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8/17 Vector Spaces & ℓp Spaces MATH 580 Intro to Functional Analysis - YQL

Lecture 1: 8/17 Vector Spaces & ℓp Spaces

Topics of the course:

(1) Basics of vector spaces & bases.

(2) Banach space.

(3) Hilbert space theory.

(4) Weak topologies; methods of weak convergence.

(5) Fixed-point theory and applications, & spectral theory, if time permits.

Spoiler: we didn’t get to fixed-point theory :( No Brouwer’s FPT.

Begin of Course

Vector Spaces

Definition 1.1

A vector space V over K (a field) is a set V , along with with notions of addition in V and multiplication
by scalars, i.e., for all λ ∈ K and x, y ∈ V , we have

(1) x + y ∈ V , and

(2) λx ∈ V .

Quick facts following from these properties:

(1) multiplication is (left) distributive: α(x + y) = αx + αy,

(2) multiplication is (right) distributive: (αβ)x = α(βx),

(3) multiplication is associative: 1K ⋅ x = x,

(4) addition is associative: x + (y + z) = (x + y) + z,

(5) addition is commutative: x + y = y + x.

Remark

If a vector space is over R, we call it a real space. If it’s over C we call it a complex space.
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Example 1.2

(1) Rn is a vector space over R but not over C: take λ = i ∈ C and x ∈ Rn, then λx ∉ Rn but Cn.

(2) If V1, V2 are vector spaces then so is V1 × V2, with

(x1, y1) + (x2, y2) ∶= (x1 + x2, y1 + y2) and λ(x1, y1) ∶= (λx1, λy1).

(3) C([a, b],K) ∶= {f ∶ [a, b]→ K ∶ f continuous} is a vector space over K. Clearly the sum of two continu-
ous functions is continuous, and any scalar multiple multiple of a continuous function is continuous.

Remark

It’s customary to define the set of continuous functions [a, b]→ R simply by C([a, b]).

(4) P(I) ∶= {p ∶ I → R ∣ p(x) = ∑n
i=0 aix

i}, the set of real polynomials, is a vector space.

(5) For p ∈ [1,∞), ℓp(K) ∶= {x ∶ xi ∈ K,∑ xp
i <∞} (all pth power summable sequence) is a vector space.

For p = ∞, ℓ∞(K) ∶= {x ∶ xi ∈ K, sup∣xi∣ < ∞} (all bounded sequence) is a vector space. The addition
and multiplication are defined by

xy ∶= {xi,+yi}i⩾1 and αx ∶= {αxi}i⩾1.

Proof. The closure of scalar multiplication is immediate, and so is the addition for p = ∞. For
p <∞, we have

∑
i⩾1
∣xi + yi∣p ⩽∑

i⩾1
(2max(∣xi∣, ∣yi∣))p ⩽ 2p [∑

i⩾1
∣xi∣p +∑

i⩾1
∣yi∣p] <∞.

Definition 1.3

We say U is a subspace of V (over the same field K) if U ⊂ V and U is also closed under addition and
scalar multiplication, i.e., also a vector space itself.

Example 1.4

(1) X ∶= {f ∈ C([−1,1]) ∶ ∫
0

−1
f(x) dx = ∫

1

0
f(x) dx = 0}. This is a vector space and a subspace of

C([a, b]).

(2) For any y ∈ Rn, U ∶= {x ∈ Rn ∶ x ⋅ y = 0} is a subspace of Rn. Clearly if x1, x2 ∈ U then (x1 + x2) ∈ U
since (x1 + x2) ⋅ y = x1 ⋅ y + x2 ⋅ y = 0 and (αx) ⋅ y = α(x ⋅ y) = 0.

(3) S(K) ∶= {{xi}i⩾1 ∶ xi → 0 as i →∞} is a subspace of L∞(K). Note that this may not be a subspace of

3
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ℓp(K) with p finite: given p, consider the following sequence

{xi}i⩾1 ∶ xi =
1
p
√
i

which is not pth power summable but bounded, hence {xi} ∈ ℓ∞ ∖ ℓp.

4
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Lecture 2: 8/19 Linear Span

Definition 1.5

1) The linear span of a set E ⊂ V is the collection of all finite linear combinations of elements of E:

span(E) = {v ∈ V ∶ v =
n

∑
i=1

αiei, n ∈ N, αi ∈ K, ei ∈ E}.

2) E spans V if span(E) = V .

3) E is linearly independent if any finite collection of elements of E is linearly independent:

n

∑
i=1

αiei = 0 Ô⇒ α1 = α2 = ⋅ ⋅ ⋅ = 0 for all n ∈ N, αi ∈ K, ei ∈ E.

4) E ⊂ V is a (Hamel) basis of V if E is linearly independent and span(E) = V .

Lemma 1.6

E is a Hamel basis if and only if E is maximal linearly independent, i.e., E ∪{v} becomes linearly dependent
for any v ∈ V .

Proof. First for ⇐Ô : We need to show span(E) = V . Clearly span(E) ⊂ V . All it suffices to show is
that V ⊂ span(E). Fix v ∈ V . By assumption, we know E ∪ {v} is not linearly independent. Therefore
for some n ∈ N, {ei} ⊂ E, and {0} ⊄ {αi}αi∈N we have

n

∑
i=1

αiei + αn+1v = 0. (∆)

If αn+1 = 0 then by the linear independence of ei’s, all α’s need to be 0, but this shows E ∪{v} is linearly
independent which contradicts E’s maximal linearly independence.
It follows that αn+1 ≠ 0, so we can proceed and divide both sides of ∆ by αn + 1 and get a way to attain
v by a linear combination of ei’s:

v = −
n

∑
i=1

ai
an+1

⋅ ei.

Since v is arbitrary, we see that span(E) = V .
Now for Ô⇒ : again, for any v ∈ V , we have

v =
n

∑
i=1

αiei Ô⇒
n

∑
i=1

αiei − v = 0.

Clearly the coefficient of v is −1 ≠ 0, so it’s impossible that E ∪ {v} is linearly independent.

Lemma 1.7

If E is a Hamel basis of V , then v ∈ V has a unique representation v =
n

∑
i=1

αiei. Furthermore, if, additionally,

E is finite and has n elements, then

5
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(1) every basis of V has n elements, and

(2) every n-element linearly independent set is a basis.

We call n the dimension of V , i.e., dim(V ) ∶= n. If V has no finite basis then it is infinite-dimensional.

Example 1.8

(1) ℓp(K) is infinite-dimensional for all p ∈ [1,∞) and p =∞.

Proof. Let e(i) = (0, . . . ,1,0, . . . ) where eij = δij with δ the Kronecker delta (= 1 if i = j and 0

otherwise). Suppose there were a finite finite Hamel basis, then there were also a maximal basis
{e(i)}ni=1. However if we expand this set by adding e(i+1) we see that the new set is still linearly
independent. Hence dim ℓp(K) =∞.

Future reference: Example 3.15

(2) C([0,1]) is infinite-dimensional.

Proof. For any n ∈ N the set {1, x, . . . , xn} ⊂ C([0,1]) is maximal linearly independent (or some
set with xn being the one with highest degree). [Check by inspection / by Wronskian / or the
following] For if

n

∑
i=1

αix
i = 0 Ô⇒ αi = 0.

But now {1, x, . . . , xn+1} is also linearly independent. Hence dim C([0,1]) =∞.

Definition 1.9

A partial order on a set P is a binary relation ≺ on P such that

(1) a ≺ a,

(2) if a ≺ b and b ≺ c then a ≺ c, and

(3) if a ≺ b and b ≺ a then a = b.

For example, let P ∶= all subsets of R, i.e., P ∶= P(R) and x ≺ y ⇐⇒ x ⊂ y. Then we have (0,1) ⊂ [−1,1]
which are comparable, and [0,1] and [1,2] which are not comparable. We cannot compare everything.
Hence the name “partial”.

Definition 1.10

(1) For a, b ∈ P , we say a, b are comparable if a ≺ b or b ≺ a.

(2) C ∈ P is a chain if any two c1, c2 ∈ c are comparable.

(3) t ∈ P is an upper bound of S ⊂ P if s ≺ t for all s ∈ S. Some sets may not have an uppoer bound,

6
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e.g.: {a, b, c} with a ≺ b and a ≺ c but no info given between b and c.

(4) m ∈ P is maximal if (m ≺ a for some a ∈ P Ô⇒ a =m).

Remark

Notice the difference between the definitions of maximal element and upper bound. To be an
upper bound, the element need to be comparable to all other elements, but for the maximal
element it just needs to make sure a ≺ m for all a comparable to m. It’s possible that P has
maximal elements but no upper bound.

Theorem 1.11: Zorn’s Lemma, equivalent to Axiom of Choice

If P is nonempty and partially ordered, and if every chain has an upper bound, then P has at least one
maximal element.
Furure reference: Hahn-Banach Theorem

Theorem 1.12

Every vector space V has a Hamel basis.

Proof. If V has a finite dimension, then it has a basis by definition. Now suppose V is infinite dimensional,
and P ∶= {E ⊂ V ∶ E is linearly independent}, i.e., the collection of all linearly independent subsets of V ,
and the partial order ⊂ (inclusion). By Zorn’s lemma, all it remains to show is that each chain has an
upper bound.
Let C ⊂ P be a chain and E∗ ∶= ⋃

Ei∈C
Ei (one is the collection of these linearly independent sets and the

other the union of them). Claim: E∗ is an upper bound of C.
First of all, we want to show E∗ ⊂ P , i.e., E∗ is linearly independent. If we take any finite collection of
elements of E∗, it belongs to some Ei ∈ C by construction [this can be obtained by choosing the maximal
Ei that contains at least one element of this finite collection], and this set is assumed to be linearly
independent, so E∗ ∈ P . Clearly Ei ⊂ E∗ for all Ei’s, i.e., all elements of C, so E∗ is an upper bound
of the chain. Having shown this, by Zorn’s lemma, we conclude that P has a maximal element, i.e., a
maximal linearly independent set which, by definition, is a basis for V .

7
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Lecture 3: 8/21 Linear Maps and Normed Vector Spaces

Linear Maps

Definition 1.13

Let X,Y be vector spaces.

(1) We say T ∈ L(x, y) [i.e., T ∶X → Y is linear] if T (αx + βx′) = αT (x) + βT (x′).

(2) If X,Y are complex spaces then T is conjugate linear if T (αx + βx′) = αT (x) + βT (x′) [where the
bar denotes the complex conjugate].

Remark

L(x, y) is itself a vector space.
If T1, T2 ∈ L(x, y) then we can define (αT1 + βT2)(x) ∶= αT1(x) + βT2(x), still a linear map X → Y .

Remark

If T ∈ L(X,Y ) and S ∈ L(Y,Z) then S ○ T ∈ L(X,Z).

Example 1.14

(1) Consider X,Y = C and T (x) = x.

If K = R then T is linear, and if K = C then T is conjugate linear, for x = x if and only if x ∈ R ⊂ C.

(2) Let X ∶= C1([a, b]) (first order continuously differentiable) and Y ∶= C([a, b]), and define T ∶ f ↦ f ′.

Definition 1.15

Let T ∈ L(x, y).

(1) The kernel of T is defined as ker(T ) ∶= {x ∈X ∶ T (x) = 0}.

(2) The image of T is defined as im(T ) ∶= {y ∈ Y ∶ ∃x ∈X such that T (x) = y}.

(3) T is injective if T (x1) = T (x2) Ô⇒ x1 = x2.

(4) T is surjective if, for all y ∈ Y , there exists x ∈X such that T (x) = y, i.e., im(T ) = Y .

(5) T is bijective if it’s both injective and surjective. Then T has an inverse T −1 ∶ Y → X defined by
T −1(y) ∶= x where y = T (x). Having an inverse is not to be confused with being invertible. The
difference will be addressed later on.

8
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Lemma 1.16

T is injective if and only if ker(T ) = 0.

Lemma 1.17

If T ∈ L(X,Y ) has an inverse, then T −1 ∈ L(Y,X), i.e., also linear.

Proof. Pick y1, y2 ∈ Y and α,β ∈ K. Then y1 = TT −1(y1) and y2 = TT −1(y2). Then

TT −1(αy1 + βy2) = αy1 + βy2 = αTT −1(y1) + βTT −1(y2)

= T (αT −1(y1) + βT −1(y2)). (since T is linear)

Since T is bijection, it is in particular injective and so

T [T −1(αy1 + βy2)] = T (αT −1(y1) + βT −1(y2)) Ô⇒ T −1(αy1 + βy2) = αT −1(y1) + βT −1(y2),

i,e., T −1 ∈ L(Y,X).

Future reference: Definition 3.2, Inverse Mapping Theorem

Normed Vector Spaces

Definition 1.18

A norm is a map ∥ ⋅ ∥ ∶X ↦ [0,∞) such that, for all x, y ∈X and λ ∈ K, it satisfies

(1) non-degeneracy: ∥x∥ ⩾ 0 and ∥x∥ = 0 ⇐⇒ x = 0,

(2) absolute homogeneity: ∥λx∥ = ∣λ∣∥x∥, and

(3) triangle inequality/subadditivity: ∥x + y∥ ⩽ ∥x∥ + ∥y∥.

A vector space X with a norm is a normed space.

Definition 1.19

An open ball is defined as BX(y, r) ∶ {x ∈X ∶ ∥x − y∥ < r}. For convenience we write BX(0, r) as BX(r).
A closed ball is defined as BX(y, r) = {x ∈X ∶ ∥x − y∥ ⩽ r}. Likewise for BX(r).
†When it’s clear which normed space we are in, we can drop the subscript X of BX(y, r).

Lemma 1.20

Open balls and closed balls are convex. Recall that the set K is convex if λx + (1 − λ)y ∈K for all x, y ∈K
and λ ∈ [0,1].

9
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Proof. We want to show that, for x1, x2 ∈ BX(y, r), ∥λx1 + (1 − λ)x2 − y∥ < or ⩽ r. This holds because

∥λx1 + (1 − λ)x2 − y∥ = ∥λ(x1 − y) + (1 − λ)(x2 − y)∥

⩽ ∥λ(x1 − y)∥ + ∥(1 − λ)(x2 − y)∥

= λ∥x1 − y∥ + (1 − λ)∥x2 − y∥

⩽ (λ + 1 − λ)max{∥1 − y∥, ∥x2 − y∥}

=max{∥x1 − y∥, ∥x2 − y∥}.

Remark

Conversely, if we have (1), (2), and the convexity of unit ball, then they can define a norm.
To put formally, suppose that N ∶X → [0,∞) is non-degenerate and absolutely homogeneous, and

B ∶= {x ∶ N(x) ⩽ 1}

is convex, then N is a norm.

Proof. It only remains to show that N satisfies triangle inequality. Pick x, y ∈ X. The case
N(x) = 0 is trivial since N(x + y) = N(y) = N(x) +N(y). Now assume N(x),N(y) > 0. Notice is
that, by (2),

N ( x

N(x)
) = 1

N(x)
N(x) = 1 and N ( y

N(y)
) = 1,

so x

N(x)
,

y

N(y)
∈ B. Since

x + y
N(x) +N(y)

= N(x)
N(x) +N(y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ

x

N(x)
+ N(y)
N(x) +N(y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1−λ

y

N(y)

is a convex combination of x

N(x)
and y

N(y)
, by assumption it’s in B. Therefore

N ( x + y
N(x) +N(y)

) ⩽ 1 ⇐⇒ N(x + y) ⩽ N(x) +N(y).

Future reference: proof of Minkowski’s inequality, Lemma 10.17.3

10
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Example 1.21

Let x ∈ ℓp be of form {xi}i⩾1, and define ∥x∥ℓp ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑i⩾1∣xi∣p p ∈ [1,∞)

supi⩾1∣xi∣ p =∞
, then

∥x + y∥ℓp ⩽ ∥x∥ℓp + ∥y∥ℓp .

This is called the Minkowski’s inequality.
Consequently, ∥ ⋅ ∥ℓp is a norm and ℓp is a normed space.

Proof. The case p =∞ is obvious as sup∑ ⩽ ∑ sup. For the case p ∈ [1,∞), let B ∶= {x ∶ ∥x∥ℓp ⩽ n}. Let
x, y ∈ B. Then

∥λx + (1 − λ)y∥ℓp =∑
i⩾1
∣λxi + (1 − λ)yi∣p

⩽∑
i⩾1
[λ∣xi∣p + (1 − λ)∣yi∣p]

⩽ λ∑
i⩾1
∣xi∣p + (1 − λ)∑

i⩾1
∣yi∣p

⩽max{∥x∥ℓp , ∥y∥ℓp}

Ô⇒ λx+(1 − λ)y ∈ B.

Therefore B is convex and the claim follows from the equivalence of triangle inequality and convexity of
ball.

11
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Lecture 4: 8/24 Minkowski, Jensen, & Hölder; Strong Convergence

Remark

Recall that ℓp = {x ∶ ∥x∥ℓp <∞}. In order to hold true, every element of x needs to have finite norm.

Theorem 2.0: very bad numbering...

ℓp ⊂ ℓq for p ⩽ q. Think of it this way: ℓ∞ denotes all bounded sequences, but clearly not all bounded
sequences are pth power summable.

Proof. It suffices to show that show that ∥x∥ℓq ⩽ ∥x∥ℓp for p ⩽ q.

(1) If ∥x∥ℓp = 1, we know that each component satisfies ∣xi∣ ⩽ 1 and hence

∥x∥ℓq =∑
i⩾1
∣xi∣q ⩽∑

i⩾1
∣xi∣p = 1.

(2) If ∥x∥ℓp ≠ 1, we may normalize x by defining y ∶= x/∥x∥ℓp so that ∥y∥ = 1. Then

∥x∥ℓq = ∥(y∥x∥ℓp)∥ℓq
homog.==== ∥x∥ℓp∥y∥ℓq

²
⩽1 by(1)

⩽ ∥x∥ℓp .

Theorem 2.1

Let (Ω, µ) be a measurable space, then

Lp(Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{f ∶ Ω→ K such that ∥f∥p
Lp(Ω) ∶= ∫Ω∣f ∣

p dµ <∞} p ∈ [1,∞)

{f ∶ Ω→ K such that ess sup
Ω
∣f ∣ <∞} p =∞

called the function spaces, are normed vector spaces.
(Elements of Lp are defined up to µ-zero measure, i.e., f = g if and only if f(x) = g(x) for µ-a.e.)

Proof. Non-degeneracy: ∥f∥Lp = 0 if and only if f = 0 µ-a.e.
Absolute homogeneity: ∥λf∥Lp = ∣λ∣∥f∥Lp .
For triangle inequality, we again have Minkowski inequality:

∥f + g∥Lp ⩽ ∥f∥Lp + ∥g∥Lp

(which can be proven using the convexity of B again).

Lemma 2.2: Jensen’s inequality

If µ(Ω) = 1 (a probabilistic measure) and J ∶ R→ R+ a convex function, then

J (∫
Ω
f dµ) ⩽ ∫

Ω
J ○ f dµ.

12
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Proof. Let C ∶= ∫
Ω
f dµ. Because J is convex, for every z ∈ R, there exists some β ∈ R such that

J(y) ⩾ J(z) + β(y − z) for all y [simply take β = J ′(z)]. Now let z ∶= C and y ∶= f(x). Then

J(f(x)) ⩾ J(C) + β(f(x) −C)

and integrating over Ω gives

∫
Ω
J(f(x)) dµ(x) ⩾ J(C)µ(Ω) + β(∫

Ω
f(x) dµ(x) −Cµ(Ω))

= J(C) + β(C −C) = J(C).

Hence proven.

Lemma 2.3: Hölder’s inequality

If f ∈ Lp(Ω) and g ∈ Lq(Ω) where p−1 + q−1 = 1, p, q ∈ [1,∞), then

∣∫
Ω
fg dµ∣ ⩽ ∥f∥Lp∥g∥Lq .

Future reference: Hölder’s inequality for ℓp spaces

Proof. Let F ∶= ∣f ∣∣g∣−q/p and µ′ = µ(∣g∣q/∥g∥qLq) a weighted measure. Then µ′(Ω) = (∫Ω∣f ∣
p dµ)/(∥f∥pLp) =

1. Now we can apply Jensen’s inequality with the convex function F p [where F is positive and p a positive
integer]:

(∫
Ω
F dµ′)

p

⩽ ∫
Ω
F p dµ′

= ∫
Ω
(∣f ∣p∣g∣−q) ⋅ (∣g∣q∥g∥−qLq) dµ

= ∥g∥−qLq ∫
Ω
∣f ∣p dµ

= ∥g∥−qLp∥f∥pLp ,

whereas rewriting the LHS gives (recall 1/q + 1/p = 1)

[∫
Ω
(∣f ∣∣g∣−q/p) ⋅ (∣g∣q∥g∥−qLq) dµ]

p

= [∫
Ω
∣f ∣∣g∣q(1−1/p)∥g∥−qLq dµ]

p

= [∫
Ω
∣f ∣∣g∣∥g∥−qLq dµ]

p

= ∥g∥−pqLq (∫
Ω
∣fg∣ dµ)

p

.

Therefore

(∫
Ω
∣fg∣ dµ)

p

⩽ ∥g∥q(p−1)Lq ∥f∥pLp .

13
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Since 1/p + 1/q = 1 we have p + q = pq Ô⇒ q(p − 1) = pq − q = p. Since ∣∫Ω fg dµ∣, ∥g∥Lq , and ∥f∥Lp are all
positive, we may take the pth root and therefore get

∣∫
Ω
fg dµ∣ ⩽ ∫

Ω
∣fg∣ dµ ⩽ ∥f∥Lp∥g∥Lq .

Lemma 2.4

Now we generalize Ω to µ(Ω) <∞. Then

Lq(Ω) ⊂ Lp(Ω) if p ⩽ q,

opposite to the case of “small ℓp”. The proof is simple using Hölder’s inequality.

Strong Convergence

Definition 2.5

Let X be a normed space and {xn}n⩾1 ⊂ X a sequence. Then xn → x as n →∞, i.e., xn strongly converges
[in the topology on X generated by the norm] to x, if

for each ϵ > 0, there exists Nϵ such that n ⩾ Nϵ Ô⇒ ∥xn − x∥ < ϵ.

Proposition 2.6

If xn → x in X then

(1) ∥xn∥→ ∥x∥: this follows from

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥xn∥ ⩽ ∥xn − x∥ + ∥x∥

∥x∥ ⩽ ∥x − xn∥ + ∥xn∥
Ô⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥xn∥ − ∥x∥ ⩽ ∥xn − x∥

∥x∥ − ∥xn∥ ⩽ ∥xn − x∥
Ô⇒ ∣∥xn∥ − ∥x∥∣ ⩽ ∥xn − x∥.

(2) if yn → y then (xn + yn)→ x + y: this follows from ϵ/2 + ϵ/2 = ϵ.

(3) {xn} is bounded: only finitely many terms are outside BX(x, ϵ).

(4) for {αn} ⊂ K, (αnxn)→ αx whenever αn → α ∈ K. The trick here is that

∥αnxn − αx∥ ⩽ ∥αnxn + αnx∥ + ∥αnx − αx∥ = ∣αn∣∥xn − x∥ + ∥x∥∣αn − α∣.

Future reference: Lemma 5.9, Corollary 4.5.1

14
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Lecture 5: 8/26 Open and Closed Sets

Definition 2.7

(1) Given a metric space X and A ⊂ X, we say A is open if, for all x ∈ A, there exists some ϵ > 0 such
that B(x, ϵ) ⊂ A.

(2) The closure of A is defined by A ∶= {x ∈ X ∶ there exists xn ⊂ A with {xn} → x}. If xn ∈ B(y, r) and
xn → x then

∥x − y∥ ⩽ ∥x − xn∥ + ∥xn − y∥

and
lim sup
n→∞

(∥x − xn∥ + ∥xn − y∥) = r Ô⇒ ∥x − y∥ ⩽ r ⇐⇒ x ∈ B(y, r),

hence the notation of a closed ball.

(3) A is closed if A = A, i.e., it contains all its limit points.

Example 2.8

Let U be a subspace of (X, ∥ ⋅ ∥) [a normed space]. Then U may or may not be closed.

(1) If dimX <∞ then U is guaranteed to be closed.

(2) U is open if and only if U =X.

(3) Let c00(K) ∶= {{xn}n⩾1 ∶ xn ≠ 0 finitely many times}. We have the following:

(1) c00 forms a subsapce of ℓp for p ∈ [1,∞) and also p =∞.

(2) For every p ∈ [0,∞), not p = ∞, c00 is dense in ℓp [c00 = ℓp, closure with respect to ℓp norm; in
other words, given any ϵ > 0 and any x ∈ ℓp there exists x′ ∈ c00 such that ∥x − x′∥ℓp < ϵ].

Future reference: Example 5.13

Proof. Let x = {xn} ∈ ℓp, then ∑
i⩾1
∣xn∣p <∞. Given ϵ > 0, let N ∈ N be large enough such that

∑
n⩾N
∣xn∣p < ϵp and let x′ = {x′n} ∶= (x1, x2, . . . , xN−1,0, . . . ). Then

∥x − x′∥ℓp = (∑
n⩾N
∣xn∣p)

1/p

< ϵ Ô⇒ c00 is dense in ℓp.

Note that this statement is not true for p = ∞: the sequence (1,1, . . . ) is in ℓ∞ but its ℓ∞

norm to any sequence in c00 is at least 1.

(3) Obviously, for p ∈ [1,∞) we have c00 ≠ ℓp. From this we also see that c00 is not closed (since
C00 ≠ ℓp = c00).

(4) Let (X, ∥ ⋅∥) ∶= (Lp(Ω), ∥ ⋅∥Lp(Ω)) with µ(Ω) <∞. Let U ∶= {f ∈ Lp ∶ ∫
Ω
f = 0}. Then U is a closed

subspace.

15



8/26 Open and Closed Sets MATH 580 Intro to Functional Analysis - YQL

Proof. Clearly U is a subspace [closure of addition and scalar multiplication]. Let {fn} ⊂ U
be a sequence such that fn → f for some f ∈ Lp. We want to show ∫

Ω
f = 0. This is because

∫
Ω
f = ∫

Ω
f − 0 = ∫

Ω
(f − fn)

⩽ ∥f − fn∥Lp∥1∥L(p−1)/p (Hölder)

= ∥f − fn∥Lp

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0

⋅µ(Ω)p/(1−p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<∞

(recall ∥f∥kLk(Ω) = ∫
Ω
∣f ∣k dµ)

→ 0 as n→∞.

Future reference: Example 2.8.4 continued (I), Example 2.8.4 continued (II)

Definition 2.9

A normed space (X, ∥ ⋅ ∥) is separable if there exists a countable subset that is dense in S with respect to
the norm.

Lemma 2.10

Fix (X, ∥ ⋅ ∥). The following are equivalent (TFAE):

(1) X is separable.

(2) The unit sphere in X, i.e., SX ∶= {x ∈X ∶ ∥x∥ = 1}, is separable.

(3) X contains a countable subset E = {ei}i⩾1 whose linear span is dense in X, i.e., span(E) =X.

Further reference: Lemma 2.10 (contrinued), Example 5.13, Proposition 6.5, Example 6.7, Lemma
10.11

Proof. (1)Ô⇒ (2): to show (2), we need to find some countable subset E ⊂ SX that is dense in SX .
Suppose {xn}n⩾1 is dense in x. Given n, k ∈ N, if B(xn,1/k) ∩ SX ≠ ∅, i.e., if B(xn,1/k) intersects
with the sphere, we pick one element from this intersection and add it to E. By doing so we ensure
that ∣E∣ ⩽ ∣N2∣, and so E is countable. Now it remains to show E is dense in SX .
Take any z ∈ SX and ϵ > 0. Let k ∈ N such that 1/k < ϵ/2, and take xn ∈X such that ∥xn − z∥ < 1/k
[doable because {xn} is dense in X]. Since z ∈ B(xn,1/k) ∩ SX , by construction of E there has to
exist some e ∈ E that belongs to this intersection. Hence

∥z − e∥ ⩽ ∥z − xn∥ + ∥xn − e∥ <
1

k
+ 1

k
= 2k = ϵ

which completes the proof.

16
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(2) Ô⇒ (3): let E = {ei} ⊂ SX be dense in SX . We will show that this set is what we are actually
looking for, i.e., span(E) =X. Clearly ⊂ is trivial, so it suffices to show ⊃.
For x = 0, simply notice that

∥x − e ϵ

∥e∥
∥ = ϵ.

Now let nonzero x ∈X and ϵ > 0 be given. Then the normalized x/∥x∥ ∈ SX . Therefore there exists
e ∈ E such that

∥ x

∥x∥
− e∥ < ϵ

∥x∥
Ô⇒ ∥x − ∥x∥ ⋅ e

²
∈ span(E)

∥ < ϵ

17
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Lecture 6: 8/28 Separable Spaces & Bounded Operators

Example 2.8: (4) continued

A follow-up on Example 2.8.4: if µ(Ω) =∞, then U ∶= {f ∈ Lp ∶ ∫
Ω
f = 0} may not be closed.

For example, consider Ω ∶= R. Try to show that there exist fn, f ∈ Lp(R) such that ∫
R
fn = 0, fn → f in

Lp(R), but ∫
R
f ≠ 0. Answer to be revealed next lecture.

Lemma 2.10: continued

Now we show (3) Ô⇒ (1) from Lemma 2.10: fix (X, ∥ ⋅ ∥). If X contains a countable subset E = {ei}i⩾1
whose linear span is dense in X then X is separable.

Proof. Consider the “rational span” of E, A ∶= {x =
n

∑
i=1

qiei ∣ n ∈ N, qi ∈ Q, ei ∈ E}. It is clear that A is

countable. Now we show it’s dense in X.
Let x ∈X and ϵ > 0 be given. By assumption, since span(E) is dense in X, we have

∥x −
n

∑
i=1

αiei∥ ⩽
ϵ

2
for some

n

∑
i=1

αiei ∈ span(E).

On the other hand, since Q is dense in R, for i = 1,2, . . . , n, we are able to find qi ∈ Q such that
∣qi − αi∣ < ϵ/(2n∥ei∥). Then

∥
n

∑
i=1

αiei −
n

∑
i=1

qiei∥ =
n

∑
i=1
∣αi − qi∣∥ei∥ <

n

∑
i=1

ϵ

2n∥ei∥
∥ei∥ =

ϵ

2
.

