
(1) p is sublinear.
(2) 0< p(x) < c||z| for some constant c.

(3) C={z:p(x) < 1}. In particular, ||| is the Minkowski functional of B,(1) := {x : |z| < 1}. Compare

this with remark of Lemma 1.20.

Future reference: Mheorem 10 T8

Proof.
(1) p(Ax) = Ap(x) for A > 0 is obvious. For triangle inequality: let a > p(x) and 8 > p(y) then
z/a,y/B € C. Hence

Tty a T ,Bye

a+f a+Ba a+fBB
so a+ 82 p(x+y) for all > p(x),B8>p(y). Letting a | p(x) and 8 | p(y) we obtain the A ineq.

C, (a convex combination)

(2) Since 0 € C and C is open, there exists é > 0 such that B(0,6) c C. Hence for all z € B(0,4) we

have p(z) < 1. Now we start rescaling: for all x € X,

2 1) 2 2
p(z) = @ .p(2|i|) < ng” = c:= 5 finishes the proof.
———
€B(0,8)
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(3) c: if z € C then some ball around z is still in C since C' is open. Hence there exists A < 1 such that
AlzeC,ie., p(z) < 1.

o: if p(x) < 1 then there exists some A € (p(x),1). To see = € C, notice that

z=X-z/A+(1-X)- 0 €C. mi
— -
eC eC

Theorem 10.18: Functional Separation Theorem

Let X be a real normed space. Let A, B be nonempty, disjoint, convex sets.
(1) If A is open, then there exists f € X* and ~ € R such that

fla) <y < f(b) forallae A, be B.

(2) If A is compact and B is closed, then there exists f € X*, v € R, and ¢ > 0 such that

f(a)gfy—g<’y+g<f(b) forallae A, be B.

Note that if A happens to be a singleton and X Hilbert, then we can recover from it.

Future reference: Corollary 11.1], [Functional Separation Theorem (Affine Planes), Characterization of

closed convex sefd

(For an easy visualization, consider X := R?. For the first part, let A be an open disk and B any disk disjoint
from A. (It might be possible that A and B are tangent.) Then we can draw a “line” that does not touch A
and touch B at most on its boundary (hence the < and the <). For the second part, now we have two closed

sets, and if they are disjoint, their closure must be some distance apart, hence the existence of § > 0.)

Proof. Let ag € A and by € B, and define wg := bg — ag. (Then 0 = wq + ag — by.) Now consider the set
C:=wy+A-B:={wg+a-b:acAbeB}.

Note that C' is open (because A is), convex (because both are), and 0 € C. Hence we are back to the

setting of Minkowski functionals.

Continued proof on 10/26

Now define p := p. the Minkowski functional on C. Note that wg ¢ C (otherwise a —b =0 for some a € A
and b € B, contradicting An B = @). Hence p.(wq) > 1.

Now define U := span{wg} and ¢(wpa) = « for € R. Immediately we see ¢ € L(U,R). To apply
Hahn-Banach , we need to show ¢ <p in U:

a>0 = p(awo) = a < ap(wo) = p(awo)

a<0 = p(awy) <0< plawp).
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By Hahn-Banach there exists f € L(X,R) such that f|U =pand f < pin X. By Cemma TOT79,
Minkowski functionals are bounded above by constant times the norm:
f(x) <p(z) <clz|

—f(z) <p(=z) < |z

= feX".

Having found f € X*, we will verify (1) and (2).
(1) Forallae A, be B,

1+ f(a) - f(b) = f(wp+a-0b)<p(wp+a-0>)<1 by CemmaTOT73.
eC

Therefore f(a) < f(b). Now let ~:= li)nlgf(b); we get f(a) <v < f(b).
For the first sharp inequality: suppose f(a) =+ for some a € A. By the openness of A, there exists
some 6 > 0 such that B(a,d|wg|) c A, and so a + dwy € A. Applying [ gives

fla+d0wo) = f(a) +6f(wo) =+,

=Y =p(wo)=1

clearly a contradiction. Hence the sharp inequality f(a) < 7.

1
(2) let e:= Zinf{”a— b|:ae Abe B}. Since A is compact, B closed and An B =@, € > 0. (Suppose
€ = 0 then there exist sequences {a,},{b,} such that |a, — b,|| =~ 0. By compactness of A, there
exists a subsequence a,, - a. Then ||a - b,,|| — 0 and so b,, > a€ B. Then AnB # @.)
Now define A, := A+ Bx(€) and B, := Bx(€). Since A, B, are both open, by (1) there exists f € X*
and v € R such that f(a) <~ < f(b) for all a € A.,b € B.. Now we will define § carefully so that

there are room between f(a) and f(b).

Let 6 := ¢/|wo|. Then a+ (6/2)wg € A, for each a € A. It follows that

£(a) = f(a+ dwof2) - f(Bunf2) <~ 5
| S S —
< -te(uo)/a

and similarly f(b) >~y + /2 for all be B.
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Lecture 30: 10/26 Characterization of Banach Limits

[ Corollary 11.1 |

Cheorem TO T8 remains true for complex vector spaces. Simply define f(a) — Ref(a) and f(b) — Ref (D).

(Note that a real vector space can always be complexified into a complex vector space in this way.)

Future reference: Characterization of closed convex sefd

Proof. We can apply the previous theorem to Xg (X over only R) to find f € X3 such that

f(x) = o(x) +ip(iz).
Ref

Banach Limits Revisited

Lemma 10.15: Uniqueness of Banach Limits (Proposition 10.15)

Let X = ¢°(R). Then z € X is almost convergent (i.e., all Banach limits are the same) if and only if
1+t -+ Iy

p(z) = —p(—z) where p(z) = limsup , as defined in [Proposition 10.19. (Recall that this is

n—00 n

equivalent to saying liminf = limsup).

Proof. <= is trivial because Cemma T 14 gives liminf = £ = lim sup.

For = , suppose —p(-z) < p(x). Notice, from the proof of Proposition 10.19, that

p(x) =p(z +y) - £(y) and —p(-z) = —p(-y - x) - {(y) for all y € ¢(R).

(Since liminf(a, +by,) > liminf a,, +liminf b,, and equality can be achieved if one of {ay},{bn} converges.)

n— oo

Taking supremum and infimum over y (which does not change the values of —p(-z) and p(x)) gives
sup (-p(-y-x)—£(y)) < inf (p(z+y)-L(y)),
yec(R) yec(R)

i.e., the interval with these two endpoints is nonempty.

