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Problem 1

Le n > 2 be an integer. Let X1,...,X,, be a random sample of size n (that is, X1,..., X,, are i.i.d. random
variables). Assume that y:= EX; € R and o := \/var(X;) < co. Let X be the sample mean and let S be the

sample standard deviation of the random sample. Show that var(X) = 0?/n and ES? = o2.

Proof. By definition we have X = (X; + ...+ X,,)/n and S% = > (X; - X)*/(n - 1). Then,
iz

o o
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var(X) = o3 Y var(X;) = el
i=1

To show that ES? = o2,
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Since
var(X;) = E(X -EX)? = EX? - (EX)?,
we obtain

2
EX? = o2 + 1 and likewise EX =var(X) + p2 = 2 + 2.
n

Substituting these values back into (1), we obtain ES? = (no? + nu? - 6% - nu?)/(n - 1) = o2, as claimed.
Problem 2
Let X1,...,X,, beii.d. standard Gaussian random variables. Show that
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has a chi-squared distribution with n degrees of freedom.

Proof. We follow the hint and get

f e 12pn1 gy = / efu(2u)(n*1)/2(2u)71/2 du
0 0

= f e (2u)™?7t du = 2V (n/2).
0

Therefore,

n/2
/ do = 7(27r) .
8B(0,1) 2n/2-17(n/2)

Clearly, if ¢ = 0, the probability IP(Z X?<0) =0, which coincides with f fx(x) dz where fx denotes the pdf

of chi-squared distribution with n degrees of freedom. Furthermore, differentiating P with respect to ¢ gives

Vit
(27r)_”/2 / do - 4 [ pn=le=r?/2 gy
8B(0,1) dt | Jo

n/2 d t
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= (2m) 20/2-10(nf2) dt U " ¢ (27w )du]

t'rL/Q—le—t/2

" 22T (n)2)’

t
so indeed P(X < t) coincides with f fx(z) dz, i.e., X? +...+ X2 has a chi-squared distribution with n degrees

of freedom. O

Problem 3

Let X be a chi squared random variables with p degrees of freedom. Let Y be a chi squared random variable
with ¢ degrees of freedom. Assume that X and Y are independent. Show that (X /p)/(Y/q) has the following
density, known as the Snedecor’s f-distribution with p and ¢ degrees of freedom

PI2-1 (1 \P/2
Jcmierjo(®) = t (1{){;;2);(61(/]32; 2 (1+t(p/q)) "™ forallt>0.

Proof. Let X and Y be as stated. By definition, we have the PDFs
xp/2—1 -z/2 q/2—1 -y/2

@)= Gapemy @ W)= L (W)

By independence, we also have the JPDF

aPl271ya/2-1 o= (2+4y) /2
fX,Y(xv y) = fX (x)fY(y) = 2(p+Q)/2F(p/2)F(q/2) . (2)

Note that (X /p)/(Y/q) = (X/Y)(q/p) and ¢/p is a constant, so the important part is to compute X /Y. We begin
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by computing its CDF. Let ¢ > 0. Then

Fxy(t) = P(X]Y <t) = P(X <tY)

) yt
= f fx,y(z,y) dedy
0 0

1 oo yt
_ p/2-1 ~x/2 q/2-1 -y/2
= SR (DT (4]2) fo [fo x e dx]y e V= dy.

We can recover the PDF of X /Y by differentiating (3) with respect to ¢:

d 1 oo
= — = p/2-1 —yt[2 q/2-1 ,-y/2
Fxv = 5O = seammrrmry J (W0 e ay
= ! - yPra2=1 . oyt D)/2 gy
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2+ 0)/2T (p/2)T(q/2) Tp/2+a/2) (m
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TTR) DR

(A) =

9 )(p+q)/2

where (A) is because

y(p+(1)/271 ey(t+1)/2

(2/(t+1)) P2 T((p +)/2

9(y) =

2
is the PDF of a (M,
2 "t+1

Fx o iay () = fox vy () = g fxpv (t(p/q))

_p. I'((p+q)/2) . (t(p/q))p/2—1

by ()= T/ (a2) L+ t(p)a)) TP
_ PG/ T((p+9)/2)
(L+t(p/q))®*D/2 T(p/2)L(q/2)’

as claimed.

Problem 4

Let X : - R be a random variable. Let X1,..., X,, be a random sample of size n from X. Define X() :=

min X; and for any 2 < ¢ < n, inductively define

1<isn
Xy = min {{X;, .., Xp} = {X (1), X1y}

so that

X(l) < X(g) <... < X(n) = max X;.

1<isn

The random variables Xy, ..., X(,,) are called the order statistics of X1,..., X,,.

