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0.1 Review of Probability

Definition 0.1.1: Axioms of Probability

Assume there exists some (nonempty) universal set Ω that contains all other sets (events). We denote P as a

probability law on Ω. The following are the three axioms of P:

(1) For all subsets A ⊂ Ω, 0 ⩽ P(A) ⩽ 1.

(2) P is (countably) additive for disjoint sets, i.e., if {An} are disjoint then P(
∞
⋃
i=1

An) =
∞
∑
n=1

P(An).

(3) P(Ω) = 1.

From (2) we immediately see that P(A ∪B) ⩽ P(A) + P(B) and = can be obtained if and only if A ∩B = ∅.

Definition 0.1.2: Conditional Probability

If A,B ⊂ Ω, we define the conditional probability as

P(A∣B) ∶= P(A ∩B)
P(B)

.

Definition 0.1.3: Continuous Random Variable, CRV

A random variable is a function X ∶ Ω→ R. We say X is continuous if

P(a ⩽X ⩽ b) = ∫
b

a
fX(x) dx

for some fX ∶ R→ [0,∞) and for all −∞ ⩽ a ⩽ b ⩽∞. We call fX the PDF, probability density function. We

also define the CDF, cumulative density function, by FX(t) = P(X ⩽ t).

Example 0.1.4. Suppose X is uniformly distributed in [0,1]. Then for any 0 ⩽ a ⩽ b ⩽ 1,

P(a ⩽X ⩽ b) = ∫
b

a
dx = b − a,

indeed a CRV.

Definition 0.1.5: Independence of Finitely Many Sets

Let A1, ...,An ⊂ Ω. We say they are independent if for any S ⊂ {1,2, ..., n},

P(⋂
i∈S
(Ai)) =∏

i∈S
P(Ai).

Definition 0.1.6: Independence of Countably Many Sets

We say {An} are independence if, for all n ⩾ 1, A1, ...,An are independent.
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Beginning of Aug.25, 2021

0.2 Some Random Variables

Example 0.2.1: Bernoulli. Let 0 < p < 1. Define a random variable by P(X = 0) = 1 − p and P(X = 1) = p.

Example 0.2.2: Binomial. Let n ∈ N. For 0 ⩽ k ⩽ n, let P(X = k) = (n
k
)pk(1 − p)n−k. “Number of heads

flipped among n biased coin flips.”

Example 0.2.3: Geometric. For k ∈ N, define P(X = k) = (1 − p)k−1p. “Number of coin clips needed to see

heads for the first time.”

Definition 0.2.4: Normal Random Variable

Let µ ∈ R and σ > 0 be two parameters. A random variable X is said to be normal or Gaussian if X has the

X has pdf

fX(x) =
1

σ
√
2π

exp(−(x − µ)
2

2σ2
) .

Definition 0.2.5: Gamma Function

For all α > 0, define the Gamma function

Γ(α) ∶= ∫
∞

0
e−xxα−1 dx.

Integration by parts suggests that Γ interpolates the factorial: Γ(1) = 1 and Γ(n + 1) = (n + 1)Γ(n).

Definition 0.2.6: Gamma Distribution & Chi-Squared Distribution

Let α,β > 0. We say X is an (α,β) distributed Gamma random variable if X has the pdf

fX(x) =
xα−1 exp(−x/β)

βαΓ(α)
⋅ χ[0,∞)(x). (1)

For example, if α = p/2 and β = 2, we get a chi-squared distribution. Its pdf with p degrees of freedom is

fX(x) =
xp/2−1 exp(−x/2)

2p/2Γ(p/2)
⋅ χ[0,∞)(x). (2)

(2) is the distribution of a sum of p independent, squared, standard Gaussian distributions (µ = 0, σ = 1).
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Definition: (1.36) Indicator Functions

Let A ⊂ Ω. We define the indicator function χA ∶ Ω→ {0,1} by

χA(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ω ∈ A

0 ω ∉ A.

Definition: (1.37) Expected Values

Let P be a probability law on Ω. Let X ∶ Ω → [0,∞) be a (nonnegative) random variable. The expected

value is defined by

E(X) ∶= ∫
∞

0
P(X > t) dt.

If X ∶ Ω→ R and if E∣X ∣ <∞, define

E(X) ∶= E(max(X,0)) −E(max(−X,0))

If X is discrete, E(X) = ∑
k∈R

k ⋅ P(X = k).

If X is continuous with PDF fX , E(X) = ∫
∞

−∞
x ⋅ fX(x) dx.

Proposition: (1.43)

The expected value of (finite) sums is the (finite) sum of expected values:

E(
n

∑
i=1

Xi) =
n

∑
i=1

E(Xi).

Definition 0.2.7: Variance & Standard Deviation

The variance of a random variable is defined by

var(X) ∶= E(X2) − (E(X))2 = E(X −E(X))2.

and the standard deviation is defined to be the square root of above.

Important property of variance:

var(aX + b) = a2

var(x)

Definition 0.2.8: Joint PDF

Let X,Y be random variables and let fX,Y ∶ R2 → [0,∞) be their joint pdf. Then

P(a ⩽X ⩽ b, c ⩽ Y ⩽ d) = ∫
b

a
∫

d

c
fX,Y (x, y) dy dx

4
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and

∫
∞

−∞
∫
∞

−∞
fX,Y (x, y) dy dx = 1.

Definition 0.2.9: Marginal Densities

Continuing on the previous example, the marginal of X is given by

fX(x) ∶= ∫
∞

−∞
fX,Y (x, y) dy,

i.e., we “fix” x and integrate fX,Y over all possible values of y. Likewise for fY (y).
The density of the conditional X ∣ Y = y is

fX ∣Y =y(x) =
fX,Y (x, y)
fY (y)

.

Corollary 0.2.10

E(XY ) = ∫
∞

−∞
∫
∞

−∞
xyfx,y(X,Y ) dx dy. Similarly, if g ∶ R2 → R, then

E(g(X,Y )) = ∫
∞

−∞
∫
∞

−∞
g(x, y)fX,Y (x, y) dx dy.

Definition 0.2.11: Independence of Random Variables

Let X1, ...,Xn ∶ Ω→ R. We say they are independent if

PX1,...,Xn(x1, ..., xn) =
n

∏
i=1

PXi(xi) xi ∈ R.

Beginning of Aug.27, 2021

Theorem: (1.58) Independence and Variances

If X1, ...,Xn are independent random variables, then the variance of their sum is the sum of their variances:

var(
n

∑
i=1

Xi) =
n

∑
i=1

var(Xi).

Proposition: (1.60) Independence and Expected Values

If X1, ...,Xn are independent random variables, then

E(
n

∏
i=1

Xi) =
n

∏
i=1

E(Xi).