Let ¢, : U :=span(¢(R) u{z}) - R be defined by ¢(y + Az) := Ac for some c in the interval above. Then

lolv+ =1, cf. Proposition 10.9. By Hahn-Banach there exists £, € X* such that £‘|U =ypand ||L]|x+ = 1.
Note that, on U, £.(y + Ax) = Ac, whereas

p(y +Az) = p(y) + Ap(x) > Ac.

This gives -p(-y — Az) < £.(y + Az) < p(y + Az) and by [Proposition 10.19, £, is a Banach limit.
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In particular,£. is a Banach limit for all ¢’s in the interval, so £, () = @¢, (x) =1 # c2 = P, () = L, ()
whenever c¢; # co. This contradicts the assumption that z is almost convergent, as we do not have a

unique Banach limit. O

This characterization of almost convergent sequences can be generalized to more general p:

k
q(z) =inf [limsup]i Z xni+j]

J—oo i=1

where the infimum is taken over all finite sets of integers ny,...,nk. (See Goffman & Pedrick, p.65.)

Hyperplanes Revisited

Lemma 11.2

The following are equivalent:
(1) U is a hyperplane in X (normed).
(2) U ¢ X is a subspace such that span(U u{z}) =X for all x e X \ U.

(3) U =ker ¢ for some nonzero p € L(X,K). In addition, U is closed if and only if ¢ € X* := B(X,K).

Future reference: [Functional Separation Theorem (Affine Planes]

Proof. (1) < (2) is already proven in Cemma7T0. We will show (2) <= (3) hexiTecinrd. O
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Lecture 31: 10/28 Functional Separation by Affine Planes; Reflexivity

Proof of Lemma 173, (2) = (3): take z € X \U and p € L(X,K) defined as ¢(y+Az) := A for y e U and A e K.
This is well-defined because if y' + Nz =y + Az then (N =Nz =y—-y' €Y = X =A. Then ¢(z) =0 if and
only if the z-component is 0, i.e., z € U, and indeed ¢(x) = 1, nonzero.

(3) = (2): fix some x ¢ X \ U. By assumption ¢(z) # 0. Given any z € X \ U, defining

_p(2)
o(x)

yi=2

gives ©(y) = o(2) - p(2) =0, so y € U. Therefore z =y + (¢(2)/p(z))x espan(U u{x}) =Uu (X \U) = X.

From (3), U is closed if and only if ¢ € X* (bounded):

< if ¢ € X* then U =ker is closed (¢ preserves sequential continuity; taking the limit of any sequence in
ker ¢ would prove the claim).

== : suppose @ is not continuous. We will show that U is dense in X (so that it cannot be closed: otherwise
U=U-=X == U is not a proper subspace and therefore not a subspace). Since ¢ is not continuous, there
exists a sequence {z,,} ¢ X such that |z,| =1 but |p(z,)| > n. Given z € X, let

o )
Yn + Qﬁ(xn) n-

Then ¢(y,,) vanishes by construction and so y,, € U. However,

o)
()

pz)
o(ry) "

= 0 as |p(x)| < o.

”an - yn” = H

Hence any z € X can be approximated by some {y,} c U, i.e., U is dense in X. The contradiction follows. [

Theorem 10.18: Hyperplane / affine plane version of [Functional Separation Theoremny

Let X be normed. Let nonempty convex A, B ¢ X be such that A is compact, B normed, and An B = {0}.
Then there exists a closed hyperplane (as guaranteed by the ker f part in Cemma TT2°3; the boundedness is
very important as otherwise the hyperplane might be dense in the space (see above)!) that can be translated

(by y where f(y) =+ so that now the affine plane is {z : f(x) =~}) to separate A and B.

[ Corollary 11.3 |

This theorem provides a characterization of closed convex sets. Let C'c X be closed and convex. Then
C={zeX|f(z)2 inéf(y) for all fe X}
ye

(or C={zeX|Ref(z)> inéiﬁef(y) for all f e X*} if X is a complex space).
ye

(Think of a convex set on X = R? where the hyperplanes are lines. For a given f € X*, the set of x € X
satisfying the inequality denotes the region on one side of the hyperplane. Now if we do this for all f € X*, we

get all the “tangent planes” that help enclosing the closed convex set. In particular, we “cannot get concave
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cookies” if we use a long stick to shape it. Here, the affine planes of form lereléf(y) are called the supporting
hyperplanes.)
Future reference: Lemma T2

Proof. c is trivial by the very definition of infimum.

For o, take z( in the RHS. If x ¢ C then, viewing A := {x¢}, we can apply the second part of Funcfional

Beparafion Theoren] to find the existence of f € X* and §,7 > 0 such that
Ref(rg) <y—0<v+d<Ref(y) for all y e C.

(Me comes from [Corollary T1-1].) But this means JRef(xg) is strictly less than iné Ref(y), contradiction.
Ye
]

Reflexivity
Recall that holds for g € [1,00). Taking a second dual gives
((£1)*)* = (£P)* =49 for all g e (1, 00),

i.e., /7 is reflexive. We'll define this formally later.

Define X** := B(X*;K). We define the canonical map J: X - X** (where X is normed) to be
e)é*
J(z) =2 where x** (f):= f(x) for all fe X*.
——
EX**

(We start with 2 € X and define 2** € X** by letting its argument range over all f e X*.)
Lemma 11.4

(1) J is an isometry (onto a subspace of X**).

(2) If X is Banach then im(J) is closed (in X**).

Future reference: Mheorem 11 6. Cemma. 11T 13. Goldstine’s Theorem

Proof.
(1) We need to show for all € X, 2** € X** and |z**| x+ = |z]x-

On one hand,

e (Ol =1F @) < [ flx- |zlx = |27 |x < ]2]x.
1

input of z**

(This also shows z** € X**). On the other hand, the fupport Tunctional gives us f € X* such that
f(z) =|z| and || = 1. Then

[z (O = 1f (@) = [flx-2lx = |e]x = 2" x > []x.
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(2) Let {F,}:={J(z,)} cim(J) be such that F;, > F for some F € X**. In particular {F,,} is Cauchy.
By the first part z,, is also Cauchy in X. Therefore |z, — x| — 0 for some x € X since X is Banach.

