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Problem 1

Suppose you know the following list of numbers is a random sample of size 20 from a Guassian with mean

1 and unknown variance σ2 > 0.

2.0753 4.6678 − 3.5177 2.7243 1.6375 − 1.6154 0.1328 1.6852 8.1568 6.5389

−1.6998 7.0698 2.4508 0.8739 2.4295 0.5901 0.7517 3.9794 3.8181 3.8344.

(1) Using a method of moments estimator, estimate the value of σ2 for this data.

(2) Denote your method of moments estimator for σ2 as Z. Is Z unbiased?

(3) We know for sure that σ2 > 0. Is it possible that Z could take negative values? If so, then perhaps Z is

not the best way to estimate σ2.

(4) The Delta method suggests that 1/Z could be a good estimate for 1/σ2. What estimate of 1/σ2 do

you get from the data above? Is E∣1/Z ∣ finite? If not, then we cannot even compute the bias of this

estimator.

(5) The Delta method also suggests that Z2 could be a good estimate for σ4. What estimate of σ4 do you

get from the data above? Is Z2 an unbiased estimate of σ4?

(6) Is Z2 an asymptotically unbiased estimate of σ4? That is, as the number of samples n goes to infinity,

does EZ2 converge to σ4?

Solution. (1) Since σ2 = EX2 − (EX)2 = EX2 − 1, using the method of moments,

σ̂2 = 1

20

20

∑
i=1

X2
i − 1 ≈ 12.7452.

(2) Z is unbiased:

EZ = E( 1
20

20

∑
i=1

X2
i − 1) =

1

20
E(

20

∑
i=1

X2
i ) − 1 = EX2 − 1 = EX2 − (EX)2 = σ2.

(3) Yes, if each Xi ∈ [0,1) then the corresponding Z < 0. This could well happen.

(4) From the data above we get 1/σ̂2 = 0.0785. The expected value E∣1/Z ∣ is not finite. To see this, notice

that fZ(z) is continuous on, say, [1,1]. By a well-known result in analysis,

inf
z∈[−1,1]

= min
z∈[−1,1]

= fZ(z̃) ⩾ ϵ > 0 for some z ∈ [−1,1] and ϵ > 0.
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Since Z has codomain [−1.∞), we have

E[1/Z] = ∫
∞

−1
fZ(z)

1

∣z∣
dz ⩾ ∫

1

−1
fZ(z)

1

∣z∣
dz ⩾ 2∫

1

0
ϵ
1

z
dz =∞.

(5) The estimator we have is σ̂4 = 162.4397. It is biased:

E(Z2) = E( 1
n

n

∑
i=1

X2
i − 1)2

= 1

n2
E(

n

∑
i=1

X2
i )2 − 2 ⋅

1

n
⋅E(

n

∑
i=1

X2
i ) + 1

= 1

n2
E
⎡⎢⎢⎢⎣

n

∑
i=1

X4
i +∑

i≠j
X2

i X
2
j

⎤⎥⎥⎥⎦
− 2EX2 + 1

= 1

n2
(nEX4 + (n2 − n)(EX2)2) − 2EX2 + 1

= EX4

n
+ n − 1E(X2)2

n
− 2E(X2) + 1,

whereas

σ4 = (EX2 − 1)2 = (EX2)2 − 2EX2 + 1.

(6) Following the calculation in the previous part, letting n→∞, we obtain

lim
n→∞

En(Z2) = lim
n→∞
(...) = σ4,

so Z is asymptotically unbiased.

Problem 2

Let X,Y,Z ∶ Ω → R be discrete or continuous random variables. Let A be the range of Y . Define g ∶ A → R
by g(y) ∶= E(X ∣ Y = y) for any y ∈ A. We then define the conditional expectation of X given Y , denoted

E(X ∣ Y ), to be the random variable g(Y ).

(i) Let X,Y be random variables such that (X,Y ) is uniform distributed on the triangle given by {(x, y) ∈
R2 ∶ x ⩾ 0, y ⩾ 0, x + y ⩽ 1}. Show that E(X ∣ Y ) = (1 − Y )/2.

(ii) Prove the following version of the Total Expectation Theorem:

E(E(X ∣ Y )) = E(X).

(iii) Show the following

E(X ∣X) =X and E(X + Y ∣ Z) = E(X ∣ Z) +E(Y ∣ Z).

(iv) If Z is independent of X and Y , show that

E(X ∣ Y,Z) = E(X ∣ Y ).
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Proof. (i) For y ∈ [0,1], note that X ∣ Y = y is uniformly distributed on [0,1−y], so E(X ∣ Y = y) = (1−y)/2.

