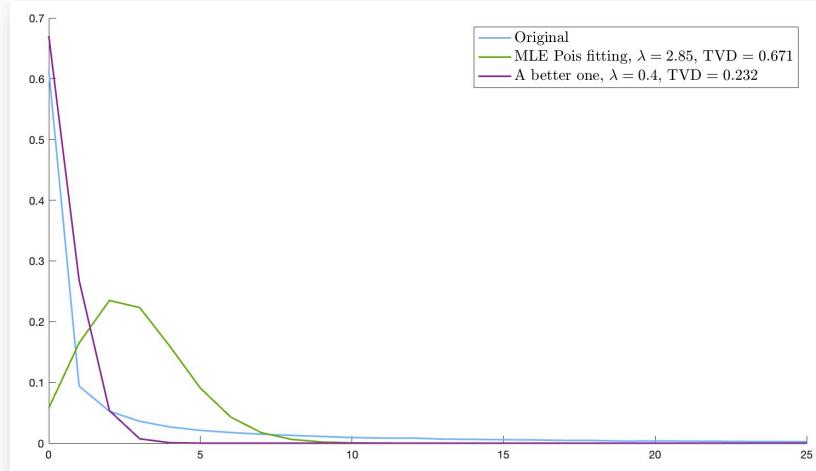


MATH 408 Homework 5

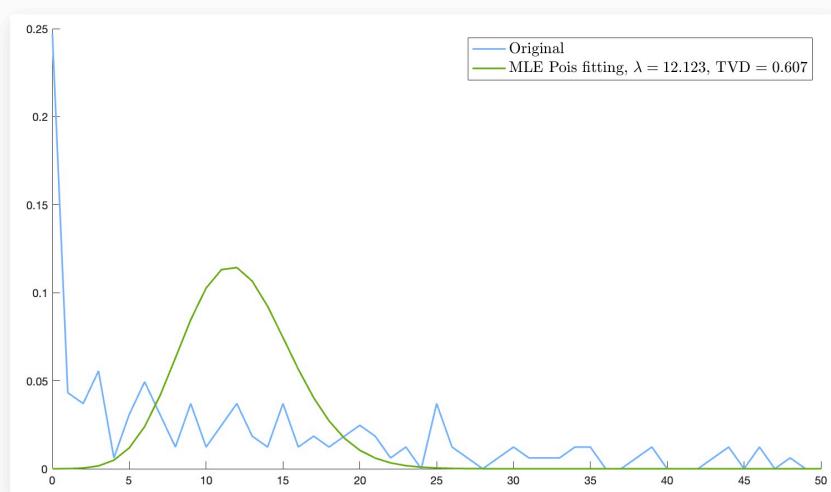
Qilin Ye

October 28, 2021

Problem: Graphs for Problem 1



Poisson distribution fitting for the baseball example



Poisson distribution fitting for the WNBA example

Problem 3

Suppose you flip a coin 1000 times, resulting in 560 heads and 440 heads. Is it reasonable to conclude that the coin is fair?

Solution. Flipping a coin can be thought of as a Bernoulli random variable with parameter $\lambda \in [0, 1]$. Let $X_i \sim \text{Bern}(\lambda)$ and define $S := \sum_{i=1}^{1000} X_i = \#\text{heads}$. Define the rejection region to be $\{(x_1, \dots, x_{1000}) \in \mathbb{R}^{1000} : |S - 500| > c\}$ so that $t(X) := |\#\text{heads} - 500|$. Θ_0 is simply $\{1/2\}$ as we assume that H_0 states the coin is fair. Then,

$$p(560 \text{ heads}) = \mathbb{P}_{1/2}(S < 440 \text{ or } S > 560).$$

By CLT, S is approximately $\mathcal{N}(500, \sqrt{1000 \cdot (1/2) \cdot (1 - 1/2)}) = \mathcal{N}(500, 5\sqrt{10})$. Hence

$$p(560 \text{ heads}) = \mathbb{P}(\mathcal{N}(500, 5\sqrt{10}) < 440 \text{ or } > 560) \approx \mathbb{P}\left(Z < \frac{60}{5\sqrt{10}} \text{ or } > \frac{60}{5\sqrt{10}}\right) = 2\Phi(12/\sqrt{10})$$

which is extremely small. (Here Z denotes the standard normal.) Therefore we reject the null hypothesis, i.e., we claim the coin is biased.