In general, this is not true. There exist X,Y such that E(XY ) ≠ E(X)E(Y ). For example let X = Y and

P(X = 1) = P(X = −1) = 1/2. Then E(XY ) = 1 and E(X)E(Y ) = 0.

5
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Definition 0.2.12: Covariance

The covariance of X and Y is given by

cov(X,Y ) ∶= E[(X −E(X)(Y −E(Y )].

By definition, cov(X,X) = var(X).

Definition 0.2.13: Correlation

The correlation coefficient of X,Y is given by

corr(X,Y ) ∶= cov(X,Y )√
var(X)var(Y )

.

Notice that covariance is affected by scaling but correlation is not (unless there involves a change of sign).

For example, cov(10X,Y ) = 10 cov(X,Y ) whereas corr(10X,Y ) = corr(X,Y ). (We also assume that

var(X),var(Y ) ≠ 0.)

Correlation is invariant under scalar multiplication. Let t ≠ 0. Then

corr(tX,Y ) = cov(tX,Y )√
var(tX)

√
var(Y )

= E(t(X −E(X))(Y −E(Y )))
∣t∣
√
var(X)

√
var(Y )

= t cov(X,Y )
∣t∣
√
var(X)

√
var(Y )

= sgn(t) corr(X,Y ).

Theorem 0.2.14: Cauchy-Schwarz

For all X,Y , ∣E(XY )∣ ⩽
√
E(X2)

√
E(Y 2). This immediately implies that for any X,Y , −1 ⩽ corr(X,Y ) ⩽ 1.

Heuristically: if corr(X,Y ) is close to 1, then approximately Y = aX + b for a > 0. If the scatterplot of X,Y are

everywhere randomly, then their correlation is close to 0.

Theorem 0.2.15: Total Expectation Theorem

Let A1, ...,An ⊂ Ω be a partition of Ω (i.e., union being Ω and pairwise disjoint). Then, for all B ⊂ Ω,

P(B) =
n

∑
i=1

P(B ∩Ai) =
n

∑
i=1

P(B ∣ Ai)P(Ai)

(assuming P(Ai) ≠ 0 for all i for the sake of well-definedness).

Theorem: (1.78)

Let X,Y be continuous random variables with joint PDF. Then

E(X) = ∫
∞

−∞
E(X ∣ Y = y)fY (y) dy,

where

E(X ∣ Y = y) = ∫
∞

−∞
xfX ∣Y =y(x ∣ y) dx fX ∣Y =y(x ∣ y) =

fX,Y (x, y)
fY (y)

.
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Definition: (1.90) Convex Functions

φ ∶ R→ R is convex if for any x, y ∈ R and 0 ⩽ t ⩽ 1,

φ(tx + (1 − t)y) ⩽ tφ(x) + (1 − t)φ(y).

Theorem: (1.91) Jensen’s Inequality

Let X be a random variable and let φ ∶ R→ R be convex. Then

φ(EX) ⩽ Eφ(X).

Corollary 0.2.16

Let φ(t) = t2. By Jensen’s inequality,

(EX)2 ⩽ EX2.

Beginning of Aug.30, 2021

Proposition: (1.92) Markov’s Inequality

If E∣X ∣ <∞ (if infinity then the claim is trivial), then

P(∣X ∣ > t) ⩽ E∣X ∣
t

.

Also, for n ∈ Z+,
P(∣X ∣ > t) ⩽ E(∣X ∣n)

tn
.

Corollary: (1.97) Chebyshev’s Inequality

If EX <∞ and var(X) <∞, then applying Markov’s inequality to X −EX, n = 2, gives

P(∣X − µ∣ > t) ⩽ var(X)
t2

.

Proposition 0.2.17

Let X1, ...,Xn be i.i.d. with finite variance. Then

P(∣ 1
n

n

∑
i=1

Xi

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
sample mean

−EXi∣ > t) ⩽
var(∑n

i=1Xi/n)
t2

= 1

n
⋅ var(X1)

t2
.

Note that as n→∞, the probability tends to 0. This gives the Weak LLN.
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Theorem 0.2.18: Weak Law of Large Numbers (WLLN)

Let X1, ...,Xn be i.i.d. with finite variance. Then

lim
n→∞

P(∣ 1
n

n

∑
i=1

Xi −EXi∣ > t) ⩽ lim
n→∞

1

n

var(X1)
t2

= 0.

To put formally,
n

∑
i=1

Xi/n converges in probability to EX1 as n→∞.

Remark. For example, if X1, ...,Xn are the poll results for n random people in California, the larger n is,

the more likely it is accurate. Furthermore, note that this does not rely on the population size of California!

Definition: (1.106) Convolution

Let f, g ∶ R→ R. We define the convolution of f and g to be

(f ∗ g)(t) ∶= ∫
∞

−∞
f(x)g(t − x) dx.

Proposition: (1.107)

Let X and Y be independent random variables with PDFs fX and fY . Then,

fx+y = fX ∗ fY .

Corollary 0.2.19

The sum of two independent Gaussians is a Gaussian.

Definition 0.2.20: Modes of Convergence

(1) (Def 2.1, used in SLLN) We say random variables Yn ∶ Ω → R converges almost surely (a.s.) to

Y ∶ Ω→ R if

P( lim
n→∞

Yn = Y ) = 1

or in more details,

P({ω ∈ Ω ∣ lim
n→∞

Yn(ω) = Y (ω)}) = 1.

(Given ϵ > 0, there exists N ∈ N such that if n ⩾ N then Yn → Y on S ⊂ Ω where P(Ω − S) = 0.)

(2) (Def 2.2, used in WLLN) We say {Yn} converges in probability to Y if, given ϵ > 0,

lim
n→∞

P(∣Yn − Y ∣ > ϵ) = 0.

(3) (Def 2.3, used in CLT) We say {Yn} converges in distribution to Y if “the limit of the CDF is the CDF

of the limit” – to put formally, for all t ∈ R such that S ↦ P(Y ⩽ S) is continuous at s = t

lim
n→∞

P(Yn ⩽ t) = P(Y ⩽ t).

8



YQL - MATH 408 Notes 0.2 - Some Random Variables Current file: 9-1.tex

Theorem 0.2.21: WLLN Restated

Let {Xn} be i.i.d. with finite variance. Then

X1 + ... +Xn

n

converges in probability to EX1 as n→∞.

Theorem 0.2.22: Central Limit Theorem (CLT)

The previous theorem states how X1 + ... +Xn looks like, and this one states how far it would deviate from µ.

Let {Xn} be i.i.d. with finite nonzero variance. For convenience write µ ∶= EX1 and σ ∶=
√
var(X1). Then

X1 + ... +Xn − nµ
σ
√
n

(note that the numerator has mean 0) converges in distribution to a standard Gaussian.