Therefore
∥x −

n

∑
i=1

qiei

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
in span(E)

∥ ⩽ ∥x −
n

∑
i=1

αiei∥ + ∥
n

∑
i=1

αiei −
n

∑
i=1

qiei∥ <
ϵ

2
+ ϵ

2
= ϵ.

Hence proven.

Example 2.11: Seperable spaces

(1) Rn and Cn are separable: consider Qn and Qn + iQn.

(2) ℓp is separable for p ∈ [1,∞): the countable dense subset is c00 which, in turn, is span{ei}.

(3) ℓ∞ is not separable. Future reference: Example 5.13, Example 6.7

Proof. Let E ∶= {x ∈ ℓ∞ ∶ xi ∈ {0,1}}. It follows that, for all x, y ∈ E, ∥x − y∥ℓ∞ = 1. Also, E is
uncountable: we can define a surjection f ∶ E → [0,1] by binary expansion. [Or consider the Σ2

argument from 425a.]

18
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We now show that every dense subset A ⊂ ℓ∞ must be uncountable by trying to approximating E

by A. Since A is dense in ℓ∞, given any element of E, there exists elements of A arbitrarily close
to it. In particular we choose this distance to be 1/3. Fix x, y ∈ E and let x′, y′ ∈ A be such that

∥x − x′∥ℓ∞ ⩽
1

3
and ∥y − y′∥ℓ∞ ⩽

1

3
.

Then we have
∥x − y∥ℓ∞ ⩽ ∥x − x′∥ℓ∞ + ∥x′ − y′∥ℓ∞ + ∥y′ − y∥ℓ∞ ,

i.e.,
∥x′ − y′∥ℓ∞ ⩾ ∥x − y∥ℓ∞

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

− ∥x − x′∥ℓ∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽1/3

− ∥y′ − y∥ℓ∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽1/3

⩾ 1

3
.

Therefore distinct elements of E can only be approximated by distinct elements of A, and A

therefore must be uncountable.

(4) However, c0 ∶= {x ∈ ℓ∞ ∶ (xi)→ 0}, the space of null sequences, is separable [see PS2].

(5) Same thing for Lp: Lp(Ω) is separable for p ∈ [1,∞) whereas L∞(Ω) is not. This is true regardless of
whether µ(Ω) <∞ or not.

Bounded Operators

Definition 2.12

Let (X, ∥ ⋅ ∥X , (Y, ∥ ⋅ ∥Y ) be two normed spaces. We say T ∈ L(X,Y ) is continuous (or bounded) if
T (xn)→ T (x) (in Y ) whenever (xn)→ x (in X). We denote the set of bounded operators as B(X,Y ).

Remark: notations

If Y =X then B(X) ∶= B(X,X).
If Y = K then X∗ = B(X,K), the dual space. Will be discussed later.
If T ∈X∗ we write T (x) as ⟨T,x⟩ or X∗ ⟨T,x⟩X , called the duality pairing.

Lemma 2.13

T ∈ B(X,Y ) ⇐⇒ ∥T (x)∥Y ⩽ L∥x∥X for some L > 0, i.e., for a linear operator, continuity is equivalent to
Lipschitz continuity. Then the infimum of such L’s is the norm on B(x, y):

∥T ∥B(X,Y ) ∶= inf{L > 0 ∶ ∥T (x)∥Y ⩽ L∥x∥X for all x ∈X}.

Proof. Lipschitz continuous Ô⇒ continuous is trivial. Now we show that, if T is continuous then it’s
Lipschitz continuous.
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Assume T is continuous, then in particular it’s continuous at 0. Hence there exists some δ > 0 such that

∥x − 0∥X < δ Ô⇒ ∥T (x) − T (0)∥Y < 1,

i.e.,
∥x∥X < δ Ô⇒ ∥T (x)∥Y < 1.

Hence, for all z ≠ 0,

∥T (z)∥ = ∥T (δ ⋅ z

∥z∥
⋅ ∥z∥
δ
)∥ = ∥z∥

δ
⋅ ∥T ( δz

∥z∥
)∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1

< ∥z∥
δ

,

and letting L ∶= 1/δ completes the proof. Hence the name bounded operators.

Lemma 2.14

∥T ∥B(x,y) = sup
∥x∥X=1

∥T (x)∥Y = sup
∥x∥X⩽1

∥T (x)∥Y = sup
x≠0

∥T (x)∥Y
∥x∥X

. See PS2.

Proof. Proof of first equality For convenience, let ∥T ∥1 ∶= ∥T ∥B(X,Y ) and ∥T ∥2 ∶ sup
∥x∥X=1

∥T (x)∥Y .

Pick x ≠ 0. By the definition of supremum, we have

∥T( x

∥x∥
)∥ ⩽ ∥T ∥2 Ô⇒ ∥T (x)∥ ⩽ ∥T ∥2∥x∥.

By definition of norm, ∥T ∥1 = inf{∥T ∥2} and so ∥T ∥1 ⩽ ∥T ∥2.

On the other hand, if ∥x∥ = 1 then ∥T (x)∥ ⩽ ∥T ∥1∥x∥ by definition of norm, so ∥T (x)∥ ⩽ ∥T ∥1. Taking
supremum gives

sup
∥x∥=1

∥T (x)∥ = ∥T ∥2 ⩽ ∥T ∥1.

Hence ∥T ∥1 = ∥T ∥2.

Future reference: Example 3.1, another equivalent form of norm on ℓp

Example 2.15: bounded operators

Define SL ∶ ℓp → ℓp by SL(x) = (x2, x3, . . . ) and SR ∶ ℓp → ℓp by SR(x) = (0, x1, x2, . . . ). Then

∥SR(x)∥pℓp =∑
i⩾1
∣xi∣p = ∥x∥pℓp Ô⇒ ∥SR∥B(ℓp,ℓp) = 1,

∥SL(x)∥pℓp =∑
i⩾2
∣xi∣p ⩽ ∥x∥pℓp Ô⇒ ∥SL∥B(ℓp,ℓp) ⩽ 1.

However, = can be attained by letting the first component of x to be 0, i.e., (0, x2, x3, . . . ), in which case
∥SL(x)∥ = ∥x∥. Hence the supremum is indeed 1 and ∥SL∥B(ℓp,ℓp) = 1.
Future reference: Example 8.7.1, Example 8.7.2
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Lecture 7: 8/31 More on Bounded Operators; Isomorphism

Example 2.8: counterexample for 2.8.4 when µ(Ω) =∞

From last lecture’s Example 2.8.4: consider

fn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1 x ∈ (−1,0)
1
n

x ∈ (0, n)

0 otherwise

Ô⇒ ∫
R
fn(x) dx = 0.

Easy to verify that fn ∈ Lp(Ω) for all p > 1. Then fn → f ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 x ∈ (−1,0)

0 otherwise
as n→∞ but ∫

R
f dx = −n ≠ 0.

Example 3.1: more on bounded operators

(1) Let φ ∈ C([a, b]) and T (f) ∶= ∫
b

a
φf for f ∈ C([a, b]). Then T ∈ C([a, b])∗ with ∥T ∥ = ∥φ∥L1 :

∣T (f)∣ ⩽ ∫
b

a
∣φf ∣ ⩽ ∥f∥L∞∥φ∥L1 Ô⇒ ∥T ∥ ⩽ ∥φ∥L1 ,

and it remains to show ∥T ∥ ⩾ ∥φ∥L1 . Notice that if we define f ∶= sgn(φ) then

T (f) = ∫
b

a
∣φ∣ = ∥φ∥L1 .

However there’s a flaw with f since it might be discontinuous if φ changes sign. We fix this by
introducing ϵ > 0 and define fϵ(x) ∶= φ/(∣φ∣ + ϵ) which is indeed continuous. Then ∥fϵ∥L∞ ⩽ 1 and

∥φ∥L1 − T (fϵ) = ∫
b

a
∣φ∣ − ∫

b

a
φfϵ = ∫

b

a
[∣φ∣ − φ2

∣φ∣ + ϵ
] = ∫

b

a

∣φ∣ϵ
∣φ∣ + ϵ

⩽ (b − a)ϵ,

which means T (fϵ) ↑ T (f) as ϵ → 0 and we’ve found a successful approximation of f . Recall from
Lemma 2.14 that

∥T ∥ = sup
∥y∥L∞⩽1
y∈C([a,b])

∣T (y)∣ ⩾ sup ∣T (fϵ)∣ = T (f) = ∥φ∥L1

so taking ϵ→ 0 gives ∥T ∥ ⩾ ∥φ∥L1 . Hence ∥T ∥ = ∥φ∥L1 .

Remark

For functions on C([a, b]), L∞ is the “usual” norm in the sense that, for a continuous function,
the supremum, maximum, and essential supremum are all the same.

(2) T (f) ∶= f ′ [the derivative] is unbounded: taking fn(x) = xn gives ∥fn∥L∞ ⩾ 1 whereas
∥f ′n∥L∞ = ∥nxn−1∥L∞ = n ⩽ n∥fn∥L∞ , hence no n works as the Lipschitz constant and T is not bounded.

Future reference: Example 5.4
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Definition 3.2

T ∈ B(X,Y ) is invertible if

(1) it has an inverse, and

(2) the inverse T −1 ∈ L(X,Y ) (linearity shown by Lemma 1.17) is bounded, i.e., T −1 ∈ B(Y,X).

Remark

If T and T −1 are bounded, then for some c1, c2 we have

T bounded: ∥T (x)∥Y ⩽ c2∥x∥X and T −1 bounded: ∥x∥X ⩽
1

c1
∥T (x)∥Y ,

i.e.,
c1∥x∥X ⩽ ∥T (x)∥Y ⩽ c2∥x∥X for all x ∈X.

Such invertible T is called an isomorphism between normed spaces X and Y (with corresponding norms
∥ ⋅ ∥X , ∥ ⋅ ∥Y ). We say X,Y are isomorphic (or congruent) if there exists an isomorphism between them.
Future reference: Lemma 8.6

Definition 3.3

T ∈ B(X,Y ) is called an isometric isomorphism if it is isomorphic and ∥T (x)∥ = ∥x∥ for all x ∈ X. The
equation alone defines an isometry. In this case we write X ≡ Y .

Lemma 3.4

If T ∈ L(X,Y ) is an isometry (i.e., ∥T (x)∥ = ∥x∥) and is surjective, then it is an isometric isomorphism.

Proof. If ∥T (x)∥ = ∥x∥ we immediately know T ∈ B(X,Y ) and T −1 ∈ B(Y,X), i.e., bounded. It
remains to show that T has an inverse, which in turn requires T to be bijective. Given T is
surjective it suffices to show T is injective.
Suppose T (x) = T (y). Since T is an isometry we have

0 = T (x) − T (y) = T (x − y) Ô⇒ ∥T (x − y)∥ = 0 = ∥x − y∥ Ô⇒ x = y.

So T is bijective; it has an bounded inverse.
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Example 3.5

(1) Cn is isometrically isomorphic to R2n via (c1, . . . , cn)↦ (x1, y1, . . . , xn, yn) where ci = xi + iyi.

Proof. Take c ∶= (c1, . . . , cn) ∈ Cn. Then

∥c∥2Cn =
n

∑
i=1
∣ci∣2 =

n

∑
i=1
∣xi + iyi∣2 =

n

∑
i=1
∣xi∣2 +

n

∑
i=1
∣yi∣2 = ∥(x1, y1, . . . , xn, yn∥2R2n

which shows this map is isometric. Clearly it’s also bijective. Hence an isometric isomorphism.

(2) Let V be a finite-dimensional vector space with basis E = {ei}i⩾1. Let

∥x∥E ∶= (
n

∑
i−1
∣αi∣2)

1/2

where x =
n

∑
i=1

αiei.

Then ∥ ⋅ ∥E is a norm on V , and (V, ∥ ⋅ ∥E) ≡ Kn (isometrically isomorphic).

Proof. Proof of isometric isomorphism Let T ∶ Kn → V be defined as

T (α1, . . . , αn) ∶=
n

∑
i=1

αiei.

Then T is a linear bijection (since each x ∈ V is uniquely represented by this basis). In addition,

∥T (α1, . . . , αn)∥E = (
n

∑
i=1
∣αi∣2)

1/2

= ∥(α1, . . . , αn)∥Kn .

Future reference: Theorem 3.10, Corollary 3.11

Definition 3.6

A subset K ⊂ X is (sequentially) compact if any sequence {xn}n⩾1 ⊂ K has a convergent subsequence
(with limit in K). [Equivalent to covering compactness (every open covering has a finite subcovering) if
the topology is generated by a metric, in particular a norm.]

Example 3.7

(1) A closed interval [a, b] is compact in R.

(2) Heine-Borel: a set K ⊂ Rn is compact if and only if it’s closed and bounded.
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Lecture 8: 9/2 Compact Sets; Riesz’s Lemma

Lemma 3.8

(1) If K ⊂X is compact, it is closed and bounded.

(2) If K ⊂X is compact and f ∶X → Y then f(K) is also compact, i.e., the continuous image of a compact
set is compact. [Immediate since f preserves convergence of any convergent subsequence.]

(3) If K ⊂ X is compact and f ∶K → R is continuous then f attains its bounds, i.e., for some x,x ∈K we
have

f(x) = inf f and f(x) = sup f.
Proof. Immediate since closed subsets of R contains its limits. To put more formally, let {xn} ⊂K
be the sequence such that f(xn)→ inf f . By (2), there exists f(xni), a subsequence of f(xn), that
converges to f(x) for some x ∈K. Hence f(x) = inf f . Likewise for x and sup f .

Future reference: Theorem 3.10

Definition 3.9

Two norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2 on X are equivalent if there exists constants c1, c2 such that

c1∥x∥1 ⩽ ∥x∥2 ⩽ c2∥x∥1 for all x ∈X,

i.e., (X, ∥ ⋅ ∥1) ≅ (X, ∥ ⋅ ∥2) [isomorphic].

Theorem 3.10

If X is finite-dimensional then all norms on X are equivalent to each other.

Proof. Let E be a basis of X, and we will show that every norm ∥ ⋅∥ is equivalent to ∥ ⋅∥E , the norm with
respect to the basis. Recall from Example 3.5.2 that this means

∥x∥E ∶= (
n

∑
i=1
∣αi∣2)

1/2

where x =
n

∑
i=1

αiei.

Then (by Cauchy-Schwarz)

∥x∥ = ∥
n

∑
i=1

αiei∥ ⩽
n

∑
i=1
∣αi∣∥ei∥ ⩽ (

n

∑
i=1
∣αi∣2)

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥x∥E

(
n

∑
i=1
∥ei∥2)

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶c2 a constant

= c2∥x∥E .

Now it remains to show there exists c1 such that ∥x∥ ⩾ c1∥x∥E . Here we need to use compactness, in
particular compactness of unit sphere with respect to ∥ ⋅ ∥E , i.e., S ∶= {x ∶ ∥x∥E = 1}. To see this, we can
think of S = T ({α ∈ Kn ∶ ∑n

i=1∣αi∣2 = 1}). Recall again from Example 3.5.2 that T is continuous. Also,
it’s clear that the unit sphere in Kn is compact. Hence S is compact.
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Since
∣∥x∥ − ∥y∥∣ ⩽ ∥x − y∥ ⩽ c2∥x − y∥E

we see ∥ ⋅ ∥ is continuous with respect to ∥ ⋅ ∥E . Hence ∥ ⋅ ∥ has to attain its lower bound (infimum) on S

by Lemma 3.8.3 (with f(x) = ∥x∥ on (X, ∥ ⋅ ∥E)). Therefore there exists x ∈ S such that

∥x∥ = inf
x∈S
∥x∥.

Notice that if x ∈ S then ∥x∥E = 1 ≠ 0 Ô⇒ x ≠ 0 by the properties of basis. Hence

∥x∥ = ∥x∥E ∥
x

∥x∥E
∥

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S

⩾ ∥x∥E ⋅ inf ∥
x

∥x∥E
∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶c1

= c1∥x∥E .

Hence (X, ∥ ⋅ ∥) ≅ (X, ∥ ⋅ ∥E).

Future reference: Corollary 3.11

Corollary 3.11

If X is finite-dimensional then K ⊂X is compact if and only if it’s closed and bounded.

Proof. By the theorem above and Example 3.5.2, if E is some basis on X, we have (X, ∥ ⋅∥) ≅ (X, ∥ ⋅∥E) ≡
Kn.

Future reference: Theorem 3.14, Example 4.1.4, Example 9.11, Proposition 9.21

Proposition 3.12

If xn → x then it’s Cauchy. [Immediate by ϵ/2 proof.]

Lemma 3.13: Riesz’s Lemma

Let (X, ∥ ⋅ ∥) be a normed space and Y a closed “proper” subspace, then there exists x ∈X such that ∥x∥ = 1
and ∥x − y∥ ⩾ 1/2 for all y ∈ Y .
Future reference: Theorem 3.14, Example 3.15, Lemma 9.19, Theorem 10.1, Proposition 10.3

Proof. Pick x0 ∈X ∖ Y . Define
d = d(x0, Y ) ∶= inf

y∈Y
∥x0 − y∥.

Note that d > 0. Otherwise, there exists {yn} ⊂ Y that converges to x0, contradicting Y ’s being closed.
Let y0 ∈ Y be such that ∥x0 − y0∥ ∈ [d,2d] and define

x ∶= x0 − y0
∥x0 − y0∥

.
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Clearly ∥x∥ = 1. We will show it satisfies the problem’s requirements. Take y ∈ Y . Then

∥x − y∥ = ∥ x0 − y0
∥x0 − y0∥

− y∥ = 1

∥x0 − y0∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾1/2d

∥x0 − (y0 + y∥x0 − y0∥)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Y

∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾d

⩾ 1

2
.

Theorem 3.14

A normed space (X, ∥ ⋅ ∥) is finite dimensional if and only if BX(0,1) is compact.
Future reference: Theorem 9.18

Proof. Ô⇒ is obvious by Corollary 3.11 as the closed unit ball is closed and bounded.
For ⇐Ô , if X is infinite-dimensional, we will construct a sequence {xn} ⊂ BX(0,1) such that no
subsequence is Cauchy, in particular, not convergent.
We begin by taking x1 ∈ X with ∥x1∥ = 1. Now look at span{x1}, a closed, proper (otherwise dimension
= 1) subspace of X. Hence, by Riesz’s Lemma there exists x2 ∈X such that ∥x2∥ = 1 and ∥x2 −x1∥ ⩾ 1/2.
Now take span{x1, x2}. We see this is also a closed proper subspace of X [otherwise dim(X) = 2]. Hence
again there exists x3 ∈X such that ∥x3∥ = 1 and ∥x3−xi∥ ⩾ 1/2 for i = 1,2. We may continue this the same
way and get a sequence {xn} such that ∥xn∥ = 1 and ∥xn − xi∥ ⩾ 1/2 for all i ⩽ n. Thus we have acquired
a sequence such that none of its subsequences is Cauchy. Thus if X is infinite-dimensional, BX(0,1) is
not compact. Taking the contrapositive proves ⇐Ô .
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Lecture 9: 9/4 Banach Spaces

Example 3.15: Ex. 1.8 revisited

Now we give another proof of Example 1.8.1: ℓp with p ∈ [1,∞] (either p ∈ [1,∞) or p = ∞) is infinite-
dimensional.
To see this, notice that each e(i) has norm 1, whereas ∥e(i) − e(j)∥ℓp = 21/p for all e(i), e(j). Hence a sequence
consisting only of e(i)’s shows that the closed unit ball B(0,1) is not compact. By Riesz’s Lemma this means
ℓp is infinite-dimensional.

Banach Spaces

Definition 3.16

(X, ∥ ⋅ ∥) is a Banach space (or X is Banach) if it is complete, i.e., every Cauchy sequence converges.

Example 3.17

Let Fb(Ω;K) ∶= {f ∶ Ω→ K ∣ f is bounded}. Then X ∶= Fb(Ω;K) is complete with respect to ∥ ⋅ ∥sup norm.

Proof. Let {fn} ⊂X be Cauchy, i.e., given ϵ > 0 there exists N ∈ N such that

∥fn − fm∥sup ∶= sup
x∈Ω
∣fn(x) − fm(x)∣ < ϵ for all m,n ⩾ N.

In particular, {fn(x)} is Cauchy in K for each x. Since K is complete,

f(x) ∶= lim
n→∞

fn(x)

is well defined. Now it remains to show f ∈X and fn → f . For m,n ⩾ N and any x ∈ Ω we have

∣fn(x) − fm(x)∣ < ϵ and ∣fm(x) − f(x)∣→ 0 as m→∞.

Hence taking m→∞ gives ∣fn(x) − f(x)∣ < ϵ. Therefore taking the supremum gives

sup
x∈Ω
∣fn(x) − f(x)∣ = ∥fn − f∥sup ⩽ ϵ so fn → f.

Clearly f ∈X since ∥f∥sup ⩽ ∥f − fn∥sup + ∥fn∥sup ⩽ ϵ + ∥fn∥sup <∞.

Future reference: Example 4.1.1

Lemma 3.18

X is Banach if and only if ∑
i⩾1
∥xi∥ <∞ Ô⇒ ∑

i⩾1
xi converges in X, i.e., ∥

n

∑
i=1

xi − x∥ → 0 as n →∞ for some

x ∈X (every absolutely convergent series converges).
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Proof. For Ô⇒ , assume ∑
i⩾1
∥xi∥ < ∞. It follows that {

n

∑
i=1
∥xi∥} converges and is thus Cauchy. Given

ϵ > 0, there exists N ∈ N such that if m > n ⩾ N then
m

∑
i=1
∥xi∥ −

n

∑
i=1
∥xi∥ < ϵ. Now we want to show

n

∑
i=1

xi

converges in X. Notice that

∥
m

∑
i=1

xi −
n

∑
i=1

xi∥ = ∥
m

∑
i=n+1

xi ∥ ⩽
m

∑
i=n+1

∥xi∥ =
m

∑
i=1
∥xi∥ −

n

∑
i=1
∥xi∥ < ϵ

which shows {
n

∑
i=1

xi} is Cauchy. Since X is Banach, this sequence is convergent.

For ⇐Ô , take some Cauchy sequence {yn} ⊂ X. We’ll find a convergent subsequence {ynk
} → y. This,

along with {yn}’s being Cauchy, suffices to show {yn}’s convergence [ϵ/2 proof].
Let n0 = 1 and for k ⩾ 1 let nk be such that nk > nk−1 and

∥yi − yk∥ ⩽ 2−k for all i, j ⩾ nk.

(This is possible because {yn} is assumed to be Cauchy.) Now define a sequence {xn} such that x1 = yn1

and xi = yni − yni−1 . Then

∑
i⩾1
∥xi∥ ⩽∑

i⩾0
2−i = 2 <∞,

and by assumption ∑
i⩾1

xi converges. This finishes the proof since ∑
i⩾1

xi = yni by construction.

Future reference: Theorem 3.19, Open Mapping Theorem, Parseval’s Identity

Theorem 3.19

X ∶= Lp(Ω) is a Banach space for all p ∈ [1,∞].

Proof. To make use of Lemma 3.18, let {fn} ⊂ Lp be such that S ∶= ∑
n⩾1
∥fn∥Lp < ∞. We will show that

∑
n⩾1

fn converges. First notice that (with Minkowski’s inequality)

∫
Ω
(

N

∑
n=1
∣fn∣)

p

= ∥
N

∑
n=1
∣fn∣ ∥

p

Lp

(M)
⩽ (

N

∑
n=1
∥fn∥Lp)

p

⩽ Sp.

By the monotone convergence theorem, since
N

∑
n=1
∣fn∣ is nondecreasing, taking N →∞ gives

∫
Ω
F p ∶= ∫

Ω
(∑
n⩾1
∣fn∣)

p

⩽ Sp Ô⇒ F ∈ Lp.

In particular, F (x) <∞ a.e. Therefore, for a.e.x, f(x) ∶= ∑
n⩾1

fn(x) is well-defined (the limit exists as f)

and f ∈ Lp as ∥f∥Lp ⩽ ∑
n⩾1
∥fn∥Lp = S <∞ (Minkowski).
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Now that we’ve shown the existence of f and f ∈ Lp, it remains to show that ∑
n⩾1

fn actually converges to

f in Lp. For p <∞, this holds because (with triangle inequality and dominated convergence theorem)

∥f −
N

∑
n=1

fn∥
p

Lp
= ∫

Ω
∣f −

N

∑
n=1

fn∣
p ∆
⩽ ∫

Ω
(∣f ∣ +

N

∑
n=1
∣fn∣)

p

⩽ ∫
Ω
(2F )p DCTÐ→ 0.

For p =∞, refer to PS2.

Lemma 3.20

(1) Suppose X ≅ Y (isomorphic). Then X is Banach if and only if Y is Banach.

(2) If ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are two equivalent norms on X, then (X, ∥ ⋅ ∥1) is Banach if and only if (X, ∥ ⋅ ∥2) also
is.

(3) If (X, ∥ ⋅ ∥) is Banach and Y ⊂X a subspace, then (Y, ∥ ⋅ ∥) is Banach if and only if Y is closed.

(4) If (X, ∥ ⋅ ∥X) and (Y, ∥ ⋅ ∥Y ) are Banach, then (X × Y, ∥x∥X + ∥y∥Y ) is also Banach.

Proof. (1) Let T ∶ X → Y be an isomorphism between X and Y . WLOG assume X is Banach. Let
{yn} ⊂ Y be Cauchy. It follows that {xn} ∶= {T −1(yn)} ⊂ X is also Cauchy (simply multiply ϵ by
some c1). Hence xn → x for some x ∈ X. Then again yn → y ∶= T (x) (simply multiply ϵ by some
other c2).

(2) The identity map id ∶ X → X is an isomorphism between (X, ∥ ⋅ ∥1) and (X, ∥ ⋅ ∥2). Then it just
follows from (1).

(3) For ⇐Ô , assume Y is closed. Take {yn} ⊂ Y a Cauchy sequence in Y . It follows that it’s also
Cauchy in X. Hence yn → x for some x ∈ X. But since Y is closed, x ∈ Y and thus {yn} converges
in Y , i.e., Y is also Banach.

For Ô⇒ , suppose Y is Banach. Let {yn} ⊂ Y such that yn → x for some x ∈ X. We want to show
x ∈ Y . Since {yn} is Cauchy, it’s in particular convergent, so yn → y for some y ∈ Y . Then it follows
that, since limits are unique, x = y ∈ Y .

Future reference: Exercise 4.1.1, Closed Graph Theorem

(4) Trivial. Left as exercise.
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Lecture 10: 9/9 BCT & PUB

Example 4.1

(1) Let X ∶= Cb(Ω;K) ∶= {f ∶ Ω→ K ∣ f is continuous & bounded}. Then it’s Banach.

Proof. By Lemma 3.20.3 it suffices to show X is a closed subspace of bounded functions from
Ω→ K, i.e., Fb(Ω;K) from Exercise 3.17.
Let {fn} ⊂ X be such that fn → f for some f ∈ Fb(Ω;K), i.e., ∥fn − f∥sup → 0. We need to show
f is continuous. Fix ϵ > 0 and let N ∈ N be such that ∥fN − f∥sup < ϵ/3. Pick δ > 0 such that
∣fN(x) − fN(y)∣ < ϵ/3 whenever ∣x − y∣ < δ. Then if ∣x − y∣ < δ, we have

∣f(x) − f(y)∣ ⩽ ∣f(x) − fN(x)∣ + ∣fN(x) − fN(y)∣ + ∣fN(y) − f(y)∣ < ϵ.

(2) Let X ∶= C(K;K) where K ⊂ Kn is compact. Then X is Banach.

Proof. This follows from the fact that the continuous image of compact sets is bounded. Hence
C(K;K) = Cb(K;K). Then it follows from the result of (1).

(3) Let X ∶= C1([a, b]) where ∥f∥C1 ∶= ∥f∥L∞∥f ′∥L∞ . Then X is Banach. Future reference: Example 5.4

Proof. Take {fn} ⊂ X Cauchy. Then {fn},{f ′n} ⊂ C([a, b]) are both Cauchy (with respect to
∥ ⋅ ∥sup). Hence by (2), fn → f and f ′ → g in C([a, b]) for some f, g ∈ C([a, b]).
It remains show g = f ′ (then f ∈X and ∥fn − f∥C1 → 0). By FTC,

fn(x) = fn(0) + ∫
x

a
f ′n dx for all n ⩾ 0. (∆)

Note that, as n→∞,

∣∫
x

a
f ′n dx − ∫

x

a
g dx∣ ⩽ ∫

x

a
∣f ′n − g∣ dx ⩽ ∥f ′n − g∥sup(b − a)→ 0.

Hence, taking n→∞ on both sides of ∆ we get

f(x) = f(0) + ∫
x

a
g dx for all x Ô⇒ g = f ′.

(4) Kn, any finite-dimensional normed space, and ℓp(V ) for p ∈ [1,∞] where dimV < ∞, are all Banach.
Second one cf. Corollary 3.11. Future reference: Example 5.11.2

Remark

Most of the time when we talk about spaces of continuous functions, we talk about functions on a compact
set. If we pick X to be the space of continuous functions defined on an open interval, it’s not Banach. In
particular it’s not even a normed space: some continuous functions don’t even have finite supremum norm.
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Theorem 4.2: Baire Category Theorem, BCT

Let {Fi}i⩾1 be a countable collection of nowhere dense (closure having empty interior/containing no open
sets, cf. 425a PS9.5) subsets of a Banach space X, then

⋃
i⩾1

Fi ≠X.

In particular, if each Fi is closed and it so happens that ⋃i⩾1 Fi =X then at least one of the Fi’s is somewhere
dense.
Future reference: Open Mapping Theorem

Remark

Baire categorized sets into two categories: sets of 1st category refers to sets that can be expressed as
countable union of nowhere dense sets, and sets of 2nd category refers to sets that are not of 1st category.

Theorem 4.3: Banach-Steinhaus Theorem/Principle of Uniform Boundedness (PUB)

Let X be a Banach space and Y a normed space. Let S ⊂ B(X,Y ) be such that

sup
T ∈S
∥T (x)∥ <∞ for all x ∈X,

then sup
T ∈S
∥T ∥ <∞ as well. In otherwise, pointwise boundedness everywhere implies uniform boundedness[!!]

