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Problem 1

Le n ⩾ 2 be an integer. Let X1, ...,Xn be a random sample of size n (that is, X1, ...,Xn are i.i.d. random

variables). Assume that µ ∶= EX1 ∈ R and σ ∶=
√
var(X1) < ∞. Let X be the sample mean and let S be the

sample standard deviation of the random sample. Show that var(X) = σ2/n and ES2 = σ2.

Proof. By definition we have X = (X1 + ... +Xn)/n and S2 =
n

∑
i=1
(Xi −X)2/(n − 1). Then,

var(X) = 1

n2

n

∑
i=1

var(Xi) =
nσ2

n2
= σ2

n
.

To show that ES2 = σ2,

ES2 = 1

n − 1
E

n

∑
i=1
(Xi −X)2

= 1

n − 1
E

n

∑
i=1
(X2

i − 2XiX +X
2)

= 1

n − 1
[nEX2

1 − 2E(X
n

∑
i=1

Xi) + nEX
2]

= 1

n − 1
[nEX2

1 − 2EnX
2 + nEX2]

= 1

n − 1
[nEX2

1 − nEX
2] . (1)

Since

var(X1) = E(X −EX)2 = EX2 − (EX)2,

we obtain

EX2
1 = σ2 + µ2 and likewise EX = var(X) + µ2 = σ2

n
+ µ2.

Substituting these values back into (1), we obtain ES2 = (nσ2 + nµ2 − σ2 − nµ2)/(n − 1) = σ2, as claimed.

Problem 2

Let X1, ...,Xn be i.i.d. standard Gaussian random variables. Show that

X2
1 + ... +X2

n
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has a chi-squared distribution with n degrees of freedom.

Proof. We follow the hint and get

∫
∞

0
e−r

2/2rn−1 dr = ∫
∞

0
e−u(2u)(n−1)/2(2u)−1/2 du

= ∫
∞

0
e−u(2u)n/2−1 du = 2n/2−1Γ(n/2).

Therefore,

∫
∂B(0,1)

dσ = (2π)n/2

2n/2−1Γ(n/2)
.

Clearly, if t = 0, the probability P(
n

∑
i=1

X2
i ⩽ 0) = 0, which coincides with ∫

0

−∞
fX(x) dx where fX denotes the pdf

of chi-squared distribution with n degrees of freedom. Furthermore, differentiating P with respect to t gives

(2π)−n/2 ∫
∂B(0,1)

dσ ⋅ d
dt
[∫

√
t

0
rn−1e−r

2/2 dr]

= (2π)−n/2 ⋅ (2π)n/2

2n/2−1Γ(n/2)
⋅ d
dt
[∫

t

0
u(n−1)/2e−u/2 ⋅ (2−1u−1/2) du]

= tn/2−1e−t/2

2n/2Γ(n/2)
,

so indeed P(X ⩽ t) coincides with ∫
t

−∞
fX(x) dx, i.e., X2

1 + ...+X2
n has a chi-squared distribution with n degrees

of freedom.

Problem 3

Let X be a chi squared random variables with p degrees of freedom. Let Y be a chi squared random variable

with q degrees of freedom. Assume that X and Y are independent. Show that (X/p)/(Y /q) has the following

density, known as the Snedecor’s f-distribution with p and q degrees of freedom

f(X/p)/(Y /q)(t) ∶=
tp/2−1(p/q)p/2Γ((p + q)/2)

Γ(p/2)Γ(q/2)
(1 + t(p/q))−(p+q)/2 for all t > 0.