(1) Suppose X is a discrete random variable and we can order the values that X takes as x; < x5 < .... For

i > 1, define p; := P(X < ;). Show that for 1 <i,j <n,

n

n e
P(X(jy < @) = ), (k)p?(l -pi)"r
k=j

)-distributed Gamma random variable and thus has integral 1. Finally,
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In particular, if X is a continuous random variable with density fy and CDF Fx, then for 1 < j < n,
Fx ;) has density

n'

fxg) = mfx(z)(FX(I))j Y1-Fx(z))"?  forallzeR.

(2) Let X be a random variable uniformly distributed in [0, 1]. For any 1 < j < n, show that Xy is a beta
distributed random variable with parameters j and n - j. Conclude that EX;y = j/(n +1).

(3) Leta,beR with a <b. Let U be the number of indices 1 < j < n such that X; < a. Let V be the number
of indices 1 < j < n such that a < X; < b. Show that the vector (U, V,n-U -V') is a multinomial random

variable, so that for any nonnegative integers u, v with u + v < n, we have

P(U=u,V=vn-U-V=n-u-uv)

u'v'(nn'u)FX(a) (Fx(b) - Fx(a))"(1- Fx(b))""™".

Consequently, for any 1 <4,j < n,

P(X(y <a, Xy <b) =P(U 2i,U+V 2 )

-1 n-k
—Z > P(U=kV=m)+PU >j).
k=1t m=j-k
Proof. (1) Fix i. In order that X(;) < z;, among X1,..., X,,, we need the event X}, < x; (k = 1,2,...,n) to

happen at least j times. Considering the event {X; < z;} as a success and {X; > z;} as a failure, we obtain
a binomial distribution with parameters n and p;. Hence
P(X ;) <xi) = ) P(k “successes”) = Z ( )pf(l —p)" "
k>j k=j
(2) If X is uniformly distributed in [0, 1] we have fx(«) =1 on [0,1] and F(z) =« on [0, 1]. Then by (1)’s

remark
n!

o= G
This is indeed consistent with a (j,n—j+1)-distributed beta distribution. (Since the support of (1) is [0,1],

2N (1 - )" (€Y

the factorial coefficient must be the scaling factor B(j,n — j + 1); of course, we could also evaluate the
1 .
integral f 271 (1 - )" %! dz to verity it.) Therefore,
0

1 ol 1 .
- v = i J(1 = 2" do
IEX(])—fO Tfx, dz = G- =) /0 2! (1-z)"7 da
n! )

as claimed.

G-l (nrl)  n+l

(3) We can consider the multinomial in which each trial is represented by the value of X,,, with three
possible outcomes:
(D)X, <a, (2)a< X,, < b, and (3) X, >b.
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It is clear that each trial is independent since X1, ..., X,, are i.i.d. (so that the outcome of one trial imposes

no effect on that of any other trial). Therefore, in plain language,

P(U=u,V=o,n-U-V=n-u-0v)
=P(in n trials, get (1) v times, (2) v times, and (3) n — u — v times)
The probability of getting (1) is P(X; < a) = Fx(a); similarly, that of (2) and (3) are (Fx(b) - Fx(a)) and

(1 - Fx(b)), respectively. The claim then follows by raising each of these terms to the appropriate power

and multiplying everything by the corresponding multinomial coefficient. |

Problem 5

Using Matlab, verify that its random number generator agrees with the LLN. For example, average 107
samples from the uniform distribution on [0,1] and check how close the sample average is to 1/2. Then,
make a histogram of 107 samples from the unifom distribution on [0, 1] and check how close the histogram

is to a Gaussian.

Solution. Tused 10 instead as 107 takes much longer to run:

data = zeros(1,100000);
for i=1:100000
temp_data = zeros(1,100000) ;
for j=1:100000
temp_data(j) = randQ);
end
data(i) = mean(temp_data);

end

histogram(data) ;
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Problem 6

10

11

12

13

15

Here is a file containing the number of sunspots observed in each day, starting from 1800.

Plot the number of sunspots U, versus time ¢. Label and sclae the axes appropriate. On the same plot, also
plot some moving average of U;. For example, for a given ¢, plot the average of the twenty previous days’
sunspot counts, versus time ¢.

Find the sample average and sample standard deviation of U;, averaging over all ¢ given in the data.

Do you notice any periodic behavior in U; versus t?

Solution. The sample average is 78.7545 and the sample standard deviation is 77.4328. The graphs indeed seem

to exhibit an oscillating pattern.

x = importdata('SN_d_tot_V2.0.txt');
hold on

time = x(:,4);

sunspot = x(:,5);

plot(time, sunspot);

sunspot_avg = mean(sunspot) ;

sunspot_stdev = std(sunspot);
sunspot_moving = sunspot;

for i = 1:size(sunspot)
sunspot_moving(i) = mean(sunspot(max(1,i-19):1));
end

plot(time, sunspot_moving) ;

——sunspot vs. time

500 ——sunspot_moving vs. time
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http://www.sidc.be/silso/DATA/SN_d_tot_V2.0.txt