Problem 4

Suppose the number of typos in my notes in a given year follows a Poisson distribution. In the last few years, the average number of typos was 15, and this year, I had 10 typos in my notes. Is it reasonable to conclude that the rate of typos has dropped this year?

Solution. Let $X \sim \text{Pr}(\lambda)$ be the random variable describing Heilman's typos. Since we are only interested in whether the rate has dropped, $\Theta = (0, 15]$, $\Theta_0 = \{15\}$, and $\Theta_1 = (0, 15)$. Hence H_0 is $\{\lambda = 15\}$ and H_1 is $\{0 < \lambda < 15\}$. Let the rejection region be defined by $\{x : t(x) \geq c\}$ where $t(X) := 15 - X$. Then if 10 typos are observed, the p -value is

$$p(10) = \mathbb{P}_{15}(15 - X \geq 15 - 10) = \mathbb{P}_{15}(X \leq 10) = \sum_{k=0}^{10} \frac{15^k e^{-15}}{k!} \approx 0.118,$$

so it is likely that Heilman indeed made some improvements in preventing typos.

Problem 5

Suppose X is a Gaussian distributed random variable with known variance $\sigma^2 > 0$ but unknown mean μ . Fix $\mu_0, \mu_1 \in \mathbb{R}$ with $\mu_0 > \mu_1$. We want to test the hypothesis H_0 that $\mu = \mu_0$ versus the hypothesis H_1 that $\mu = \mu_1$. Fix $\alpha \in (0, 1)$. Explicitly describe the UMP test for the class of tests whose significance level is at most α .

Solution. In this case $\Theta = \{\mu_0, \mu_1\}$, with $H_0 : \{\mu = \mu_0\}$ and $H_1 : \{\mu = \mu_1\}$. Neyman-Pearson tells us that the UMP test for all tests with significance level $\leq \alpha$ is the likelihood ratio test with level $= \alpha$. Recall that the rejection region is defined by

$$C := \{x \in \mathbb{R}^n : f_{\mu_1}(x) > k f_{\mu_0}(x)\}.$$

Since $f_{\mu_0}(x) > 0$, we may write it in quotient form $f_{\mu_1}(x)/f_{\mu_0}(x) > k$, that is,

$$\text{LR} := \frac{\exp(-(x - \mu_1)^2/2\sigma^2)}{\exp(-(x - \mu_0)^2/2\sigma^2)} = \exp\left(-\frac{(x - \mu_1)^2 - (x - \mu_0)^2}{2\sigma^2}\right) > k.$$

Since

$$(x - \mu_1)^2 - (x - \mu_0)^2 = \mu_1^2 - \mu_0^2 - 2x(\mu_1 - \mu_0) = (\mu_1 - \mu_0)(\mu_1 + \mu_0 - 2x),$$

we have

$$\text{LR} = \exp\left(\frac{\mu_1 - \mu_0}{\sigma^2}\left(x - \frac{\mu_1 + \mu_0}{2}\right)\right).$$

Hence $\text{LR} > k$ if and only if $\log(\text{LR}) > \log k$, i.e.,

$$(\mu_1 - \mu_0)\left(x - \frac{\mu_1 + \mu_0}{2}\right) > \sigma^2 \log k,$$

or equivalently

$$x < \frac{\sigma^2 \log k}{\mu_1 - \mu_0} + \frac{\mu_1 + \mu_0}{2} =: \tilde{k}.$$

It remains to find the \tilde{k} such that $\alpha = \mathbb{P}_{\mu_0}(X \in C) = \mathbb{P}_{\mu_0}(X < \tilde{k}) = \alpha$. Since $X \sim \mathcal{N}(\mu_0, \sigma^2)$, this becomes

$$\mathbb{P}_{\mu_0}\left(\frac{X - \mu_0}{\sigma} \leq \frac{\tilde{k} - \mu_0}{\sigma}\right) = \Phi\left(\frac{\tilde{k} - \mu_0}{\sigma}\right) = \alpha.$$