Beginning of Sept.1, 2021

Theorem: (2.11) Strong Law of Large Numbers, SLLN

Let X1,X2, ... be i.i.d. with µ ∶= EX1 finite. Then

P( lim
n→∞

X1 + ... +Xn

n
= µ) = 1.

Theorem: (2.17) CLT Restated

Let X1,X2, ... be i.i.d. with 0 < var(X1) <∞. Let µ ∶= EX1 and σ ∶=
√
var(X1). Then, for all t ∈ R,

lim
n→∞

P(X1 + ... +Xn − nµ
σ
√
n

⩽ t) = 1√
2π
∫

t

−∞
exp(−s2/2) ds = P(Z ⩽ t).

Remark. For example, if we let n = 1 million, t = 1, and Xi the result representing a coin flip (1 for heads,

−1 for tails), then µ = EX1 = 0 and var(X1) = E(X1 −EX1)2 = EX2
1 = 1, so σ = 1. By the CLT,

P(X1 + ... +Xn − nµ
σ
√
n

⩽ 1) = P(X1 + ... +Xn√
n

⩽ 1) ≈ 1√
2π
∫

1

−∞
exp(−s2/2) ds ≈ 0.84.

Note that (X1 + ... +Xn)/
√
n ⩽ 1 means X1 + ... +Xn ⩽

√
n = 1000. Hence if we flip 1 million coins, the

probability that (#heads − #tails ⩽ 1000) is approximately 0.84 or, equivalently, the probability that we get

⩽ 500500 heads is approximately 0.84.

Remark. Let X1,X2, ... be defined as above. Then (X1 + ... +Xn − nµ)/(σ
√
n) has mean 0 (obvious) and

9
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variance 1:

var(...) = 1

σ2n
var(X1 + ... +Xn − nµ)

= 1

σ2n
var(X1 + ... +Xn) =

nvar(X1)
σ2n

= 1.

The random variables Zn ∶= (X1 + ... +Xn − nµ)/(σ
√
n) appear in the CLT. We have shown that Zn’s have

the same mean and variance as the standard Gaussian. That var(Zn) = 1 explains why we chose to put
√
n

in the denominator, not n, which might have seemed to be more natural on first glance.

Theorem: (2.30) Berry-Esseén Theorem

Let σ > 0 and X1,X2, ... be i.i.d. with mean zero so that EX2
1 = σ2. Furthermore, assume that E∣X1∣3 < ∞.

Let Z be a standard Gaussian random variable. Then, for all n > 1,

RRRRRRRRRRR
P(X1 + ... +Xn − nµ

σ
√
n

⩽ t) − P(Z ⩽ t)
RRRRRRRRRRR
=
RRRRRRRRRRR
P(X1 + ... +Xn

σ
√
n

⩽ t) − P(Z ⩽ t)
RRRRRRRRRRR

⩽ E∣X1∣3

σ3
√
n
.

This provides an improvement of the CLT.

End of Review for 407
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Chapter 1

Random Samples

Definition: (3.1) Random Sample

A random sample of size n is a sequence X1, ...,Xn of i.i.d. random variables.

Definition: (3.2) Statistic

A statistic is a function of a random variable:

Let X1, ...,Xn be a random sample of size n and let t ∶ Rn → Rk. A statistic is a random variable of the form

Y ∶= t(X1, ...,Xn)

(where the output of Y contains k numbers). The distribution of Y is called the sampling distribution.

Example: (3.3, 3.4). The sample mean of X1, ...,Xn, denoted X, is the following statistic:

X ∶= X1 + ... +Xn

n
.

For n ⩾ 2, sample standard deviation, denoted S, is the following statistic:

S ∶= ( 1

n − 1

n

∑
i=1
(Xi −X)2)

1/2

.

The sample variance is simply S2.

Example: (3.5) Why n − 1 in Sample Sample Deviation?. Let X1, ...,Xn be i.i.d. with µ ∶= EX1 ∈ R and

σ ∶=
√
var(X1) <∞. Then

(1) ES2 = σ2. (If we divide by anything other than n − 1, there will be extra constants involved.)

(2) var(X) = σ2/n.

Beginning of Sept.3, 2021
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Proposition: (3.7)

Let n ⩾ 2 and let X1...,Xn be a random sample from a Gaussian distribution with mean µ ∈ R and variance

σ2. Then

(1) X and S are independent;

(2) X is also Gaussian with mean µ and variance σ2/n;

(3) (n − 1)S2/σ2 has the same distribution as χ2
n−1 (chi-squared with degrees of freedom n − 1).

Proof for n = 2. By definition X = (X1 +X2)/2 and S =
√
(X1 −X)2 + (X2 −X)2, or, after rewriting X,

S =
√
(X2 −X1)2/4 + (X2 −X1)2/4 =

√
(X1 −X2)2/2.

Note that it suffices to show that X1 +X2, X1 −X2 are independent (given both are i.i.d. Gaussians). On one

hand,

E(X1 +X2)(X1 −X2) = EX2
1 −EX2

2 = 0.

On the other hand, X1,X2 have the same mean, which implies E(X1 −X2) = 0 so E(X1 +X2)E(X1 −X2) = 0.

In general, EXEY = E(XY ) does not imply independence of X and Y (the converse does), this implication is

in fact true given that X and Y are Gaussians!

Gaussian Independence Proof. WLOG assume that X1,X2 are standard Gaussians. By assumption X1,X2

are independent and we want to show that X1+X2,X1−X2 are independent. By definition of independence,

P((X1,X2) ∈ A) =
1

2π
∬

A
exp(−(x2

1 + x2
2)/2) dx1dx2. (1)

In order to show X1 +X2,X1 −X2 are independent, we want to show that their JPDF is the product of their

PDFs, i.e., we need to show that, for B,C ∈ R,

P(X1 +X2 ∈ B,X1 −X2 ∈ C) = P(X1 +X2 ∈ B)P(X1 −X2 ∈ C).

Manipulating the LHS,

P(X1 +X2 ∈ B,X1 −X2 ∈ C) = P(⟨(X1,X2), (1,1)⟩ ∈ B, ⟨(X1,X2), (1,−1)⟩ ∈ C)

=∬Rotation
of B×C

1

2π
exp(−(x2

1 + x2
2)2/2) dx1dx2

=∬
B×C

1

2π
exp(−(x2

1 + x2
2)/2) dx1dx2

[(1)] = ∫
B

1√
2π

exp(−x2
1/2) dx1 ∫

C

1√
2π

exp(−x2
2/2) dx2

= P(⟨(X1X2), (1,1)⟩ ∈ B)P(⟨(X1,X2), (1,−1)⟩ ∈ C).