Future reference: Example 4.4 (continued), Example 5.23 (extended), Future reference: Lemma 11.13

Proof. Let Fi ∶= {x ∈X ∶ ∥T (x)∥ ⩽ i for all T ∈ S}. Note that Fi is closed for each i:

Fi = ⋂
T ∈S
{x ∈X ∶ ∥T (x)∥ ⩽ i}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
closed: T is continuous

and arbitrary intersection of closed sets is closed. Furthermore, X = ⋃
i⩾1

Fi since, given x ∈ X, we simply

need to take i ⩾ sup
T ∈S
∥T (x)∥ [which is doable by assumption sup <∞]. This is a countable union of closed

sets.
By BCT [in particular part], there exists n ∈ N such that Fn is somewhere dense; there exists some x0 ∈X
and r > 0 such that B(x0, r) ⊂ Fn. Hence, for every x ∈X with ∥x∥ < r, we have

∥T (x)∥ = ∥T(x0 + x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈B(x0,r)

+T (−x0)
²
∈B(x0,r)

∥ ⩽ 2n

Hence for all y ∈X and T ∈ S we have

∥T (y)∥ = T( r
2

y

∥y∥
²
=r/2<r

) ⋅ 2∥y∥
r
⩽ 4n∥y∥

r
Ô⇒ ∥T ∥ ⩽ 4n

r
.
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Example 4.4

Let X = P(I) ∶= {p ∶ I → R ∶ p(x) =
n

∑
i=0

aix
i, n ⩾ 0}. Define the norm of a polynomial as ∥p∥ ∶= max

i
∣ai∣. Now

define a sequence of operators: Tk(p) ∶=
k

∑
i=0

ai. (If k > n then define ai ∶= 0 for all n < i ⩽ k. It follows that

Tk ∈ B(X,R) because

∣Tk(p)∣ = ∣
k

∑
i=0

ai∣ ⩽
k

∑
i=1
∣ai∣ ⩽ (1 + k)∥p∥.

In particular, we’ve shown the operators are pointwise (polynomials as “points”) bounded with ∥Tk∥ ⩽ 1+k.
Next lecture we’ll show that ∥Tk∥ is precisely 1 + k which then implies these operators are NOT uniformly
bounded.
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Lecture 11: 9/11 OMT & IMT

Example 4.4: Continued

Continuing from last lecture, now we show ∥Tk∥ = 1 + k. Now consider a polynomial with coefficients 1, i.e.,

p ∶=
k

∑
i=0

xi. Then

∣Tk (
n

∑
i=0

xi) ∣ =
k

∑
i=0

1 = 1 + k = (1 + k)∥p∥.

Hence we don’t have uniform boundedness. By PUB we conclude X is not Banach.

Corollary 4.5: more on PUB

Let X be Banach and Y normed.

(1) If Tn ∈ B(X,Y ) are such that lim
n→∞

Tn(x) exists for every x ∈X, then T ∶= lim
n→∞

Tn ∈ B(X,Y ), i.e., also
bounded, with ∥T ∥ ⩽ lim inf

n→∞
Tn.

Proof. It is easy to see T ∈ L(X,Y ):

T (αx1 + βx2) = lim
n→∞

Tn(αx1 + βx2) = lim
n→∞

Tn(αx1) + lim
n→∞

Tn(βx2) = T (αx1) + T (αx2).

For boundedness, notice that, for each x ∈ X, the convergence of Tn(x) implies sup
n⩾1
∥Tn(x)∥ < ∞.

Therefore by PUB sup
n⩾1
∥Tn∥ <∞, and there exists M ∈ N such that ∥Tn∥ ⩽M for all n. Thus

∥T (x)∥ †= lim
n→∞

∥Tn(x)∥ ⩽M∥x∥ Ô⇒ ∥T ∥ ⩽M.

(† first equality from Proposition 2.6.1)

(2) If S ⊂ B(X,Y ) is such that sup
T ∈S
∥T ∥ =∞, then there exists x ∈X such that sup

T ∈S
∥T (x)∥ =∞.

Proof. Suppose not, i.e., for each x ∈X, sup
T ∈S
∥T (x)∥ <∞, then by PUB we also have sup

T ∈S
∥T ∥ <∞.

Theorem 4.6: Open-Mapping Theorem

(Banach & Schauder) Let X,Y be Banach spaces and T ∈ B(X,Y ) surjective. Then T is an open mapping,
i.e., T maps open sets in X to open sets in Y .

Proof. We will show that T (BX(0,1)) ⊃ BY (0, r) for some r > 0. Assuming this is true, then if U ⊂ X is open,
for any y ∈ T (U) there exists x ∈ U with T (x) = y, and there exists δ > 0 such that BX(x, δ) ⊂ U . Then

T (U) ⊃ T (BX(x, δ)) = T (x) + T (δBX(0,1))

= y + δT (BX(0,1))

= y + δBY (0, r)

= BY (y, δr), so T (U) is open.
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Now back to the proof showing T (BX(0,1)) ⊃ BY (0, r). The proof consists of two parts. For convenience we
define BX ∶= BX(0,1).

(1) We first show T (BX) contains BY (0, r) for some r > 0. Notice that, since T is surjective,

⋃
n⩾1

T (nBX) = Y = ⋃
n⩾1

nT (BX).

By BCT, for some n ⩾ 1 we know nT (BX) is somewhere dense. Hence there exists some y ∈ Y and r′ > 0
such that nT (BX) ⊃ BY (y, r′). It’s not hard to notice that T is convex and symmetric:

x, y ∈ Bx Ô⇒ λx + (1 − λ)y ∈ BX Ô⇒ λT (x) + (1 − λ)T (y) ∈ T (BX) ⊂ T (BX)

and
T (x) ∈ T (BX) Ô⇒ −T (x) ∈ T (BX).

It follows that BY (−y, r′) ⊂ nT (BX). Thus for all z with ∥z∥Y < r′ (i.e., z ∈ BY (0, r′)) we have

z = 1

2
(y + z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈nT (BX)

+ 1
2
(y − z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈nT (BX)

∈ nT (BX).

Hence
T (BX) ⊃ BY (0, r′/n) =∶ BY (0, r).

(2) Now we show that T (2BX) contains BY (0, r), and so T (BX) ⊃ BY (0, r/2) which would complete our
proof. Take y ∈ BY (0, r). By (1), there exists some x1 ∈ BX such that y − T (x1) ∈ BY (0, r/2) [there exists
some point in T (BX) arbitrarily close to y].

Iterating the same process again, there exists x2 ∈ BX(0, r/2) such that T (x2) is arbitrarily close to
y − T (x1), in particular y − T (x1) − T (x2) ∈ BY (0, r/4). In general, for all n ⩾ 3 there exists xn ∈
BX(0,1/2n−1) such that

y − T(
n

∑
i=1

xi) ∈ BY (0, r/2n).

Notice that ∑
i⩾1
∥xi∥ <∑

i⩾1
2−(i−1) = 2. By Lemma 3.18 this implies the convergence of ∑xi as X is Banach.

Assume xi → x for some x ∈ T . Then

∥y − T (x)∥ ⩽ ∥y − T(
n

∑
i=1

Tnxi)∥ + ∥T(x −
n

∑
i=1

xi)∥ ⩽
r

2n
+ ∥T ∥∥x −

n

∑
i=1

xi∥→ 0 as n→∞.

Hence y = T (x). On the other hand, from what we’ve just shown,

∥x∥ = lim
n→∞

∥
n

∑
i=1

xi∥ ⩽∑
i⩾1
∥xi∥ < 2,

which implies x ∈ 2BX . Therefore T (2BX) ⊃ BY (0, r).
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Theorem 4.7: Inverse Mapping Theorem/Banach Isomorphism Theorem

(Banach) Let X,Y be Banach spaces and T ∈ B(X,Y ) bijective. Then T −1 ∈ B(Y,X), i.e., the boundedness
of T −1 is guaranteed and so T is invertible.

Proof. First of all, T −1 exists and T −1 ∈ L(Y,X) by Lemma 1.17. By the Open Mapping Theorem
T (BX) ⊃ BY (0, r) for some r > 0. Applying T −1 to both sides gives BX ⊃ T −1(BY (0, r)). Then

∥T −1(y)∥ = ∥T −1 ( y

∥y∥
⋅ r
2
)∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈BY (0,r)

⋅2∥y∥
r
⩽ 2

r
∥y∥ Ô⇒ ∥T −1∥ ⩽ 2

r
.

Future reference: Corollary 5.1, Closed Graph Theorem, Lemma 8.6, σ(T ) “iff” statement
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Lecture 12: 9/14 CGT; Inner Product Spaces

Corollary 5.1

A direct reseult from IMT (easy proof taking idX as the bijection): If (X, ∥ ⋅ ∥1) and (X, ∥ ⋅ ∥2) are Banach,
and it so happens that there exists some c > 0 such that ∥x∥2 ⩽ c∥x∥1 for all x ∈ X, then the two norms are
equivalent, i.e., there exists c > 0 such that ∥x∥1 ⩽ c∥x∥2 for all x ∈X.

Example 5.2

Let X ∶= C([0,1]). Notice that
∥f∥1 = ∫

1

0
∣f ∣ ⩽ ∥f∥∞ for all f ∈ x.

Does there exist c > 0 such that ∥f∥∞ ⩽ c∥f∥1? The answer is no. Consider

fn(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n n ∈ [0, 1
n
]

0 otherwise
Ô⇒ ∥fn∥1 = 1 but ∥fn∥∞ = n.

This does not contradict IMT because (X, ∥ ⋅ ∥1) is not Banach.

Corollary 5.3: Closed Graph Theorem

Let X,Y be Banach and T ∈ L(X,Y ). Then

T ∈ B(X,Y ) ⇐⇒ G ∶= {(x,T (x)) ∈X × Y ∶ x ∈X} is closed,

i.e., graph of T is closed.

Proof. Ô⇒ : if (xn, T (xn)) → (x, y) ∈ X × Y , then clearly xn → x and T (xn) → y. Since T ∈ B(X,Y ) it
preserves sequential convergence so T (xn)→ T (x) Ô⇒ y = T (x). Hence (x, y) ∈ G.
⇐Ô : since G is closed and T linear, G is actually a closed subspace of X × Y (since X is). Then by

Lemma 3.20.3 G is also Banach (with norm ∥(x,T (x)∥X×Y ∶= ∥x∥X + ∥T (x)∥Y ). Now define

πx ∶ G→X to be the projection πx(x, y) ∶= x.

It follows that, when ∥(x,T (x)∥X×Y = ∥x∥X + ∥T (x)∥Y = 1, the supremum of ∥πx(x,T (x))∥ = ∥x∥X = 1.
Hence πx ∈ B(G,X) with ∥πx∥ = 1. Equally clear is that πx is bijective.
Since G and X are both Banach, by IMT π−1x ∈ B(X,G), so there exists c > 0 such that

∥π−1x (x)∥X×Y = ∥(x,T (x)∥X×Y = ∥x∥X + ∥T (x)∥Y ⩽ c∥x∥X

and so ∥T (x)∥Y ⩽ (c − 1)∥x∥X , i.e., T ∈ B(X,Y ).

36



9/14 CGT; Inner Product Spaces MATH 580 Intro to Functional Analysis - YQL

Example 5.4

Let X ∶= C1([0,1]) and Y = C([0,1]) and equip both with ∥ ⋅ ∥sup. Define T (f) ∶= f ′. Then the graph G of
T is closed. Reason: let (fn, f ′n) ∈ X × Y be such that fn → f and f ′n → g (in supremum norm) for some
f ∈X and g ∈ Y , i.e.,

∥(fn, f ′n) − (f, g)∥X×Y → 0.

By Example 4.1.3 this means g = f ′, and so (f, g) ∈X × Y . Hence G is closed.
However, T is unbounded by Example 3.1.2. This does not contradict the CGT because X is not Banach.

Inner Product Spaces

Definition 5.5

An inner product (dot product/scalar product) on vector space V is a map (⋅, ⋅) ∶ V ×V → K such that

(1) (x,x) ⩾ 0 with (x,x) = 0 ⇐⇒ x = 0,

(2) (linear with respect to the first argument) (x + αy, z) = (x, z) + α(y, z), and

(3) (conjugate linear w.r.t. the second arg) (x, y) = (y, x), i.e., (x, y + αz) = (x, y) + α(x, z).

If V has this inner product property, (V, (⋅, ⋅)) is called an inner product space.

Example 5.6

(1) V = Rn and (x, y) ∶=
n

∑
i=1

xiyi defines an inner product space. Similarly: V = Cn and (x, y) ∶=
n

∑
i=1

xiyi.

Future reference: Example 5.11.1

(2) ** Let V = ℓ2 and (x, y) ∶= ∑
i⩾1

xiyi (component-wise conjugate product of sequences). This is a key

example of an infinite-dimensional inner product space.

Lemma 5.7

Inner product induces a norm, i.e., ∥x∥ ∶=
√
(x,x) defines a norm. In addition, with such norm, for all

x, y ∈ V , we have the Cauchy-Schwarz Inequality:

∣(x, y)∣ ⩽ ∥x∥∥y∥.

Proof of Cauchy-Schwarz. Observe that

0
(1)
⩽ (x − λy, x − λy) = (x,x) − λ(y, x) − λ(x, y) + ∣λ∣2(y, y). (∆)
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If y = 0 the original Cauchy-Schwarz Inequality is trivial. Otherwise we may define λ ∶= (x, y)
∥y∥2

. Then

λ(y, x) = λ(x, y) = ∣(x, y)∣
2

∥y∥2
, same thing for λ(x, y), and ∣λ∣2(y, y) = (x, y)

2

∥y∥4
⋅ ∥y∥2 = (x, y)

2

∥y∥2
. Then ∆

becomes
0 ⩽ ∥x∥2 − ∣(x, y)∣

2

∥y∥2
Ô⇒ ∣(x, y)∣2 ⩽ ∥x∥2∥y∥2 Ô⇒ ∣(x, y)∣ ⩽ ∥x∥∥y∥.

Lemma 5.8: Parallelogram Law

∥ ⋅ ∥ is (can be) induced by an inner product if and only if it satisfies the parallelogram law:

∥x + y∥2 + ∥x − y∥2 = 2 (∥x∥2 + ∥y∥2) .

If so, then the inner product is given by the polarization identity

4(x, y) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∥x + y∥2 − ∥x − y∥2 if K = R

∥x + y2∥ − ∥x − y∥2 + i(∥x + iy∥2 − ∥x − iy∥2) if K = C
(polarization identity)

Proof. Ô⇒ is obvious: since ∥x∥2 = (x,x), we get

∥x + y∥2 + ∥x − y∥2 = (x + y, x + y) + (x − y, x − y)

= ∥x∥2 + (x, y) + (y, x) + ∥y∥2 + ∥x∥2 − (x, y) − (y, x) + ∥y∥2

= 2(∥x∥2 + ∥y∥2).

For ⇐Ô : this is called the Jordan & von Neumann Theorem. We need to show that

(1) the polarization identity satisfies the properties of inner product, and

(2) ∥x∥2 = (x,x) based on the polarization identity.

Left as an exercise.

Future reference: Example 5.11.2, Lemma 6.9

Remark

Unless specified, we will be assuming that ∥ ⋅ ∥ is induced by some inner product.

Lemma 5.9

Let V be an inner product space. If xn → x and yn → y in V , then

(xn, yn)→ (x, y).

This shows that the inner products are continuous with respect to strong convergence.
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Proof. Once again we use the “add and subtract” trick, cf. Lemma 2.6.4:

∣(xn, yn) − (x, y)∣ ⩽ ∣(xn, yn) − (x, yn)∣ + ∣(x, yn) − (x, y)∣

= ∣(xn − x, yn)∣ + ∣(x, yn − y)∣

⩽ ∥xn − x∥∥yn∥ + ∥x∥∥yn − y∥ (Cauchy-Schwarz)

→ 0 since ∥xn∥, ∥yn∥ are bounded and the other two terms → 0.

Future reference: Theorem 5.21, Example 6.8, Lemma 6.10
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Lecture 13: 9/16 Hilbert Spaces; Schauder Basis; Bessel & Parseval

Definition 5.10

A Hilbert space is an inner product space that is Banach, i.e., complete with respect to the norm induced
by the inner product.

Example 5.11

(1) Rn, Cn are Hilbert. Cf. Example 5.6.1.

(2) Among ℓp spaces, only ℓ2 is Hilbert (though all are Banach, cf. Example 4.1.4). Notice that ℓp norm
is induced by an inner product if and only if p = 2, where

(x, y) ∶=∑
i⩾1

xiyi.

Proof. Consider x ∶= (0,1,0, . . . ) and y ∶= (1,0,0, . . . ). Then x + y = (1,1,0, . . . ) and x − y =
(−1,1,0, . . . ) and so ∥x + y∥ℓp = ∥x − y∥ℓp = 21/p. On the other hand, 2(∥x∥2 + ∥y∥2) = 4. Hence
Parallelogram Law holds if and only if 2 ⋅ 22/p = 4 ⇐⇒ p = 2.

(3) Among Lp spaces, only L2 is Hilbert, with (f, g) ∶= ∫ fg.

Definition 5.12

A sequence {ei}i⩾1 is a Schauder basis for a normed space (X, ∥ ⋅ ∥) if every, for all x ∈ X, there exists a
unique sequence {αi}i⩾1 ∈ K such that

x =∑
i⩾1

αiei, i.e., ∥x −
n

∑
i=1

αiei∥→ 0.

Remark

Note that any Schauder basis is linearly independent: if
n

∑
i=1

αiei = 0 is one representation of 0 (with

later αi’s being 0), it has to be the representation of 0 by definition. Hence αi’s are all 0’s.

Example 5.13

{e(i)}i⩾1 is a Schauder basis for ℓp where p <∞ but not p =∞.

Proof. For p <∞, recall from Example 2.8.3 that c00 is dense in ℓp when p <∞. It follows that

x ∶= (x1, x2, . . . ) =∑
i⩾1

xie
(i).
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For p =∞, suppose {e(i)}i⩾1 is a Schauder basis of ℓ∞. Then span{e(i)} = ℓ∞. Since {e(i)} is countable,
by Lemma 2.10.3 this means ℓ∞ is separable, but this contradicts Example 2.11.3.

Definition 5.14

Let V be an inner product space.

(1) x ⊥ y (x is orthogonal to y) if (x, y) = 0.

(2) E ⊂ V is orthonormal if (e1, e2) = 0 for all distinct e1, e2 ∈ E and also ∥e∥ = 1 for all e ∈ E.

Example 5.15

(1) {e(i)}i⩾1 is orthonormal in ℓ2.

(2) {ek ∶= eikx/
√
2π}k∈Z is orthonormal in L2(−π,π):

(em, en) =
1

2π
∫

π

−π
eimxeinx dx = 1

2π
∫

π

−π
ei(m−n)x dx = δmn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 m = n

0 m ≠ n

Future reference: Example 5.23

(3) {1} ∪ {
√
2 coskπx}k⩾1 is orthonormal in L2(0,1): (clearly 1 doesn’t matter) if m = n then

2∫
1

0
cos2(kπx) dx = ∫

1

0
1 + cos(2kπx) dx = 1

and if m ≠ n then

∫
1

0
cos(mπx) cos(nπx) dx = 1

2
∫

1

0
cos((m + n)πx) + cos((m − n)πx) dx = 0.

Lemma 5.16: Generalized Pythagorean Theorem

If {ei}i⩾0 is orthonormal (in some inner product space) then ∥
n

∑
i=1

αiei∥
2

=
n

∑
i=1
∣αi∣2.

Proof. The LHS is induced by inner product so

∥
n

∑
i=1

αiei∥
2

=
⎛
⎝

n

∑
i=1

αiei,
n

∑
j=1

αjej
⎞
⎠
=

n

∑
i=1

n

∑
j=1

αiαj (ei, ej)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=δij

=
n

∑
i=1

αiαi = RHS.

Future reference: Parseval’s Identity, Hilbert-Schmidt Theorem
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Lemma 5.17: Bessel’s Inequality

Let {ei} be orthonormal in V . Then ∑
i⩾1
∣(x, ei)∣2 ⩽ ∥x∥2.

Proof. Let xn ∶=
n

∑
i=1
(x, ei)ei. By the Generalized Pythagorean Theorem, ∥xn∥2 =

n

∑
i=1
∣(x, ei)∣2. It follows

that

0 ⩽ ∥x − xn∥2 = (x − xn, x − xn)

= ∥x∥2 − (xn, x) − (x,xn) + ∥xn∥2

= ∥x∥2 − (
n

∑
i=1
(x, ei)ei, x) − (x,

n

∑
i=1
(x, ei)ei) + ∥xn∥2

= ∥x∥2 −
n

∑
i=1
[(x, ei)(ei, x)] −

n

∑
i=1
[(x, ei)(ei, x)] + ∥xn∥2

= ∥x∥2 − 2
n

∑
i=1
∣(x, ei)∣2 + ∥xn∥2

= ∥x∥2 − ∥xn∥2

holds for all n ∈ N.
Future reference: Corollary 5.19, Theorem 5.21, Example 5.23 Extended, Example 11.12

Lemma 5.18: Parseval’s Identity

Let {ei}i⩾1 be orthonormal in a Hilbert space H (we need both inner product and completeness). Then

∑
i⩾1

αiei converges ⇐⇒ ∑
i⩾1
∣αi∣2 <∞.

If this is true, then
∥∑
i⩾1

αiei∥
2

=∑
i⩾1
∣αi∣2. (Parseval’s Identity)

Compare this with Lemma 3.18 (absolutely convergent series converges).

Proof. Ô⇒ : let x ∈H be such that
n

∑
i=1

αiei → x. Then, by Generalized Pythagorean Theorem

∥
n

∑
i=1

αiei∥
2
P=

n

∑
i=1
∣αi∣2

and taking n→∞ gives
∥x∥2 =∑

i⩾1
∣αi∣2 <∞.

⇐Ô : this follows from Lemma 3.18 since Hilbert spaces are Banach.

Future reference: Corollary 5.19, Theorem 5.21, Theorem 6.6, Example 6.8, Lemma 6.13
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Corollary 5.19

Let {ei}i⩾1 be orthonormal in H. Then

∑
i⩾1
(x, ei)ei converges for all x ∈H.

Quick proof: by Bessel’s Inequality, ∑
i⩾1
∣(x, ei)∣2 < ∞, and so by Parseval’s Identity this implies the conver-

gence of
n

∑
i=1
(x, ei)ei, i.e., ∑

i⩾1
(x, ei)ei <∞.

Example 5.20

Let ei ∶= e(2i) ∈ ℓ2. Then given x = (x1, x2, . . . ), we have ∑
i⩾1
(x, ei)ei = (0, x2,0, x4, . . . ). It follows that the

convergence of ∑
i⩾1
(x, ei)ei does not always imply convergence to x itself. To be discussed next lecture.
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Lecture 14: 9/18 Orthonormal Basis; Weierstraß Approximation Thm

Theorem 5.21: Orthonormal Schauder Basis in Hilbert Space

Let H be Hilbert and {ei}i⩾1 be orthonormal. Then TFAE:

(1) {ei} forms a Schauder basis, in particular an orthonormal basis.

(2) For all x ∈H, ∑
i⩾1
(x, ei)ei → x.

(3) The Parseval’s Identity holds, i.e., ∥x∥2 =∑
i⩾1
∣(x, ei)∣2 for all x ∈H.

(4) If [(x, ei) = 0 for all i’s] then x = 0.

(5) The span of {ei} is dense, i.e., span{ei} =H.

Future reference: Example 5.23, Proposition 6.5, Theorem 6.6, Example 6.8, Lemma 9.15, Corollary
13.2

Proof. (1)Ô⇒ (2): by definition x =∑
i⩾1

αiei for some αi ∈ K. Then, by Lemma 5.9 (inner products are continuous

w.r.t. strong convergence) we can take the limit out:

(x, ek) = (∑
i⩾1

αiei, ek) = ( lim
n→∞

n

∑
i=1

αiei, ek)
∗= lim

n→∞

n

∑
i=1
(αiei, ek) =∑

i⩾1
αi (ei, ek)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=δik

= αk. (∆)

From this it follows that ∑
i⩾1
(x, ei)ei =∑

i⩾1
αiei = x by assumption.

(2) Ô⇒ (1): take x ∈ H so there exists some expansion ∑
i⩾1
(x, ei)ei. By ∆ we know the expansion ∑

i⩾1
(x, ei)ei

corresponds uniquely to ∑
i⩾1

αiei.

(2) Ô⇒ (3): this is nothing but Parseval’s Identity. For all x ∈ H, ∑
i⩾1
(x, ei)ei converges, so ∑

i⩾1
∣(x, ei)∣2 is the

same as ∥∑
i⩾1
(x, ei)ei∥

2

= ∥x∥2 by (2)’s assumption.

(3)Ô⇒ (4): trivial by definition of norm since ∑
i⩾1

0 = 0 = ∥x∥2.

(4)Ô⇒ (2): let x ∈H be given, and define yn ∶= x−
n

∑
i=1
(x, ei)ei. Recall from Bessel’s Inequality that∑

i⩾1
∣(x, ei)∣2 ⩽

∥x∥2. Hence
n

∑
i=m
∣(x, ei)∣2 can be made arbitrarily small, and thus {yn} is Cauchy:

∥yn − ym∥2 = ∥
n

∑
i=m
(x, ei)ei∥

2
P=

n

∑
i=m
∣(x, ei)∣2 < ϵ.

Since H is Hilbert, {yn}→ y for some y ∈H. Since inner product is continuous, for all i we have

(y, ei) = lim
n→∞
(yn, ei) = (x, ei) −

n

∑
j=1
(x, ej) (ej , ei)

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=δij

= 0 if j ⩾ i.

Then by (4)’s assumption y = 0, and the construction of yn implies x =∑
i⩾1
(x, ei)ei.
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(2)Ô⇒ (5): trivial. Given x ∈H, then ∥x −
n

∑
i=1
(x, ei)ei∥→ 0 by (2), but all elements of form

n

∑
i=1
(x, ei)ei belongs

to the span of {ei}. Hence x is a limit point of span{ei}.
(5) Ô⇒ (4): suppose (x, ei) = 0 for all i. By (5), let {xn} ⊂ span{ei} be such that xn → x. Then (again since
inner product is continuous)

∥x∥2 = (x,x) = lim
n→∞
(xn
¯
∈ span{ei}

, x) = 0 Ô⇒ x = 0.

Example 5.22

{e(i)}i⩾1 is an orthonormal basis for ℓ2. This is immediate if we use (4) above. Also immediate since this
basis is dense in ℓ2, i.e., (5).

Example 5.23

{ek ∶= eikx/
√
2π} is an orthonormal basis for L2(−π,π). By Example 5.15.2 we know this set is orthonormal.

It remains to show it is a Schauder basis, in particular the density of its span. We’ll finish this proof later,
but first, some lemmas. Also refer to Example 5.23 (extended).
Future reference: Example 12.4.2, Example 13.11

Lemma 5.24

C([a, b]) is dense in Lp for p ∈ [1,∞) but not in L∞.
Future reference: Example 12.4.2, Theorem 13.9

Proof. Let f ∈ Lp and ϵ > 0 be given, and define g ∶=
n

∑
i=1

αiχIi (simple functions) such that ∥f −g∥p < ϵ/2. Now we

can approximate g by a continuous function g ∈ Lp by “shrinking” each Ii by some δ > 0 and interpolating them,
i.e., creating new In’s with δ/2 truncated on both sides. Then we let g and g agree on each In’ and connect the
endpoints of one I ′n with another (and connecting to 0 for the leftmost and rightmost intervals, i.e., I ′1 and I ′n).

Note that ∥g∥∞ ⩽
n

∑
i=1
∣αi∣ <∞. Hence g ∈ Lp and the same applies to g. Hence ∣g − g∣ ⩽ 2∥g∥∞ a.e. Notice

∥g − g∥pp = ∫
b

a
∣g − g∣p = ∫

[a,b]∖⋃ I′n

(2∥g∥∞)p

where the measure of [a, b] ∖
n

⋃
i=1

I ′i can be bounded by nδ. Hence

∥g − g∥pp ⩽ nδ(2∥g∥∞)p < (
ϵ

2
)
p

for sufficiently small δ,

and we are done.
Future reference: Example 5.23
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Lemma 5.25: Weierstraß Approximation Theorem

Given f ∈ C([0,1]),

Pn(x) ∶=
n

∑
i=0

f (k/n) (n
k
)xk(1 − x)n−k

approximates f in ∥ ⋅ ∥∞, i.e., ∥f − Pn∥∞ → 0. These polynomials are called Bernstein polynomials.

Proof. For convenience define rk(x) ∶= (
n

k
)xk(1 − x)n−k. First, some claims of rk(x):

(1) Recall from the binomial expansion

(x + y)n =
n

∑
k=0
(n
k
)xkyn−k. (1)

Differentiating with respect to x and then multiplying by x give

nx(x + y)n−1 =
n

∑
k=0
(n
k
)kxkyn−k. (2)

Differentiating the original binomial expansion twice and multiplying by x2 give

n(n − 1)(x + y)n−2 =
n

∑
k=0
(n
k
)k(k − 1)xkyn−k (3)

Letting y ∶= 1 − x gives rk(x) = (
n

k
)xkyn−k. Then from (1), (2), and (3) we get

n

∑
k=0

rk(x) = 1,
n

∑
k=0

krk(x) = nx, and
n

∑
k=0

k(k − 1)rk(x) = n(n − 1)x2. (∆)

(2) Second claim:
n

∑
k=0
(k − nx)2rk(x) = nx(1 − x). (∇)

Rewriting (k − nx)2 = k2 − 2knx + n2x2 = k(k − 1) + k − 2knx + n2x2 and using ∆, we get

n

∑
k=0
(k − nx)2rk(x) = n(n − 1)x2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
third

+nx − 2nx ⋅ nx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

second

+n2x2

±
first

= nx(1 − x).