Hence

$$\tilde{k} = \sigma\Phi^{-1}(\alpha) + \mu_0.$$

Therefore, the UMP test rejects H_0 if and only if

$$x > \tilde{k} = \sigma\Phi^{-1}(\alpha) + \mu_0.$$

Problem 6

Let X_1, \dots, X_n be i.i.d. random variables and denote $X = (X_1, \dots, X_n)$. Assume X has distribution $f_\theta \in \{f_\theta : \theta \in \Theta\}$. Suppose Θ consists of two points, i.e., $\Theta = \{\theta_0, \theta_1\}$. Let Z be sufficient for θ . Consider the likelihood ratio test of the null hypothesis H_0 that $\{\theta = \theta_0\}$ versus the alternative H_1 that $\theta = \theta_1$. Show that the likelihood ratio is a function of Z .

Proof. Since Z is sufficient for θ , by factorization theorem,

$$f_\theta(x) = g_\theta(z)h(x)$$

for some functions $g_\theta(z)$ and $h(x)$. The likelihood ratio is given by

$$\frac{f_{\theta_1}(x)}{f_{\theta_0}(x)} = \frac{g_{\theta_1}(z)h(x)}{g_{\theta_0}(z)h(x)} := J(z).$$

Since f_θ is a PDF, whenever it is nonzero, $h(x)$ is also nonzero, so cancellation holds. This shows that the likelihood ratio is a function of Z . \square

Problem 7

Suppose X is a binomial random variable with parameters $n = 100$ and $\theta \in [0, 1]$ unknown. suppose we want to test the hypothesis H_0 that $\theta = 1/2$ versus the alternative H_1 that $\theta \neq 1/2$. Consider the hypothesis test that rejects H_0 if and only if $|X - 50| > 10$.

Using e.g. the CLT, do the following:

- (1) Give an approximation to the significance level α of this test.
- (2) Plot an approximation of the power function $\beta(\theta)$ as a function of θ .
- (3) Estimate p -values for this test when $X = 50, 70$, and 90 .

Solution. (1) By definition,

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta) = \sup_{\theta \in \Theta_0} \mathbb{P}_\theta(X \notin [40, 60]) = \mathbb{P}_{1/2}(X \notin [40, 60]) = 2\mathbb{P}_{1/2}(X > 60).$$

By CLT, X is approximately $\mathcal{N}(100 \cdot 0.5, \sqrt{100 \cdot 0.5 \cdot (1 - 0.5)}) = \mathcal{N}(50, 5)$, so

$$\alpha = 2\mathbb{P}(Z > 2) \approx 1 - 0.9545 = 0.0455.$$

(2) As θ varies, X is now approximated by $\mathcal{N}(100\theta, 10\sqrt{\theta(1 - \theta)})$, so

$$\begin{aligned} \beta(\theta) &= \mathbb{P}_\theta(X < 40) + \mathbb{P}_\theta(X > 60) \\ &= \mathbb{P}\left(Z < \frac{40 - 100\theta}{10\sqrt{\theta(1 - \theta)}}\right) + \mathbb{P}\left(Z > \frac{60 - 100\theta}{10\sqrt{\theta(1 - \theta)}}\right) \end{aligned}$$

A plot using the following code:

```
1 x = (0:0.01:1);
2 y = normcdf((40-100*x)/(10*sqrt(x.*(1-x)))) + normcdf((-60+100*x)/(10*sqrt(x.*(1-x))));
3 plot(x,y);
```

(3) The p -values are

$$p(50) = \mathbb{P}_{1/2}(|X - 50| > |50 - 50|) = 1,$$

$$p(70) = \mathbb{P}_{1/2}(|X - 50| > |70 - 50|) \approx \mathbb{P}(|Z| > 4) = 2\Phi(-4) \approx 6.334 \cdot 10^{-5},$$

and

$$p(90) = \mathbb{P}_{1/2}(|X - 50| > |90 - 50|) \approx \mathbb{P}(|Z| > 8) = 2\Phi(-8) \approx 1.244 \cdot 10^{-15}.$$