We can generalize this to n > 2: if Xi are independent (standard) Gaussians, then X−Xi are independent.

Beginning of Sept.8, 2021
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Remark. S is not Gaussian. To find its distribution, one way is to notice that both S and S2 are positive, so

P(S ⩽ t) = P(S2 ⩽ t2) = P((n − 1)S2/σ2 ⩽ (n − 1)t2/σ2) = P(χ2
n−1 ⩽ (n − 1)t2/σ2) = ∫

(n−1)t2/σ2

0
fχ2

n−1
(x) dx.

Differentiating the above expression (along with chain rule) would give us the pdf of S.

1.1 Student’s t-distribution

Recall that
X1 + ... +Xn − nµ

σ
√
n

has mean 0 and variance 1, given X1, ...,Xn are i.i.d. with finite mean and variance in (0,∞). Dividing both the

numerator and the denominator by n gives

(X1 + ... +Xn)/n − µ
σ/
√
n

= X − µ
σ/
√
n
.

Now suppose that µ,σ are unknown, and we want to find them using X1, ...,Xn.

It may be annoying to have two unknowns in one such equation, so sometimes we replace σ by the sample standard

deviation, S, so that µ is the only free parameter, despite the fact that we don’t know σ either:

X − µ
S/
√
n
.

If X1, ...,Xn are i.i.d. Gaussians, then the above quotient has the Student’s t-distribution.

Proposition: (3.7) Student’s t-distribution

Let X be a standard Gaussian random variable. Let Y be a chi-squared random variable with p degrees of

freedom. Assume X and Y are independent. Then

X√
Y /p

has a student’s t-distribution with

f
X/
√

Y /p(t) =
Γ((p + 1)/2)
√
pπ Γ(p/2)

(1 + t2

p
)
−(p+1)/2

, t ∈ R.

Proof. First we define Z ∶=
√
Y /p. It follows that for any y > 0,

fZ(y) =
d

dy
P(Z ⩽ y) = d

dy
P(Y ⩽ y2p) = d

dy

= d

dy
∫

y2p

0

xp/2−1e−x/2

2p/2Γ(p/2)
dx

= 2yp ⋅ pp/2−1yp−2e−y
2p/2 ⋅ 1

2p/2Γ(p/2)

= 2yp−1pp/2e−y
2p/2 ⋅ 1

2p/2Γ(p/2)
.

13
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Now we look at the CDF of X/Z:

P(X/Z ⩽ t) = P(X ⩽ tZ) =∬x⩽ty
y>0

fX,Z(x, y) dx dy

[independence] =∬
...
fX(x)fZ(y) dxdy. (∆)

Now we apply change of variable φ ∶ R2 → R2 by φ(a, b) = (ab, a) and φ−1(x, y) = (y, x/y). Then

∣J (a, b)∣ = abs value of

RRRRRRRRRRRRR

b 1

a 0

RRRRRRRRRRRRR
= ∣a∣.

Then (∆) becomes

∬
...
f(x, y) dxdy =∬

φ−1(...)
f(φ(a, b))∣J (, )∣ dadb

=∬b⩽t
a>0
∣a∣fX(ab)fZ(b) dab

= ∫
b=t

b=−∞
∫

a=∞

a=0
∣a∣fX(ab)fZ(b) da db. (◻)

Recall that we will eventually d/dt everything — this is exactly why we want b = t as the upper limit of the outer

integral: the derivative of this integral becomes

fX/Z(t) =
d

dt
P(X/Z ⩽ t)

= ∫
a=∞

a=0
∣a∣fX(at)fZ(a) da

= ∫
∞

0
a

1√
2π

e−a
2t2/2pp/2ap−1e−a

2p/2 da ⋅ 1

2p/2−1Γ(p/2)

= pp/2√
2π2p/2−1Γ(p/2) ∫

∞

0
ap exp(−a

2

2
(t2 + p)) da

= pp/2√
2π2p/2−1Γ(p/2) ∫

∞

0
xp/2 ⋅ 1

2
√
x
⋅ exp(−x

2
(t2 + p)) dx

= pp/2√
2π2p/2Γ(p/2) ∫

∞

0
x(p−1)/2e−(t

2+p)x/2 dx

where the integrand is related to a Gamma distribution with parameters α − 1 = (p − 1)/2 and β = 2/(t2 + p).
Therefore it evaluates to βαΓ(α). Hence

fX/Z(t) =
1√
2π

pp/2βαΓ(α)
2p/2Γ(p/2)

= ... = Γ((p + 1)/2)
√
p
√
πΓ(p/2)

(1 + t2

p
)
−(p+1)/2

.

Beginning of Sept.10, 2021

The Delta Method

If X1, ...,Xn are i.i.d., we have a “good” way to estimate the mean in the sense that

EX = EX1 var(X) = σ2

n
.

14
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What about 1/µ or µ2 or other functions?

Theorem: (3.13) Delta Method

Let θ ∈ R, and let Y1, Y2, ... be random variables (not necessarily i.i.d.!) such that

√
n(Yn − θ)

converges in distribution to a Gaussian with mean 0 and positive variance. Let f ∶ R → R. Assume f ′(θ)
exists. Then

√
n(f(Yn) − f(θ))

converges in distribution to a Gaussian with mean 0 and variance σ2(f ′(θ))2.

Example: (3.14). If we let f(x) = 1/x, let X = Yn, and assume that
√
n(X − µ) converges in distribution

to a Gaussian with mean 0 and positive variance, then the Delta method says that

√
n(f(Yn) − f(µ))

converges in distribution to a Gaussian with mean 0 and variance σ2µ−4. Therefore 1/X has expected value

≈ 1/µ and variance ≈ n−1σ2µ−4. As n→∞ the variance becomes small, so 1/X is a “good” estimate of 1/µ.

Upshot: 1/X might still be a biased estimate of 1/µ, but as n → ∞ the limit becomes 1/µ. In other words,

1/X are an asymptotically unbiased estimate of 1/µ.

Beginning of Sept.13, 2021

Proof Sketch. By Taylor expansion around θ,

f(y) = f(θ) + f ′(θ)(y − θ) + Error.

Substituting Yn into the above equation and making some arrangements,

√
n(f(Yn) − f(θ)) =

√
nf ′(θ)(Yn − θ) + Error.

The claim “then follows” as the error → 0.

Remark. Currently, if f ′(θ) = 0, we get a mean zero variance zero Gaussian, which is simply a constant

random variable. The theorem below fixes this issue:

Theorem: (3.16) Second-Order Delta Method

Following the previous theorem, if we further assume that f ′(θ) = 0 but f ′′(θ) exists and is nonzero, then

n(f(Yn) − f(θ))

converges in distrbution to a chi-squared random variable with one degree of freedom (χ2
1), multiplied by

σ2f ′′(θ)/2.