To be continued next lecture.
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Lecture 15: 9/21 More on WAT; Trig Approximations; Gram-Schmidt

Proof of Weierstraß Approximation Theorem (continued). Since f ∈ C([0,1]) it is bounded. Let M > 0 be such
that ∣f(x)∣ ⩽ M for all x, and fix ϵ > 0. In addition, f is uniformly continuous, so there exists δ > 0 such that
∣f(x) − f(y)∣ < ϵ/2 whenever ∣x − y∣ < δ. Since

∣f(x) − Pn(x)∣ = ∣1 ⋅ f(x) − Pn(x)∣

= ∣
n

∑
k=0

f(x)rk(x) −
n

∑
k=0

f (k/n) rk(x)∣

= ∣
n

∑
k=0

rk(x)(f(x) − f(k/n))∣

=
n

∑
k=0

rk(x)∣f(x) − f(k/n)∣

=
n

∑
k=0
∣x− k

n ∣<δ

rk(x)∣f(x) − f(k/n)∣ +
n

∑
k=0
∣x− k

n ∣⩾δ

rk(x)∣f(x) − f(k/n)∣

<
n

∑
k=0
∣x− k

n ∣<δ

rk(x)
ϵ

2
+

n

∑
k=0
∣x− k

n ∣⩾δ

rk(x)(2M ⋅ 1) (uniform continuity & boundedness of f)

⩽
n

∑
k=0
∣x− k

n ∣<δ

rk(x)
ϵ

2
+

n

∑
k=0
∣x− k

n ∣⩾δ

rk(x) ⋅ 2M ⋅
∣k − nx∣2

n2δ2
(since 1 ⩽ ( ∣k/n − x∣

δ
)
2

= ∣k − nx∣
2

n2δ2
)

⩽ ϵ

2

n

∑
k=0

rk(x) +
2M

n2δ2

n

∑
k=0
∣k − nx∣2rk(x)

= ϵ

2
+ 2Mx(1 − x)

nδ2
(by Claims 1 & 2)

⩽ ϵ

2
+ M

2nδ2
< ϵ

2
+ ϵ

2
= ϵ for sufficiently large n.

Corollary 6.1

The set of polynomials, P ([a, b]) ⊂ C([a, b]), is dense in C([a, b]). Future reference: Example 12.4.2

Theorem 6.2

If K ⊂ C is compact, then PC ∶= {
n

∑
i=0

aiz
i ∶ ai ∈ C} is dense in C(K;C). This can be proven by Stone-

Weierstraß Theorem, a more general case of the WAT.

Corollary 6.3

(1) Let X ∶= {f ∈ C([−π,π];C) ∶ f(−π) = f(π)}, the set of all continuous complex functions on [−π,π]
that agree at endpoints, then

T ∶= {
n

∑
k=−n

cke
ikx ∶ ck ∈ C, n ∈ N},
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the set of trigonometric polynomials of above form, is dense in X.

Proof. Let f ∈ X and ϵ > 0 be given. Let g ∶ S1 → C (unit circle in complex plane as domain) be
such that g(eix) = f(x). Then g is continuous [why?]. Then by Theorem 6.2 there exists n ∈ N and
{ci} ⊂ C such that

∣g(z) −
n

∑
i=−n

ciz
i∣ < ϵ for all z ∈ S1.

Taking z = eix gives
∣f(x) −

n

∑
i=−n

cie
ikx∣ < ϵ for all x ∈ [−π,π].

(2) If f ∈X is real then it can be approximated by a real trigonometric polynomial, i.e., from T above but
such that ck = c−k.

Proof. Notice that if we write cn = an + ibn then

cne
inx + c−nei(−n)x = (an + ibn)(cosnx + i sinnx) + (a−n + ib−n)(cosnx − i sinnx)

= cosnx(an + a−n) − sinnx(bn − b−n) + i(. . . )

Ô⇒ Re(cneinx + c−nei(−n)x) = cosnx(an + a−n) − sinnx(bn − b−n).

On the other hand, notice that

Re(cneinx + c−nei(−n)x) = dneinx + d−nei(−n)x where dk ∶=
ak + a−k

2
+ i bk − b−k

2

(and so d0 =Re(c0)). It follows that

∣f(x) −
n

∑
k=−n

dke
ikx∣ < ϵ,

and in particular,
n

∑
k=−n

dke
ikx is a real trigonometric polynomial since dk = d−k.

Proof of Example 5.23. Recall that we need to show the density of span of {eikx/
√
2π} in L2(−π,π). Take

f ∈ L2(−π,π) and let ϵ > 0 be given. Let g ∈ C0([−π,π]) (continuous functions with zero at endpoints) be
such that ∥f − g∥L2 < ϵ/2 (recall C([a, b]) is dense in L2 by Lemma 5.24). Then let h ∈ span{eikx} such that
∥h − g∥sup < ϵ/(2

√
2π) so that ∥h − g∥L2 < ϵ/2. Then ∥h − f∥L2 < ϵ, as desired.

Remark

This exercise showed that every f ∈ L2 is the limit of its Fourier series. Cf. Theorem 5.21.2. In some
sense it’s a “natural” convergence of Fourier series. This holds not only for L2 but also for any Lp with
p <∞. On the other hand, Fourier series might not converge pointwise even for continuous f : see PS3.

48



9/21 More on WAT; Trig Approximations; Gram-Schmidt MATH 580 Intro to Functional Analysis - YQL

Separability of Hilbert Spaces

We will soon show that a Hilbert space H has orthonormal Schauder bases if and only if it is separable, and if yes
then H ≡ L2 (isometrically isomorphic).

Lemma 6.4: Gram-Schmidt Orthogonalization

Let E ∶= {ei}i⩾1 be a countable linearly independent set of an inner product space V . Then there exists
Ẽ ∶= {ẽi}i⩾1 that is linearly independent and orthonormal with span(E) = span(Ẽ).

Proof. We use the norm induced by the inner product. Let ẽi ∶= ei/∥ei∥, and for all n ⩾ 1 define

ẽn+1 ∶=
e′n+1
∥e′n+1∥

where e′n+1 = en+1 −
n

∑
i=1
(en+1, ẽi)ẽi.

It follows that (e′n+1, ẽi) = 0 for all i ⩽ n. The rest are familiar and thus omitted.

Future reference: Proposition 6.5, Example 6.8, Problem 7.4

Proposition 6.5

Let H be an infinite-dimensional Hilbert space. Then H is separable if and only if it has an (orthonormal
Schauder) basis.
Future reference: Theorem 6.6, Proposition 9.16, Corollary 13.2

Proof. ⇐Ô is obvious by the very definition of separability (Lemma 2.10) and that the basis is countable.
Ô⇒ : let E′ = {e′i} be a countable dense set. First we make E′ linearly independent by deleting any
e′n that is a linear combination of {e′1, e′2, . . . , e′n−1}. Define this new set to be E′′. Clearly span(E′′) =
span(E′). By Gram-Schmidt we obtain E, a linearly independent and orthonormal set with span(E) =H.
Hence E is a Schauder basis by Theorem 5.21 parts 1/5.
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Lecture 16: 9/23 Separable Hilbert Spaces; Closest Points

Example 5.23: Even more on Example 5.23!

Take p ∈ (1,∞) and define

Snf ∶=
n

∑
i=−n
(f, ei)ei

(the partial Fourier expansion until order n), where (f, ei) ∶= ∫
π

−π
fei (this is well-defined because f ∈ Lp

and also ei ∈ L∞ bounded). Then

Snf → f as n→∞ in Lp if and only if ∥Snf∥Lp ⩽ cp∥f∥Lp ,

for some cp depending only on p, i.e., Sn are uniformly bounded.

Proof. The case p = 2 is immediate by Bessel’s Inequality:

∣
n

∑
i=−n
(f, ei)ei∣

2

⩽ [
n

∑
i=−n
∣(f, ei)ei∣]

2

⩽
n

∑
i=−n
∣(f, ei)∣2

(B)
⩽ ∣f ∣2

so ∥Snf∥2L2 ⩽ ∥f∥2L2 Ô⇒ ∥Snf∥L2 ⩽ ∥f∥L2 .
For other cases, notice that Ô⇒ follows directly from PUB. The convergence of Snf implies sup ∥Snf∥ <
∞.
For ⇐Ô , let ϵ > 0 be given. Let g ∈ span{eikx} be such that ∥f − g∥Lp < ϵ. Then g = Sng for sufficiently
large n (as long as n ⩾ degg). For large n’s, we have

∥f − Snf∥ ⩽ ∥f − Sng∥ + ∥Sng − Snf∥

= ∥f − Sng∥ + ∥Sn(f − g)∥

< ϵ + ϵ ⋅ some constant since Sn is bounded.

This shows the convergence.

Theorem 6.6

Any separable, infinite-dimensional Hilbert space H (over K) ≡ ℓ2(K) (isometrically isomorphic).

Proof. Let {ei}i⩾1 be an orthonormal Schauder basis of H (by Proposition 6.5). Define T ∶H → ℓ2 by

T (x) ∶= ((x, e1), (x, e2), . . . ) the sequence of Fourier coefficients.

Notice that T is onto by ⇐Ô of Lemma 5.18: any such square-summable sequence in ℓ2 leads to
the convergence of ∑

i⩾1
(x, ei)ei in H. It is also injective by Theorem 5.21.4 (suppose T (x) = T (y) then

T (x) − T (y) = 0 and the result follows from the Theorem). Hence T −1 exists and is defined as

T −1(α1, α2, . . . ) =∑
i⩾1

αiei.
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On the other hand, notice the following (by Parseval) and we are done:

∥x∥H
P= (∑

i⩾1
∣(x, ei)∣2)

1/2

= ∥T (x)∥ℓ2 .

Example 6.7

Most Hilbert spaces (in applications) are separable (e.g. L2(Ω)), but non-separable Hilbert spaces do exist.
The following is an example:
Let Γ be an uncountable set and define H ∶= {f ∶ Γ → R ∶ f(γ) = 0 a.e.}. Define ∥f∥2H ∶= ∑

γ∈Γ
∣f(γ)∣2. Then

H is a Hilbert space just like L2 (if fn is a sequence then the set of points at which all fn’s are nonzero is
countable). Notice that

∥1γ − 1γ′∥ = 2 for all γ ≠ γ′.

Similar to how ℓ∞ are not separable, if we were to approximate H with a dense set, we have to approximate
all these indicator functions. The uncountability of Γ implies the uncountability of this dense set, and by
Lemma 2.10 (definition) this means H is not separable.

Example 6.8

Theorem 5.21.5 breaks down if we drop the assumption on the orthonormality of {ei}; see following.
Let {ei} be an orthonormal Schauder basis in H and let

fn ∶=
n

∑
i=1

ei
i
.

Notice that span{fn} =H because {fn} can be obtained by applying Gram-Schmidt on {ei}. However, {fn}
is not a Schauder basis (not orthonormal in fact, either).

Proof. Suppose {fn} is a Schauder basis and let x ∶= ∑
i⩾1

ei/i (this is indeed in H, as guaranteed by

Parseval’s Identity). By assumption there exists {αi} ⊂ K such that x = ∑
n⩾1

αnfn. Then

1

k
= 1

k
(ek, ek) = (∑

i⩾1

ei
i
, ek) = (x, ek) = (∑

n⩾1
αnfn, ek) .

By Lemma 5.9, we can take the sums out and get

1

k
= ∑

n⩾1
αn(fn, ek) =

1

k

∞
∑
n⩾k

αn since (fn, ek) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/k n ⩾ k

0 n < k
.

This means ∑
n⩾k

αn = 1 for all k’s, in which case we obtain ∑0 = 1, clearly a contradiction.
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Closest Points and Approximation in H

Lemma 6.9: Closest points

Let H be Hilbert and A ⊂H nonempty, convex, and closed. Let x ∈H ∖A. We define the distance

dist(x, d) ∶= inf
a∈A
∥x − a∥.

The lemma states that there exists a unique â ∈ A that attains this infimum. Moreover, for any other a ∈ A,

Re(x − â, a − â) ⩽ 0.

(Relate this with having obtuse angle in Rn where the cosine of the angle gives a negative inner product.)
Future reference: Proposition 6.11, distance functionals

Proof. First notice that d > 0. (Otherwise there exists {an} converging to x. By the closedness of A this means
x ∈ A, contradiction. Now let an ∈ A be such that ∥x − an∥2 ⩽ d2 + 1/n. Parallelogram Law gives

2(∥x − an∥2 + ∥x + am∥2) = ∥2x − an − am∥2 + ∥am + an∥2

whereas
∥x − an∥2 ⩽ d2 +

1

n
and ∥x − am∥2 ⩽ d2 +

1

m
.

This gives

∥am − an∥2 ⩽ 4d2 +
2

m
+ 2

n
− 4∥x − (am + an)/2∥2.

By the convexity of A, (am + an)/2 ∈ A and so ∥x − (am + an)/2∥2 ⩾ d2. Hence

∥am − an∥2 ⩽
2

m
+ 2

n
→ 0 as m,n→∞.

Thus {an} is Cauchy and there exists some â ∈H to which {an} converges. Since A is closed, â ∈ A. It remains
to show ∥x − â∥ = d: we have d ⩽ ∥x − â∥ by definition and ∥x − â∥2 ⩽ d2. Hence the claim.
Uniqueness and the “obtuse angle” parts to be continued next lecture.
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Lecture 17: 9/25 Orthogonal Complement; Orthogonal Projection

Proof: continuing on Lemma 6.9. For the “obtuse angle” part: let a ∈ A. Convexness implies (1 − t)â + ta ∈ A
for all t ∈ [0,1]. Then

∥x − â∥2 = d2 ⩽ ∥x − (1 − t)â − ta∥2

= ∥(x − â) + t(â − a)∥2

= ∥x − â∥2 + 2tRe(x − â, â − a) + t2∥â − a∥2

= ∥x − â∥2 − 2tRe(x − â, a − â) + t2∥â − a∥2.

This means t2∥a2 − a∥2 ⩾ 2tRe(x − â, a − â). Since t ≫ t2 when sufficiently small, the only way to ensure this
inequity holds for all t ∈ [0,1] is if Re(x − â, a − â) ⩽ 0.
Now for uniqueness of â: suppose there is some other a′ ∈ A with ∥x − a′∥ = d. From above we know Re(x −
â, a′ − â) ⩽ 0 and Re(x − a′, â − a′) =Re(a′ − x, a′ − â) ⩽ 0. Adding the two gives

Re(x − â, a′ − â) +Re(a′ − x, a′ − â) =Re(a′ − â, a′ − â
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∥⋅∥2

) ⩽ 0 Ô⇒ a′ = â.

Remark

If we put v ∶= x − â then
Re(a, v) + d2 ⩽Re(x, v) for all a ∈ A

since

Re(x, v) =Re(x − â + â, v)

=Re(v, v) +Re(â, v)

= d2 +Re(â, x − â)

⩾ d2 +Re(a, x − â).

(The last step follows from that Re(a − â, x − â) ⩽ 0 which implies Re(a, x − â) ⩽Re(â, x − â).)

Lemma 6.10

Let H be Hilbert and X ⊂H. Then the orthogonal complement of X, defined as

X⊥ ∶= {u ∈H ∶ (u,x) = 0 for all x ∈X},

is a closed subspace.
Future reference: Lemma 6.12, Riesz Representation Theorem
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Proof. Subspace: (u + αv,x) = (u,x) + α(v, x) = 0 whenever u, v ∈X⊥.
Closed: if {un} ⊂X⊥ is such that un → u ∈H, then (by Lemma 5.9)

(u,x) = ( lim
n→∞

un, x) = lim
n→∞
(un, x) = 0.

Proposition 6.11

Suppose U is a closed subspace of Hilbert space H. Then for all x ∈ H there exists a unique u ∈ U and
v ∈ U⊥ such that x = u + v where u happens to the closed point to x in U . The map Pu(x) ∶= u is called the
orthogonal projection onto U ; it satisfies P 2

u = Pu (Pu is idempotent) and ∥Pu∥ = 1.
Future reference: Lemma 6.12, Lemma 7.1, Proposition 6.11 (continued), Riesz Representation Theorem,
distance functionals, Corollary 13.2

Proof. A closed subspace is always convex since λu + (1 − λ)v is a linearly combination of u and v.
Therefore by Lemma 6.9 there exists a unique u ∈ U closest to x. The proof roughly consists of three
parts.

(1) Existence with v ∶= x−u ∈ U⊥: take any w ∈ U . It follows that if H is a real Hilbert space u±w ∈ U ;
otherwise (if K = C), in addition to the previous ones, we have u ± iw ∈ U . By Lemma 6.9 we have
Re(x − u,u ± w − u) = Re(x − u,±w) ⩽ 0 Ô⇒ Re(x − u,w) = 0. If H is real then we are done
since Re(x − u,w) = (x − u,w) = 0 Ô⇒ v ∈ U⊥. If K = C, notice that Re(x − u,±iw) = 0 gives
I(x − u,w) = 0 so both the real and imaginary parts of (x − u,w) = 0. Again we conclude that
v = x − u ∈ U⊥.

(2) Uniqueness: suppose x = u1 + v1 = u2 + v2. Then u1 = u2 = v2 − v1 which implies

∥u1 − u2∥2 = (u1 − u2, u1 − u2) = (u1 − u2, v2 − v1) = (u1, v2) + ⋅ ⋅ ⋅ = 0.

Hence u1 = u2 and likewise v1 = v2.

(3) Properties of Pu: P 2
u(x) = Pu(u + v) = u = Pu(x). For the norm:

∥x∥2 = ∥u + v∥2 = ∥u∥2 + 2Re(u, v) + ∥v∥2 ⩾ ∥u∥2 = ∥Pu(x)∥2

where letting x ∈ U gives ∥Pu∥ = 1.

Lemma 6.12

If X ⊂H then X ⊂ (X⊥)⊥. Equality can be achieved if and only if X is a closed subspace.
Example where ⊂ is proper: let X ∶= unit disk on xy-plane in R3. Then X⊥ is the z-axis and (X⊥)⊥ is the
entire xy-plane.
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Proof.

(1) Inclusion: for any x ∈X we have (x, z) = 0 for all z ∈X⊥. This means precisely that x ∈ (X⊥)⊥.

(2) ⇐Ô : let z ∈ (X⊥)⊥. We want to show z ∈ X. By assumption X is closed, so by Proposition 6.11
there exist some x ∈X and x′ ∈X⊥ such that z = x+ x′. Then since z ∈ (X⊥)⊥ and x′ ∈X⊥ we have
(z, x′) = 0. It follows that

0 = (z, x′) = (x + x′, x′) = (x,x′) + (x′, x′)∥x′∥2 Ô⇒ z = x ∈X.

(3) Ô⇒ : suppose X = (X⊥)⊥ then X itself being an orthogonal complement is closed by Lemma 6.10.

Lemma 6.13

Let {ei} be an orthonormal sequence in H and U ∶= span{ei}. Then

PU(x) =∑
i⩾1
(x, ei)ei.

If {ei} is a Schauder basis, then span{ei} =H so PU(x) = PH(x) = x. Cf. Lemma 5.21 parts 2 & 5.
Future reference: Example 7.3, Problem 7.4, Riesz Representation Theorem

Proof. Since {ei} is an orthonormal Schauder basis of U , we may pick any y ∈ H with y ∶= ∑
i⩾1

αiei and

∑
i⩾1
∣αi∣2 <∞. Then (Parseval again)

∥x − y∥2 = ∥x∥2 =∑
i⩾1
(x,αiei) −∑

i⩾1
(αiei, x) +∑

i⩾1
∣αi∣2

= ∥x∥2 −∑
i⩾1
∣(x, ei)∣2 +∑

i⩾1
(∣(x, ei)∣2 − αi(x, ei) − αi(x, ei) + ∣αi∣2)

= ∥x∥2 −∑
i⩾1
∣(x, ei)∣2 +∑

i⩾1
∣(x, ei) − αi∣2.

Notice that the first two terms are αi-independent. Therefore one needs to ensure αi = (x, ei) to minimize
∥x − y∥, i.e., the distance. Hence Pu(x) = y if and only if αi = (x, ei) by Proposition 6.11 (Pu projects x

to the closest point to x in U).
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Lecture 18: 9/28 More on Orthogonal Complement & Projection

Lemma 7.1

Let T ∈ B(H) be such that T 2 = T . TFAE:

(1) T is an orthogonal projection onto some U ⊂H.

(2) ker(T ) = (im(T ))⊥.

(3) ∥T ∥ = 1.

Future reference: Theorem 7.2

Proof. (1)Ô⇒ (2): let T ∶= PU for some closed subspace U . If Pu(x) = 0 then Pu(u) + Pu(v) = 0 for some u ∈ U
and v ∈ U⊥. So Pu(x) = Pu(u) = u and x ∈ ker(T ) if and only if x ∈ U⊥ = (im(T ))⊥.
(2) Ô⇒ (1): note that ker(id − T ) = im(T ). ⊂ because if x − T (x) = 0 then x = T (x) ∈ im(T ). ⊃ because if
x = T (y) then since T is idempotent x = T 2(y) = T (x) Ô⇒ x − T (x) = 0.
Notice that ker(id − T ) is a closed subspace, so im(T ) is also closed. Let U ∶= im(T ). Then U⊥ = ker(T ) by
assumption. Therefore for every x ∈H is of form u+ v for some u ∈ U and v ∈ U⊥ by Proposition 6.11. It follows
that T (x) = T (u)+T (v) = T (u). Since u ∈ im(T ), for some y ∈H we have u = T (y). Since T is idempotent, this
leads to T (x) = T (u) = T 2(y) = T (y) = u.
(1)Ô⇒ (3): true by Proposition 6.11.
(3)Ô⇒ (2): for all x ∈H we have T (x − T (x)) = T (x) − T 2(x) = 0. In particular, for all x ∈ (ker(T ))⊥,

0 = (x − T (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ker(T )

,

∈(kerT )⊥
©
x ) = ∥x∥2 − (T (x), x).

By Cauchy-Schwarz (first inequality) and assumption ∥T ∥ = 1 (second inequality) we have

∥x∥2 = (T (x), x) ⩽ ∥T (x)∥∥x∥ ⩽ ∥x∥2 Ô⇒ ∥T (x)∥ = ∥x∥.

On the other hand,

∥x − T (x)∥2 = ∥x∥2 − 2Re (T (x), x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥x∥2

+ ∥T (x)∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥x∥2

= 0 Ô⇒ x = T (x) for all x ∈ (ker(T ))⊥.

This means (ker(T ))⊥ ⊂ im(T ). Now it remains to show im(T ) ⊂ (ker(T ))⊥; then (ker(T ))⊥ = im(T ), and taking
orthogonal complements again gives (2) as the closedness of ker(T ) guarantees ((ker(T ))⊥)⊥ = ker(T ).
Let y ∈ im(T ) and define U ∶= ker(T ) a closed subspace. By Proposition 6.11 there exists a unique u ∈ U and
v ∈ U⊥ such that y = u+v. Furthermore, by what we’ve shown above, v ∈ U⊥ = (ker(T ))⊥ Ô⇒ v ∈ im(T ). Hence
v = T (h) for some h ∈ H. Again, since T is idempotent v = T (h) = T 2(h) = T (v); likewise for some z ∈ H we
have y = T (z) = T 2(z) = T (y). Then

u = y − v = T (y − v) = T 2(y − v) = T (u) Ô⇒ u = 0 since T (u) = 0 ∈ ker(T ).

Therefore y only has a v component, i.e., y ∈ (ker(T ))⊥. This shows im(T ) ⊂ (ker(T ))⊥, and we are done.
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Remark: more on Proposition 6.11

If we drop the condition “v ∈ U⊥”, it’s in fact true that we can find another V ⊂ X such that for all x ∈ X
there exists a unique decomposition x = u + v for some u ∈ U and v ∈ V . Consider X ∶= R2 with U being the
x-axis and V any line not horizontal.

Theorem 7.2

Let X be Banach. Then

(1) U and V are complements if and only if there exists some idempotent T ∈ B(X) (with im(T ) = U

and ker(T ) = V ). In addition, if X is Hilbert then V = U⊥ ⇐⇒ ∥T ∥ = 1, cf. Lemma 7.1. Hint:
ker(id − T ) = im(T ).

(2) c0 is not complemented in ℓ∞. (See Philips 1940; Whitney 1966.)

(3) X ∶= ℓp with p > 2 contains uncomplemented subspaces. (Murray 1937.)

(4) If it so happens that every closed subspace is complemented, then X ≅ H for some Hilbert space.
(Lindenstrauss & Tzafrini, 1971.)

(5) If an infinite-dimensional U ⊂ X ∶= ℓp is complemented then U ≅ X for all p ∈ [1,∞]. (Lindenstrauss
1967.)
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Lecture 19: 9/30 Dual Spaces; Riesz Representation Theorem

Example 7.3

Let H = ℓ2 and ei ∶= e(2i). Let x ∶= (x1, x2., , , ) be given. Then (0, x2,0, x4, . . . ) is the best approximation of
x in U ∶= span{ei} by Lemma 6.13:

PU(x) =∑
i⩾1
(x, ei)ei = (0, x2,0, x4, . . . ).

Problem 7.4

Find the best approximation of f(x) ∶= ∣x∣ by a 3rd degree polynomial in L2(−1,1) norm, i.e., H = L2(−1,1)
and U ∶= U ∶= span{1, x, x2, x3}.

Solution

We apply Gram-Schmidt with respect to U to get e1 = 1/
√
2. Then

e′2 = x − (x,
1√
2
) 1√

2
= x − 1

2
∫

1

−1
x dx.

Since ∥e′2∥ = (∫
1

−1
∣x∣2 dx)

1/2
=
√

2

3
we get e2 =

√
3/2 ⋅ x. Similarly,

e′3 = x2 − (x2,
1√
2
) 1√

2
−
⎛
⎝
x2,

√
3

2
x
⎞
⎠

√
3

2
x

= x2 − 1

2
∫

1

−1
x2 dx − 3x

2
∫

1

−1
x3 dx

= x2 − 1

3
.

Then since ∥e′3∥ =
√
8/45 we get e3 =

√
5/8(3x2 − 1). [These are the scalar multiples of the first 3 Legende

polynomials Pn(x) ∶=
1

2nn!

dn

dxn
(x2 − 1)n where the function is called Rodrigues’ formulae.]

By Lemma 6.13 the best approximation of f3 ∈ L2(−1,1) in U is

f3(x) =
3

∑
i=1
(f, ei)ei = ⋅ ⋅ ⋅ =

15x2 + 3
16

(the x3 term vanishes) with ∥f − f3∥L2(−1,1) = ⋅ ⋅ ⋅ =
√
3/4.
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Dual Spaces

Recall from Definition 2.12 that X∗ ∶= B(X,K) is the dual space of X.
Example 7.5

Let p ∈ [0,1] and define δp ∶X ∶= C([0,1])→ R with δp(f) = f(p). Then δp ∈X∗ with ∥δp∥X∗ = 1.

Proof. Linearity is clear as δp(f1 + αf2) = f1(p) + αf2(p) = δp(f1) + αδp(f2). Also,

∣δp(f)∣ = ∣f(p)∣ ⩽ ∥f∥X Ô⇒ ∥δp∥X∗ ⩽ 1,

while letting f0 ∈X such that f0(p) = max
x∈[0,1]

∣f0∣ gives ∣δp(f0)∣ = f0(p) = ∥f0∥, so ∥δp∥X∗ ⩾ 1.

Lemma 7.6

If X be normed and Y Banach then B(X,Y ) is Banach. In particular every dual space is Banach.
Future reference: Every reflexive space is Banach

Lemma 7.7

Let H be Hilbert. Given y ∈H and fy ∶H → K such that fy(x) ∶= (x, y) for all x ∈H, then

fy ∈H∗ with ∥fy∥H∗ = ∥y∥H .

Proof. Letting fy act on x, we have (by Cauchy-Schwarz) ∣fy(x)∣ = ∣(x, y)∣ ⩽ ∥x∥∥y∥ so ∥fy∥H∗ ⩽ ∥y∥. On
the other hand, letting fy act on y itself gives ∣fy(y)∣ = ∣(y, y)∣ = ∥y∥2 Ô⇒ ∥fy∥H∗ ⩾ ∥y∥.

Theorem 7.8: Riesz Representation Theorem

Let H be Hilbert. Given f ∈ H∗ there exists exactly one y ∈ H such that f(x) = (x, y) for all x ∈ H, and
∥f∥H∗ = ∥y∥ (which we have already proved above).
In other words, the Riesz map R ∶ H → H∗ defined by y ↦ f (or fy as in lemma above) is a bijective
conjugate linear isometry (since y appears as the second argument in the inner product).
Future reference: Foliation, Theorem 8.8, Example 11.12

Proof. Define K ∶= ker(f) a closed subspace of H.
First claim: dim(K⊥) = 1. Let u, v ∈K⊥ and we’ll show u and v are linearly dependent. Notice that

f (f(u)v − f(v)u)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a linear combination

= f(u)f(v) − f(v)f(u) = 0

so on one hand the linear combination suggests f(u)v − f(v)u ∈ K⊥ while f(⋅) = 0 Ô⇒ it’s in K too. (Any
u ∈ K ∩K⊥ satisfies ∥u∥2 = (u,u) = 0 by treating one u ∈ K and the other ∈ K⊥.) Therefore f(u)v = f(v)u and
u, v are indeed linearly dependent.
Now back to the main proof: let z ∈K⊥ be such that ∥z∥ = 1. Notice that, for every x ∈H there exists a unique
decomposition x = w + (x, z)z for some w ∈K:

(1) w ∈K and (x, z)z ∈K⊥, both in closed subspaces by Lemma 6.10.
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(2) The existence and uniqueness of this decomposition is guaranteed by Proposition 6.11.

(3) Since dim(K⊥) = 1 we have K⊥ = span{z} = span{z} (since it’s closed). By Lemma 6.13 this means the
projection of x onto K⊥ is precisely (x, z)z.

Then,

f(x) = f(w + (x, z)z)

= f(w) + (x, z)f(z)

= 0 + (x, zf(z))

and the proof follows by taking y ∶= zf(z).
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Lecture 20: 10/2 Hyperplanes; Hölder’s in ℓp Spaces

Definition 7.9

A hyperplane U in X is a codimension 1 subspace of X, i.e., a maximal proper subspace of X. (If Z is a
subspace such that U ⊂ Z ⊂X then either Z = U or Z =X.)
Future reference: Lemma 11.2

Lemma 7.10

U ⊂X is a hyperplane if and only if:

(1) U ≠X and

(2) For every x ∈X ∖U , span(U ∪ {x}) =X.