Proof. Let X and Y be as stated. By definition, we have the PDFs

fX(x) =
xp/2−1e−x/2

2p/2Γ(p/2)
and fY (y) =

yq/2−1e−y/2

2q/2Γ(q/2)
. (1)

By independence, we also have the JPDF

fX,Y (x, y) = fX(x)fY (y) =
xp/2−1yq/2−1e−(x+y)/2

2(p+q)/2Γ(p/2)Γ(q/2)
. (2)

Note that (X/p)/(Y /q) = (X/Y )(q/p) and q/p is a constant, so the important part is to compute X/Y . We begin
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by computing its CDF. Let t > 0. Then

FX/Y (t) = P (X/Y ⩽ t) = P (X ⩽ tY )

= ∫
∞

0
∫

yt

0
fX,Y (x, y) dx dy

= 1

2(p+q)/2Γ(p/2)Γ(q/2) ∫
∞

0
[∫

yt

0
xp/2−1e−x/2 dx] yq/2−1e−y/2 dy. (3)

We can recover the PDF of X/Y by differentiating (3) with respect to t:

fX/Y (t) =
d

dt
(3) = 1

2(p+q)/2Γ(p/2)Γ(q/2) ∫
∞

0
[(yt)p/2−1e−yt/2 ⋅ y]yq/2−1e−y/2 dy

= tp/2−1

2(p+q)/2Γ(p/2)Γ(q/2)∫
∞

0
y(p+q)/2−1 ⋅ e−y(t+1)/2 dy

(∆) = tp/2−1

2(p+q)/2Γ(p/2)Γ(q/2)
⋅ Γ(p/2 + q/2) ( 2

t + 1
)
(p+q)/2

= Γ((p + q)/2)
Γ(p/2)Γ(q/2)

⋅ tp/2−1

(t + 1)(p+q)/2
, (4)

where (∆) is because

g(y) ∶= y(p+q)/2−1 ⋅ e−y(t+1)/2

(2/(t + 1))(p+q)/2 ⋅ Γ((p + q)/2

is the PDF of a (p + q
2

,
2

t + 1
)-distributed Gamma random variable and thus has integral 1. Finally,

f(X/p)(Y /q)(t) = f(X/Y )(q/p)(t) =
p

q
⋅ fX/Y (t(p/q))

[by (4)] = p

q
⋅ Γ((p + q)/2)
Γ(p/2)Γ(q/2)

⋅ (t(p/q))p/2−1

(1 + t(p/q))(p+q)/2

= tp/2−1(p/q)p/2

(1 + t(p/q))(p+q)/2
⋅ Γ((p + q)/2)
Γ(p/2)Γ(q/2)

,

as claimed.

Problem 4

Let X ∶ Ω → R be a random variable. Let X1, ...,Xn be a random sample of size n from X. Define X(1) ∶=
min
1⩽i⩽n

Xi and for any 2 ⩽ i ⩽ n, inductively define

X(i) ∶=min{{Xi, ...,Xn} − {X(1), ...,X(i−1)}}

so that

X(1) ⩽X(2) ⩽ ... ⩽X(n) = max
1⩽i⩽n

Xi.

The random variables X(1), ...,X(n) are called the order statistics of X1, ...,Xn.

(1) Suppose X is a discrete random variable and we can order the values that X takes as x1 < x2 < .... For

i ⩾ 1, define pi ∶= P(X ⩽ xi). Show that for 1 ⩽ i, j ⩽ n,

P(X(j) ⩽ xi) =
n

∑
k=j
(n
k
)pki (1 − pi)n−k.
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In particular, if X is a continuous random variable with density fX and CDF FX , then for 1 ⩽ j ⩽ n,

FX(j) has density

fX(j) ∶=
n!

(j − 1)!(n − j)!
fX(x)(FX(x))j−1(1 − FX(x))n−j for all x ∈ R.

(2) Let X be a random variable uniformly distributed in [0,1]. For any 1 ⩽ j < n, show that X(j) is a beta

distributed random variable with parameters j and n − j. Conclude that EX(j) = j/(n + 1).

(3) Let a, b ∈ R with a < b. Let U be the number of indices 1 ⩽ j ⩽ n such that Xj ⩽ a. Let V be the number

of indices 1 ⩽ j ⩽ n such that a <Xj ⩽ b. Show that the vector (U,V,n−U −V ) is a multinomial random

variable, so that for any nonnegative integers u, v with u + v ⩽ n, we have

P(U = u,V = v, n −U − V = n − u − v)

= n!

u!v!(n − u − v)!
FX(a)u(FX(b) − FX(a))v(1 − FX(b))n−u−v.