Since J is an isometry,
|zn —z|x =0 <= [J(zn) - J(@)[x* = |[Fn -2™"[ >0 — J(z) = F,

ie., Feim(J) and so im(J) is closed.

[ Definition 11.5 |

X isreflexive if J(X) = X** ie., X = X** via J or, equivalently, J is onto X**. We look at this particular
map, not any other map, to determine if X is reflexive or not. See heré for a (complicated) example of a

non-reflexive Banach space isometric with its doubel dual. More to be discussed soon.
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Lecture 32: 10/30 Reflexivity of X and X*; Weak Topologies

There exists counterexamples where Banach X = X** via some different maps but X is not reflexive. We
will [afed show that uniformly convex Banach spaces, in particular Hilbert spaces as well as LP and ¢? for

p e (1,00), are reflexive.

Theorem 11.6

Let X be Banach. Then X is reflexive if and only if X* is.
Future reference:

Proof.
= : we need to show that, for every ® € (X*)**, there exists f € X* such that f** = ®&. Notice that

(X*)** =B((X*)*;K) = (X**)*. Hence it’s equivalent to showing

O (F)=F(f) forall FeX*".
N

X _per)

Since X is reflexive, F' = z** for some x € X. If we let f(z) := ®(«**), then

=z (f)=f(2)

——

F(f) =®(F) by construction.
| I
—qpt*

It remains to show f € X*. This is true because f = ® o J since f(z) = ®(z**) = ®(J(x)), where ® is
continuous and J an isometry.

< suppose X * is reflexive but X is not. Since the image of the canonical map is Elosed, im(J) ¢ X**

is a closed subspace. Then by [Proposition 10.9, there exists ® € (X**)* such that
(s =0but 20,

ie, ®(J(x)) =0 for all z € X. But X~ is reflexive, so ® = f** for some f € X*. Then, for all z € X,

(@) =2"(f) (Canonical map of x)
=f" (@) (Canonical map of f)
=®o(z™) (Assumption above)
=0.
Hence f vanishes for every x € X. Then f =0, and so f** = ® =0, contradiction. O

Every reflexive space is Banach (since X** is by Cemma7d and X = X**).
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Lemma 11.7

If X is reflexive and X =Y (isomorphic), then Y is reflexive as well.
Example 11.8

Recall (cp)* = ¢ and (£')* = (> (Cheorem %1). From this we see ¢ is not reflexive; in addition, neither ¢!
nor £ is. (Immediate by Cheorem T114.)

Example 11.9
L' is not reflexive, which implies L* isn’t either, since (L')* = L*°.

Lemma 11.10

If X is reflexive and Y ¢ X a closed subspace, then Y is also reflexive.

Future reference: Mheorem 121171

Weak Topologies

[ Definition 11.11 |

Let X be normed.

(1) x, = x (z,,’s converge weakly to z) in X if f(z,) » f(z) (in K) for all f e X* (i.e., x, converges

to = in the weak topology (the topology generated by the seminorms sup {|fi(x)]s, fi € X*})).

i€[1,n]

(2) fn = f (fn’s converge weakly-* to z) in X* if f,(z) — f(z) for all z € X. The weak-* copology is the

smallest topology on X* such that each ® € J(X) c X** is continuous (i.e., each X** is continuous).
Example 11.12

In a Hilbert space, every f € H* is of the form = — (z,y) for some y ¢ H (BR). Then any orthonormal

sequence {e, }n>1 converges weakly to 0 in H: by Bessel's inequalityl

Zl(en,y)|2 < HyH2 = fn= (en,y) - f(O) =0 for all y e H.

n>1

The difference between weak and strong convergence here is that e, + 0 since |le; — e;|? = 2 for any two
different e;, e;. Hence no strong convergence but only weak one.

Future reference: leak closurd
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Lecture 33: 11/2 Characterization of Weak Convergence

Lemma 11.13: Properties of weak convergence

(1) If 2, - x then x,, - z, hence the name weak convergence.
(2) In finite-dimensional spaces, <= is true. Otherwise very rarely.
(3) Weak limits are unique.

(4) x, = z then {z,} is bounded and |z| < liminf |z,|.

Future reference: Cemma 129, Milman-Pettis Theorem

Proof.
(1) Forall fe X*, |f(zn) - f(2)[ <[ fl|2n - 2] = 0.
(2) Exercise. See the answer herd.

(3) Suppose x,, ~ x and x,, ~y. Then f(x,) — f(x) and f(x,) = f(y) for all f € X*. Then
MR gives the existence of some f € X* such that f(z) # f(y) whenever x # y. Hence to let z,, — x

and x,, — y at the same time, the only possibility is if x = y.

(4) For all z € X* we have f(z,) — f(x). Recall that f(x,) = 23*(f) (the canonical map) and
f(x) =2**(f). Hence in other words x*(f) —» «**(f) in K. In particular, the sequence {z;*(f)}
is bounded (in K) for all f € X*. Therefore, by [Principle ol Uniform Boundednesy we have (recall

that X** as a dual space is Banach) the boundedness of {z;*} in X**. Since canonical maps are

isometried, we have the boundedness of {z,} in X as well.

Now it remains to show |z| < liminf |z, |. Let f € X* be the fupport functiona] of z, i.e., | f|x+ =1
n—oo
and f(x) = |z|. Then,

o] = £ ()| = Jim £ ()| = liminf] (e, )| < Vmmin [ £ - o] x ] = Himing |, |

(where the lim = liminf part holds because {x,} converges). O

The lemma above holds true for weak-* convergence as well.

[ Corollary 11.14 |

If X is reflexive, then f, AN f if and only if f, - f.

Proof. Any F € X** is of form F = z** for some x € X by assumption. Therefore, if F(f,) - F(f), since
F(fn) =x**(fn) = fu(z) and F(f) = 2**(f) = f(x), we equivalently have f,(x) - f(z). Hence weak

convergent is equivalent to weak-* convergence in reflexive spaces. O
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Lemma 12.1

Suppose X is uniformly convex (i.e., for all € > 0 there exists ¢ such that if |z|| = |y| = 1 and |« —y| < € then
[(x+y)/2| < 1-06; examples include Hilbert spaces, LP and ¢P spaces for p € (1,00)), then z, — x if and
only if z,, = z and |z, | = |z|.

Proof. == is immediate.