Future reference: Lemma 11.2

Proof. Ô⇒ : let Z ∶= span(U,{x}) for some x ∈ X ∖U . Clearly U ⊂ Z ⊂ X. Clearly the first inclusion is
proper, so Z =X.
⇐Ô : let Z be a subspace of X with U ⊂ Z ⊂ X. We need to show that if Z ≠ U then Z = X. In this

case, there exists some x ∈ Z ∖ U . By assumption span(U ∪ {x}) = X. Notice that since x ∈ Z we have
X ⊂ Z. Hence X = Z.

Remark

Riesz Representation Theorem suggests that ker(f) is a hyperplane for all f ∈ H∗ since (ker(f))⊥ is 1-
dimensional (see proof of the theorem). More generally, if H is real, then for any y ∈ H, {f = f(y)} is an
affine plane. The entire space can be filled by the hyperplane with its affine planes. This is called foliation
by translated hyperplanes

{x ∶ f(x) = c}, c ∈ R.

Corollary 7.11

Let A ⊂H be closed and convex and H real. Pick x ∈H ∖A and let â ∈ A be the best approximation of x in
A, i.e., ∥x − â∥ = d = inf

a∈A
∥x − a∥. Now define f ∶= fx−â, i.e., f(y) = (y, x − â) for all y ∈H. Then

{f ∶= f(x) − d2

2
}

separates A and x.
Future reference: Separating convex sets, Theorem 10.18

Proof. Note that f(â) = (â, x − â) = (x,x − â) − ∥x − â∥2 = f(x) − d2. Therefore the affine plane containing â is
given by {f = f(â) = f(x) − d2} whereas the affine plane going through x is simply {f = f(x)}. Hence taking
the plane “in the middle” (or {f = f(x) − kd2} for any k ∈ (0,1)) separates A and x, i.e., all other a ∈ A lie on
the other side than x.
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Lemma 7.12: Hölder’s inequality in ℓp spaces

Similar to Hölder’s inequality in Lp spaces:

∑
i⩾1
∣xiyi∣ ⩽ ∥x∥ℓp∥y∥ℓq whenever 1

p
+ 1

q
= 1.

Proof. If p or q =∞ then this is trivial. Otherwise, Young’s inequality (for numbers) gives

ab ⩽ ap

p
+ bq

q
.

(This is given by the convexity of the exponential function; see PS1 also)

ab = elogab = exp((lnap)/p + (ln bq)/q) ⩽ 1

p
elnap

+ 1

q
eln bq = ap

p
+ bq

q
.

Back to the proof:

∑
i⩾1

∣xiyi∣
∥x∥ℓp∥y∥ℓq

=∑
i⩾1

∣xi∣
∥x∥ℓp

∣yi∣
∥y∥ℓq

⩽∑
i⩾1
(1
p

∣xi∣p

∥x∥pℓp
+ 1

q

∣yi∣q

∥y∥qℓq
) (Young)

= 1

p

∥x∥pℓp
∥x∥pℓp

+ 1

q

∥y∥qℓq
∥y∥qℓq

= 1.

Theorem 7.13

If q ∈ (1,∞) then (ℓq)∗ ≡ ℓp (isometrically isomorphic, where p−1 + q−1 = 1) via

x↦ Lx such that Lx(y) ∶=∑
i⩾1

xiyi

where x ∈ ℓp, Lx ∈ (ℓq)∗, and y ∈ ℓq.
Future reference: another form of norm on ℓp

Proof. First thing: Lx is linear. By Hölder,

∣Lx(y)∣ ⩽ ∥x∥ℓp∥y∥ℓq Ô⇒ ∥Lx∥(ℓq)∗ ⩽ ∥x∥ℓp

so indeed Lx ∈ (ℓp)∗. It remains to show that it is an isometry (bijective with operator norm 1). Let

yi ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣xi∣p/xi xi ≠ 0

0 xi = 0
.
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Clearly y ∈ ℓq as ∥y∥qℓq =∑
i⩾1
∣yi∣q =∑

i⩾1
∣xi∣pq−q =∑

i⩾1
∣xi∣p = ∥x∥pℓp <∞. To show ∥Lx∥(ℓq)∗ = ∥x∥ℓp (isometry), it

remains to show the ⩾ direction (or the existence of =). This is proven by

Lx(y) =∑
i⩾1

xiyi

=∑
i⩾1

xi(∣xi∣p/xi)

=∑
i⩾1
∣xi∣p (even when xi = 0)

= ∥x∥ℓp ⋅ ∥x∥p−1ℓp

= ∥x∥ℓp ⋅ ∥y∥q(p−1)/pℓp (since ∥y∥qℓq = ∥x∥
p
ℓp as shown above)

= ∥x∥ℓp ⋅ ∥y∥ℓq .

Clearly x↦ Lx is injective. We’ll show it’s surjective next lecture.
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Lecture 21: 10/5 Lp, ℓp Dual Space Isometries; Spectral Theory

Proof of (ℓq)∗ ≡ ℓp: surjective part. Recall from last lecture that we need to show x ↦ Lx is surjective. Let
f ∈ (ℓq)∗. Define x to be such that xi ∶= f(e(i)). We first show that x ∈ ℓp. Let y be defined by

yi ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣xi∣p/xi xi ≠ 0

0 xi = 0

and y(n) ∶= (y1, . . . , yn,0, . . . ). It follows that

f(y(n)) =
n

∑
i=1

yif(e(i)) =
n

∑
i=1
∣xi∣p.

So
n

∑
i=1
∣xi∣p ⩽ ∣f(y(n))∣ ⩽ ∥f∥(ℓq)∗∥y(n)∥ℓq . Notice that the last term ∥y(n)∥ℓq can be re-written as

∥y(n)∥ℓq = (
n

∑
i=1
∣yi∣q)

1/q

= (
n

∑
i=1
∣xi∣pq−q)

1/q

= (
n

∑
i=1
∣xi∣p)

1−1/p

.

Therefore,
n

∑
i=1
∣xi∣p ⩽ ∥f∥(ℓq)∗ (

n

∑
i=1
∣xi∣p)

1−1/p

Ô⇒ (
n

∑
i=1
∣xi∣p)

1/p

⩽ ∥f∥(ℓq)∗

for all n. This means precisely that the infinite sum (i.e., ∥x∥ℓp) is no greater than ∥f∥(ℓq)∗ , so x ∈ ℓp. (Notice

that we approached this sub-proof using finite sums. The problem with
∞
∑
i=1

is that ∑
i⩾1
∣xi∣p on both sides may be

infinite as showing x ∈ ℓp is our very goal, and subtraction in infinity makes no sense. Be very careful when
making assumptions. What is not assumed can’t be taken for granted.)
Hence, for each y, we have

f(y) = f(∑
i⩾1

aie
(i)) =∑

i⩾1
yif(e(i)) =∑

i⩾1
yixi Ô⇒ f = Lx.

Remark

Theorem 7.13 gives an equivalent norm on ℓp, cf. Lemma 2.14:

∥x∥ℓp = ∥Lx∥(ℓq)∗ = sup
∥y∥ℓq=1

∣∑
i⩾1

xiyi∣.

Theorem 8.1

(ℓ1)∗ ≡ ℓ∞ but (ℓ∞)∗ ≢ ℓ1. Instead, (c0)∗ ≡ ℓ1.
Future reference: remark of Example 10.7, Corollary 10.12, Reflexivity, Example 11.8, Schur’s Theorem
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Theorem 8.2

If q ∈ [1,∞) then (Lq(Ω))∗ ≡ Lp(Ω) via

f ↦ Lf ∶ Lf(g) ∶= ∫
Ω
fg

where f ∈ Lp(Ω), Lf ∈ (Lq(Ω))∗, and g ∈ Lq(Ω).

Spectral Theory (for Bounded Operators)

Recall in finite dimensional cases (in linear algebra), λ is an eigenvalue of T ∶ X → X if there exists nonzero x

such that T (x) = λx. In particular, in finite-dimensional cases, (T − λI)x = 0 if and only if T − λI is not invertible.
In these cases, the study of spectral theory is the same as the “study of eigenvalues”.

Now we will consider complex Banach spaces. Some definitions first.

Definition 8.3

Let X be a complex Banach space and T a linear operator.

(1) Resolvent — S(T ) ∶= {λ ∈ C ∶ T − λI is invertible (having an bounded inverse)}. Also see a more
detailed definition of resolvent.

(2) Spectrum — σ(T ) ∶= C ∖ S(T ) = {λ ∈ C ∶ T − λI is not invertible}.

(3) Point spectrum — σp(T ) ∶= {λ ∈ C ∶ (T − λI)x = 0 for some x ≠ 0}.

(4) Eigenspace — if λ ∈ σp(T ) then Eλ ∶= ker(T − λI) is the eigenspace of λ.

(5) Multiplicity of λ — defined as dimEλ.

65



10/7 Closedness of σ(T ) for T ∈ B(X) MATH 580 Intro to Functional Analysis - YQL

Lecture 22: 10/7 Closedness of σ(T ) for T ∈B(X)

Remark

Two immediate results following the definitions:

(1) σp(T ) ⊂ σ(T ): if (T − λI)x = 0 for any x ≠ 0 then T − λI is not bijrctive and hence not invertible.

(2) ∣λ∣ ⩽ ∥T ∥ for all λ ∈ σp(T ) (actually true for the entire spectrum):

∣λ∣∥x∥ = ∥λx∥ = ∥T (x)∥ ⩽ ∥T ∥∥x∥.

Lemma 8.4

If {λi}i⩾1 are distinct eigenvalues of T , then any set of {ei}i⩾1 of corresponding eigenvectors is independent.
Future reference: Proposition 10.3, Lemma 12.15

Proof. We will prove by induction. The base case is trivial. Now suppose {e1, . . . , ek} are linearly
independent and suppose for contradiction that {e1, . . . , ek+1} is linear dependent. Then their exists

{αi}i⩾1 ≠ {0} such that
k+1
∑
i=1

αiei = 0. Applying T gives

T (Σ) =
k+1
∑
i=1

αiT (ei) =
k+1
∑
i=1

αiλiei = 0,

whereas miultiplying
k+1
∑
i=1

αiei = 0 by λk+1 gives
k+1
∑
i=1

αiλk+1ei = 0. Subtracting gives a nontrivial (since

λ’s are distinct by assumption) combination of {e1, . . . , ek} that produces 0, contradicting the linear
independence of {e1 . . . , en}.

Proposition 8.5

If T ∈ B(X) then σ(T ) is a closed subset of {λ ∈ C ∶ ∣λ∣ ⩽ ∥T ∥}. To be proven later.
Future reference: Example 8.7.1

Lemma 8.6

If X,Y are Banach and T ∈ B(X,Y ) is invertible, then T + S is invertible for any S ∈ B(X,Y ) with
∥S∥ < 1/∥T −1∥. In particular, the set of invertible operators is open in B(X,Y ).
‘Future reference: Proposition 8.5, Example 8.7.2

Proof. First thing to prove: if S ∈ B(X,Y ) with ∥S∥ ⩽ 1/∥T −1∥ then T +S is surjective. Let y ∈ Y . Define
J(x) ∶= T −1(y − S(x)). Then

∥J(x) − J(x′)∥ = ∥T −1(S(x − x′)∥ ⩽ ∥T −1∥∥S∥∥x − x′∥ < ∥x − x′∥.
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By Banach Contraction Theorem there exists a unique x ∈ X with x = J(x). Therefore for some x we
have x = T −1(y − S(x)) ⇐⇒ T (x) + S(x) = y ⇐⇒ (T + S)(x) = y. Hence surjective.
(The class did not adopt this proof: the uniqueness of such x guaranteed by Banach Contraction Theorem
also suggests the injectivity of T + S, and by IMT this means T + S is invertible.)
Otherwise, we could also show the inverse is bounded, i.e., there exists some c > 0 such that ∥(T +S)(x)∥ ⩾
c∥x∥ for all x:

∥(T + S)(x) + (−T )(x)∥ = ∥S(x)∥ ⩽ ∥(T + S)(x)∥ + ∥T (x)∥ Ô⇒ ∥(T + S)(x)∥ ⩾ ∥T (x)∥ − ∥S(x)∥

where
∥T (x)∥ ⩾ ∥x∥

∥T −1∥
and ∥S(x)∥ ⩽ ∥S∥∥x∥.

Therefore
∥(T + S)(x)∥ ⩾ ∥x∥( 1

∥T −1∥
− ∥S∥) .

Since ∥S∥ < 1/∥T −1∥, letting c ∶= the difference proves the (sub)claim.
Notice that this automatically shows that T +S is injective (if x1 ≠ x2 then ∥(T +S)(x1−x2)∥ is nonzero).
Then, by remark of Definition 3.2,

∥(T + S)−1(y)∥ ⩽ 1

c
∥y∥ Ô⇒ (T + S)−1 ∈ B(Y,X).

Proof. Proof of Proposition 8.5 First we show that σ(T ) is a subset of BC(∥T ∥). This is equivalent to showing
any ∣λ∣ > ∥T ∥ is in the resolvent, i.e., λ ∈ S(T ). Notice that if we define

T − λI = λ(T /λ − I) ∶= λ(S − I)

then ∥S∥ = ∥T ∥/λ < 1 by assumption and ∥I∥−1 = 1. Hence by Lemma 8.6, S−I is invertible (since ∥S∥ < 1/∥I−1∥)
and so is T − λI, a scalar multiple of S − I. Hence λ ∈ S(T ) whenever ∣λ∣ > ∥T ∥. We will show the closure of
σ(T ) next lecture.
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Lecture 23: 10/9 Spectrum Decomposition; Hilbert Adjoint

Proof of Proposition 8.5, part 2. Now we show σ(T ) is closed, which is equivalent to showing S(T ) is open. Let
λ ∈ S(T ), i.e., T − λI is invertible. By Lemma 8.6, T − (λ + δ)I is invertible whenever

∥λI∥ = ∣δ∣ < 1

∥(T − λI)−1∥
,

hence the openness of S(T ) and the closedness of σ(T ).

Remark

λ ∈ σ(T ) if and only if im(T − λI) ≠X or ker(T − λI) ≠ {0}.
⇐Ô is trivial since (T − λI)−1 does not exist if T − λI is not surjective or injective.
For Ô⇒ , we look at the contrapositive. If ker(T − λI) = {0} and im(T − λI) = X, then T − λI is bijective.
In addition it’s also bounded. Hence T − λI is invertible by IMT.
Future reference: σ(SR) = B(1), Example 8.7.2

One can divide σ(T ) ∖ σp(T ) into two classes:

(1) The continuous spectrum where T − λI is “almost surjecrive”:
σc(T ) ∶= {λ ∈ C ∶ T − λI is injective and im(T − λI) ⊂X is dense but (T − λI)−1 is not bounded}.
This is possible when im(T − λI) ≠X.

(2) The residual spectrum where T − λI is “essentially non-surjective”:
σr(T ) ∶= {λ ∈ C ∶ T − λI is injective but im(T − λI) ⊂X is not dense}.

Also see a more formal definition of resolvent & comparisons between resolvent and spectrum decomposition.

Name Injective Surjective (onto X)? Inverse Exists? Inverse Bounded?

Resolvent Yes Yes Yes Yes

Spectrum Maybe Maybe No (not bijective) N/A

Point Spectrum No Maybe No N/A

Cont. Spectrum Yes No (but dense) Yes (im →X) No

Res. Spectrum Yes No No N/A

An informal diagram of different sets; see more below.
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Remark: More on the definitions

Upon checking online resources, I’ve found more detailed definitions of the terms above (resolvent and spec-
trum decomposition), regarding what the image of T − λI should be. The following is from Wikipedia:

Let X be Banach and T ∶D ⊂X →X be a linear operator. Below are three criteria:

(1) T − λI is injective. Define (T − λI)−1 ∶= the inverse of T − λI from im(T − λI)→D.

(2) (T − λI)−1 is bounded.

(3) The domain of (T − λI)−1 is a dense subspace of X, i.e., im(T − λI) is dense in X.

If λ ∈ C meets all three criteria, it’s called a regular value. The resolvent is the set of regular values.
For others, see the table below.

Set (1) (2) (3)

Resolvent Yes Yes Yes

Point spectrum No

Continuous Spectrum Yes No Yes

Residual Spectrum Yes No

Example 8.7

(1) Recall from Example 2.15: SL ∶ ℓ2 → ℓ2 defined by SL(x1, x2, . . . ) = (x2, x3, . . . ) the left shift. Then
every λ ∈ C with ∣λ∣ < 1 is an eigenvalue of SL.

Proof. SL(x) = λx ⇐⇒ (x2, x3, . . . ) = (λx1, λx2, . . . ) ⇐⇒ x = (x1, λx1, λ
2x1, . . . ). Therefore,

using the definition of ℓ2 norm we get x ∈ ℓ2 ⇐⇒ ∥x1∥2
∞
∑
i=1
∣λ∣2i <∞ ⇐⇒ ∣λ∣ < 1.

Remark

Here we’ve shown B(1) ⊂ σp(SL). But recall from Proposition 8.5 that σ(SL) ⊃ σp(SL) is a
closed subset of {λ ∈ C ∶ ∣λ∣ ⩽ ∥T ∥}, whereas Example 2.15 gives ∥SL∥ = 1. Hence

B(1) ⊂ σp(SL) ⊂ σ(SL) ⊂ B(1) Ô⇒ σ(SL) = B(1).

Future reference: see Lemma 9.4 for another proof (of SL and SR).

(2) What about SR? It has no eigenvalues because (x1, x2 . . . ) = (0, x1, x2, . . . ) Ô⇒ x = 0. However, the
spectrum σ(SR) is still B(1). The direction σ(SR) ⊂ B(1) is given by Proposition 8.5 and Exercise
2.15. It remains to show ⊃. Recall that it suffices to show im(SR−λI) ≠ ℓ2. If λ = 0 the clearly nothing
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gets mapped to (1,0,0, . . . ) ∈ ℓ2. Now assume λ ≠ 0. Take some y ∈ ℓ2. Then,

(y1, y2, . . . ) = (SR − λI)x = (−λx1, x1 − λx2, . . . )

⇐⇒ x1 = −
1

λ
y1

x2 = −
1

λ2
(y1 + λy2)

. . .

xk = −
1

λk

k

∑
i=1

yiλ
i−1.

Now we may construct the sequence y ∶= {1
i
⋅ ∣λ∣

i−1

λi−1 }i⩾1
∈ ℓ2. Then,

∣xk ∣ =
1

∣λ∣k
k

∑
i=1
(1
i

∣λ∣i−1

λi−1 ) ⩾
1

∣λ∣

k

∑
i=1

1

i

and so (x1, x2, . . . ) diverges. It is therefore not in ℓ2, i.e., im(SR − λI) ≠ ℓ2, and we are done.

Theorem 8.8

Let H,K be Hilbert and T ∈ B(H,K). Then there exists a unique T ∗ ∈ B(K,H), called the (Hilbert)
adjoint, such that

(T (x), y)K = (x,T ∗(y))H for all x ∈H and y ∈K.

In addition, T ∗∗ and ∥T ∗∥B(K,H) = ∥T ∥B(H,K).
Future reference: Lemma 9.4, Lemma 9.15, Lemma 9.17

Proof. Take some y ∈K and f ∈H∗ defined by f(x) ∶= (T (x), y)K . (This is indeed well-defined because

(T (x), y)K ⩽ ∥T (x)∥∥y∥ ⩽ ∥y∥∥T ∥
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
<∞

∥x∥ Ô⇒ f ∈H∗.)

By Riesz Representation Theorem there exists a unique z ∈H such that f(x) = (x, z)H .
If we define T ∗(y) ∶= z then (T (x), y) = (x, z) = (x,T ∗(y)). Now it remains to show that T ∗ ∈ B(K,H).
Clearly it is linear by the very properties of inner products. To see that it is bounded:

∥T ∗(y)∥2H = (T ∗(y), T ∗(y))

= (TT ∗(y), y) (property of adjoint)

⩽ ∥TT ∗(y)∥∥y∥ (Cauchy-Schwarz)

⩽ ∥T ∥∥T ∗(y)∥∥y∥. (applying norm of T )

Assuming ∥T ∗(y)∥ ≠ 0, we can divide both sides by it and obtain ∥T ∗(y)∥ ⩽ ∥T ∥∥y∥ and so ∥T ∗∥ ⩽ ∥T ∥.
Next lecture we will show 1) the uniqueness of T ∗ and 2) that T ∗∗ = T , which then implies
∥T ∥ = ∥T ∗∗∥ ⩽ ∥T ∗∥ and so ∥T ∥ = ∥T ∗∥.
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Lecture 24: 10/12 Self-Adjoint; Spectral Theorem; Compact Operators

Proof: continuing on Theorem 8.8. Now we show the uniqueness of T ∗ and that T ∗∗ = T .

(1) Uniqueness: see below.

(2) T ∗∗ = T : since (T (x), y)K = (x,T ∗(y))H , taking complement gives (for all y ∈K,x ∈H)

(T (x), y)K = (x,T ∗(y))H = (T ∗(y), x)H = (y, T ∗∗(x))K = (T
∗∗(x), y)K .

Hence for all y ∈K we have (T (x) − T ∗∗(x), y) = 0. Then for any x ∈H, taking y ∶= T (x) − T ∗∗(x) gives a
zero norm. Hence we conclude T (x) = T ∗∗(x) for all x, i.e., T = T ∗∗. This also proves the uniqueness.

Lemma 9.1

Two properties of the Hilbert adjoint:

(1) Conjugate linearity: (αT + βS)∗ = αT ∗ + βS∗.

(2) (TS)∗ = S∗T ∗.

Future reference: Lemma 9.4

Definition 9.2

T is called self-adjoint if T ∈ B(H) and T = T ∗. Also see definition of numerical range.

Example 9.3

(1) If T ∶= SL, then T ∗ = SR:

(SL(x), y) = x2y1 + x3y2 + ⋅ ⋅ ⋅ = x1 ⋅ 0 + x2y1 + ⋅ ⋅ ⋅ = (x,SR(y)).

(2) For some Ω, suppose K ∈ C (Ω ×Ω) (continuous in closure), and let T ∶ L2(Ω)→ L2(Ω) be defined as

T (f(x)) ∶= ∫
Ω
K(x, y)f(y) dy.

Then
T ∗(g(x)) = ∫

Ω
K(y, x)g(y) dy,

and, in particular, T is self-adjoint if and only if K is symmetric, i.e., K(x, y) =K(y, x) for all x, y.

Future reference: Example 9.13, Theorem 13.9
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Lemma 9.4

Let H be Hilbert and T ∈ B(H) Then

σ(T ∗) = {λ ∶ λ ∈ σ(T )} = σ(T ) (conjugate, not closure).

Proof. Suppose λ ∉ σ(T ), i.e., λ ∈ S(T ). Then T − λI is invertible, i.e.,

(T − λI)(T − λI)−1 = I = (T − λI)−1(T − λI).

Now take adjoint of everything (recall from Lemma 9.1 that (TS)∗ = S∗T ∗):

((T − λI)−1)∗ (T − λI)∗ = I∗ = I = (T − λI)∗ ((T − λI)−1)∗ .

This by definition means ((T − λI)−1)∗ = ((T − λI)∗)−1. By Theorem 8.8 we have ∥ ((T − λI)−1)∗ ∥ =
∥(T −λI)−1∥ bounded, and so is ((T − λI)∗)−1. Hence λ ∉ σ(T ∗) Ô⇒ (T −λI)∗ = T ∗ −λI invertible.

Remark

From this lemma we see that, since SR has adjoint SL, σ(SR) = σ(SL) = {∣λ∣ ⩽ 1} where the overline
denotes the complex conjugate. Cf. Example 8.7.1 & 2.

Lemma 9.5

If T1, . . . , Tn ∈ B(X) commute, i.e., TiTj = TjTi for all i, j, then

T1T2 . . . Tn is invertible ⇐⇒ each Ti is invertible.

Future reference: Spectral Theorem for Polynomials

Remark

This is not true in general if the T ’s do not commute:

SLSR = id ∈ B(ℓ2), invertible,

but SL is not injective, and SR is not surjective.
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Theorem 9.6: Spectral Theorem for Polynomials

Let P (z) ∶=
n

∑
k=0

akz
k, a complex polynomial of degree n, and T ∈ B(X), then

σ(P (T )) = P (σ(T )).

Future reference: Corollary 9.7

Proof. First note that, given λ ∈ C, we can decompose λ − P (z) = into its roots:

λ − P (z) = α(β1 − z)(β2 − z . . . )(βn − z) for α,βi ∈ C,

i.e., λ = P (βi) for all 1 ⩽ i ⩽ n. Furthermore, this is true only for these βi’s (obvious). Therefore, in terms
of operators,

λI − P (T ) = α(β1I − T )(β2I − T ) . . . (βnI − T ).

Notice that the terms on the RHS commute, so by Lemma 9.5 λI −P (T ) is invertible if and only if each
βiI − T is invertible.
Therefore, if we take λ ∈ σ(P (T )), i.e., λI − P (T ) is not invertible, then some βiI − T is not invertible,
i.e., βi ∈ σ(T ). Thus λ = P (βi) ∈ P (σ(T )) and so σ(P (T )) ⊂ P (σ(T )).
For ⊃, If λ ∉ σ(P (T )), by Lemma 9.5, the invertibility of λI −P (T ) implies that each βiI −T is invertible.
This means βi ∉ σ(T ) for all 1 ⩽ i ⩽ n.
(Notice that, unlike above where βi ∈ σ(T ) implies P (βi) ∈ P (σ(T )), here λ ∉ σ(P (T )) does NOT imply
λ = P (βi) ∉ σ(P (T )). For example, −1 ∉ {1} but squaring both sides gives ∈.)
Recall from the root decomposition that λ = P (z̃) only when z̃ is of form βi. Notice that

λ ∈ P (σ(T )) ⇐⇒ λ = P (z̃) for some z̃ ∈ σ(T ),

so it must be the case that βi ∈ σ(T ) for some βi. But this contradicts βi ∉ σ(T ), our assumption. Hence
λ ∉ σ(P (T )) Ô⇒ λ ∉ P (σ(T )), and we are done.

Corollary 9.7

If T ∈ B(H) is self-adjoint, then either ∥T ∥ or −∥T ∥ ∈ σ(T ).
Future reference: Lemma 12.15

Proof. WLOG assume ∥T ∥ = 1 (otherwise we may simply scale it). By definition of norm, there exists a
sequence {xn} such that ∥xn∥ = 1 and ∥T (xn)∥→ 1. Then

∥T 2(xn) − xn∥2 = (T 2(xn) − xn, T
2(xn) − xn)

= ∥T 2(xn)∥2 + ∥xn∥2 − (xn, T
2(xn)) − (T 2(xn), xn)

⩽ ∥T ∥4∥xn∥2 + 1 − 2(T (xn), T (xn)) (last one b/c of adjoint)

= 1 + 1 − 2∥T (xn)∥2 → 0.
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Therefore T 2 − I is not invertible: for if it were, we would be able to find c such that ∥x∥ ⩽ c∥(T 2 − I)(x)∥
for all x. So 1 ∈ σ(T 2), and by Spectral Theorem for Polynomials, this is the same as (σ(T ))2. Hence
either 1 or −1 ∈ σ(T ).

Theorem 9.8: Spectral Theorem

If T ∈ B(X) and f holomorphic on an open neighborhood of σ(T ), then

σ(f(T )) = f(σ(T )).

Proof: see Yoshida’s book, p.227.

Definition 9.9

Let X,Y be normed. Then T ∈ L(X,Y ) is compact, denoted as T ∈ K(X,Y ) if, for all bounded sequence
{xn} ⊂X, {T (xn)} has a convergent subsequence (with limit in Y ).
Alternatively, T ∈K(X,Y ) if T (BX(1)) ⊂ Y is precompact (i.e., closure is compact).
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Lecture 25: 10/14 Arzelà-Ascoli Theorem; Hilbert-Schmidt Operators

Lemma 9.10

If Y is Banach then K(X,Y ) is a closed subspace of B(X,Y ).
Future reference: Proposition 9.16, Proposition 9.21

Proof. First claim: K(X,Y ) ⊂ B(X,Y ) because, if not, then there exists {xn} such that ∥xn∥ = 1 with
∥T (xn)∥→∞, but then {T (xn)} does not have a convergent subsequence.
Clearly K(X,Y ) is a vector space; for addition simply consider the overlapping terms of the convergent
subsequence, and scalar multiplication is trivial.
Now we show K(X,Y ) is closed. Let {Tn} ⊂K(X,Y ) be a sequence of compact operators that converges
to T ∈ B(X,Y ) (i.e., ∥Tn∥→ ∥T ∥). We want to show T ∈K(X,Y ) as well.
Let {xn} be such that ∥xn∥ ⩽M (i.e., bounded). It follows that, since each Tn is bounded, we can find a
subsequence of {xn1,i} such that {T1(xn1,i)} is convergent; then we can find a sub-subsequence {xn2,i}
such that {T2(xn2,i)} is convergent, and so on inductively. If we take the diagonal sequence defined by

{yn} ∶ yi ∶= xni,i

we get a sequence that converges for all Tn’s. Now we perform the “3ϵ-trick”.

∥T (yi) − T (yj)∥ ⩽ ∥T (yi) − Tn(yi)∥ + ∥Tn(yi) − Tn(yj)∥ + ∥Tn(yj) − T (yj)∥

⩽ ∥T − Tn∥ ∥yi∥
±
⩽M

+∥Tn(yi) − Tn(yj)∥ + ∥Tn − T ∥ ∥yj∥
±
⩽M

< ϵ

3M
⋅M + ϵ

3
+ ϵ

3M
⋅M = ϵ

for n, i, j large enough such that ∥T −Tn∥ < ϵ/3M and ∥Tn(yi)−Tn(yj)∥ < ϵ/3 (both of which are possible;
the first by convergence of Tn → T and the second by Cauchy-ness of {Tn(yn)}, which is implied by its
assumed convergence).
Now since Y is Banach, the Cauchy-ness of T (yn) implies its convergence. Hence T is compact, and we
are done.

Example 9.11

If T ∈ B(X,Y ) is such that im(T ) has finite dimension, then T is compact.
Future reference: Proposition 9.16

Proof. If T (BX(1)) is bounded in a finite dimensional space then it is precompact by Corollary 3.11.

