

MATH 408 Homework 3

Qilin Ye

March 23, 2022

Problem 1

Suppose you know the following list of numbers is a random sample of size 20 from a Gaussian with mean 1 and unknown variance $\sigma^2 > 0$.

2.0753 4.6678 -3.5177 2.7243 1.6375 -1.6154 0.1328 1.6852 8.1568 6.5389
-1.6998 7.0698 2.4508 0.8739 2.4295 0.5901 0.7517 3.9794 3.8181 3.8344.

- (1) Using a method of moments estimator, estimate the value of σ^2 for this data.
- (2) Denote your method of moments estimator for σ^2 as Z . Is Z unbiased?
- (3) We know for sure that $\sigma^2 > 0$. Is it possible that Z could take negative values? If so, then perhaps Z is not the best way to estimate σ^2 .
- (4) The Delta method suggests that $1/Z$ could be a good estimate for $1/\sigma^2$. What estimate of $1/\sigma^2$ do you get from the data above? Is $\mathbb{E}|1/Z|$ finite? If not, then we cannot even compute the bias of this estimator.
- (5) The Delta method also suggests that Z^2 could be a good estimate for σ^4 . What estimate of σ^4 do you get from the data above? Is Z^2 an unbiased estimate of σ^4 ?
- (6) Is Z^2 an asymptotically unbiased estimate of σ^4 ? That is, as the number of samples n goes to infinity, does $\mathbb{E}Z^2$ converge to σ^4 ?

Solution. (1) Since $\sigma^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \mathbb{E}X^2 - 1$, using the method of moments,

$$\hat{\sigma}^2 = \frac{1}{20} \sum_{i=1}^{20} X_i^2 - 1 \approx 12.7452.$$

(2) Z is unbiased:

$$\mathbb{E}Z = \mathbb{E}\left(\frac{1}{20} \sum_{i=1}^{20} X_i^2 - 1\right) = \frac{1}{20} \mathbb{E}\left(\sum_{i=1}^{20} X_i^2\right) - 1 = \mathbb{E}X^2 - 1 = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \sigma^2.$$

(3) Yes, if each $X_i \in [0, 1]$ then the corresponding $Z < 0$. This could well happen.

(4) From the data above we get $1/\hat{\sigma}^2 = 0.0785$. The expected value $\mathbb{E}|1/Z|$ is not finite. To see this, notice that $f_Z(z)$ is continuous on, say, $[1, 1]$. By a well-known result in analysis,

$$\inf_{z \in [-1, 1]} = \min_{z \in [-1, 1]} = f_Z(\tilde{z}) \geq \epsilon > 0 \quad \text{for some } z \in [-1, 1] \text{ and } \epsilon > 0.$$

Since Z has codomain $[-1, \infty)$, we have

$$\mathbb{E}[1/Z] = \int_{-1}^{\infty} f_Z(z) \frac{1}{|z|} dz \geq \int_{-1}^1 f_Z(z) \frac{1}{|z|} dz \geq 2 \int_0^1 \frac{1}{z} dz = \infty.$$

(5) The estimator we have is $\hat{\sigma}^4 = 162.4397$. It is biased:

$$\begin{aligned} \mathbb{E}(Z^2) &= \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^n X_i^2 - 1\right)^2 \\ &= \frac{1}{n^2} \mathbb{E}\left(\sum_{i=1}^n X_i^2\right)^2 - 2 \cdot \frac{1}{n} \cdot \mathbb{E}\left(\sum_{i=1}^n X_i^2\right) + 1 \\ &= \frac{1}{n^2} \mathbb{E}\left[\sum_{i=1}^n X_i^4 + \sum_{i \neq j} X_i^2 X_j^2\right] - 2\mathbb{E}X^2 + 1 \\ &= \frac{1}{n^2} (n\mathbb{E}X^4 + (n^2 - n)(\mathbb{E}X^2)^2) - 2\mathbb{E}X^2 + 1 \\ &= \frac{\mathbb{E}X^4}{n} + \frac{n-1\mathbb{E}(X^2)^2}{n} - 2\mathbb{E}(X^2) + 1, \end{aligned}$$

whereas

$$\sigma^4 = (\mathbb{E}X^2 - 1)^2 = (\mathbb{E}X^2)^2 - 2\mathbb{E}X^2 + 1.$$

(6) Following the calculation in the previous part, letting $n \rightarrow \infty$, we obtain

$$\lim_{n \rightarrow \infty} E_n(Z^2) = \lim_{n \rightarrow \infty} (\dots) = \sigma^4,$$

so Z is asymptotically unbiased.