For <, if 2 =0 then ||z,| - 0 = x, —» = 0. Otherwise, let

Then y, -~y and y,, +y — 2y. It follows that

Yn Y . Ynty Ynty
< limsup
2 2 2

n—oo

1= |ly| <liminf
n—>oo

Hel’

and by uniform convexity this means |y, —y|| =0. So y,, - y and z,, > x. O

Lemma 12.2

Ifx, ~2and T e K(X,Y), then T(z,) - T(x). Compact operators make weak convergence strong.

Proof. First note that T'(x,) — T(z). Take any f € Y*. Since foT ¢ X*, f(T(x,)) - f(T(zx)). Now
suppose T'(x,) + T(x). Then there exists € > 0 and {n;} (index of subsequence of the original {x,,}) such
that | T (xy,)-T(x)|| > € for each i. Cemma T34 says {x,,} is bounded and, since T € K(X,Y), {T(zn,)}

has a convergent subsequence, say T(z, ) — z € Y. By [iniqueness of weak limitg z = 7'(«) (since strong

convergence implies weak convergence), contradicting the assumption of |T(x,,) - T'(z)| > . O

Recall PS5.3; if {e,,} is orthonormal and e,, — 0, then for any compact T, T'(e,) — 0.

Lemma 12.3

xn, — z if and only if {x,,} is bounded and f(z,) — f(z) for all f € E where E c X* is dense. One can prove
this by triangle inequality.
Similarly, f, — f if and only if {f,} is bounded in X* and f, () — f(z) for all z € E, where E c X is dense.

Future reference: Banach-Alaoglu Theoremy

Example 12.4

Below are some applications of the lemma above:
(1) (™ —~ z in 7 for p e (1,00) if and only if

> m,(cn)yk - > apyy for all y e ¢
k1 k1

where 1/p + 1/q = 1 (since (¢?)* = £9). Also, (™) — z if and only if {z(™} is bounded and x,(cn) - T
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for all k (by the lemma above, as {¢(} is dense in £(9)).

Future reference: Schir’s Thearem

(2) fn— fin LP(a,b) with p e (1,00) if and only if {f,} is bounded in L? and

b b
[ g~ [ g9 forall ge C(la,b])
where C'([a,b]) is dense in LP(a,b) by Cemma 5 74. Alternatively, we can replace C'([a,b]) by P([a,b])
by or {¢'**: k € Z} by Example 5.23.

(3) Let {e} be an orthonormal Schauder basis of H, a Hilbert space. Then z,, — z if and only if {x,} is

bounded and (z,,er) — (z,ex) for all k.

Theorem 12.5: Schur’s Theorem

Let X := ¢'. Then 2™ — z if and only if (") — z. Weak convergence in ¢* is equivalent to strong

convergence.

Proof. < is trivial. For = , WLOG assume z = 0; we need to show that |z(™)| - 0. Suppose this

is not true; then on some subsequence (which we relabel to x,,) we have

Z|x,(§n)| > e for some € for some € > 0.
k>1

Note that x,i") — 0 for all k£ (because (") —~ z implies component-wise strong convergence by

221). We will finish the proof hextIecturel O
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Lecture 34: 11/4 Schur, Mazur, Banach-Alaoglu, é Navier-Stokes

Continuing the proof of Bchur’s Theorem. Let Ny = My = 1. For i > 0, choose N; such that

‘ (Mj-i)|
N

k>

(which is doable since z € /! and the late enough terms have small enough sum.) Also, define M; such that

Z ] < 2
6
(which is also doable since (™ - 0 component-wise; choosing M; large enough allows us to get small enough

sum even from the early terms). Now fix y € £*° with

(M;) Ja ](CML') if x;Mi) #0 for ke (N;_1,N;]

|z,
Yk =
0 otherwise

and functional f(z):= > zpy (ie., f =L, € (¢')* = ¢ by [hearem 8 1). Now we shall show that even though
k1

fe(™)*, (™ does not converge weakly to 0. Let the fun begin!

N;  Nis1
Where =) + + and
Mi _ M;
@) = |5 a0y, AP,
k>
& la+b+c|+|-b|+|-c| > o] = |a+b+c|>|al-|b|-]|¢]
Nont The absolute value of the ﬁrst term can be
it
(M) (M;) (M) Nit1
> > Zx ue|—| Dz d
~ il il ropped and Z Z Z Z
k=Ni+l :|:I;(kj"fi) k=1 Meif [F>Nin <1 k=Ni+1 k>1 k=1 k>Np
<e/6 <e/6
Ni g’ € € )
- Z |xk |xk —— > — for any 1.
k>1 k=1 k>N, 3 3
—_— Y
>e <e/6 <e/6

Therefore, 2(™ does not converge weakly to 0 under f € (£1)*, contradicting the weak convergence of ™. O

[ Definition 12.6

Let X be normed. We say A c X is weakly closed if whenever {z,} c A and x,, — = then x € A. Notice
that being weakly closed is a stronger property than being closed: strongly closed == weakly closed, but

not the converse. Take, for example, Sx := {z : |z| = 1} from Example TT.12: e, —~ 0 but 0 ¢ Sx.

Lemma 12.7

Let X be normed. If € c X is closed and convex, then € is weakly closed.
Proof. Pick {z,} — € such that z, ~ x € X. Recall from that any closed convex set € can

be written as
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C={xeX|Ref(x)2 ingmef(y) for all fe X™}.
Ye
Therefore Ref(x,) > inéf Ref(y) for all f e X*. By weak convergence, Ref(x,) - Ref(z) and further-
YE

more it is true for all f € X*. Therefore x € €. “Given any f € X*, all x,,’s stay on the same of that f,

and the same thing must also be true for x.” O

Theorem 12.8: Mazur’s Theorem / Lemma

n

If z,, = = in a normed space X, then for all n, there exists y,, as a convex combination (i.e., y,, = Z a;z; where
i=1

> «a; =1 and «; € [0,1]) such that y, —» x. This theorem overkills lemma 12.7 above: convex combinations

{yn} of x,’s in € are still inside €, and they converge strongly to x € €. Hence the strong closure.

Proof. Let Y, := conv{zy,...,z,} be the convex hull of {z1,...,z,}, i.e., the set of all possible convex
combinations of them. Also, define Y := | J Y}, = conv{zy, } 1.