75



10/14 Arzelà-Ascoli Theorem; Hilbert-Schmidt Operators MATH 580 Intro to Functional Analysis - YQL

Theorem 9.12: Arzelà-Ascoli Theorem

This theorem gives a characterization of compact sets in spaces of continuous functions. If A ⊂ C(Ω;K),
then

A is precompact ⇐⇒ A is bounded and equicontinuous,

i.e., for all ϵ > 0 there exists δ > 0 such that ∣x − y∣ < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ for all f ∈ A.

Proof. Similar to the “3ϵ-trick” above, along with the diagonalization argument.

Example 9.13

Define T (f(x)) ∶= ∫
Ω
K(x, y)f(y) dy (from Example 9.3.2) where K ∈ C(Ω ×Ω). This operator is compact,

i.e., T ∈K(L2, L2).

Proof. By Arzelà-Ascoli above, it suffices to show that T (BL2(Ω)(1)) is a bounded and equicontinuous
subset of C(Ω,K). (This shows something even stronger: not only does it have a convergent subsequence
in L2 but it’s also continuous.)
If f ∈ BL2(Ω)(1) then (by Hölder and by Lp ⊃ Lq for p < q)

∣T (f(x))∣ ⩽ (∫
Ω
∣K(x, y)∣2 dy)

1/2
∥f∥L2

²
⩽1

⩽ ∣K ∣L∞ ∣Ω∣1/2 <∞, bounded.

On the other hand,

∣T (f(x)) − T (f(x′))∣ ⩽ (∫
Ω
∣K(x, y) −K(x′, y)∣2 dy)

1/2
∥f∥L2

< ϵ

∣Ω∣1/2
⋅ ∣Ω∣1/2 = ϵ

whenever ∣x − x′∣ < δ for some δ > 0, since K is (uniformly) continuous on Ω ×Ω. Hence we’ve shown
uniform continuity.

Definition 9.14

T ∈ B(H), where H is separable, is called a Hilbert-Schmidt operator if the following holds:

∥T ∥2HS ∶=∑
i⩾1
∥T (ei)∥2 <∞ for some orthonormal Schauder basis {ei} of H.

If this holds then we call ∥T ∥HS the Hilbert-Schmidt norm.
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Lemma 9.15

(1) ∥ ⋅ ∥HS is independent of the choice of the basis.

Proof. Let {ei}, {fi} be orthonormal Schauder bases of H. Recall Theorem 5.21 that this means
Parseval’s identity applies; also recall that T ∈ B(H) admits an adjoint. Thus we have

∑
i⩾1
∥T (ei)∥2 =∑

i⩾1
∑
k⩾1
∣(T (ei), fk)∣2 =∑

i⩾1
∑
k⩾1
∣(ei, T ∗(fk))∣2

=∑
i⩾1
∑
k⩾1
∣(T ∗(fk))∣2

= ∑
k⩾1
∥T ∗(fk)∥2

so ∑
i⩾1
∥T (ei)∥2 =∑

i⩾1
∥T ∗(fi)∥. We can apply this approach one more time and deduce

∑
i⩾1
∥T ∗(fi)∥2 = ∑

i,j⩾1
∣(T ∗(fi), fj)∣2 =∑

j⩾1
∥T (fj)∥2.

Therefore ∑
i⩾1
∥T (ei)∥2 =∑

i⩾1
∥T (fi)∥2, as desired.

(2) ∥T ∥B(H) ⩽ ∥T ∥HS, i.e., the Hilbert-Schmidt norm is an upper bound for the operator norms.

Proof. Let u ∈ H and rewrite it as ∑
i⩾1
(u, ei)ei by Theorem 5.21. Applying ∆-inequality (first ⩽)

amd Cauchy-Schwarz (second), we have

∥T (u)∥ ⩽∑
i⩾1
∣(u, ei)∣∥T (ei)∥ ⩽

⎛
⎝∑i⩾1
∣(u, ei)2∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥u∥2

⎞
⎠

1/2
⎛
⎝∑i⩾1
∥T (ei)∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥T ∥2HS

⎞
⎠

1/2

= ∥T ∥2HS∥u∥.

(Compare this with Proposition 9.16)

Proposition 9.16

Any Hilbert-Schmidt operator T acting on a separable Hilbert space H is compact.

Proof. Recall that H is seperable if and only if it has a Schauder basis (Proposition 6.5). Let {ei} be a
Schauder basis of H. Then, if we take u ∈H and expand the Fourier coefficients,

T (U) =∑
i⩾1
(u, ei)T (ei).

Let Tn the truncation of the sum be defined as Tn(u) ∶=
n

∑
i=1
(u, ei)ei. Notice that Tn has finite-dimensional

range. By Example 9.11 we know that each Tn is compact. Now we show ∥Tn∥→ ∥T ∥:
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∥(T − Tn)u∥ = ∥ ∑
i⩾n+1

(u.ei)T (ei)∥

⩽ ∑
i⩾n+1

(u.ei)∥T (ei)∥ (∆-ineq)

⩽ ∥u∥( ∑
i⩾n+1

∥T (ei)∥2)
1/2

(similar to Lemma 9.15.2)

whereas the last term tends to 0 as n → ∞ because T is Hilbert-Schmidt and the infinite sum finite.
Therefore ∥Tn∥ → ∥T ∥. Obviously each Tn ∈ K(H), so by Lemma 9.10 the closure of K(H) implies
T ∈K(H), i.e., T is compact.

Lemma 9.17

(1) If T ∈ B(X,Y ) and S ∈ B(Y,Z), then if one of T,S is compact then S ○T ∈K(X,Z). Proof is obvious
since boundedness preserves sequential convergence.

Future reference: Theorem 9.18

(2) If T ∈K(H) then T ∗ ∈K(H).

Proof. Recall Theorem 8.8. Since T ∈ B(H), so is T ∗. Thererfore by (1) we get TT ∗ ∈ K(H).
Hence if {xn} ⊂H is bounded by ∥xn∥ ⩽M , then TT ∗ has a convergent subsequence (in H) which
we now relabel. Thus

∥T ∗(xn − xm)∥2 = (T ∗(xn − xm), T ∗(xn − xm)) (induced by inner product)

= (TT ∗(xn − xm), xn − xm) (adjoint)

⩽ ∥TT ∗(xn − xm)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

convergent

∥xn − xm∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩽2M

(Cauchy-Schwarz)

→ 0 as min(m,n)→∞.

Hence {T ∗(xn)} is Cauchy and it converges in H. This proves the lemma.
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Lecture 26: 10/16 Spectral Theory of Compact Operators

Theorem 9.18

Let X be an infinite-dimensional Banach space. If T ∈K(X) then 0 ∈ σ(T ).

Proof. Suppose 0 ∉ σ(T ) then T is invertible. In particular T −1 exists and is bounded. Since T ∈ K(X)
and T −1 ∈ B(X), by Lemma 9.17.1 we see that I = TT −1 is compact. Then by the very definition of
compact operators, BX(1) is precompact, i.e., BX(1) is compact. But then by Theorem 3.14 X must be
finite-dimensional, contradiction. Hence 0 ∈ σ(T ).

Lemma 9.19

If T ∈ K(X) (X normed is sufficient) and λ ≠ 0, then dimEλ ∶= dimker(T − λI) < ∞, i.e., any nonzero
eigenvalue of a compact operator has finite multiplicity.
Future reference: Proposition 9.21, Banach-Schmidt Theorem

Proof. Suppose dimEλ = ∞. We want to find {wi} ⊂ Ei such that ∥wi∥ = 1 whereas ∥wi − wj∥ ⩾ 1/2.
(If this is true, then T takes {wi} into a precompact set. However the sequence {T (wi)} cannot have a
convergent subsequence since ∥T (wi) − T (wj)∥ = λ∥wi −wj∥ > λ/2.)
Let w1 ∈ Eλ be such that ∥w1∥ = 1. Notice that for all n ∈ N, span{w1, . . . ,wn} is a closed, finite-
dimensional subspace of Eλ. Therefore, by Riesz’s Lemma (not RRT), we can inductively pick wn+1 ∈ Eλ

such that ∥wn+1∥ = 1 and ∥wn+1 − wi∥ ⩾ 1/2 for all 1 ⩽ i ⩽ n. Hence we have constructed a sequence as
mentioned above which leads to a contraction, and thus dimEλ <∞.

Example 9.20

T ∈ B(X) may or may not have closed range. Consider T ∶ ℓ2 → ℓ2 defined by

T (x) ∶= (x1,
x2

2
,
x3

3
, . . .) .

Obviously T is bounded: ∥T ∥ ⩽ 1. Now consider {y(n)} where

y(n) ∶= T (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n

,0,0, . . . ) = (1, 1
2
, . . . ,

1

n
,0,0, . . .) .

Then y(n) → y ∶= { 1
n
}
n⩾1 ∈ ℓ2 (recall that ∑

i⩾1
1/i2 = π2/6 as shown in PS2), but clearly y ∉ im(T ) as

(1,1, . . . ) ∉ ℓ2. Hence im(T ) is not closed.

Remark

The same argument also works for T ∈K(X). (Note that T above is actually compact.) However, T − I has
closed image for all T ∈K(X), and if this is true, the same holds for T − λI where λ ≠ 0 (since T /λ ∈K(X)
and T − λI = λ(T /λ)). See proposition below.
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Proposition 9.21

If T ∈K(X) (again, X normed is sufficient), then im(T − I) is closed.

Proof. Let {yn} ⊂ im(T − I) be such that yn → some y ∈ X. Define xn ∈ X to be such that (T − I)(xn) = yn.
Define

dn ∶= inf
w∈ker(T−I)

∥xn −w∥.

Since ker(T − I) is finite-dimensional, the infimum is attained, i.e., there exists zn ∈ ker(T − I) such that
∥xn − zn∥ = dn. (Let {wk} ⊂ ker(T − I) be such that lim

k→∞
∥xn − wk∥ = dn. Then ∥wk∥ is bounded and, by

Corollary 3.11, since balls in finite-dimensional spaces are precompact, has some subsequence wkj → w for some
w ∈ ker(T − I). Then ∥xn −wk∥→ ∥xn −w∥ = dn.)
Our next claim: ∥xn − zn∥ is bounded.

Proof. Suppose not, then there exists {ni} such that ∥xni − zni∥→∞. Notice that

yni = (T − I)(xni) = (T − I)(xni − zni) (◻)

since zni ∈ ker(T − I). Now let

wni ∶=
xni − zni

∥xni − zni∥
Ô⇒ ∥wni∥ = 1.

Then,
(T − I)(wni) =

yni

∥xni − zni∥
.

Since {yn} is convergent, the numerator yni is bounded. On the other hand, the denominator ∥xni−zni∥→
∞ by assumption. Hence the entire thing, i.e., (T − I)(wni), tends to 0.
Also, since T ∈ K(X) and {wni} bounded (norm 1), {T (wni)} is precompact. Hence there exists some
subsequence that converges to some q ∈ X. To avoid cumbersome notation, we relabel this subsequence
as the new T (wni). Furthermore, not only does T (wni)→ q, but wni → q as well:

∥wni − q∥ ⩽ ∥wni − T (wni)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0 by (◻)

+ ∥T (wni) − q∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 by convergence

.

Recall that T ∈ K(X) Ô⇒ T ∈ B(X) by Lemma 9.10. Hence T (wni) converges to T (q) and thus
q = T (q). Therefore q ∈ ker(T − I). It follows that since {wni} converges to q ∈ ker(T − I),

lim
i→∞
[ inf
w∈ker(T−I)

∥wni −w∥] = 0.

On the other hand, for all w ∈ ker(T − I), by construction we have

∥wni
−w∥ = ∥xni − zni −w∥xni − zni∥∥

∥xni − zni∥

= 1

dni

∥xni − (zni +wdni)∥. (where dni ∶= ∥xni − zni∥−1)
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However, notice that since both zni and dni are in ker(T − I), so is their linear combination zni +wdni .
Therefore ∥xni−(zni+wdni)∥ ⩾ ∥xni−zni∥ by assumption of infimum, and so ∥wni−w∥ ⩾ 1. Contradiction;
∥xn − zn∥ must have been bounded instead.

Back to the main proof: the claim above, along with the compactness of T , shows that {T (xn−zn)} is precompact,
so there exists some convergent subsequence (likely different from above; but we’ll use the same notation)
T (xni − zni)→ p ∈X. Recall (◻); we have the following equality:

xni − zni = T (xni − zni) − yni .

Also recall that by assumption yni → y. If we define x ∶= p − y, we get that

(T − I)(x) = lim
i→∞
(T − I)(xni − zni)

= lim
i→∞
(T − I)(xni) − 0 (since zni ∈ ker(T − I))

= lim
i→∞

yni = y,

i.e., y ∈ im(T − I), as desired. Hence im(T − I) is closed.
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Lecture 27: 10/19 More on Characterizations of Compact Operators

Theorem 10.1

If T ∈K(X), where X is Banach, and ker(T − I) = {0}, then T − I is invertible.
Future reference: Corollary 10.2

Proof. It suffices to show T − I is onto (because ker(T − I) = {0} implies injectivity and T − I ∈ B(X) is
bounded just like T is; then by IMT we see T − I is invertible).
Note that

(T − I)n =
n

∑
k=0
(−1)n−k(n

k
) T k

= (−1)nI +
n

∑
k=1
(−1)n−k(n

k
) T k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Sn

.

Since T ∈K(X) and Sn is simply linear combinations of T k (all of which are compact by Lemma 9.17.1),
it is compact as well. Then we have

(T − I)n = (−1)n−1((−Sn)
´¹¹¹¹¹¸¹¹¹¹¹¶
∈K(X)

−I)

and by Proposition 9.21 we see that Xn ∶= im(T − I)n is closed for all n. It is clear that if y ∈Xn+1 then
there exists some x ∈X such that (T − I)n+1(y) = x. Then (T − I)n[(T − I)(x)] = y Ô⇒ y ∈Xn as well.
Hence we have a nested sequence of sets

X ⊃X1 ⊃ ⋅ ⋅ ⋅ ⊃Xn ⊃Xn+1 ⊃ . . . (◻)

We will now show that it’s impossible for all these ⊃’s to be ⊋. Suppose, for contradiction, that no two
sets are the same. Then, by Riesz’s Lemma, for all n ∈ N there exists xn ∈ Xn such that ∥xn∥ = 1 and
∥xn − y∥ ⩾ 1/2 for all y ∈Xn+1. Now pick any m > n. We have that

∥T (xn) − T (xm)∥ = ∥xn + (T − I)(xn)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Xn+1

− xm
°
∈Xm

− (T − I)(xm)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Xm+1

∥

= ∥ xn

∈̄Xn

− something
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Xm+1

∥

⩾ 1

2
by Riesz’s Lemma.

This means {T (xn)} does not admit a convergent subsequence. Hence our assumption that all ⊃’s are
⊋ must have been false, and there exists n ∈ N (different from the meaning of previous n) such that
Xn+1 =Xn. It remains to notice that Xn+1 =Xn Ô⇒ Xm =Xn for all m ⩾ n:
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T − I ∶Xn →Xm is injective + surjective Ô⇒ (T − I)k is bijective ∀k.

Now take any x ∈X and consider Xn and X2n; we have

(T − I)n(x) = (T − I)2n(y) for some y ∈X. (∆)

Since ker(T − I) = 0, the same holds for ker(T − I)n:

(T − I)n(x) = 0 Ô⇒ (T − I) [(T − I)n−1(x)] = 0 Ô⇒ (T − I)n−1(x) = 0 Ô⇒ . . .

Therefore (T − I)n is injective, and by (∆) we see x = (T − I)n(y). Hence X ⊂ im(T − I)n and X = Xn.
Now recall (◻): X ⊃X1 ⊃Xn and X =Xn together imply X =X1, so im(T −I) =X, i.e., T −I is onto.

Corollary 10.2

If T ∈ K(X) and λ ∈ σ(T ), then λ ≠ 0 Ô⇒ λ ∈ σp(T ), i.e., if T is compact, the only nonzero elements of
σ(T ) are eigenvalues.
Future reference: Lemma 12.15

Proof. We simply apply Theorem 10.1 to T /λ. If nonzero λ ∉ σp(T ), we have ker(T − λI) = {0} and so
is ker(T /λ − I). It follows that T /λ − I is invertible, and so is T − λI Ô⇒ λ ∉ σ(T ). This shows the
contrapositive.

Proposition 10.3

If T ∈ K(X) and {λi} ⊂ σp(T ) is a sequence of nonzero (distinct) eigenvalues, then λi → 0, i.e., eigenvalues
of T ∈K(X) cannot have any accumulation points, except 0.
Future reference: Hilbert-Schmidt Theorem, Theorem 13.9

Proof. Let ei ∈ Eλi (an eigenvector) be such that ∥ei∥ = 1. Also define Fn ∶= span{e1, . . . , en}. It follows
that

(T − λnI)Fn = Fn−1 (∆)

as (T − λnI) gives 0 only when acting on en.
Now we know that dimFn = n and each Fn is closed in X. We also know that Fn+1 ⊋ Fn (recall Lemma
8.4 — different eigenvalues correspond to linearly independent eigenvectors). Once again we can use
Riesz’s Lemma: for all n ⩾ 0, there exists xn+1 ∈ Fn+1 with ∥xn+1∥ = 1 and ∥xn+1 − y∥ ⩾ 1/2 for all y ∈ Fn.
(Define F0 ∶= {0}.)
Then, for n >m ⩾ 1, using the same “adding and subtracting“ trick and applying Riesz’s lemma, we have
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XXXXXXXXXXX

T (xn)
λn

− T (xm)
λm

XXXXXXXXXXX
=
XXXXXXXXXXX

(T − λnI + λnI)(xn)
λn

− (T − λmI + λmI)(xm)
λm

XXXXXXXXXXX

=
XXXXXXXXXXX

∈Fnª
xn +

∈Fn−1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(T − λnI)(xn)

λn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Fn−1

− xm
°
∈Fm

− (T − λmI)(xm)
λm

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Fm−1

XXXXXXXXXXX

⩾ 1

2

Ô⇒ {T (xn)
xn

} does not admit a convergent subsequence

Ô⇒ {xn

λn
} is not bounded for any subsequence (since T is compact)

Ô⇒ ∣λn∣→ 0 because ∥xn∥ = 1, fixed by assumption.
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Lecture 28: 10/21 Hahn-Banach Theorem & Applications; Banach Limit

Definition 10.4

Let V be a vector space.

(1) p ∶ V → R is sublinear if p(x + y) ⩽ p(x) + p(y) and p(λx) = λp(x) for λ ⩾ 0.

(2) p is called a seminorm if p(x + y) ⩽ p(x) + p(y) and p(λx) = ∣λ∣p(x) for all λ ∈ K.

Remark

Consider V = R2 and p(x1, x2) ∶= x1. This is sublineear but it clearly does not define a seminorm.

Theorem 10.5: Hahn-Banach Theorem

(1) (Real version) Let X be any real vector space and U ⊂ X any subspace. Let φ ∶ L(U,R) be such that
φ ⩽ p on U for some sublinear function p ∶X → R. Then there exists f ∈ L(X,R) such that

f ∣U = φ and f ⩽ p in X.

If it so happens that p is a seminorm then ∣f ∣ ⩽ p in X.

(2) (Complex version) let X be a complex vector space and U ⊂ X a subspace. Let p be a seminorm on
X. If there exists φ ∈ L(U,C) and ∣φ∣ ⩽ p on U , then there exists f ∈ L(X,C) such that

f ∣U = φ and ∣f ∣ ⩽ p in X.

For both cases: in particular if X is normed then any φ ∈ U∗ can be extended to some f ∈ X∗ with
∥f∥X∗ ⩽ ∥φ∥U∗ (i.e., take p(x) ∶= ∥φ∥).
Future reference: distance functionals, Banach limit, Proposition 10.15, Theorem 10.18

Proof. Proof is by Zorn’s Lemma; see Lax, p.19 & 23.

Corollary 10.6: Support functionals

Let X be a normed vector space. Given x ∈X, there exists f ∈X∗ with ∥f∥X∗ = 1 and f(x) = ∥x∥.

Proof. Let φ ∶ U ∶= span{x} → K defined by φ(αx) = α∥x∥. Note that φ(x) = ∥x∥ and ∣φ(z)∣ ⩽ ∥z∥ for all
z ∈ U . Hence ∥φ∥U∗ = 1. Then Hahn-Banach gives the existence of f ∈X∗ that we seek.
Future reference: Corollary 10.8, Lemma 11.4.1, Future reference: Lemma 11.13
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Example 10.7

For all f ∈X∗ with ∥f∥X∗ ⩽ 1, ∥x∥ ⩽M ⇐⇒ ∣f(x)∣ ⩽M .

Proof. Ô⇒ is trivial. So is ⇐Ô by the corollary of support functionals right above.

Remark

In particular, we can define equivalent norms:

∥x∥ = sup
f∈X∗
∥f∥x∗=1

∣f(x)∣, cf. Theorem 8.1.

Corollary 10.8: X∗ separates points

If distinct x, y ∈X, then there exists f ∈X∗ such that f(x) ≠ f(y). In particular, if x, y ∈X and f(x) = f(y)
for all f ∈X∗ then x = y.
Future reference: Lemma 11.13

Proof. If x ≠ y then by supporting functional corollary gives an f ∈X∗ such that ∥f∥X∗ = 1 such that

0 ≠ ∥x − y∥ = f(x − y) = f(x) − f(y).

Hence x ≠ y Ô⇒ f(x) ≠ f(y) for some f .

Proposition 10.9: Distance functionals

Let X be normed and Y ⊊X a closed subspace, and let x ∈X ∖ Y . Define

d ∶= inf
y∈Y
∥x − y∥.

Then there exists f ∈X∗ such that ∥f∥X∗ = 1, f(y) = 0 for all y ∈ Y , and f(x) = d.
(Compare this with projection theorem on Hilbert spaces. Indeed there we had a distance minimizer back then,
but here since X is not necessarily Hilbert the “projection” is not defined. Also see this following example.)
Future reference: Lemma 10.11, Lemma 10.15.2, Theorem 11.6

Proof. Note that d > 0 (due to closedness of Y ; similar to Lemma 6.9). Now define U ∶= span(Y ∪ {x})
and define φ ∶ U → K by φ(y + λx) ∶= λd for y ∈ Y and λ ∈ K. Notice that

∣φ(y + λx)∣ = ∣λ∣d ⩽ ∣λ∣∥x − (−y/λ)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Y

∥ = ∥λx + y∥ Ô⇒ ∥φ∥ ⩽ 1.

To show ∥φ∥ ⩾ 1, let sequence {yn} ⊂ Y be such that ∥x − yn∥ ⩽ d(1 + 1/n). Then

φ(1 ⋅ x − yn) = d ⩾
n

n + 1
∥x − yn∥.

This means ∥φ∥ ⩾ n/(n + 1), and taking n→∞ gives ∥φ∥ = 1. Now already we have φ(y) = 0 for all y ∈ Y
and φ(x) = d. By Hahn-Banach Theorem (the “in particular” part) we can extend φ to f ∈X∗.
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Example 10.10

If X is Hilbert then d = ∥v∥ where x = u + v for some u ∈ Y and v ∈ Y ⊥.

Proof. Since u ∈ Y and v ∈ Y ⊥, we have

∥d2∥ = inf
y∈Y
∥u + v − y∥2 = inf

y∈Y
∥v + u − y∥2

= inf
y∈Y
(∥v∥2 + ( v

®
∈Y ⊥

, u − y
±
∈Y

) + (u − y, v) + ∥u − y∥2)

= inf
y∈Y
(∥v∥2 + ∥u − y∥2) = ∥v∥2.

Therefore d = ∥v∥ and we simply take y ∶= u.
(Follow the italic remarks in the previous proposition: now instead of talking about projections as we did
in Hilbert spaces, we talk about linear functionals. The ideas are similar.)

Lemma 10.11

If X∗ is separable then so is X (assuming it’s normed). The converse is NOT true: (ℓ1)∗ ≡ ℓ∞.
Future reference: Theorem 12.10

Proof. If X∗ is separable then so is the unit sphere: SX∗ ∶= {f ∈ X∗ ∶ ∥f∥X∗ = 1} (Lemma 2.10). Then
there exists {fn}n⩾1 ⊂ SX∗ (countable) which is dense in SX∗ . Since these fn’s have operator norm 1,
there exisets {xn}n⩾1 ⊂X such that ∣fn(xn)∣ ⩾ 1/2 (use the supremum definition of operator norms). We
will show that X = span{xn} =∶M . (Then the countable set with dense span shows separability.)
Suppose not, i.e., M ≠X, then the distance functional proposition gives f ∈X∗ such that ∥f∥X∗ = 1 and
f(x) = 0 for all x ∈M . In particular, f(xn) = 0 for all n and so

1

2
⩽ ∣fn(xn)∣ = ∣fn(xn) − f(xn)∣ ⩽ ∥fn − f∥ ∥xn∥

±
=1

,

contradicting the assumed density of {fn} in SX∗ .

Corollary 10.12

(ℓ∞)∗ ≇ ℓ1 and (L∞)∗ ≇ L1. Recall Theorem 8.1.
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Banach Limits in ℓ∞(R)

Let X ∶= ℓ∞(R), c(R) ∶= {x ∈X ∶ xn converges} (notice that c0 ⊂ c), and let ℓ ∈ (c(R))∗ be defined by ℓ(x) = lim
n→∞

xn.
Notice that we can extend ℓ to X by Hahn-Banach, but we want to extend it in a particular way that preserves the
most important properties of the usual limit.

Definition 10.13

A Banach limit in X is any L ∈X∗ such that, for all x ∈X,

(1) L(x) ⩾ 0 if xn ⩾ 0 for all n,

(2) L = L(SL(x)) (invariant under shifting), and

(3) L(1,1, . . . ) = 1.

Lemma 10.14

The Banach limit is bounded by limsup and liminf: lim inf
n→∞

xn ⩽ L(x) ⩽ lim sup
n→∞

xn for all x ∈ X = ℓ∞(R). In

particular, L(x) = ℓ(x) on c(R) (where the liminf and limsup agree and the Banach limit gets sandwiched).
To be proven next lecture.
Future reference: Lemma 10.15.2
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Lecture 29: 10/23 Minkowski Functional; Separation of Convex Sets

Proof of Lemma 10.14. Notice that liminf is “the largest lower bound such that only finitely many xn’s are
smaller” and likewise for limsup. Since L is invariant under (finite times of) shifting, it suffices to show that

inf
n

xn ⩽ L(x) ⩽ sup
n

xn.

Let ϵ > 0 be given. There exists some n0 such that sup
n

xn − ϵ < xn0 ⩽ sup
n

xn. Hence xn0 − xn + ϵ > 0 for all n.
Applying L gives

0
(1)
⩽ ({xn0 − xn + ϵ}) = xn0 −L(x) + ϵ

(since L is linear; L({xn0}) = xn0 and likewise for ϵ by (3)). Therefore L(x)− ϵ ⩽ xn0 ⩽ sup
n

xn. Taking ϵ ↓ 0 gives
L(x) ⩽ sup

n
xn. The other case is analogous.

Proposition 10.15

Banach limits exist. See Goffman & Pedrick (1983), Prop.5, p.67, or here, for uniqueness of Banach
limits (under some conditions). Such sequences (that converge to some Banach limit) are called “almost
convergent”.

Proof. Let p ∶X → R be defined by

p(x) = lim sup
n→∞

x1 + x2 + ⋅ ⋅ ⋅ + xn

n
.

(We need limsup as opposed to simply lim because x ∈ ℓ∞, and there is no guarantee that ∑ /n will
converge. Take, for example, the alternating sequence of 1’s and 0’s.) Note that p is sublinear, and

−p(−x) = lim inf
n→∞

x1 + x2 + ⋅ ⋅ ⋅ + xn

n
.

In particular, recall ℓ ∈ (c(R))∗ and so

ℓ(x) = lim
n→∞

x1 + ⋅ ⋅ ⋅ + xn

n
where x ∈ c(R),

i.e., if xn → x then (x1 + ⋅ ⋅ ⋅ + xn)/n → x (there will only be finitely many terms that’s far away from x).
By Hahn-Banach , there exists L ∈X∗ such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(x) ⩽ p(x)
⇓

L(−x) ⩽ p(−x)
Ô⇒ −p(−x) ⩽ L(x) ⩽ p(x). (∆)

Now it remains to show that L is a Banach limit. Criterion (1) is guaranteed by (∆): if xn ⩾ 0 for all n
then p(x) ⩾ 0 and p(−x) ⩽ 0 Ô⇒ −p(−x) ⩾ 0. Hence so is L(x). Criterion (3) is trivial in this problem.
Now it remains to show (2):

L(x) −L(SL(x)) = L(x − SL(x)) ⩽ p(x − SL(x)) = lim sup
n→∞

x − xn

n
→ 0,

and likewise 0 ⩽ L(x) −L(SL(x)). Hence L is the Banach limit we have been looking for.

89



10/23 Minkowski Functional; Separation of Convex Sets MATH 580 Intro to Functional Analysis - YQL

Separating Convex Sets

Now we no longer restrict ourselves to ℓ∞. Instead, we look at any normed space. Recall Corollary 7.11 where we
separated closed convex set A from x ∉ A in a real Hilbert space. We shall now generalize this and separate convex
sets in any normed space.

Definition 10.16

Let C be an open, convex subset of X, a normed space with 0 ∈ C. Then

pc(x) ∶= inf{λ > 0 ∶ λ−1x ∈ C}

is the Minkowski functional of C.
(Think of R2 and an open unit disk centered at the origin. Given any point not in the open disk, the
Minkowski functional is the reciprocal of the infimum of “scaling factors” that transform the point into the
disk. In particular, if x is on the boundary of C (though we haven’t defined), pc(x) = 1 for obvious reasons.)

Lemma 10.17

Denoting p ∶= pc, we have

(1) p is sublinear.

(2) 0 ⩽ p(x) ⩽ c∥x∥ for some constant c.

(3) C = {x ∶ p(x) < 1}. In particular, ∥ ⋅ ∥ is the Minkowski functional of Bx(1) ∶= {x ∶ ∥x∥ < 1}. Compare
this with remark of Lemma 1.20.