Problem 2

Let $X, Y, Z : \Omega \rightarrow \mathbb{R}$ be discrete or continuous random variables. Let A be the range of Y . Define $g : A \rightarrow \mathbb{R}$ by $g(y) := \mathbb{E}(X | Y = y)$ for any $y \in A$. We then define the **conditional expectation** of X given Y , denoted $\mathbb{E}(X | Y)$, to be the random variable $g(Y)$.

- (i) Let X, Y be random variables such that (X, Y) is uniform distributed on the triangle given by $\{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x + y \leq 1\}$. Show that $\mathbb{E}(X | Y) = (1 - Y)/2$.
- (ii) Prove the following version of the Total Expectation Theorem:

$$\mathbb{E}(\mathbb{E}(X | Y)) = \mathbb{E}(X).$$

- (iii) Show the following

$$\mathbb{E}(X | X) = X \quad \text{and} \quad \mathbb{E}(X + Y | Z) = \mathbb{E}(X | Z) + \mathbb{E}(Y | Z).$$

- (iv) If Z is independent of X and Y , show that

$$\mathbb{E}(X | Y, Z) = \mathbb{E}(X | Y).$$

Proof. (i) For $y \in [0, 1]$, note that $X | Y = y$ is uniformly distributed on $[0, 1 - y]$, so $\mathbb{E}(X | Y = y) = (1 - y)/2$. Therefore by definition $\mathbb{E}(X | Y) = (1 - Y)/2$.

(ii) For the continuous case:

$$\begin{aligned}\mathbb{E}(\mathbb{E}(X | Y)) &= \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}(X | Y = y) dy \\ &= \int_{-\infty}^{\infty} f_Y(y) \left[\int_{-\infty}^{\infty} x f_{X|Y}(x | y) dx \right] dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X|Y}(x, y) f_Y(y) dx dy \\ &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy dx \\ &= \int_{-\infty}^{\infty} x f_X(x) dx = \mathbb{E}X.\end{aligned}$$

For the discrete case:

$$\begin{aligned}\mathbb{E}(\mathbb{E}(X | Y)) &= \mathbb{E}\left(\sum_x x \mathbb{P}(X = x | Y = y)\right) = \sum_y \left(\sum_x x \mathbb{P}(X = x | Y = y)\right) \mathbb{P}(Y = y) \\ &= \sum_x \sum_y x \mathbb{P}(X = x | Y = y) \mathbb{P}(Y = y) \\ &= \sum_x x \left(\sum_y \mathbb{P}(X = x, Y = y)\right) = \sum_x x \mathbb{P}(X = x) = \mathbb{E}X.\end{aligned}$$

(iii) The first claim is trivial, as $\mathbb{E}(X | X = x) = x$. The continuous case for the second equation:

$$\begin{aligned}\mathbb{E}(X + Y | Z = z) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f_{X+Y|Z}(x + y | z) dx dy \\ &= \iint_{\mathbb{R}^2} x f_{X+Y|Z}(x + y | z) dx dy + \iint_{\mathbb{R}^2} y f_{X+Y|Z}(x + y | z) dx dy \\ &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{X+Y|Z}(x + y | z) dy dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X+Y|Z}(x + y | z) dx dy \\ &= \int_{-\infty}^{\infty} x f_{X|Z}(x | z) dx + \int_{-\infty}^{\infty} y f_{Y|Z}(y | z) dy = \mathbb{E}(X | Z = z) + \mathbb{E}(Y | Z = z).\end{aligned}$$

The discrete case for the second equation:

$$\begin{aligned}\mathbb{E}(X + Y | Z = z) &= \sum_x \sum_y (x + y) \mathbb{P}(X = x, Y = y | Z = z) \\ &= \sum_x x \sum_y \mathbb{P}(X = x, Y = y | Z = z) + \sum_y y \sum_x \mathbb{P}(X = x, Y = y | Z = z) \\ &= \sum_x \mathbb{P}(X = x | Z = z) + \sum_y y \mathbb{P}(Y = y | Z = z) = \mathbb{E}(X | Z = z) + \mathbb{E}(Y | Z = z).\end{aligned}$$