Obviously, x, € Y, ¢ Y. Because Y is ggrllvex [each of the Y;,’s is convex|. Therefore by the previous
lemma (12.7) Y is weakly closed, so z,, -~ 2 == x €Y. In particular,

dist(x,y,) = 0.

(Otherwise, there exists € and {y,, } such that | —y| > e for all y e {Y,,, }. Then |z —y|>eforallyeY
as the Y,,,’s are increasing (e.g. Y,,,_1 would satisfy the > € relation because of Y,,, ). Hence |z —y| > €
for all y € Y, contradiction.)

Therefore for all n, there exists y, € Y, with y,, — x. O
Remark

For a proof using merely Hahn-Banach and not lemma 11.12 above, see Yoshida, p.120.

Weak Sequential Compactness

Theorem 12.9: Banach-Alaoglu Theorem

Let X be separable. Then any bounded sequence in X* has a weakly-* convergent subsequence. In fact,

this theorem holds for any normed space. See Rudin, Theorem 3.14.

Future reference: [Weak solufions of the Navier-Stokes equafion, Thearem T2 10

Proof. Let FE = {x} c X be a dense (countable) subset, and take {f,,} ¢ X* bounded, say, by | f | x* < M.
We shall now apply the diagonalization argument.
Choose {n1,i}iz1 € {n} (a subsequence) such that f,, ,(x1) converges. (We can do this because [-M, M ]

is compact.)
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We choose sub-subsequences inductively such that f, , ,(2.,) converges. (To make sure the diagonalization
argument works, we make sure subsequence inherits the first term of its mother sequence, i.e., starting
no earlier than the second. For example, the second subsequence is { fn, ; };>2.)

Then, the diagonal sequence f,, . (zx) converges to the same limit as m — oo for all 2 € E. Define

f(xg) = lim f,, (xp) for all k.

It follows that |f(x)| < M| x| for all k. Now it remains to extend f from the dense subset to all of X.
We don’t need Hahn-Banach here: simply define f(z) = klim f(yx) where yr, - x and {yx} c E. In fact
this extension is bounded and is unique (left as an exercise).

By Lemma 12.3 (weakly-* version}, fn,, . X f (“bounded” and “for all z € E dense in X7). O

Theorem 12.10: Characterization of Reflexive Spaces

If X is reflexive, then any bounded sequence in X has a weakly convergent subsequence (i.e., Bx(0,1) is
weakly compact). This the main reason why we even look at reflexive spaces. We will next lecture.

In fact, <= is also true, as proven by Eberlein (1935). Also see PS6.5 for the case of real Banach space.

Now we give an application of the theorems: using compactness method on the Navier-Stokes equation

Example: Navier-Stokes Equations

In incompressible Navier-Stokes equations,

Ou+ (u+V)u-vAu+Vp=0 3
in (0,7) x R with w(0) = ug given,
V-u=0

if we multiply everything by u and integrate over the whole space gives, for each t € (0,T),

t
f u(t, o) de + 2 f [ VP < f luo(2)[? da. (Energy Inequality)
0JR
[ S —
Total energy at t Amount of dissipation Initial total energy

From this we see:

(1) {uy} is bounded in L= ((0,T); L?). Banach-Alaogli Theorem shows w,, — u in L=((0,T); L?).

(2) {Vuy,} is bounded in L?((0,T); L?). Thearem 1210 shows Vu,,, — f in L?((0,T); L?). In fact f = Vu.

From above we obtain a candidate for a solution, and the entire method is called the compactness method

of obtaining weak solutions of PDFEs.
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Lecture 35: 11/6 Uniform Convex Banach Spaces are Reflexive

Proof of Mhearem 1710 . Let {x,} c X be bounded and Y := span{x, }. Immediately we see Y is separable and
reflexive (CemmaTTT0). Therefore Y = Y**, and by the canonical map {«}*} is bounded in Y**. Treating Y **
as the dual of Y*, by there exists a subsequence {7 } such that 2" ~ @ for some ® € Y** (X*
is separable by Cemma T TT because X ** is). Since Y is reflexive and the canonical map surjective, ® = 2** for
some z € Y. We need to show f(z,,) — f(x) for all fe X*.
Let f e X* be given and define f, := f|Y e Y*. It follows that

F@ny) = fr (@) 20 (fy) 2 0(f,) = 2 (fy) 2 fr (2) = f(2).

canonical map weak-* canonical map

Indeed we do have a weakly convergent subsequence. O

Lemma 12.11: Goldstine’s Theorem

[Recall we said that we would prove uniformly convexr Banach spaces are reflexive, but before doing that, we
need a lemma. Let X be normed. For all ® € X** with |®| x« <1 (i.e., Bxs+, the unit ball in X**), there
exists some sequence {z,} ¢ By, i.e., |z,]x <1, such that z** > ®. (In other words, J(Bx) is weakly-*
dense in Bx+.)

Remark

Recall that J (E) is a closed unit ball (by [Sometry]) in a subspace of X**. This lemma states that

the weak-* closure of J (Bx) is Bx++. Taking weak-* closure is different from taking closure.

For proof, see Theorem 2.6.26 in Megginson ’98.

Theorem 12.12: Milman-Pettis Theorem

Uniformly convex Banach spaces are reflexive.

Proof. Let ® € X** be such that |®|x++ = 1. We need to show that there exists z € X with z** = ®. By
Goldstine’s Theorem above, there exists {z,} ¢ Bx such that z}* 2@ in X**. In other words, for all

x € X* we have x*(f) > ®(f). Notice that this convergence also gives

*
™~ ® for m>n, as n — oo.

To put more formally, for all € >0, there exists N such that for allm >n> N,

<eforall feX".

* % * %
‘(xn + T

> 2)(f)

By Lemma IT.13.4 (weak-* version],
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*% *o%
T, tIT,
)

[®] <liminf
n—>00

i.e., for all 0 >0, there exists N such that, for allm>n2 N, |®|-0=1-§< | (2} +x:*)/2|. But since

J is an isometry, we equivalently have
1-6 < |(zn +2m)/2]. (A)

Now we take a detour and recall the definition of uniform convex sets:

For all € > 0 there exists > 0 such that if |z|| = |yl = 1 and |z -y| > € then |[(x+y)/2| < 1-0.