Future reference: Theorem 10.18

Proof.

(1) p(λx) = λp(x) for λ ⩾ 0 is obvious. For triangle inequality: let α > p(x) and β > p(y) then
x/α, y/β ∈ C. Hence

x + y
α + β

= α

α + β
x

α
+ β

α + β
y

β
∈ C, (a convex combination)

so α + β ⩾ p(x + y) for all α > p(x), β > p(y). Letting a ↓ p(x) and β ↓ p(y) we obtain the ∆ ineq.

(2) Since 0 ∈ C and C is open, there exists δ > 0 such that B(0, δ) ⊂ C. Hence for all z ∈ B(0, δ) we
have p(z) ⩽ 1. Now we start rescaling: for all x ∈X,

p(x) = 2∥x∥
δ
⋅ p(δ

2

x

∥x∥
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈B(0,δ)

⩽ 2

δ
∥x∥ Ô⇒ c ∶= 2

δ
finishes the proof.
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(3) ⊂: if x ∈ C then some ball around x is still in C since C is open. Hence there exists λ < 1 such that
λ−1x ∈ C, i.e., p(x) < 1.

⊃: if p(x) < 1 then there exists some λ ∈ (p(x),1). To see x ∈ C, notice that

x = λ ⋅ x/λ
°
∈C

+(1 − λ) ⋅ 0
®
∈C

∈ C. ◻

Theorem 10.18: Functional Separation Theorem

Let X be a real normed space. Let A,B be nonempty, disjoint, convex sets.

(1) If A is open, then there exists f ∈X∗ and γ ∈ R such that

f(a) < γ ⩽ f(b) for all a ∈ A, b ∈ B.

(2) If A is compact and B is closed, then there exists f ∈X∗, γ ∈ R, and δ > 0 such that

f(a) ⩽ γ − δ

2
< γ + δ

2
⩽ f(b) for all a ∈ A, b ∈ B.

Note that if A happens to be a singleton and X Hilbert, then we can recover Corollary 7.11 from it.

Future reference: Corollary 11.1, Functional Separation Theorem (Affine Planes), Characterization of
closed convex sets

(For an easy visualization, consider X ∶= R2. For the first part, let A be an open disk and B any disk disjoint
from A. (It might be possible that A and B are tangent.) Then we can draw a “line” that does not touch A

and touch B at most on its boundary (hence the < and the ⩽). For the second part, now we have two closed
sets, and if they are disjoint, their closure must be some distance apart, hence the existence of δ > 0.)

Proof. Let a0 ∈ A and b0 ∈ B, and define w0 ∶= b0 − a0. (Then 0 = w0 + a0 − b0.) Now consider the set

C ∶= w0 +A −B ∶= {w0 + a − b ∶ a ∈ A, b ∈ B}.

Note that C is open (because A is), convex (because both are), and 0 ∈ C. Hence we are back to the
setting of Minkowski functionals.

Continued proof on 10/26

Now define p ∶= pc the Minkowski functional on C. Note that w0 ∉ C (otherwise a − b = 0 for some a ∈ A
and b ∈ B, contradicting A ∩B = ∅). Hence pc(w0) ⩾ 1.
Now define U ∶= span{w0} and φ(w0α) = α for α ∈ R. Immediately we see φ ∈ L(U,R). To apply
Hahn-Banach , we need to show φ ⩽ p in U :

α ⩾ 0 Ô⇒ φ(αw0) = α ⩽ αp(w0) = p(αw0)

α < 0 Ô⇒ φ(αw0) < 0 ⩽ p(αw0).

91



10/23 Minkowski Functional; Separation of Convex Sets MATH 580 Intro to Functional Analysis - YQL

By Hahn-Banach there exists f ∈ L(X,R) such that f ∣
U
= φ and f ⩽ p in X. By Lemma 10.17.2,

Minkowski functionals are bounded above by constant times the norm:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) ⩽ p(x) ⩽ c∥x∥

−f(x) ⩽ p(−x) ⩽ c∥x∥
Ô⇒ f ∈X∗.

Having found f ∈X∗, we will verify (1) and (2).

(1) For all a ∈ A, b ∈ B,

1 + f(a) − f(b) = f(w0 + a − b) ⩽ p (w0 + a − b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈C

< 1 by Lemma 10.17.3.

Therefore f(a) < f(b). Now let γ ∶= inf
b∈B

f(b); we get f(a) < γ ⩽ f(b).

For the first sharp inequality: suppose f(a) = γ for some a ∈ A. By the openness of A, there exists
some δ > 0 such that B(a, δ∥w0∥) ⊂ A, and so a + δw0 ∈ A. Applying f gives

f(a + δw0) = f(a)
±
=γ

+δf(w0)
´¹¹¹¹¹¸¹¹¹¹¹¶
=φ(w0)=1

= γ + δ,

clearly a contradiction. Hence the sharp inequality f(a) < γ.

(2) let ϵ ∶= 1

4
inf{∥a − b∥ ∶ a ∈ A, b ∈ B}. Since A is compact, B closed and A ∩B = ∅, ϵ > 0. (Suppose

ϵ = 0 then there exist sequences {an},{bn} such that ∥ab − bn∥ → 0. By compactness of A, there
exists a subsequence ani → a. Then ∥a − bni∥→ 0 and so bni → a ∈ B. Then A ∩B ≠ ∅.)

Now define Aϵ ∶= A+BX(ϵ) and Bϵ ∶= BX(ϵ). Since Aϵ,Bϵ are both open, by (1) there exists f ∈X∗

and γ ∈ R such that f(a) < γ ⩽ f(b) for all a ∈ Aϵ, b ∈ Bϵ. Now we will define δ carefully so that
there are room between f(a) and f(b).

Let δ ∶= ϵ/∥w0∥. Then a + (δ/2)w0 ∈ Aϵ for each a ∈ A. It follows that

f(a) = f(a + δw0/2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<γ

− f(δw0/2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δφ(w0)/2
=δ/2

< γ − δ

2

and similarly f(b) ⩾ γ + δ/2 for all b ∈ B.
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Lecture 30: 10/26 Characterization of Banach Limits

Corollary 11.1

Theorem 10.18 remains true for complex vector spaces. Simply define f(a) ↦ Ref(a) and f(b) ↦ Ref(b).
(Note that a real vector space can always be complexified into a complex vector space in this way.)
Future reference: Characterization of closed convex sets

Proof. We can apply the previous theorem to XR (X over only R) to find f ∈X∗R such that

f(x) ∶= φ(x)
²
Ref

+iφ(ix).

Banach Limits Revisited

Lemma 10.15: Uniqueness of Banach Limits (Proposition 10.15)

Let X = ℓ∞(R). Then x ∈ X is almost convergent (i.e., all Banach limits are the same) if and only if
p(x) = −p(−x) where p(x) = lim sup

n→∞

x1 + x2 + ⋅ ⋅ ⋅ + xn

n
, as defined in Proposition 10.15. (Recall that this is

equivalent to saying lim inf = lim sup).

Proof. ⇐Ô is trivial because Lemma 10.14 gives lim inf = L = lim sup.
For Ô⇒ , suppose −p(−x) < p(x). Notice, from the proof of Proposition 10.15, that

p(x) = p(x + y) − ℓ(y) and − p(−x) = −p(−y − x) − ℓ(y) for all y ∈ c(R).

(Since lim inf
n→∞

(an+bn) ⩾ lim inf
n→∞

an+ lim inf
n→∞

bn and equality can be achieved if one of {an},{bn} converges.)
Taking supremum and infimum over y (which does not change the values of −p(−x) and p(x)) gives

sup
y∈c(R)

(−p(−y − x) − ℓ(y)) < inf
y∈c(R)

(p(x + y) − ℓ(y)),

i.e., the interval with these two endpoints is nonempty.
Let φc ∶ U ∶= span(c(R) ∪ {x})→ R be defined by φc(y + λx) ∶= λc for some c in the interval above. Then
∥φ∥U∗ = 1, cf. Proposition 10.9. By Hahn-Banach there exists Lc ∈X∗ such that Lc∣U = φ and ∥Lc∥X∗ = 1.
Note that, on U , Lc(y + λx) = λc, whereas

p(y + λx) = p(y) + λp(x) > λc.

This gives −p(−y − λx) ⩽ Lc(y + λx) ⩽ p(y + λx) and by Proposition 10.15, Lc is a Banach limit.
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In particular,Lc is a Banach limit for all c’s in the interval, so Lc1(x) = φc1(x) = c1 ≠ c2 = φc2(x) = Lc2(x)
whenever c1 ≠ c2. This contradicts the assumption that x is almost convergent, as we do not have a
unique Banach limit.

Remark

This characterization of almost convergent sequences can be generalized to more general p:

q(x) ∶= inf [lim sup
j→∞

1

k

k

∑
i=1

xni+j]

where the infimum is taken over all finite sets of integers n1, . . . , nk. (See Goffman & Pedrick, p.65.)

Hyperplanes Revisited

Lemma 11.2

The following are equivalent:

(1) U is a hyperplane in X (normed).

(2) U ⊊X is a subspace such that span(U ∪ {x}) =X for all x ∈X ∖U .

(3) U = kerφ for some nonzero φ ∈ L(X,K). In addition, U is closed if and only if φ ∈X∗ ∶= B(X,K).

Future reference: Functional Separation Theorem (Affine Planes)

Proof. (1) ⇐⇒ (2) is already proven in Lemma 7.10. We will show (2) ⇐⇒ (3) next lecture.
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Lecture 31: 10/28 Functional Separation by Affine Planes; Reflexivity

Proof of Lemma 11.2. (2)Ô⇒ (3): take x ∈X ∖U and φ ∈ L(X,K) defined as φ(y+λx) ∶= λ for y ∈ U and λ ∈ K.
This is well–defined because if y′ + λ′x = y + λx then (λ′ − λ)x = y − y′ ∈ Y Ô⇒ λ′ = λ. Then φ(z) = 0 if and
only if the x-component is 0, i.e., z ∈ U , and indeed φ(x) = 1, nonzero.
(3)Ô⇒ (2): fix some x ∈X ∖U . By assumption φ(x) ≠ 0. Given any z ∈X ∖U , defining

y ∶= z − φ(z)
φ(x)

x

gives φ(y) = φ(z) − φ(z) = 0, so y ∈ U . Therefore z = y + (φ(z)/φ(x))x ∈ span(U ∪ {x}) = U ∪ (X ∖U) =X.

From (3), U is closed if and only if φ ∈X∗ (bounded):
⇐Ô : if φ ∈ X∗ then U = kerφ is closed (φ preserves sequential continuity; taking the limit of any sequence in
kerφ would prove the claim).
Ô⇒ : suppose φ is not continuous. We will show that U is dense in X (so that it cannot be closed: otherwise
U = U = X Ô⇒ U is not a proper subspace and therefore not a subspace). Since φ is not continuous, there
exists a sequence {xn} ⊂X such that ∥xn∥ = 1 but ∣φ(xn)∣ ⩾ n. Given x ∈X, let

yn ∶= x −
φ(x)
φ(xn)

xn.

Then φ(yn) vanishes by construction and so yn ∈ U . However,

∥xn − yn∥ = ∥
φ(x)
φ(xn)

xn∥ =
∣φ(x)∣
∣φ(xn)∣

Ô⇒ 0 as ∣φ(x)∣ <∞.

Hence any x ∈X can be approximated by some {yn} ⊂ U , i.e., U is dense in X. The contradiction follows.

Theorem 10.18: Hyperplane / affine plane version of Functional Separation Theorem

Let X be normed. Let nonempty convex A,B ⊂X be such that A is compact, B normed, and A ∩B = {0}.
Then there exists a closed hyperplane (as guaranteed by the ker f part in Lemma 11.2.3; the boundedness is
very important as otherwise the hyperplane might be dense in the space (see above)!) that can be translated
(by y where f(y) = γ so that now the affine plane is {x ∶ f(x) = γ}) to separate A and B.

Corollary 11.3

This theorem provides a characterization of closed convex sets. Let C ⊂X be closed and convex. Then

C = {x ∈X ∣ f(x) ⩾ inf
y∈C

f(y) for all f ∈X∗}

(or C = {x ∈X ∣Ref(x) ⩾ inf
y∈C

Ref(y) for all f ∈X∗} if X is a complex space).

(Think of a convex set on X ∶= R2 where the hyperplanes are lines. For a given f ∈ X∗, the set of x ∈ X
satisfying the inequality denotes the region on one side of the hyperplane. Now if we do this for all f ∈X∗, we
get all the “tangent planes” that help enclosing the closed convex set. In particular, we “cannot get concave
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cookies” if we use a long stick to shape it. Here, the affine planes of form inf
y∈C

f(y) are called the supporting
hyperplanes.)
Future reference: Lemma 12.7

Proof. ⊂ is trivial by the very definition of infimum.
For ⊃, take x0 in the RHS. If x0 ∉ C then, viewing A ∶= {x0}, we can apply the second part of Functional
Separation Theorem to find the existence of f ∈X∗ and δ, γ > 0 such that

Ref(x0) ⩽ γ − δ < γ + δ ⩽Ref(y) for all y ∈ C.

(Re comes from Corollary 11.1.) But this means Ref(x0) is strictly less than inf
y∈C

Ref(y), contradiction.

Reflexivity

Recall that (ℓq)∗ ≡ ℓp holds for q ∈ [1,∞). Taking a second dual gives

((ℓq)∗)∗ ≡ (ℓp)∗ ≡ ℓq for all q ∈ (1,∞),

i.e., ℓq is reflexive. We’ll define this formally later.

Define X∗∗ ∶= B(X∗;K). We define the canonical map J ∶X →X∗∗ (where X is normed) to be

J(x) = x∗∗ where x∗∗
°
∈X∗∗
(
∈X∗

f) ∶= f(x) for all f ∈X∗.

(We start with x ∈X and define x∗∗ ∈X∗∗ by letting its argument range over all f ∈X∗.)

Lemma 11.4

(1) J is an isometry (onto a subspace of X∗∗).

(2) If X is Banach then im(J) is closed (in X∗∗).

Future reference: Theorem 11.6, Lemma 11.13, Goldstine’s Theorem

Proof.

(1) We need to show for all x ∈X, x∗∗ ∈X∗∗ and ∥x∗∗∥X∗∗ = ∥x∥X .

On one hand,
∣x∗∗(f)∣ = ∣f(x)∣ ⩽ ∥f∥X∗

input of x∗∗

∥x∥X Ô⇒ ∥x∗∗∥X∗∗ ⩽ ∥x∥X .

(This also shows x∗∗ ∈ X∗∗). On the other hand, the support functional gives us f ∈ X∗ such that
f(x) = ∥x∥ and ∥f∥ = 1. Then

∣x∗∗(f)∣ = ∣f(x)∣ = ∥f∥X∗∥x∥X = ∥x∥X Ô⇒ ∥x∗∗∥X∗∗ ⩾ ∥x∥X .
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(2) Let {Fn} ∶= {J(xn)} ⊂ im(J) be such that Fn → F for some F ∈X∗∗. In particular {Fn} is Cauchy.
By the first part xn is also Cauchy in X. Therefore ∥xn −x∥→ 0 for some x ∈X since X is Banach.
Since J is an isometry,

∥xn − x∥X → 0 ⇐⇒ ∥J(xn) − J(x)∥X∗∗ = ∥Fn − x∗∗∥→ 0 Ô⇒ J(x) = F,

i.e., F ∈ im(J) and so im(J) is closed.

Definition 11.5

X is reflexive if J(X) =X∗∗, i.e., X ≡X∗∗ via J or, equivalently, J is onto X∗∗. We look at this particular
map, not any other map, to determine if X is reflexive or not. See here for a (complicated) example of a
non-reflexive Banach space isometric with its doubel dual. More to be discussed soon.
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Lecture 32: 10/30 Reflexivity of X and X∗; Weak Topologies

Remark

There exists counterexamples where Banach X ≡ X∗∗ via some different maps but X is not reflexive. We
will later show that uniformly convex Banach spaces, in particular Hilbert spaces as well as Lp and ℓp for
p ∈ (1,∞), are reflexive.

Theorem 11.6

Let X be Banach. Then X is reflexive if and only if X∗ is.
Future reference: Example 11.8

Proof.
Ô⇒ : we need to show that, for every Φ ∈ (X∗)∗∗, there exists f ∈ X∗ such that f∗∗ = Φ. Notice that
(X∗)∗∗ = B((X∗)∗;K) = (X∗∗)∗. Hence it’s equivalent to showing

Φ (F )
∈X∗∗

= F (f)
²
=f∗∗(F )

for all F ∈X∗∗.

Since X is reflexive, F = x∗∗ for some x ∈X. If we let f(x) ∶= Φ(x∗∗), then

=x∗∗(f)=f(x)
­
F (f) = Φ (F )

=x∗∗
by construction.

It remains to show f ∈ X∗. This is true because f = Φ ○ J since f(x) = Φ(x∗∗) = Φ(J(x)), where Φ is
continuous and J an isometry.
⇐Ô : suppose X∗ is reflexive but X is not. Since the image of the canonical map is closed, im(J) ⊊X∗∗

is a closed subspace. Then by Proposition 10.9, there exists Φ ∈ (X∗∗)∗ such that

Φ∣
im(J) = 0 but Φ ≢ 0,

i.e., Φ(J(x)) = 0 for all x ∈X. But X∗ is reflexive, so Φ = f∗∗ for some f ∈X∗. Then, for all x ∈X,

f(x) = x∗∗(f) (Canonical map of x)

= f∗∗(x∗∗) (Canonical map of f)

= Φ(x∗∗) (Assumption above)

= 0.

Hence f vanishes for every x ∈X. Then f ≡ 0, and so f∗∗ = Φ = 0, contradiction.

Remark

Every reflexive space is Banach (since X∗∗ is by Lemma 7.6 and X ≡X∗∗).
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Lemma 11.7

If X is reflexive and X ≅ Y (isomorphic), then Y is reflexive as well.

Example 11.8

Recall (c0)∗ ≡ ℓ1 and (ℓ1)∗ ≡ ℓ∞ (Theorem 8.1). From this we see c0 is not reflexive; in addition, neither ℓ1

nor ℓ∞ is. (Immediate by Theorem 11.6.)

Example 11.9

L1 is not reflexive, which implies L∞ isn’t either, since (L1)∗ = L∞.

Lemma 11.10

If X is reflexive and Y ⊂X a closed subspace, then Y is also reflexive.
Future reference: Theorem 12.10

Weak Topologies

Definition 11.11

Let X be normed.

(1) xn ⇀ x (xn’s converge weakly to x) in X if f(xn) → f(x) (in K) for all f ∈ X∗ (i.e., xn converges
to x in the weak topology (the topology generated by the seminorms sup

i∈[1,n]
{∣fi(x)∣i, fi ∈X∗})).

(2) fn
∗⇀ f (fn’s converge weakly-* to x) in X∗ if fn(x)→ f(x) for all x ∈X. The weak-* copology is the

smallest topology on X∗ such that each Φ ∈ J(X) ⊂X∗∗ is continuous (i.e., each X∗∗ is continuous).

Example 11.12

In a Hilbert space, every f ∈ H∗ is of the form x ↦ (x, y) for some y ∈ H (RRT). Then any orthonormal
sequence {en}n⩾1 converges weakly to 0 in H: by Bessel’s inequality

∑
n⩾1
∣(en, y)∣2 ⩽ ∥y∥2 Ô⇒ fn ∶= (en, y)→ f(0) = 0 for all y ∈H.

The difference between weak and strong convergence here is that en ↛ 0 since ∥ei − ej∥2 = 2 for any two
different ei, ej . Hence no strong convergence but only weak one.
Future reference: weak closure
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Lecture 33: 11/2 Characterization of Weak Convergence

Lemma 11.13: Properties of weak convergence

(1) If xn → x then xn ⇀ x, hence the name weak convergence.

(2) In finite-dimensional spaces, ⇐Ô is true. Otherwise very rarely.

(3) Weak limits are unique.

(4) xn ⇀ x then {xn} is bounded and ∥x∥ ⩽ lim inf
n→∞

∥xn∥.

Future reference: Lemma 12.2, Milman-Pettis Theorem

Proof.

(1) For all f ∈X∗, ∣f(xn) − f(x)∣ ⩽ ∥f∥∥xn − x∥→ 0.

(2) Exercise. See the answer here.

(3) Suppose xn ⇀ x and xn ⇀ y. Then f(xn)→ f(x) and f(xn)→ f(y) for all f ∈X∗. Then Corollary
10.8 gives the existence of some f ∈X∗ such that f(x) ≠ f(y) whenever x ≠ y. Hence to let xn ⇀ x

and xn ⇀ y at the same time, the only possibility is if x = y.

(4) For all x ∈ X∗ we have f(xn) → f(x). Recall that f(xn) = x∗∗n (f) (the canonical map) and
f(x) = x∗∗(f). Hence in other words x∗∗n (f) → x∗∗(f) in K. In particular, the sequence {x∗∗n (f)}
is bounded (in K) for all f ∈ X∗. Therefore, by Principle of Uniform Boundedness we have (recall
that X∗∗ as a dual space is Banach) the boundedness of {x∗∗n } in X∗∗. Since canonical maps are
isometries, we have the boundedness of {xn} in X as well.

Now it remains to show ∥x∥ ⩽ lim inf
n→∞

∥xn∥. Let f ∈X∗ be the support functional of x, i.e., ∥f∥X∗ = 1
and f(x) = ∥x∥. Then,

∥x∥ = ∣f(x)∣ = lim
n→∞
∣f(xn)∣ = lim inf

n→∞
∣f(xn)∣ ⩽ lim inf

n→∞
[∥f∥X∗∥xn∥X] = lim inf

n→∞
∥xn∥

(where the lim = lim inf part holds because {xn} converges).

Remark

The lemma above holds true for weak-* convergence as well.

Corollary 11.14

If X is reflexive, then fn
∗⇀ f if and only if fn ⇀ f .

Proof. Any F ∈X∗∗ is of form F = x∗∗ for some x ∈X by assumption. Therefore, if F (fn)→ F (f), since
F (fn) = x∗∗(fn) = fn(x) and F (f) = x∗∗(f) = f(x), we equivalently have fn(x) → f(x). Hence weak
convergent is equivalent to weak-* convergence in reflexive spaces.
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Lemma 12.1

Suppose X is uniformly convex (i.e., for all ϵ > 0 there exists δ such that if ∥x∥ = ∥y∥ = 1 and ∥x− y∥ < ϵ then
∥(x + y)/2∥ < 1 − δ; examples include Hilbert spaces, Lp and ℓp spaces for p ∈ (1,∞)), then xn → x if and
only if xn ⇀ x and ∥xn∥→ ∥x∥.

Proof. Ô⇒ is immediate.
For ⇐Ô , if x = 0 then ∥xn∥→ 0 Ô⇒ xn → x = 0. Otherwise, let

yn ∶=
xn

∥xn∥
and y ∶= x

∥x∥
.

Then yn ⇀ y and yn + y ⇀ 2y. It follows that

1 = ∥y∥ ⩽ lim inf
n→∞

∥yn + y
2
∥ ⩽ lim sup

n→∞
∥yn + y

2
∥ ⩽ 1 Ô⇒ ∥yn + y

2
∥→ 1,

and by uniform convexity this means ∥yn − y∥ = 0. So yn → y and xn → x.

Lemma 12.2

If xn ⇀ x and T ∈K(X,Y ), then T (xn)→ T (x). Compact operators make weak convergence strong.

Proof. First note that T (xn) ⇀ T (x). Take any f ∈ Y ∗. Since f ○ T ∈ X∗, f(T (xn)) → f(T (x)). Now
suppose T (xn)↛ T (x). Then there exists ϵ > 0 and {ni} (index of subsequence of the original {xn}) such
that ∥T (xni)−T (x)∥ > ϵ for each i. Lemma 11.3.4 says {xn} is bounded and, since T ∈K(X,Y ), {T (xni)}
has a convergent subsequence, say T (xn′i

) → z ∈ Y . By uniqueness of weak limits z = T (x) (since strong
convergence implies weak convergence), contradicting the assumption of ∥T (xni) − T (x)∥ > ϵ.

Remark

Recall PS5.3; if {en} is orthonormal and en ⇀ 0, then for any compact T , T (en)→ 0.

Lemma 12.3

xn ⇀ x if and only if {xn} is bounded and f(xn)→ f(x) for all f ∈ E where E ⊂X∗ is dense. One can prove
this by triangle inequality.
Similarly, fn

∗⇀ f if and only if {fn} is bounded in X∗ and fn(x)→ f(x) for all x ∈ E, where E ⊂X is dense.
Future reference: Banach-Alaoglu Theorem

Example 12.4

Below are some applications of the lemma above:

(1) x(n) ⇀ x in ℓp for p ∈ (1,∞) if and only if

∑
k⩾1

x
(n)
k yk → ∑

k⩾1
xkyk for all y ∈ ℓq

where 1/p + 1/q = 1 (since (ℓp)∗ ≡ ℓq). Also, x(n) ⇀ x if and only if {x(n)} is bounded and x
(n)
k → xk
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for all k (by the lemma above, as {e(i)} is dense in ℓ(q)).

Future reference: Schur’s Theorem

(2) fn ⇀ f in Lp(a, b) with p ∈ (1,∞) if and only if {fn} is bounded in Lp and

∫
b

a
fng → ∫

b

a
fg for all g ∈ C([a, b])

where C([a, b]) is dense in Lp(a, b) by Lemma 5.24. Alternatively, we can replace C([a, b]) by P ([a, b])
by Corollary 6.1 or {eikx ∶ k ∈ Z} by Example 5.23.

(3) Let {ek} be an orthonormal Schauder basis of H, a Hilbert space. Then xn ⇀ x if and only if {xn} is
bounded and (xn, ek)→ (x, ek) for all k.

Theorem 12.5: Schur’s Theorem

Let X ∶= ℓ1. Then x(n) ⇀ x if and only if x(n) → x. Weak convergence in ℓ1 is equivalent to strong
convergence.

Proof. ⇐Ô is trivial. For Ô⇒ , WLOG assume x = 0; we need to show that ∥x(n)∥ → 0. Suppose this
is not true; then on some subsequence (which we relabel to xn) we have

∑
k⩾1
∣x(n)k ∣ ⩾ ϵ for some ϵ for some ϵ > 0.

Note that x
(n)
k → 0 for all k (because x(n) ⇀ x implies component-wise strong convergence by Example

12.4.1). We will finish the proof next lecture.
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Lecture 34: 11/4 Schur, Mazur, Banach-Alaoglu, & Navier-Stokes

Continuing the proof of Schur’s Theorem. Let N0 =M0 = 1. For i > 0, choose Ni such that

∑
k⩾Ni

∣x(Mj−i)
k ∣ < ϵ

6

(which is doable since x ∈ ℓ1 and the late enough terms have small enough sum.) Also, define Mi such that

Ni

∑
k=1
∣x(Mi)

k ∣ < ϵ

6

(which is also doable since x(n) → 0 component-wise; choosing Mi large enough allows us to get small enough
sum even from the early terms). Now fix y ∈ ℓ∞ with

yk ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣x(Mi)
k ∣/x(Mi)

k if x(Mi)
k ≠ 0 for k ∈ (Ni−1,Ni]

0 otherwise

and functional f(x) ∶= ∑
k⩾1

xkyk (i.e., f = Ly ∈ (ℓ1)∗ ≡ ℓ∞ by Theorem 8.1). Now we shall show that even though

f ∈ (ℓ1)∗, x(n) does not converge weakly to 0. Let the fun begin!

∣f(x(Mi))∣ = ∣∑
k⩾1

x
(Mi)
k yk∣

Where ∑
k⩾1
=

Ni

∑
k=1
+

Ni+1

∑
k=Ni+1

+ ∑
k>Ni+1

and

∣a+b+c∣+ ∣−b∣+ ∣−c∣ ⩾ ∣a∣ Ô⇒ ∣a+b+c∣ ⩾ ∣a∣− ∣b∣− ∣c∣

⩾

RRRRRRRRRRRRRRRRRR

Ni+1

∑
k=Ni+1

x
(Mi)
k yk

=∣x(Mi)
k

∣

RRRRRRRRRRRRRRRRRR

−
RRRRRRRRRRRRRR

Ni

∑
k=1

x
(Mi)
k yk

∣⋅∣⩽1

RRRRRRRRRRRRRR
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ϵ/6

−
RRRRRRRRRRRRRR
∑

k>Ni+1

x
(Mi)
k yk

∣⋅∣⩽1

RRRRRRRRRRRRRR
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ϵ/6

The absolute value of the first term can be

dropped and
Ni+1

∑
k=Ni+1

= ∑
k⩾1
−

Ni

∑
k=1
− ∑
k>Ni+1

> ∑
k⩾1
∣x(Mi)

k ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾ϵ

−
Ni

∑
k=1
∣x(Mi)

k ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<ϵ/6

−
∞
∑

k>Ni

∣x(Mi)
k ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<ϵ/6

− ϵ
3
> ϵ

3
for any i.

Therefore, x(n) does not converge weakly to 0 under f ∈ (ℓ1)∗, contradicting the weak convergence of x(n).

Definition 12.6

Let X be normed. We say A ⊂ X is weakly closed if whenever {xn} ⊂ A and xn ⇀ x then x ∈ A. Notice
that being weakly closed is a stronger property than being closed: strongly closed Ô⇒ weakly closed, but
not the converse. Take, for example, SX ∶= {x ∶ ∥x∥ = 1} from Example 11.12: en ⇀ 0 but 0 ∉ SX .

Lemma 12.7

Let X be normed. If C ⊂X is closed and convex, then C is weakly closed.

Proof. Pick {xn}→ C such that xn ⇀ x ∈X. Recall from Corollary 11.3 that any closed convex set C can
be written as
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C = {x ∈X ∣Ref(x) ⩾ inf
y∈C

Ref(y) for all f ∈X∗}.

Therefore Ref(xn) ⩾ inf
y∈C

Ref(y) for all f ∈ X∗. By weak convergence, Ref(xn) → Ref(x) and further-

more it is true for all f ∈ X∗. Therefore x ∈ C. “Given any f ∈ X∗, all xn’s stay on the same of that f ,
and the same thing must also be true for x.”