Therefore by definition E(X ∣ Y ) = (1 − Y )/2.

(ii) For the continuous case:

E(E(X ∣ Y )) = ∫
∞

−∞
fY (y)E(X ∣ Y = y) dy

= ∫
∞

−∞
fY (y) [∫

∞

−∞
xfX ∣Y (x ∣ y) dx] dy

= ∫
∞

−∞
∫
∞

−∞
xfX ∣Y (x, y)fY (y) dx dy

= ∫
∞

−∞
x∫

∞

−∞
fX,Y (x, y) dy dx

= ∫
∞

−∞
xfX(x) dx = EX.

For the discrete case:

E(E(X ∣ Y )) = E(∑
x

xP(X = x ∣ Y = y)) =∑
y

(∑
x

xP(X = x ∣ Y = y))P(Y = y)

=∑
x
∑
y

xP(X = x ∣ Y = y)P(Y = y)

=∑
x

x(∑
y

P(X = x,Y = y)) =∑
x

xP(X = x) = EX.

(iii) The first claim is trivial, as E(X ∣X = x) = x. The continuous case for the second equation:

E(X + Y ∣ Z = z) = ∫
∞

−∞
∫
∞

−∞
(x + y)fX+Y ∣Z(x + y ∣ z) dx dy

=∬
R2

xfX+Y ∣Z(x + y ∣ z) dxdy +∬
R2

yfX+Y ∣Z(x + y ∣ z) dxdy

= ∫
∞

−∞
x∫

∞

−∞
fX+Y ∣Z(x + y ∣ z)dy dx + ∫

∞

−∞
y∫

∞

−∞
fX+Y ∣Z(x + y ∣ z) dxdy

= ∫
∞

−∞
xfX ∣Z(x ∣ z) dx + ∫

∞

−∞
yfY ∣Z(y ∣ z) dy = E(X ∣ Z = z) +E(Y ∣ Z = z).

The discrete case for the second equation:

E(X + Y ∣ Z = z) =∑
x
∑
y

(x + y)P(X = x,Y = y ∣ Z = z)

=∑
x

x∑
y

P(X = x,Y = y ∣ Z = z) +∑
y

y∑
x

P(X = x,Y = y ∣ Z = z)

=∑
x

P(X = x ∣ Z = z) +∑
y

yP(Y = y ∣ Z = z) = E(X ∣ Z = z) +E(Y ∣ Z = z).

(iv) If Z is independent of X and Y then (assuming they are continuous)

fX ∣(Y,Z)(x ∣ (y, z)) =
fX,Y,Z(x, y, z)
fY,Z(y, z)

=
fX,Y (x, y)
fY (y)

,

so

E(X ∣ (Y,Z) = (y, z)) = ∫
∞

−∞
xfX ∣(Y,Z)(x ∣ (y, z) dx = ∫

∞

−∞
xfX ∣Y (x ∣ y) dx = E(X ∣ Y = y).
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Problem 3

...

Solution. The plot does not overlap completely with what is suggested by the hint; nevertheless there is a spike

(and two minor ones) at around x = 1/11 (and at around x = −1/11 as well).

Problem 4

Let θ ∈ R be an unknown parameter. Consider the density

fθ(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(−(x − θ)) x ⩾ θ

0 x < θ.

Suppose X1, ...,Xn is a random sample of size n such that each Xi has density fθ. Show that X(1) = min
1⩽i⩽n

Xi

is a sufficient statistic for θ.

Proof. We first write fθ(x) = exp(−(x − θ))χ[θ,∞)(xi). Since Xi’s are i.i.d., for x⃗ ∶= (x1, ..., xn) ∈ Rn,

fθ(x⃗) =
n

∏
i=1

fθ(xi) = exp(nθ −
n

∑
i=1

xi)
n

∏
i=1

χ[θ,∞)(xi).

Note that fθ(x⃗) ≠ 0 if and only if xi ⩾ θ for all i, i.e., X(1) ⩾ θ. That is,

fθ(x̃) = exp(nθ −
n

∑
i=1

xi)χ[θ,∞)(X(1)).

Therefore, fθ(x̃) admits a factorization

fθ(x̃) = exp(nθ)χ[θ,∞)(X(1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gθ(X(1))

⋅ exp(−
n

∑
i=1

xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

,

which by the factorization theorem shows X(1) is sufficient.
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