Now let € > 0 be given. If we just set 0 := , by above there exists N such that any m >n > N satisfy
(A). However, because ||(2, + 2., )/2| 216 by (A), the contrapositive of uniform convexity states that

|z—-y| <e. This gives us nothing else but the Cauchy-ness of {z,}, and so x,, - x for some = € X since X

* %

is Banach. Of course J is bounded, so ;" - z** in X**. By Lemma 11.13.T (weak-* version}, z* s ,

and by part 3 of the same lemma, with the uniqueness of weak-* limits we conclude ® = x**. O

Now we are done with weak convergence. See Evans “ Weak Convergence methods for Nonlinear PDEs” for some

nice applications.

Hilbert-Schmidt Theorem & Applications

| Definition 12.13 |

Let T € B(H) be self-adjoint. Then
V(T) ={(T(z),z):x e H x| =1}

is called the numerical range of T'.

Lemma 12.14

V(T)cRand |T| = sup |\
AeV (T)
Proof. The first claim is obvious: since (T'(z),z) = (z,T(x)) = (T(x),z) we see that (T'(x),z) € R.
Hence V(T') cR.

For the second claim, let M := sup |\ = sup{|(T(z),z)| : x € H,|z| = 1}. On one hand, note that
AeV(T)

(T(2),2)| < IT(@)| || < ITz]* = [T}, we have M < |T.
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Now we show M > |T||. Notice that, for all u,v € H,

(T(u+v),u+v) = (T(u-v),u—v)=2[(T(u),v) +(T(v),u)]
=2[(T(uw),v) + (v, T(u))] (self-adjoint)
= 4Re(T'(u),v).
On the other hand,

normalizing u,v and takin
(T(u+0),u+) = (T(u—v),u-0) < M (Jus o] + Juzv]) & &
coefficients (norms) out)

=2M (Jlu]® + |lv]?). (parallelogram law)

Therefore 4Re(T'(u),v) < 2M ([u]? + [[v]?). If T(u) # 0, set

u
" )
so that
4%%e(T(u),v) = 4|ul|T(u) ]| < 2M (ul® + Jo]*) = 2M - 2]u|®
and so |T(u)| € M|u|. If T(u) = 0 this inequality is still trivially true. This shows |7’ < M. O
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Lecture 36: 11/9 More on Self-Adjoint; Hilbert-Schmidt Theorem

Lemma 12.15

Let T € B(H) be self-adjoint.
(1) 0p(T) cR, i.e., all eigenvalues are real.

(2) Suppose A1, A2 are two different eigenvalues, i.e., T'(x;) = \jz; and Ay # A9, then (z1,22) =0, i.e., the

eigenvectors are orthogonal, not just [inearly independenf] as we previously stated.

(3) If T € K(H) then either |T|| or —||T| is an eigenvalue. This strengthens [Corollary 9.1

(4) 'Y c H is a closed subspace, then

T(Y)cY = T(Y')cY".

Future reference: CemmaT373, Theorem 139
Proof.

(1) If T(x) = Az then (T(z),z) = (Az,z) = Az|?. Since T is self-adjoint, (T(z),z) = (z,T(x)),
meaning that A =\, so A € R.

(2) Suppose A1 # A2 # 0 and 21,25 # 0 (otherwise (x1,22) =0). Then

)\1(1’1,£E2) = ()\1%17.%2) = (T(iﬂl),xg)i(x,T((EQ)) = )\Q(l'l,ifz) - (.’Khxg) = 0

self-adjoint

(3) Recall that either |T| or —||T| € o(T). But then, since |T| # 0 and T ¢ K(H) by assumption,
states that either |T| or —|7T'|| must also be in o,(T), i.e., an eigenvalue.

(4) Take any x € Y* and any y € Y. By assumption T(y) € Y. Therefore

0=(T(y),z) =(y,T(x)) for all ye Y.

Therefore T'(x) € Y*. Since x is arbitrarily chosen, T(Y*) c Y*.

Theorem 13.1: Hilbert-Schmidt Theorem / Eigenfunction Expansion Theorem

Let T € K(H) be compact and self-adjoint. Then there exists an orthonormal sequence {w;};>1 (or a finite

set) of nonzero (zero is trivial) eigenvectors/eigenfunctions {A};>; such that

T(x) =Y \(z,w;)w; for all x € H.

21
Future reference: oroliar .4

Proof. By part 3 of the lemma above, there exists w; € H such that T'(w;) = £||T|wy (since either |T|

or —||T|| is an eigenvalue). We define \; := £||T'|| depending on which one it is.
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Given orthonormal {ws,...,w,_1} (we will later show that we can indeed iteratively pick new w;’s
under certain conditions), let Hy, := {w1,...,w,-1}*. We define Y := span{wy,...,w,_1}. Note that the
orthogonal complement does not depend on the span: span{ws,...,w,-1}* = {wi,..., wp_1}*.

Since all the w;’s are eigenvectors/eigenfunctions, T'(y) is still a combination of w;’s for all y € Y i.e.,
T(Y) cY. It follows from the previous lemma that (since Y is obviously closed) T(Y*) c Y4, i.e,
T(H,) c H,. Setting T, := T|H , we obtain self-adjoint T}, € K (H,) (because T itself is on H).

n—1
(1) Case 1: T, =0. Given z € H, let y :=x - »_ (2, w;)w;. Notice that y € H, because, for any
i=1
w; € {U)l, 000 ,wn_l},
n-1
(y,w;) = (z,w;) - Z (z,w;)6i5 = (z,w;) — (2, w;) = 0. (A)
j=1
(Notice that the way to pick w;’s ensures {wy, ..., w,-1} is orthonormal whenever i # j: the newer

terms were picked from the orthogonal complement of the set containing all previous terms, with
| -] '=1.) Then,

0=Ty(y) = T(z) - z (@, 00)T (&, w2),

=Aiw;

and we’ve shown what we want to.

(2) Case 2: T,, #0. Then |T,|| # 0, and so there exists another w,, such that T,,(w,) = £|| Ty, |w, (and
we define A, := £||T},|| depending on which one is the eigenvalue). We can repeat this iteration
for all n > 1. Now it remains to show that the original equation (T(z) = Y) holds for the infinite

sequence {w; }.