Theorem 12.8: Mazur’s Theorem / Lemma

If xn ⇀ x in a normed space X, then for all n, there exists yn as a convex combination (i.e., yn =
n

∑
i=1

αixi where

∑ αi = 1 and αi ∈ [0,1]) such that yn → x. This theorem overkills lemma 12.7 above: convex combinations
{yn} of xn’s in C are still inside C, and they converge strongly to x ∈ C. Hence the strong closure.

Proof. Let Yn ∶= conv{x1, . . . , xn} be the convex hull of {x1, . . . , xn}, i.e., the set of all possible convex
combinations of them. Also, define Y ∶= ⋃

n⩾1
Yn = conv{xn}n⩾1.

Obviously, xn ∈ Yn ⊂ Y . Because Y is convex [each of the Yn’s is convex]. Therefore by the previous
lemma (12.7) Y is weakly closed, so xn ⇀ x Ô⇒ x ∈ Y . In particular,

dist(x, yn)→ 0.

(Otherwise, there exists ϵ and {ynk
} such that ∥x − y∥ > ϵ for all y ∈ {Ynk

}. Then ∥x − y∥ > ϵ for all y ∈ Y
as the Ynk

’s are increasing (e.g. Ynk−1 would satisfy the > ϵ relation because of Ynk
). Hence ∥x − y∥ > ϵ

for all y ∈ Y , contradiction.)
Therefore for all n, there exists yn ∈ Yn with yn → x.

Remark

For a proof using merely Hahn-Banach and not lemma 11.12 above, see Yoshida, p.120.

Weak Sequential Compactness

Theorem 12.9: Banach-Alaoglu Theorem

Let X be separable. Then any bounded sequence in X∗ has a weakly-* convergent subsequence. In fact,
this theorem holds for any normed space. See Rudin, Theorem 3.14.
Future reference: Weak solutions of the Navier-Stokes equation, Theorem 12.10

Proof. Let E = {xk} ⊂X be a dense (countable) subset, and take {fn} ⊂X∗ bounded, say, by ∥fn∥X∗ ⩽M .
We shall now apply the diagonalization argument.
Choose {n1,i}i⩾1 ⊂ {n} (a subsequence) such that fn1,i(x1) converges. (We can do this because [−M,M]
is compact.)
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We choose sub-subsequences inductively such that fnm,i(xm) converges. (To make sure the diagonalization
argument works, we make sure subsequence inherits the first term of its mother sequence, i.e., starting
no earlier than the second. For example, the second subsequence is {fn2,j}j⩾2.)
Then, the diagonal sequence fnm,m(xk) converges to the same limit as m→∞ for all xk ∈ E. Define

f(xk) ∶= lim
n→∞

fnm,m(xk) for all k.

It follows that ∣f(xk)∣ ⩽M∥xk∥ for all k. Now it remains to extend f from the dense subset to all of X.
We don’t need Hahn-Banach here: simply define f(x) = lim

k→∞
f(yk) where yk → x and {yk} ⊂ E. In fact

this extension is bounded and is unique (left as an exercise).
By Lemma 12.3 (weakly-* version), fnm,m

∗⇀ f (“bounded” and “for all x ∈ E dense in X”).

Theorem 12.10: Characterization of Reflexive Spaces

If X is reflexive, then any bounded sequence in X has a weakly convergent subsequence (i.e., BX(0,1) is
weakly compact). This the main reason why we even look at reflexive spaces. We will prove this next lecture.
In fact, ⇐Ô is also true, as proven by Eberlein (1935). Also see PS6.5 for the case of real Banach space.
Now we give an application of the theorems: using compactness method on the Navier-Stokes equation

Example: Navier-Stokes Equations

In incompressible Navier-Stokes equations,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu + (u ⋅∇)u − v∆u +∇p = 0

∇ ⋅ u = 0
in (0, T ) ×R3 with u(0) = u0 given,

if we multiply everything by u and integrate over the whole space gives, for each t ∈ (0, T ),

∫ ∣u(t, x)∣2 dx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Total energy at t

+ 2∫
t

0
∫
R3
∣∇u∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Amount of dissipation

⩽ ∫ ∣u0(x)∣2 dx.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Initial total energy

(Energy Inequality)

From this we see:

(1) {un} is bounded in L∞((0, T );L2). Banach-Alaoglu Theorem shows unk

∗⇀ u in L∞((0, T );L2).

(2) {∇un} is bounded in L2((0, T );L2). Theorem 12.10 shows ∇unk
⇀ f in L2((0, T );L2). In fact f = ∇u.

From above we obtain a candidate for a solution, and the entire method is called the compactness method
of obtaining weak solutions of PDEs.
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Lecture 35: 11/6 Uniform Convex Banach Spaces are Reflexive

Proof of Theorem 12.10 . Let {xn} ⊂X be bounded and Y ∶= span{xn}. Immediately we see Y is separable and
reflexive (Lemma 11.10). Therefore Y ≡ Y ∗∗, and by the canonical map {x∗∗n } is bounded in Y ∗∗. Treating Y ∗∗

as the dual of Y ∗, by Banach-Alaoglu there exists a subsequence {x∗∗nk
} such that x∗∗nk

∗⇀ Φ for some Φ ∈ Y ∗∗ (X∗

is separable by Lemma 10.11 because X∗∗ is). Since Y is reflexive and the canonical map surjective, Φ = x∗∗ for
some x ∈ Y . We need to show f(xnk

)→ f(x) for all f ∈X∗.
Let f ∈X∗ be given and define fy ∶= f ∣Y ∈ Y

∗. It follows that

f(xnk
) = fY (xnk

)=
canonical map

x∗∗nk
(fY )

∗⇀
weak-*

Φ(fy) = x∗∗(fY )=
canonical map

fY (x) = f(x).

Indeed we do have a weakly convergent subsequence.

Lemma 12.11: Goldstine’s Theorem

Recall we said that we would prove uniformly convex Banach spaces are reflexive, but before doing that, we
need a lemma. Let X be normed. For all Φ ∈ X∗∗ with ∥Φ∥X∗∗ ⩽ 1 (i.e., BX∗∗ , the unit ball in X∗∗), there
exists some sequence {xn} ⊂ BX , i.e., ∥xn∥X ⩽ 1, such that x∗∗n

∗⇀ Φ. (In other words, J (BX) is weakly-*
dense in BX∗∗ .)

Remark

Recall that J (BX) is a closed unit ball (by isometry) in a subspace of X∗∗. This lemma states that
the weak-* closure of J (BX) is BX∗∗ . Taking weak-* closure is different from taking closure.

For proof, see Theorem 2.6.26 in Megginson ’98.

Theorem 12.12: Milman-Pettis Theorem

Uniformly convex Banach spaces are reflexive.

Proof. Let Φ ∈ X∗∗ be such that ∥Φ∥X∗∗ = 1. We need to show that there exists x ∈ X with x∗∗ = Φ. By
Goldstine’s Theorem above, there exists {xn} ⊂ BX such that x∗∗n

∗⇀ Φ in X∗∗. In other words, for all
x ∈X∗ we have x∗∗n (f)→ Φ(f). Notice that this convergence also gives

x∗∗n + x∗∗m
2

∗⇀ Φ for m > n, as n→∞.

To put more formally, for all ϵ > 0, there exists N such that for all m > n ⩾ N ,

∣(x
∗∗
n + x∗∗m

2
−Φ)(f)∣ < ϵ for all f ∈X∗.

By Lemma 11.13.4 (weak-* version),
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∥Φ∥ ⩽ lim inf
n→∞

∥x
∗∗
n + x∗∗m

2
∥,

i.e., for all δ > 0, there exists N such that, for all m > n ⩾ N , ∥Φ∥− δ = 1− δ ⩽ ∥(x∗∗n + x∗∗m )/2∥. But since
J is an isometry, we equivalently have

1 − δ ⩽ ∥(xn + xm)/2∥. (∆)

Now we take a detour and recall the definition of uniform convex sets:

For all ϵ > 0 there exists δ = δ(ϵ) > 0 such that if ∥x∥ = ∥y∥ = 1 and ∥x−y∥ ⩾ ϵ then ∥(x+y)/2∥ ⩽ 1− δ.

Now let ϵ > 0 be given. If we just set δ ∶= δ(ϵ), by above there exists N such that any m > n ⩾ N satisfy
(∆). However, because ∥(xn + xm)/2∥ ⩾ 1 − δ by (∆), the contrapositive of uniform convexity states that
∥x−y∥ < ϵ. This gives us nothing else but the Cauchy-ness of {xn}, and so xn → x for some x ∈X since X

is Banach. Of course J is bounded, so x∗∗n → x∗∗ in X∗∗. By Lemma 11.13.1 (weak-* version), x∗∗n
∗⇀ x∗∗,

and by part 3 of the same lemma, with the uniqueness of weak-* limits we conclude Φ = x∗∗.

Now we are done with weak convergence. See Evans “Weak Convergence methods for Nonlinear PDEs” for some
nice applications.

Hilbert-Schmidt Theorem & Applications

Definition 12.13

Let T ∈ B(H) be self-adjoint. Then

V (T ) ∶= {(T (x), x) ∶ x ∈H, ∥x∥ = 1}

is called the numerical range of T .

Lemma 12.14

V (T ) ⊂ R and ∥T ∥ = sup
λ∈V (T )

∣λ∣.

Proof. The first claim is obvious: since (T (x), x) = (x,T (x)) = (T (x), x) we see that (T (x), x) ∈ R.
Hence V (T ) ⊂ R.
For the second claim, let M ∶= sup

λ∈V (T )
∣λ∣ = sup{∣(T (x), x)∣ ∶ x ∈ H, ∥x∥ = 1}. On one hand, note that

∣(T (x), x)∣ ⩽ ∥T (x)∥∥x∥ ⩽ ∥T ∥∥x∥2 = ∥T ∥, we have M ⩽ ∥T ∥.
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Now we show M ⩾ ∥T ∥. Notice that, for all u, v ∈H,

(T (u + v), u + v) − (T (u − v), u − v) = 2 [(T (u), v) + (T (v), u)]

= 2 [(T (u), v) + (v, T (u))] (self-adjoint)

= 4Re(T (u), v).

On the other hand,

(T (u + v), u + v) − (T (u − v), u − v) ⩽M (∥u + v∥2 + ∥u − v∥2)
(normalizing u, v and taking
coefficients (norms) out)

= 2M(∥u∥2 + ∥v∥2). (parallelogram law)

Therefore 4Re(T (u), v) ⩽ 2M (∥u∥2 + ∥v∥2). If T (u) ≠ 0, set

v ∶= ∥u∥
∥T (u)∥

T (u)

so that
4Re(T (u), v) = 4∥u∥∥T (u)∥ ⩽ 2M (∥u∥2 + ∥v∥2) = 2M ⋅ 2∥u∥2

and so ∥T (u)∥ ⩽M∥u∥. If T (u) = 0 this inequality is still trivially true. This shows ∥T ∥ ⩽M .
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Lecture 36: 11/9 More on Self-Adjoint; Hilbert-Schmidt Theorem

Lemma 12.15

Let T ∈ B(H) be self-adjoint.

(1) σp(T ) ⊂ R, i.e., all eigenvalues are real.

(2) Suppose λ1, λ2 are two different eigenvalues, i.e., T (xi) = λixi and λ1 ≠ λ2, then (x1, x2) = 0, i.e., the
eigenvectors are orthogonal, not just linearly independent as we previously stated.

(3) If T ∈K(H) then either ∥T ∥ or −∥T ∥ is an eigenvalue. This strengthens Corollary 9.7.

(4) If Y ⊂H is a closed subspace, then

T (Y ) ⊂ Y Ô⇒ T (Y ⊥) ⊂ Y ⊥.

Future reference: Lemma 13.3, Theorem 13.9

Proof.

(1) If T (x) = λx then (T (x), x) = (λx,x) = λ∥x∥2. Since T is self-adjoint, (T (x), x) = (x,T (x)),
meaning that λ = λ, so λ ∈ R.

(2) Suppose λ1 ≠ λ2 ≠ 0 and x1, x2 ≠ 0 (otherwise (x1, x2) = 0). Then

λ1(x1, x2) = (λ1x1, x2) = (T (x1), x2)=
self-adjoint

(x,T (x2)) = λ2(x1, x2) Ô⇒ (x1, x2) = 0.

(3) Recall that either ∥T ∥ or −∥T ∥ ∈ σ(T ). But then, since ∥T ∥ ≠ 0 and T ∈ K(H) by assumption,
Corollary 10.2 states that either ∥T ∥ or −∥T ∥ must also be in σp(T ), i.e., an eigenvalue.

(4) Take any x ∈ Y ⊥ and any y ∈ Y . By assumption T (y) ∈ Y . Therefore

0 = (T (y), x) = (y, T (x)) for all y ∈ Y.

Therefore T (x) ∈ Y ⊥. Since x is arbitrarily chosen, T (Y ⊥) ⊂ Y ⊥.

Theorem 13.1: Hilbert-Schmidt Theorem / Eigenfunction Expansion Theorem

Let T ∈ K(H) be compact and self-adjoint. Then there exists an orthonormal sequence {wi}i⩾1 (or a finite
set) of nonzero (zero is trivial) eigenvectors/eigenfunctions {λ}i⩾1 such that

T (x) =∑
i⩾1

λi(x,wi)wi for all x ∈H.

Future reference: Corollary 13.2

Proof. By part 3 of the lemma above, there exists w1 ∈ H such that T (w1) = ±∥T ∥w1 (since either ∥T ∥
or −∥T ∥ is an eigenvalue). We define λ1 ∶= ±∥T ∥ depending on which one it is.
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Given orthonormal {w1, . . . ,wn−1} (we will later show that we can indeed iteratively pick new wi’s
under certain conditions), let Hn ∶= {w1, . . . ,wn−1}⊥. We define Y ∶= span{w1, . . . ,wn−1}. Note that the
orthogonal complement does not depend on the span: span{w1, . . . ,wn−1}⊥ = {w1, . . . ,wn−1}⊥.
Since all the wi’s are eigenvectors/eigenfunctions, T (y) is still a combination of wi’s for all y ∈ Y , i.e.,
T (Y ) ⊂ Y . It follows from the previous lemma that (since Y is obviously closed) T (Y ⊥) ⊂ Y ⊥, i.e.,
T (Hn) ⊂Hn. Setting Tn ∶= T ∣Hn

, we obtain self-adjoint Tn ∈K(Hn) (because T itself is on H).

(1) Case 1: Tn ≡ 0. Given x ∈H, let y ∶= x −
n−1
∑
i=1
(x,wi)wi. Notice that y ∈Hn because, for any

wi ∈ {w1, . . . ,wn−1},

(y,wi) = (x,wi) −
n−1
∑
j=1
(x,wi)δij = (x,wi) − (x,wi) = 0. (∆)

(Notice that the way to pick wi’s ensures {w1, . . . ,wn−1} is orthonormal whenever i ≠ j: the newer
terms were picked from the orthogonal complement of the set containing all previous terms, with
∥ ⋅ ∥ = 1.) Then,

0 = Tn(y) = T (x) −
n−1
∑
i=1
(x,wi)T (x,wi)

=λiwi

,

and we’ve shown what we want to.

(2) Case 2: Tn ≠ 0. Then ∥Tn∥ ≠ 0, and so there exists another wn such that Tn(wn) = ±∥Tn∥wn (and
we define λn ∶= ±∥Tn∥ depending on which one is the eigenvalue). We can repeat this iteration
for all n ⩾ 1. Now it remains to show that the original equation (T (x) = ∑) holds for the infinite
sequence {wi}.

Let x ∈H be given. We define the finite approximation

yn ∶= x −
n−1
∑
i=1
(x,wi)wi.

Note that yn ∈Hn = {w1, . . . ,wn}⊥ just like in (∆), so

∥x∥2 = ∥yn∥2 + 2Re( yn
∈̄Hn

,
n−1
∑
i=1
(x,wi)wi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Y

) +
n−1
∑
i=1
∣(x,wi)∣2 (Gen. Pythagorean)

= ∥yn∥2 +
n−1
∑
i=1
∣(x,wi)∣2, (since Hn = Y ⊥)

and thus ∥yn∥ ⩽ ∥x∥. Now we will show that ∥T (x) −∑ ∥→ 0: on one hand
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∥T (x) −
n−1
∑
i=1
(x,wi)T (wi)∥ = ∥T (x) −

n−1
∑
i=1
(x,wi)λiwi∥

= ∥T (yn)∥

= ∥Tn(yn)∥ (since T ≡ Tn on Hn and yn ∈Hn)

⩽ ∥Tn∥∥yn∥ ⩽ ∣λn∣∥x∥, (∥Tn∥ = ∣λn∣ and ∥yn∥ ⩽ ∥x∥)

while on the other hand Proposition 10.3 states that any sequence of nonzero eigenvalues of a compact
operator converges to 0. Hence ∥T (x) −∑ ∥ → 0, and we are done. (Of course, our sequence here may
have repeating λ’s, but it will only repeat finitely many times, so the claim doesn’t break down.)

Corollary 13.2

Let H be a separable (infinite-dimensional) Hilbert space, and let T ∈K(H) be compact and self-adjoint. Let
F ∶= {fk}k⩾1 be an orthonormal basis of ker(T ) [the basis exists because ker(T ) is automatically separable
given H is, and if it’s infinite-dimensional, then the existence of such basis is guaranteed by Proposition
6.5]. Then, F ∪ {wi} (from the Hilbert-Schmidt Theorem above) is an orthonormal basis of H. The basis of
ker(T ) can be supplemented with some orthonormal eigenvectors to form a basis of the whole space H.
Future reference: Theorem 13.9

Proof. First note that F ∪ {wi} is orthonormal: trivial without mixing; for all f ∈ F , wi ∈ {wi},

(f,wi)=
since λi≠0

(f, λiwi/λi) =
1

λi
(f, T (wi)) =

1

λ
(T (f)
=0

,wi) = 0.

We now want to show that any x ∈H has form

x = ∑
k⩾1
(x, fk)fk +∑

i⩾1
(x,wi)wi.

(Then F ∪ {wi} is an orthonormal basis by Theorem 5.21.2.) Notice that ker(T ) is closed, so by the
projection theorem we can (uniquely) decompose x ∶= u + y, where u ∈ ker(T ) and y ∈ (ker(T ))⊥. Then

u = ∑
k⩾1
(u, fk)fk = ∑

k⩾1
[(u, fk) + (y, fk)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
=0

]fk = ∑
k⩾1
(x, fk)fk.

It remains to show that z ∶= y −∑
i⩾1
(x,wi)wi =∑

i⩾1
(y,wi)wi = 0 (since (u,wi) = 0 and subtracting doesn’t

bother). Notice that z ∈ (ker(T ))⊥ as y and each of (x,wi)wi is. By the Hilbert-Schmidt Theorem,

T (z) = T (y −∑
i⩾1
(x,wi)wi)=

Hilbert-Schmidt
0,

so z ∈ ker(T ). Since ker(T ) ∩ (kerT )⊥ = {0} we conclude that z = 0. Done.
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Lecture 37: 11/11&13 The Sturm-Liouville Problem

We begin by fixing
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p ∈ C1([a, b]) p > 0

q ∈ C([a, b]) q ⩾ 0
on [a, b].

And we define

L[u] ∶= −(pu′)′ + qu for u ∈ C2.

We will consider the Sturm-Liouville problem

L[u] = f for u ∈D ∶= {u ∈ C2([a, b]) ∶ u(a) = u(b) = 0}

by finding an orthonormal basis of L2 that consists of the eigenvalues / eigenfunctions of this problem.

Lemma 13.3

(Cf. Lemma 12.15.)

(1) L is self-adjoint: (L[u], v) = (u,L[v]) for all u, v ∈D.

(2) If nonzero u ∈D is an eigenvector, i.e., L[u] = λu, then λ > 0.

Corollary 13.4

In particular, if u ∈D and L[u] = 0 then u = 0. Also refer to Theorem 13.7.

(3) Eigenvectors corresponding to distinct eigenvalues are orthogonal in L2.

Future reference: Corollary 13.10, Example 13.11

Lemma 13.5

Suppose u1, u2 ∈ C2([a, b]) are nonzero solutions of

−(pu′)′ +wu = 0 for w ∈ C([a, b]).

(Note that, unlike the Sturm-Liouville problem, q is replaced by w, without the requirement w ⩾ 0, and
u1, u2 ∈ C2([a, b]) not just D, i.e., no requirements on agreeing at endpoints.) Then the Wronskian

Wp(u1, u2)(x) ∶= p(x) (u′1(x)u2(x) − u′2(x)u1(x))

is constant (in x) and nonzero if and only if u1, u2 are linearly independent.

Proof. It simply requires brute force to show W ′p ≡ 0. Now we prove the ⇐⇒ statement. Since p > 0,
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W ′p ≠ 0 ⇐⇒ det
RRRRRRRRRRRRR

u1 u2

u′1 u′2

RRRRRRRRRRRRR
≠ 0.

(In this case the determinant is invariant under x since W ′p is constant.)
Ô⇒ (nonzero Wronskian Ô⇒ linearly independent u1, u2): suppose αu1 + βu2 = 0. Taking derivative
gives αu′1 + βu′2 = 0. Since the matrix is nonsingular we know α = β = 0.
⇐Ô : suppose the determinant is 0 for some (each, in fact) x. Then there exists (α,β) ≠ (0,0) such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αu1 + βu2 = 0

αu′1 + βu′2 = 0
at some x0 ∈ [a, b].

This immediately contradicts the linear independence of u1 and u2.

Corollary 13.6

All eigenvalues of L[u] are simple, i.e.,

dim(Eλ) ⩽ 1, where Eλ ∶= {u ∈D ∶ L[u] = λu}.

Future reference: Corollary 13.10

Proof. Suppose L[u] = λu and L[v] = λv. Applying the lemma above with w ∶ q − λ gives Wp(u, v) =
constant. Evaluating it at an endpoint, e.g., at u, givesWp(u, v)(a) = 0 (since u(a) = v(a) = 0). Therefore
u, v are linearly dependent.

Back to the problem:
Let u1, u2 ∈ C2([a, b]) be fixed linearly independent solutions (so that the Wronskian later defined is nonzero) of
L[u] = 0 with u1(a) = 0 and u2(b) = 0 (i.e., one vanishes at one endpoint and the other at the other endpoint). By
ODE theory, L[u] = 0 can be re-written as

u′ = v and v′ = −p
′

p
+ q

p
u.

Now apply the boundary conditions:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1(a) = 0 u2(b) = 0

u′1(a) = 1 u′2(b) = 1
. (*)

Theorem 13.7

If (nonzero) W ∶=Wp(u1, u2), then

G(x, y) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1(x)u2(y)
W

x < y

u1(y)u2(x)
W

x ⩾ y

is a Sturm-Liouville Green’s function, i.e., letting

u(x) ∶= ∫
b

a
G(x, y)f(y) dy for some f ∈ C([a, b]),
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we have u ∈D and u is a unique solution of L[u] = f in D. (Green’s function is a kernel that gives solutions
to nonhomogeneous problems.) Future reference: Theorem 13.9

Proof. Note that (treating x as a fixed variable and integrating with respect to y)

u(x) = u2(x)
W ∫

x

a
u1f +

u1(x)
W ∫

b

x
u2f Ô⇒ u(a) = u(b) = 0. (∆)

Now we check if u ∈D:

u′(x) = u′2(x)
W ∫

x

a
u1f +

u′1(x)
W ∫

b

x
u2f + 0

(cross terms of product rule cancel out, u2(x)u1(x)f(x)−u1(x)u2(x)f(x) = 0)

u′′2(x) =
u′′2(x)
W ∫

x

a
u1f +

u′′1(x)
W ∫

b

x
u2f +

1

W
(u′2(x)u1(x)f(x) − u′1(x)u2(x)f(x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−f(x)/p(x) by definition of Wronskian

.

Indeed, u ∈ D. It remains to show L[u] = −pu′′ − p′u′ + qu = f which is only a matter of computation by
brute force. And the uniqueness is guaranteed by Corollary 13.4.

Example 13.8

Let p(x) ≡ 1, p(x) ≡ 0, and [a, b] ∶= [0,1], then L[u] = −u′′. Then, by (*), we can construct

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1(x) = x

u2(x) = x − 1
Ô⇒ W = u′1u2 − u′2u1 = −1.

Then,

G(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(1 − y) x < y

(1 − x)y x ⩾ y
.

Future reference: Example 13.11

Now we are going to consider the integration against as kernel of the operator on L2: define

Tf(x) ∶= ∫
b

a
G(x, y)f(y) dy for f ∈ L2(a, b) over R.

Some more theorems. Notice that we are going towards the direction of using Hilbert-Schmidt Theorem.

Theorem 13.9

(1) T ∈K(L2(a, b)), T is self-adjoint, and ker(T ) = {0}.

(2) Eigenvalues of T form a sequence converging to 0.

(3) Eigenvectors / eigenfunctions of T are elements of D and they form an orthonormal basis of L2(a, b).

Future reference: Corollary 13.10
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Proof.

(1) T is compact and self-adjoint by Example 9.3.2. Now we show ker(T ) = {0}, i.e., if T (f) = 0 then
f = 0. First note that D ⊂ im(T ): given u ∈ D, letting g ∶= L[u] ∈ C([a, b]) ⊂ L2(a, b), we have
u = T (g) by Theorem 13.7.

Now suppose T (f) = 0, f ∈ L2, and let u ∈D. Since D ⊂ im(T ), u = T (g) for some g ∈ L2. Then,

0 = (T (f)
=0

, g)
self-adjoint
=(f, T (g)) = (f, u) for all u ∈D. (∆)

Since D is dense in L2 (recall from Lemma 5.24 that we can first approximate anything in L2 by
simple functions and then interpolate them. Here we just need to make continuous functions even
“nicer”, i.e., second-order continuously differentiable, by taking mollification, for example), (∆) gives
(f, u) = 0 for all u ∈ L2. Taking u ∶= f tells us f = 0.

Remark

Showing (∆), i.e., f is orthogonal to a dense subset of space, is often times a useful trick. For
example, that im(∂t−∆) is dense in Lp is a powerful tool to deduce the uniqueness of the heat
equation in L2. See Giga×2, Saal (2010), Section 4.4.2.

2) and 3) Suppose T (f) = λf for some λ ∈ R (recall from Lemma 12.15.1 that eigenvalues of self-adjoint
operators are real). Then,

T (f(x)) = u2(x)
W ∫

x

a
u1f +

u1(x)
W ∫

b

x
u2f ((∆) in Theorem 13.7)

Ô⇒ T (f(a)) = T (f(b)) = 0 and T (f) ∈ C([a, b])

Ô⇒ λf(a) = λf(b) = 0 and λf ∈ C([a, b])

Ô⇒ f(a) = f(b) = 0 and f ∈ C([a, b])

Ô⇒ T (f) ∈ C1([a, b]) (by its construction)

Ô⇒ λf, f ∈ C1 Ô⇒ T (f), λf, and f ∈ C2. (doable b/c u1, u2 ∈ C2)
Ô⇒ f ∈D.

(In fact, we can iterate this T (f) → λf → f procedure and get f ∈ C∞(a, b) as long as p, q are.)
Then 3) follows from Corollary 13.2 since ker(T ) = {0} and it does not contribute to the forming of
such basis; all elements in this orthonormal basis of L2(a, b) must therefore come from orthonormal
eigenvectors of T . Once again, Proposition 10.3 asserts that these eigenvectors converge to 0, with
which we are also done with 2).
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Corollary 13.10

The eigenvectors / eigenfunctions of the Sturm-Liouville problem L[u] = λu form an orthonormal Schauder
basis of L2(a, b). Furthermore,

(1) each eigenvalue is positive (Lemma 13.3.2) and simple (Corollary 13.6), and

(2) the eigenvalues can be ordered to form a sequence converging to ∞. Unlike above, where we showed
that the eigenvalues of T , the Sturm-Liouville solution operator, converge to 0, here we are talking
about the eigenvalues of the Sturm-Liouville problem itself, not the solution operator anymore.

Proof. Recall that (in the proof of Theorem 13.9.1) that T (f) = T (L[u]) = u for some u ∈D. Then
T (f) = λf ⇐⇒ L[u] = u/λ. From this equation we see that the eigenvalues of the Sturm-Liouville
problem are the (1/λ)’s. Therefore as λ→ 0, these eigenvalues →∞.

Example 13.11

Recall Example 13.8 where L[u] = −u′′ and [a, b] = [0,1]. By the corollary above the eigenvalues / eigen-
functions of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−u′′ = λu

u(0) = u(1) = 0

form an orthonormal (Schauder) basis of L2(0,1).

Proof. First we find the eigenfunctions (just normal ODE stuff):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ < 0 Ô⇒ u = Ae
√
−λx +Be−

√
−λx Ô⇒ A = B = 0

λ = 0 Ô⇒ u = Ax +B Ô⇒ A +B = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
no eigenfunctions (Lemma 13.3.2)

λ > 0 Ô⇒ u = A sin
√
λx +B cos

√
λx Ô⇒ B = 0 and λk = (kπ)2.

Therefore all eigenvalues are of form λk ∶= (kπ)2. As expected from the corollary above, they tend to

∞ as k →∞. Then the normalized eigenfunctions (with respect to ∥ ⋅ ∥L2(0,1)) are { 1√
2
sinkπx}

k⩾1
and

they form another orthonormal basis for L2. (Compare this with Example 5.23.) Thus,

f(x) = ∑
k⩾1

1√
2
(f, 1√

2
sinkπx) sinkπx for all f ∈ L2(0,1),

and we have just obtained the sine expansion of f . Notice that each eigenfunction satisfies u(0) = u(1) =
0, but we’ve just shown that it approximates anything in L2(0,1), as what we’ve shown is convergence
with respect to ∥⋅∥L2 but not pointwise convergence. In addition, no cosines are involved in this expansion
as the bases differ by kπ not 2kπ — we can extend L2(0,1) to the set of all odd functions on L2(−1,1)
in which no Fourier expansion involves cosine.
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Example 13.12

Let Ω ⊂ Rn. Then the eigenfunctions of Laplacian

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u = λu in Ω

u = 0 on ∂Ω

form an orthonormal Schauder basis of L2(Ω). See Alt’s book, Theorem 12.17 for more details.

The End. Feels Good Being a Banach Spaceman. Cheers.
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