Consequently, for any 1 ⩽ i, j ⩽ n,

P(X(i) ⩽ a,X(j) ⩽ b) = P(U ⩾ i,U + V ⩾ j)

=
j−1
∑
k=i

n−k
∑

m=j−k
P(U = k, V =m) + P(U ⩾ j).

Proof. (1) Fix i. In order that X(j) ⩽ xi, among X1, ...,Xn, we need the event Xk ⩽ xi (k = 1,2, ..., n) to

happen at least j times. Considering the event {Xi ⩽ xi} as a success and {Xi > xi} as a failure, we obtain

a binomial distribution with parameters n and pi. Hence

P(X(j) ⩽ xi) = ∑
k⩾j

P(k “successes”) =
n

∑
k=j
(n
k
)pki (1 − pi)n−k.

(2) If X is uniformly distributed in [0,1] we have fX(x) ≡ 1 on [0,1] and F (x) ≡ x on [0,1]. Then by (1)’s

remark

fX(j) =
n!

(j − 1)!(n − j)!
xj−1(1 − x)n−j . (1)

This is indeed consistent with a (j, n−j+1)-distributed beta distribution. (Since the support of (1) is [0,1],
the factorial coefficient must be the scaling factor B(j, n − j + 1); of course, we could also evaluate the

integral ∫
1

0
xj−1(1 − x)n−j+1 dx to verity it.) Therefore,

EX(j) = ∫
1

0
xfX(j) dx =

n!

(j − 1)!(n − j)! ∫
1

0
xj(1 − x)n−j dx

= n!

(j − 1)!(n − j)!
⋅ j!(n − j)!
(n + 1)!

= j

n + 1
, as claimed.

(3) We can consider the multinomial in which each trial is represented by the value of Xn, with three

possible outcomes:

(1)Xn ⩽ a, (2)a <Xn ⩽ b, and (3)Xn > b.
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It is clear that each trial is independent since X1, ...,Xn are i.i.d. (so that the outcome of one trial imposes

no effect on that of any other trial). Therefore, in plain language,

P(U = u,V = v, n −U − V = n − u − v)

= P(in n trials, get (1) u times, (2) v times, and (3) n − u − v times)

The probability of getting (1) is P(X1 ⩽ a) = FX(a); similarly, that of (2) and (3) are (FX(b)−FX(a)) and

(1 − FX(b)), respectively. The claim then follows by raising each of these terms to the appropriate power

and multiplying everything by the corresponding multinomial coefficient.

Problem 5

Using Matlab, verify that its random number generator agrees with the LLN. For example, average 107

samples from the uniform distribution on [0,1] and check how close the sample average is to 1/2. Then,

make a histogram of 107 samples from the unifom distribution on [0,1] and check how close the histogram

is to a Gaussian.

Solution. I used 106 instead as 107 takes much longer to run:

1 data = zeros(1,100000);

2 for i=1:100000

3 temp_data = zeros(1,100000);

4 for j=1:100000

5 temp_data(j) = rand();

6 end

7 data(i) = mean(temp_data);

8 end

9

10 histogram(data);
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Problem 6

Here is a file containing the number of sunspots observed in each day, starting from 1800.

Plot the number of sunspots Ut versus time t. Label and sclae the axes appropriate. On the same plot, also

plot some moving average of Ut. For example, for a given t, plot the average of the twenty previous days’

sunspot counts, versus time t.

Find the sample average and sample standard deviation of Ut, averaging over all t given in the data.

Do you notice any periodic behavior in Ut versus t?

Solution. The sample average is 78.7545 and the sample standard deviation is 77.4328. The graphs indeed seem

to exhibit an oscillating pattern.

1 x = importdata('SN_d_tot_V2.0.txt');

2 hold on

3 time = x(:,4);

4 sunspot = x(:,5);

5 plot(time, sunspot);

6

7 sunspot_avg = mean(sunspot);

8 sunspot_stdev = std(sunspot);

9

10 sunspot_moving = sunspot;

11

12 for i = 1:size(sunspot)

13 sunspot_moving(i) = mean(sunspot(max(1,i-19):i));

14 end

15 plot(time, sunspot_moving);
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