Let x € H be given. We define the finite approximation
n-1
Yn =2 = ) (2, w;)w;.
i=1

Note that y,, € H,, = {ws,...,w,}* just like in (A), so

n—-1 n—-1
[2% = lyal® + 2Re( yn , 3. (z,wi)ws) + Y |(2, wi)? (Gen_Pvthagorear)
—~ =1 =1
eH,
5%
n-1
= Hyn”2+ Z|(x7wi)|2a (since Hn:Yl)
=1

and thus |y, | < |z|. Now we will show that |T'(x) — 3 || = 0: on one hand
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HT(x) —E(xywi)T(wi)

= HT(Q?) - 721(96’ w; ) Aiw;

= |7 ()
= | T (yn)| (since T =T,, on H, and y, € H,)
<N Talllynll < 1Anll=], (1T = [An] and {yn| < [z])
while on the other hand states that any sequence of nonzero eigenvalues of a compact

operator converges to 0. Hence |T(z) — Y | — 0, and we are done. (Of course, our sequence here may

have repeating \’s, but it will only repeat [nitelv many times, so the claim doesn’t break down.) O

[ Corollary 13.2 |

Let H be a separable (infinite-dimensional) Hilbert space, and let T' € K (H ) be compact and self-adjoint. Let
F := {fi}r>1 be an orthonormal basis of ker(T") [the basis exists because ker(7T') is automatically separable
given H is, and if it’s infinite-dimensional, then the existence of such basis is guaranteed by
634). Then, Fu{w;} (from the Hilherf=Schmidi Thearend above) is an orthonormal basis of H. The basis of

ker(T') can be supplemented with some orthonormal eigenvectors to form a basis of the whole space H.

Future reference: Thearem 139
Proof. First note that F U {w;} is orthonormal: trivial without mixing; for all f € F', w; € {w;},
1 1
(f,wi) =(f, hiwifA;) = ;(ﬂT(wi)) = X(T(f)awi) =0.
since \;#0 g T

We now want to show that any x € H has form
€T = Z(wvfk)fk + Z(wiz)wz
k>1 i>1

(Then F u {w;} is an orthonormal basis by Thearem n 219.) Notice that ker(7") is closed, so by the

projection theorem we can (uniquely) decompose z := u + y, where u € ker(T') and y € (ker(T"))*. Then

u= Z(U»fk)fk = Z [(U7fk) + (yafk)]fk = Z(%fk)fk-

E>1 k>1 —_— k>1
=0

It remains to show that z :=y - > (z,w;)w; = »_(y,w;)w; = 0 (since (u,w;) = 0 and subtracting doesn’t

21 21

bother). Notice that z € (ker(T"))* as y and each of (z,w;)w; is. By the Hilbert=Schmidf Theorem

T(z) = T(y - Z(m,wi)wi)io,

121 Hilbert-Schmidt
so z € ker(T'). Since ker(T) n (ker T)* = {0} we conclude that z = 0. Done. O
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Lecture 37: 11/116413 The Sturm-Liouville Problem

We begin by fixing
peC'([a,b]) p>0
on [a,b].
q€C([a,b]) ¢>0
And we define
Llu] == —(pu') + qu for u e C*.
We will consider the Sturm-Liouville problem

L[u] = f for ue® := {u e C*([a,b]) : u(a) = u(b) = 0}

by finding an orthonormal basis of L? that consists of the eigenvalues / eigenfunctions of this problem.

—=—>0 =D 0<

Lemma 13.3

(Ct. CommaTII3.)
(1) L is self-adjoint: (L[u],v) = (u, L[v]) for all u,v e D.

(2) If nonzero u € D is an eigenvector, i.e., L[u] = Au, then A > 0.

[ Corollary 13.4 |

In particular, if u € ® and L{u] = 0 then w = 0. Also refer to Theorem T3 .

(3) Eigenvectors corresponding to distinct eigenvalues are orthogonal in L?.

Future reference: Corollary 13.10, [Example 13.11]

Lemma 13.5
Suppose uy,us € C?([a,b]) are nonzero solutions of
—(pu") +wu =0 for we C([a,b]).

(Note that, unlike the Sturm-Liouville problem, ¢ is replaced by w, without the requirement w > 0, and

uy,uz € C?([a,b]) not just D, i.e., no requirements on agreeing at endpoints.) Then the Wronskian

Wy (ur, u2)(x) = p(2) (ui (2)us(2) - ug(2)ur (2))

is constant (in z) and nonzero if and only if u;,us are linearly independent.

Proof. Tt simply requires brute force to show VVI’J = (0. Now we prove the <= statement. Since p > 0,
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up Uz
+ 0.

Wz’? +0 < det
! !
Uy U

(In this case the determinant is invariant under z since W, is constant.)

— (nonzero Wronskian = linearly independent wu;,us): suppose cu; + Sus = 0. Taking derivative

gives au) + Buj = 0. Since the matrix is nonsingular we know a = 8 = 0.

<—: suppose the determinant is 0 for some (each, in fact) z. Then there exists («, 8) # (0,0) such that
auy + Pug =0

at some xg € [a, b].
auf + puy =0

This immediately contradicts the linear independence of u; and wus. O

[ Corollary 13.6 |

All eigenvalues of L[u] are simple, i.e.,
dim(F)) <1, where E) :={ue®: L[u] = Au}.

Future reference:
Proof. Suppose L{u] = Au and L[v] = Av. Applying the lemma above with w : ¢ — A gives W, (u,v) =
constant. Evaluating it at an endpoint, e.g., at u, gives W, (u, v)(a) =0 (since u(a) = v(a) = 0). Therefore

u,v are linearly dependent. O

Back to the problem:
Let uy,uz € C*([a,b]) be fized linearly independent solutions (so that the Wronskian later defined is nonzero) of
L{u] =0 with ui(a) =0 and uz(b) =0 (i.e., one vanishes at one endpoint and the other at the other endpoint). By
ODE theory, L[u] =0 can be re-written as
u’:vandv':—i+gu.
p p
Now apply the boundary conditions:
ui(a) =0 wu2(b)=0
Wi(a) =1 wp(b)=1

Theorem 13.7

If (nonzero) W := Wy(u1,us), then

u (z)uz(y)

- w
AED= o )
4%

is a Sturm-Liouville Green’s function, i.e., letting

x<y

b
u(x) = /a G(z,y)f(y) dy for some f € C([a,b]),
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we have u € © and u is a unique solution of L[u] = f in ©. (Green’s function is a kernel that gives solutions

to nonhomogeneous problems.) Future reference: Thearem 139

Proof. Note that (treating = as a fixed variable and integrating with respect to y)