15
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Proof Sketch. Like above we have

f(Yn) = f(θ) + f ′(θ)
²
=0

(y − θ) + 1

2
f ′′(θ)(y − θ)2 + Error

so

n(f(Yn) − f(θ)) =
n

2
f ′′(θ)(Yn − θ)2 + Error.

As n → ∞, (
√
n(Yn − θ))2f ′′(θ) converges in distribution to the square of a mean zero Gaussian, multiplied by

σ2f ′′(θ)/2.

Example 1.1.1. Let X1,X2, ... be i.i.d., let f(x) ∶= x2, and let Yn ∶= (X1+ ...+Xn)/n. Then the second-order

Delta method says that n(Y 2
n − 0) converges in distribution to χ2

1 multiplied by σ2f ′′(0)/2, i.e.,

E(nY 2
n ) ≈

1

2
σ2 ⋅ 2 = σ2

In other words, EY 2
n ≈ σ2/n. Also,

var(nYn)2 ≈ var(χ2
1 ⋅ σ2f ′′(0)/2) = σ4 var(χ2

1) = 2σ4,

so var(Yn)2 ≈ 2σ4/n2.

1.2 Simulation of Random Variables

When we simulate random quantities on a computer, the numbers generated are not actually random, as computers

cannot store arbitrary real numbers. Instead, what’s generated are pseudorandom. We check whether a PRNG

(pseudorandom random number generator) behaves like a random variable by checking if it agrees with the LLN

and the CLT.

Example: (3.18) Simulating Discrete RVs. If we are able to use computer to generate a uniformly

distributed random variable U in (0,1), we can simulate a discrete random variable by partitioning (0,1)
into subintervals, each corresponding to an outcome of the discrete random variable, based on the probability

of each. For example,

X(U) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 U < 1/3

2 1/3 ⩽ U < 2/3

3 2/3 ⩽ U < 1

simulates a discrete random variable that takes values in {1,2,3}, each with probability 1/3.

Beginning of Sept.15, 2021

Example 1.2.1: Simulating Continuous RVs. If the CDF of a continuous random variable is given by F ,

then we can simulate it using the inverse F −1. To put formally:

16
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Let X be a continuous random variable. Let F (t) ∶= P(X ⩽ t). If F −1 exists and if U is a uniform random

variable on (0,1), then F −1(U) is a random variable with

F −1(U ⩽ t) = F (t).

Proof. P(F −1(U) ⩽ t) = P (F (F −1(U)) ⩽ F (t)) = P (U ⩽ F (t)) = F (t).

1.3 Parameter Estimation

A basic problem in statistics is to fit data to an unknown probability distribution. For example, if we have data

distribution of some unknown Gaussian distribution, what are some ways to figure out the mean and variance?

Stated formally, let X1, ...,Xn be a random variable of size n from a family of distributions {fθ ∶ θ ∈ Θ}. (For example

we can think of fθ as a PDF or a PMF.)

If we are “guessing” the parameters of a Gaussian, Θ would be R × [0,∞) and θ would be of form (µ,σ2):

{fµ,σ2(x) ∶ (µ,σ2) ∈ R2, µ ∈ R, σ2 > 0}.

Definition 1.3.1: Estimator

If Y is a statistic that is used to estimate a parameter θ, then we call Y a point estimator or estimator.

(Some examples include sample mean and sample variance we’ve previously talked about.)

Example 1.3.2. Let X1, ...,X20 be a random sample of 20 from a Gaussian with unknown mean and vari-

ance. Then the family {fθ ∶ θ ∈ Θ} is of form

{ 1

2πσ
exp(−(x − µ)

2

2σ2
) ∶ µ ∈ R, σ2 > 0} .

An estimator for the mean µ is X ∶= (X1 + ... +X20)/20 (this is a good one!), and a not-so-good one is for

example X1 +X2. Similarly, an estimator for σ2 is

1

19

20

∑
i=1
(Xi −X)2.

Of course we can also have “worse” estimators too.

Definition 1.3.3: Unbiased Estimator

Let X1, ...,Xn be a random sample of size n from a family of distributions {fθ ∶ θ ∈ Θ}. Let Y = t(X1, ...,Xn)
be an estimator for g(θ) (e.g., in the Gaussian example we can have an estimator for not only µ but also µ2,

or also any function of µ). Here t ∶ Rn → Rk and g ∶ θ → Rk. We say Y is unbiased if

Eθ(Y ) = g(θ) for all θ ∈ Θ.

In other words, the expected value of the estimator is exactly what it estimates.

17
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Remark. Sample mean and sample variance are unbiased.

Besides asking “how good an estimator is”, another natural question arises — “how to get a good estimator?”

Example 1.3.4. Let X1, ...,Xn be a random sample of size n. By the Weak LLN, if Eθ ∣X2∣ <∞ for all θ ∈ Θ,

then the sample mean (X1 + ...+Xn)/n is not only unbiased but also converges in probability to the constant

variable EθX1. We say this estimator is consistent.

More generally, for j ∈ N, if Eθ ∣X1∣j <∞, then

Mj(θ) ∶=
1

n

n

∑
i=1

Xj
i ,

the sample jth moment, is also consistent: Mj(θ) converges in probability to µj(θ);= EθX
j
1 as n→∞.

Definition: (4.5) Methods of Moments

Suppose we want to estimate g(θ) and suppose there exists h ∶ Rj → Rk such that

g(θ) = h(µ1, ..., µj).

Then the estimator h(M1, ...,Mj) is called the method of moments estimator for g(θ).

Example 1.3.5. Let g(θ) be the variance. We know var(X) = EX2 − (EX)2. Then the MoM for g(θ) is

M2 −M2
1 =

1

n

n

∑
i=1

X2
i − (

1

n

n

∑
i=1

Xi)
2

.

Beginning of Sept.17, 2021

Definition: (4.3) Consistency

Let Y1, Y2, ... be a sequence of estimators for g(θ). We say Y1, Y2, ... is consistent for g(θ) if Y1, Y2, ...

converges in probability to the constant random variable g(θ) with respect to fθ.

Example: (4.6). Following the previous example, define

Yn ∶=

¿
ÁÁÀ

n

∑
i=1

X2
i /n − (

n

∑
i=1

Xi/n)2.

Since (a, b) ↦
√
a − b2 is continuous, and since ∑n

i=1X
2
i /n and ∑n

i=1Xi/n converge to EX2 and EX respec-

tively, we claim that Yn →
√
EX2 − (EX)2 as n→∞. This implies that Yn is consistent.

However, Yn is biased! Take n = 1 and X the uniform distribution on [0,1]. Then

EX = 1

2
,EX2 = 1

3
,var(X) = 1

12
, and σ = 1

2
√
3
.