(iv) If Z is independent of X and Y then (assuming they are continuous)

$$f_{X|(Y,Z)}(x | (y, z)) = \frac{f_{X,Y,Z}(x, y, z)}{f_{Y,Z}(y, z)} = \frac{f_{X,Y}(x, y)}{f_Y(y)},$$

so

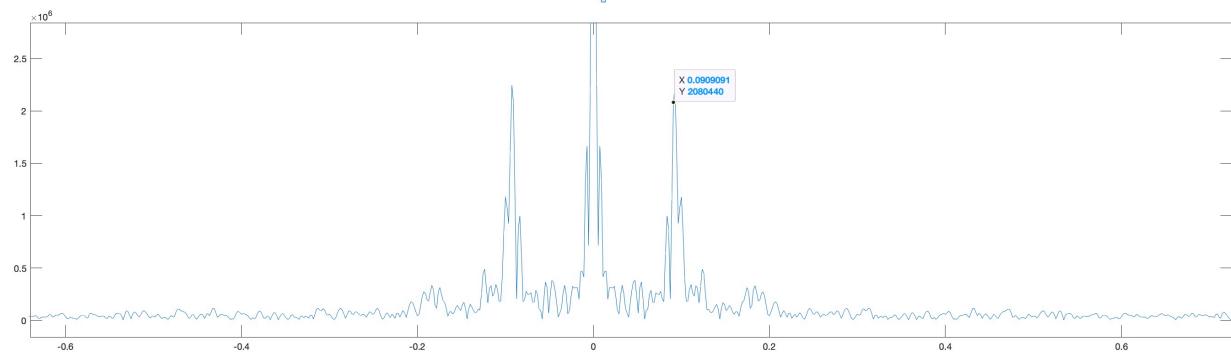
$$\mathbb{E}(X | (Y, Z) = (y, z)) = \int_{-\infty}^{\infty} x f_{X|(Y,Z)}(x | (y, z)) dx = \int_{-\infty}^{\infty} x f_{X|Y}(x | y) dx = \mathbb{E}(X | Y = y).$$

□

Problem 3

...

Solution. The plot does not overlap completely with what is suggested by the hint; nevertheless there is a spike (and two minor ones) at around $x = 1/11$ (and at around $x = -1/11$ as well).

**Problem 4**

Let $\theta \in \mathbb{R}$ be an unknown parameter. Consider the density

$$f_\theta(x) := \begin{cases} \exp(-(x - \theta)) & x \geq \theta \\ 0 & x < \theta. \end{cases}$$

Suppose X_1, \dots, X_n is a random sample of size n such that each X_i has density f_θ . Show that $X_{(1)} = \min_{1 \leq i \leq n} X_i$ is a sufficient statistic for θ .

Proof. We first write $f_\theta(x) = \exp(-(x - \theta))\chi_{[\theta, \infty)}(x)$. Since X_i 's are i.i.d., for $\tilde{x} := (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$f_\theta(\tilde{x}) = \prod_{i=1}^n f_\theta(x_i) = \exp(n\theta - \sum_{i=1}^n x_i) \prod_{i=1}^n \chi_{[\theta, \infty)}(x_i).$$

Note that $f_\theta(\tilde{x}) \neq 0$ if and only if $x_i \geq \theta$ for all i , i.e., $X_{(1)} \geq \theta$. That is,

$$f_\theta(\tilde{x}) = \exp(n\theta - \sum_{i=1}^n x_i) \chi_{[\theta, \infty)}(X_{(1)}).$$

Therefore, $f_\theta(\tilde{x})$ admits a factorization

$$f_\theta(\tilde{x}) = \underbrace{\exp(n\theta) \chi_{[\theta, \infty)}(X_{(1)})}_{g_\theta(X_{(1)})} \cdot \underbrace{\exp(-\sum_{i=1}^n x_i)}_{h(x)},$$

which by the factorization theorem shows $X_{(1)}$ is sufficient. □