_ug(w) [ u(z) b s
u(x)—T/; u1f+TfI usf = u(a) =u(b) =0. (A)

Now we check if u € D:

u'(a:):iu%/(f) faxu1f+7u%/(\jﬂ) Lbu2f+0

(cross terms of product rule cancel out, ug(x)uy () f(x)—u1(x)uz(z) f(x) =0)

uz (2)

4%

HOE

[T+ B Mo @@ (@) - @) @),

=—f(z)/p(x) by definition of Wronskian

Indeed, u € ©. It remains to show L[u] = —pu” — p’u’ + qu = f which is only a matter of computation by

brute force. And the uniqueness is guaranteed by [Corollary 13.4. O
Example 13.8
Let p(x) =1,p(x) =0, and [a,b] :=[0,1], then L[u] = —u”. Then, by (*), we can construct

up(x) =z , ,
= W =ujug —usu; = -1.
ug(x) =x -1

Then,
z(l-y) <y

G(m,y) =
1-2)y x>y

Future reference: | D ]

Now we are going to consider the integration against as kernel of the operator on L?: define

Tf(x):= LbG(x,y)f(y) dy for f e L?(a,b) over R.

Some more theorems. Notice that we are going towards the direction of using Hilbert-Schmidt Theorem.

Theorem 13.9
(1) T e K(L*(a,b)), T is self-adjoint, and ker(T) = {0}.
(2) Eigenvalues of T form a sequence converging to 0.

(3) Eigenvectors / eigenfunctions of T are elements of ® and they form an orthonormal basis of L?(a,b).

Future reference:
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Proof.
(1) T is compact and self-adjoint by [Example 9.3.4. Now we show ker(T') = {0}, i.e., if T(f) = 0 then
f = 0. First note that ® c im(T): given u € D, letting g := L[u] € C([a,b]) c L?(a,b), we have
u=T(g) by Theorem T3 7.
Now suppose T'(f) =0, f € L?, and let u € ®. Since ® cim(7T), u =T(g) for some g € L?. Then,

self-adjoint

0= (T(f),9)2(}.T(9)) = (f,u) for all ue D, ()
=0

Since ® is dense in L? (recall from that we can first approximate anything in L? by
simple functions and then interpolate them. Here we just need to make continuous functions even

“nicer”, i.e., second-order continuously differentiable, by taking mollification, for example), (A) gives

(f,u) =0 for all uwe L?. Taking u:= f tells us f = 0.
Remark

Showing (A), i.e., f is orthogonal to a dense subset of space, is often times a useful trick. For
example, that im(d; — A) is dense in LP is a powerful tool to deduce the uniqueness of the heat

equation in L?. See Gigax2, Saal (2010), Section 4.4.2.

2) and 3) Suppose T'(f) = Af for some A € R (recall from Cemma T2 T5 1 that eigenvalues of self-adjoint

operators are real). Then,

T(f(x)):%fjulﬂ%f:mf (A) in TEEcEEmTZ0)
= T(f(a))=T(f(b)) =0and T(f) e C([a,d])
— Af(a) = Af(b) =0 and Af € C([a,b])
= f(a) = f(b) =0 and f € C([a,b])
— T(f) e C'([a,b]) (by its construction)

=— M, feC' = T(f),\f, and f € C?. (doable b/c u1,us € C?)
= fe®.

(In fact, we can iterate this T'(f) — A\f — f procedure and get f € C*(a,b) as long as p,q are.)
Then 3) follows from since ker(T") = {0} and it does not contribute to the forming of
such basis; all elements in this orthonormal basis of L?(a,b) must therefore come from orthonormal
eigenvectors of T'. Once again, asserts that these eigenvectors converge to 0, with

which we are also done with 2). O
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| Corollary 13.10 |

The eigenvectors / eigenfunctions of the Sturm-Liouville problem L{u] = Au form an orthonormal Schauder

basis of L?(a,b). Furthermore,
(1) each eigenvalue is positive (Cemma T3 37) and simple (Corollary 13.4), and

(2) the eigenvalues can be ordered to form a sequence converging to co. Unlike above, where we showed
that the eigenvalues of T', the Sturm-Liowville solution operator, converge to 0, here we are talking
about the eigenvalues of the Sturm-Liouville problem itself, not the solution operator anymore.

Proof. Recall that (in the proof of Thearem T391) that T'(f) = T (L[u]) = u for some u € ®. Then
T(f)=Af < L[u] =u/\. From this equation we see that the eigenvalues of the Sturm-Liouville

problem are the (1/\)’s. Therefore as A - 0, these eigenvalues — oo. O

Example 13.11

Recall where L[u] = —u” and [a,b] = [0,1]. By the corollary above the eigenvalues / eigen-
functions of

-u"" = \u

u(0)=u(1)=0
form an orthonormal (Schauder) basis of L?(0,1).

Proof. First we find the eigenfunctions (just normal ODE stuff):

A<0 => u=AeV M4+ Be VN — A=B=0
no eigenfunctions (Cemma T337)
A=0 = u=Az+B = A+B=0

A>0 = u=AsinvVAz+ Beosv/Axr = B=0and )\ = (kr)?.

Therefore all eigenvalues are of form )\ = (km)2. As expected from the corollary above, they tend to

1
oo as k — oo. Then the normalized eigenfunctions (with respect to |« ||12(0,1)) are { sin k:mc} and
k>1

V2

they form another orthonormal basis for L2. (Compare this with [Ezample 5.23.) Thus,

flx)= 1; % (f, \}isinkﬂ'az) sin kmz for all f e L?(0,1),

and we have just obtained the sine expansion of f. Notice that each eigenfunction satisfies u(0) = u(1) =
0, but we’ve just shown that it approximates anything in L?(0,1), as what we’ve shown is convergence
with respect to ||+ 2 but not pointwise convergence. In addition, no cosines are involved in this expansion
as the bases differ by k7 not 2km — we can extend L2(0,1) to the set of all odd functions on L?(-1,1)

in which no Fourier expansion involves cosine. O
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Example 13.12

Let 2 c R™. Then the eigenfunctions of Laplacian

-Au=Xu in Q
u=0 on 0N

form an orthonormal Schauder basis of L?(£2). See Alt’s book, Theorem 12.17 for more details.

THE END. FEELS GOOD BEING A BANACH SPACEMAN. CHEERS.
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