On the other hand,

E
√
X2 −X2 = 0.

18
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Therefore Yn is consistent but biased.

Example 1.3.6: Unbiased but inconsistent estimator. Let X1, ...,Xn be i.i.d. uniform on (0,1). Let Yn ∶=
X1 for every n. Then EYn = EX = 1/2 for all n, meaning that it is unbiased, yet they do not converge to the

constant variable 1/2 as X1 itself isn’t a constant variable, so Yn is inconsistent.

Example: (4.7) . Suppose X1, ...,Xn is a random variable sample of size n, uniform on [0, θ] where θ > 0
is unknown. What is a MoM estimator for θ?

Since EX1 = θ/2, the MoM estimator for θ is given by Yn ∶= 2µ1 = 2∑n
i=1Xi/n.

Clearly Yn is unbiased: EYn = θ for all n. It is also consistent: since ∑n
i=1Xi/n converges in probability to

EX = θ/2, multiplying both sides by 2 gives our desired claim.

Beginning of Sept.20, 2021

Example: (4.7). Let X1, ...,Xn be a random sample of size n from a uniform distribution on [0, θ], where

θ is unknown. We showed last time that

Yn ∶=
2

n

n

∑
i=1

Xi

is an unbiased and consistent estimator of θ. Also,

var(Yn) =
4

n2
⋅ n ⋅ var(X1) =

θ2

3n
.

It turns out that there is an even “better” unbiased, consistent estimator

(1 + 1

n
)X(n) = (1 +

1

n
)max
1⩽i⩽n

Xi (∆)

with smaller variance:

var((1 + 1/n)X(n)) =
θ2

n(n + 2)
.

This means, in some sense, that this estimator is much more accurate than the previous one.

Upshot: the method of moments may not give the best estimator.

Proof sketch. For convenience call the estimator in (∆) as θ̂. Then (recall that EX = ∫
∞

0
P(X ⩾ t) dt)

E(θ̂) = (1 + 1

n
)∫

θ

0
P(X(n) > t) dt

= (1 + 1

n
)∫

θ

0
P(X1 > t, ...,Xn > t dt

= (1 + 1

n
)∫

θ

0
1 − (t/θ)n dt

= (1 + 1

n
) (θ − ∫

θ

0
(t/θ)n dt)

= (1 + 1

n
) (θ − θ−nθn+1/(n + 1))

= θ ⋅ n + 1
n
⋅ n

n + 1
= θ.
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For variance, recall that [!] EXn = ∫
∞

0
nxn−1P(X ⩾ t) dt, so

var(θ̂) = (n + 1)
2

n2
EX2

(n) − θ
2

= (n + 1)
2

n2 ∫
θ

0
2tP(X(n) > t) dt − θ2

= (n + 1)
2

n2 ∫
θ

0
2t(1 − (t/θ)n) dt − θ2 = ... = θ2

n(n + 2)
.

It turns out that among all unbiased estimators, θ̂ has the smallest variance. We say (1+1/n)X(n) is the uniform

minimum variance unbiased estimator (UMVU estimator) for θ.

1.4 Sufficient Statistics

Definition: (4.9) Sufficient Statistic

Suppose X = (X1, ...,Xn) be a random sample of size n from a distribution f where f ∈ {fθ ∶ θ ∈ Θ} is a

family of PDFs or PMFs. Let t ∶ Rn → Rk so that Y ∶= t(X1, ...,Xn) is a statistic. We say Y is a sufficient

statistic for the parameter θ if, for all y ∈ Rk and for all θ ∈ Θ, the conditional distribution of X = (X1, ...,Xn)
given Y = y does not depend on θ.

That is, Y provides sufficient information to estimate (not determine!) what θ is from our sample X1, ...,Xn.

Example: (4.10). Let X1, ...,Xn be a random sample of size n from a Bernoulli distribution with unknown

parameter θ ∈ (0,1). Claim: Yn ∶=X1 + ... +Xn is sufficient for θ.

Proof. By definition we compute the probability of X = (x1, ..., xn) conditioned on Y = y (assuming by definition

that xi ∈ {0,1}). Note that Y is a binomial with parameters n and p.

P((X1, ...,Xn) = (x1, ..., xn) ∣ Y = y) =
P(X1, ...,Xn, Y ) = (x1, ..., xn, y)

P(Y = y)
.

If y ≠ x1 + ... + xn then the numerator is just 0, which does not depend on θ, and we are done with the proof. If

y = x1 + ... + xn, then the numerator is just P((X1, ...,Xn) = (x1, ..., xn)), and so

... = P(X1, ...,Xn) = (x1, ..., xn)
P(Y = y)

= ∏
n
i=1 P(Xi = xi)
P (Y = y)

= ∏
n
i=1 θ

xi(1 = θ)1−xi

(n
y
)θy(1 − θ)n−y

= (n
y
)
−1
.

Beginning of Sept.22, 2021

Example: (4.11). Let X1, ...,Xn be i.i.d. Gaussians with known variance σ2 > 0 and unknown mean. We

will show that

Y ∶= 1

n
(X1 + ... +Xn)

is sufficient for µ.
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Proof. Let x1, ..., xn ∈ R and let y ∈ R. Then Y is Gaussian with mean ν and variance σ2/n. We have

fX1,...,Xn∣Y (x1, ..., xn ∣ y) =
fX1,...,Xn,Y (x1, ..., xn, y)

fY (y)

=
fX1,...,Xn,Y (x1, ..., xn, (x1 + ... + xn)/n)

fY (y)
∗=
fX1,...,Xn(x1, ..., xn)

fY (y)

= ∏
n
i=1 fXi(xi)
fY (y)

=

n

∏
i=1

exp(−(xi − µ)2/(2σ2))/(
√
2πσ)

exp(−((x1 + ... + xn)/n − µ)2

2σ2/n
) /(
√
2πσ/

√
n)

= σ−n(2π)−n/2

n1/2σ−1(2π)−1/2
exp(−(x2

1 + ... + x2
n)/(2σ2) − nµ2/(2σ2) +∑n

i=1 xi ⋅ µ/σ2)
exp(−y2n/(2σ2) − nµ2/(2σ2) + nµy/σ2)

= σ−n(2π)−n/2

n1/2σ−1(2π)1/2
exp(−

n

∑
i=1

x2
i )/(2σ2)/ exp(−y2n/(2σ2)).

where (∗) is because Y is a function of X1, ...,Xn (so once x1, ..., xn have been determined, y is automatically

chosen). Since the last expression does not depend on µ, we have shown that Y is sufficient for µ.

Theorem: (4.12) Factorization Theorem

This theorem provides an “easy” way to find or identify sufficient statistics. Suppose X1, ...,Xn is a random

sample from {fθ ∶ θ ∈ Θ}, where fθ is a joint PDF of X1, ...,Xn. Suppose Y = t(X1, ...,Xn) is a statistic and

t ∶ Rn → Rk. Then Y is sufficient for θ if and only if there exist h ∶ Rn → [0,∞) and gθ ∶ Rk → [0,∞) such that

fθ(x) = gθ(t(x)) ⋅ h(x) for all θ ∈ Θ.

Problem: (HW3 p4)

Let θ ∈ R be an unknown parameter. Consider the density

fθ(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

exp(−(x − θ)) x ⩾ θ

0 x < θ.

Suppose X1, ...,Xn is a random sample of size n such that each Xi has density fθ. Show that X(1) = min
1⩽i⩽n

Xi

is a sufficient statistic for θ.

Proof. We first write fθ(x) = exp(−(x − θ))χ[θ,∞)(xi). Since Xi’s are i.i.d., for x⃗ ∶= (x1, ..., xn) ∈ Rn,

fθ(x⃗) =
n

∏
i=1

fθ(xi) = exp(nθ −
n

∑
i=1

xi)
n

∏
i=1

χ[θ,∞)(xi).

Note that fθ(x⃗) ≠ 0 if and only if xi ⩾ θ for all i, i.e., X(1) ⩾ θ. That is,

fθ(x̃) = exp(nθ −
n

∑
i=1

xi)χ[θ,∞)(X(1)).
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Therefore, fθ(x̃) admits a factorization

fθ(x̃) = exp(nθ)χ[θ,∞)(X(1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gθ(X(1))

⋅ exp(−
n

∑
i=1

xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h(x)

,

which by the factorization theorem shows X(1) is sufficient.

Proof of Factorization Theorem (discrete): sufficient⇒ factorization. Suppose Y is sufficient for θ. Let x ∈ Rn.

Then (the starred equation is again because both sides are equivalent)

fθ(x) = Pθ(X = x)
∗= Pθ(X = x and t(X) = t(x))

= Pθ(Y = t(x)) ⋅ Pθ(X = x ∣ Y = t(x)).

Since Y is sufficient by assumption, the second term Pθ(X = x ∣ Y = t(x)) does not depend on θ, i.e., it is a

function of x only. We have therefore obtained our factorization.

Remark: (4.13). If we let t(x) ∶= x for all x ∈ Rn, then the statistic t(X1, ...,Xn) = (X1, ...,Xn) is always

trivially sufficient. Therefore we always have a sufficient static. Our goal is find a minimal sufficient statistic,

using as little information as possible.

1.5 Evaluating Estimators

Beginning of Sept.24, 2021

Definition: (4.15) UMVU

Let X1, ...,Xn be i.i.d. from a distribution in {fθ ∶ θ ∈ Θ}. Let g ∶ Θ → R, let t ∈ Rn → R, and let Y ∶=
t(X1, ...,Xn) is unbiased. We say Y is uniformly minimum variance unbiased (UMVU) if for any other

unbiased estimator Z for g(θ), we have

varθ(Y ) ⩽ varθ(Z) for all θ ∈ Θ.

Remark. If we have an UMVU, we obtain the “best” unbiased estimator possible.

Example: (4.16) UMVU might not exist. Unfortunately UMVU might not exist. Suppose X is a binomial

with known parameter n but unknown θ ∈ (0,1) and we want an estimator for g(θ) ∶= θ/(1 − θ).
There is not even any unbiased estimator for g(θ)! For any estimator Y = t(X),

EθY = Eθt(X) =
n

∑
i=1
(n
i
)t(i)θi(1 − θ)i,

a polynomial of θ, whereas θ/(1 − θ) itself isn’t. Therefore it’s impossible to have EθY = θ/(1 − θ) for all

θ ∈ (0,1).
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Example 1.5.1. Even if an unbiased estimator exists, a UMVU might not exist. Let Y,Z be unbiased for

g(θ) where θ ∈ [0,1]. It could happen that

var0(Y ) < var0(Z) and var1(Z) < var0(Y ).

Question. If an UMVU exists, how do we find it in practice? The following provides a possible method.

Theorem: (4.17) Rao-Blackwell

Let Z be sufficient for for {fθ ∶ θ ∈ Θ}, and let Y be any unbiased estimator for g(θ). Define W ∶= Eθ(Y ∣ Z).
(Since Z is sufficient for θ, W is in fact not a function of θ.) Let θ ∈ Θ with varθ(Y ) <∞. Then

varθ(W ) ⩽ varθ(Y )

with equality only when W = Y .

Proof. By conditional Jensen’s inequality with φ(x) ∶= x2,

(W − θ)2 = (Eθ(Y ∣ Z) − θ)2 ⩽ E((Y − θ)2 ∣ Z).

Taking E of both sides gives (the first ⩽ and the second = are mentioned in HW3 p2)

varθ(W ) ⩽ E(W − θ)2 = E(Eθ[(Y − θ)2 ∣ Z]) = Eθ(Y − θ)2 = varθ(Y ).

Remark: (4.21). If Y is unbiaed, then EθW = Eθ(Eθ[Y ∣ Z]) = EθY = θ, so W is always unbiased.

Beginning of Sept.29, 2021

Example: (4.23). Let X1, ...,Xn be i.i.d. with unknown mean µ. We compute E(X1 ∣
n

∑
i=1

Xi).

Solution. For 1 ⩽ k < ℓ ⩽ n, the joint distribution (Xk,
n

∑
i=1

Xi) is the same as that of (Xℓ,
n

∑
i=1

Xi), so

W ∶= E(X1 ∣
n

∑
i=1

Xi) =
1

n

n

∑
i=1

E(Xi ∣
n

∑
i=1

Xi) =
1

n
E(

n

∑
i=1

Xi ∣
n

∑
i=1

Xi) =
1

n

n

∑
i=1

Xi.

In this case, var(X1) = σ2 but var(W ) = σ2/n. Rao-Blackwell gives an estimator with much smaller variance! (In

fact we are not explicitly using Rao-Blackwell;
n

∑
i=1

Xi may not be sufficient (see quiz3 prep p1), but nevertheless

W defined this way gives us a better estimator.)

1.6 Efficiency of Estimators

Previously we’ve talked about what is and how to find a good estimator. Now we turn our focus to “what makes an

estimator good?”
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Definition: (4.24) Fisher Information

Let {fθ ∶ θ ∈ Θ} be a family of multivariable PDFs or PMFs. Let θ ⊂ R. Let X be a random vector with

distribution fθ. The Fisher information of the family to be

I(θ) ∶= IX(θ) ∶= Eθ (
d

dθ
log fθ(X))

2

, for all θ ∈ Θ,

if it exists and is finite.

Remark. In order to define I(θ), the set {x ∈ Rn ∶ fθ(x) > 0} should not depend on θ.

Example: (4.25). Let σ > 0. Let fθ(x) ∶=
1

σ
√
2π

exp(−(x − θ)
2

2σ2
) for all x ∈ R, θ ∈ R. (In other words we

have Gaussians.) We have

log fθ(x) = log(
1

σ
√
2π
) ⋅ −(x − θ)

2

2σ2

so
d

dθ
log fθ(X) =

d

dθ

−(X − θ)2

2σ2
,

and so

I(θ) = Eθ (
d

dθ

−(X − θ)2

2σ2
)
2

= Eθ (
X − θ
σ2
)
2

= 1

σ4
var(X − θ) = 1

σ2
.

Remark. When σ is small, fθ looks more like a sharp bump than a flat curve. A small σ corresponds to a

larger I(θ) which gives us “more information” about how the random variable is distributed.

Remark. Without the square,

Eθ (
d

dθ
log fθ(X)) = ∫

Rn

d/dθfθ(x)
fθ(x)

fθ(x) dx =
d

dθ
∫
Rn

fθ(x) dx =
d

dθ
(1) = 0.

Therefore, treating
d

dθ
log fθ(X) as a random variable,

I(θ) = Eθ(...)2 = varθ (
d

dθ
log fθ(X)) .

24



YQL - MATH 408 Notes 1.6 - Efficiency of Estimators Current file: 10-1.tex

Remark. Alternatively,

Eθ (
d2

dθ2
log fθ(X)) = ∫

Rn

d

dθ

d/dθfθ(x)
fθ(x)

fθ(x) dx

= ∫
Rn

fθ(x) d2

dθ2 fθ(x) − ( d
dθ
fθ(x))2

(fθ(x))2
fθ(x) dx

= ∫
Rn

d2

dθ2
fθ(x) − (

d

dθ
log fθ(x))

2

fθ(x) dx

= d2

dθ2
(1) − ∫

Rn
( d

dθ
log fθ(x))

2

fθ(x) dx = 0 − I(θ) = −I(θ).

Proposition: (4.26)

Let X,Y be independent where their distributions are from {fθ ∶ θ ∈ Θ} and {gθ ∶ θ ∈ Θ} respectively. Then

I(X,Y )(θ) = IX(θ) + IY (θ).

Proof. Using the variance expression,

I(X,Y )(θ)
∗= var( d

dθ
log(fθ(X)gθ(Y ))) = var(

d

dθ
(log fθ(X) + log gθ(X))

∗= varθ (
d

dθ
log fθ(X)) + varθ (

d

dθ
log gθ(X)) = IX(θ) + IY (θ).

(The starred equations are because of independence.)

Beginning of Oct.1, 2021

Theorem: (4.28) Cramér-Rao / Information Inequality

Let X ∶ Ω → Rn be a random variable with distribution from {fθ ∶ θ ∈ Θ}, Θ ⊂ R. Let Y ∶= t(X) be a statistic.

For θ ∈ Θ, define g(θ) ∶= EθY . Then

varθ(Y ) ⩾
∣g′(θ)∣2

IX(θ)
for all θ ∈ Θ.

In particular if Y is unbiased then g(θ) = θ and g′(θ) = 1, so

varθ(Y ) ⩾
1

IX(θ)
for all θ ∈ Θ.

In both cases, “=” happens only when
d/dθ(log fθ(X))

Y −EθY
∈ R for some θ ∈ Θ.

This theorem provides a lower bound on the variance of unbiased estimators of θ — in general, we cannot get

estimators with arbitrarily small variance.

Remark: (4.29). If X1, ...,Xn are i.i.d. and X = (X1, ...,Xn), then (by last proposition) IX(θ) = nIX1(θ).
If EθY = θ, then varθ(Y ) ⩾ 1/(nIX1(θ)) for all θ ∈ Θ.
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Proof. Define g(θ), Y , and t accordingly. If X is continuous (similar for discrete),

∣g′(θ)∣ = ∣ d
dθ
∫
Rn

fθ(x)t(x) dx∣ = ∣∫
Rn

d

dθ
fθ(x)t(x) dx∣

=
∗
∣∫

Rn

d

dθ
(log fθ(x)) t(x)fθ(x) dx∣

∗= ∣ cov( d
dθ
(log fθ(X)), t(X))∣

⩽ (varθ(
d

dθ
(log fθ(X))))

1/2
varθ(t(X))1/2

=
√
IX(θ)

√
varθ Y .

For =
∗
:

d

dθ
(log fθ(x)) =

1

fθ(x)
d

dθ
fθ(x) [note that t(x) is treated as a constant when doing d/dθ], and for ∗=: if

EW = 0, then cov(W,Z) = E[(W −EW )(Z −EZ)] = E[W (Z −EZ)] = E(WZ).

Note that equality in Cramér-Rao happens if and only if the Cauchy-Schwarz step is attained, i.e., when

d/dθ(log fθ(X)) −E(...)
t(X) −E(tθ(X))

= d/dθ(log fθ(X))
Y −EθY

is a constant.

Example: (4.30). Let fθ(x) ∶= θxθ−1χ(0,1)(x) for x ∈ R and θ > 0. Then for x ∈ (0,1),

d

dθ
log fθ(x) =

d

dθ
log(θxθ−1) = d

dθ
[log θ + (θ − 1) logx] = 1

θ
+ logx.

Then if X1, ...,Xn are i.i.d., for (x1, ..., xn) ∈ (0,1)n,

d

dθ
log

n

∏
i=1

fθ(xi) =
n

∑
i=1
(θ−1 + logxi) = n(

1

θ
+ 1

n
log

n

∑
i=1

xi) .

By Cramér-Rao, any multiple of
d

dθ
log

n

∏
i=1

fθ(Xi) (plus a constant) is UMVU for EθY .

For example, since E( d
dθ

log
n

∏
i=1

fθ(Xi)) = 0, we know E
n

∑
i=1

logXi = −n/θ. Hence if we define Y ∶=

− 1
n
log

n

∏
i=1

Xi, its expected valve is 1/θ, and we claim that this is UMVU of its expectation.

Beginning of Oct.4, 2021
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1.7 Maximum Likelihood Estimator (MLE)

Definition 1.7.1: Likelihood Function

Let X1, ...,Xn be i.i.d. from fθ ∈ {fθ ∶ θ ∈ Θ}. The joint distribution of X1, ...,Xn, by independence, is
n

∏
i=1

fθ(xi). Fix (x1, ..., xn) ∈ Rn. We define the likelihood function ℓ ∶ Θ→ [0,∞) by ℓ(θ) ∶=
n

∏
i=1

fθ(xi).

Definition: (4.32) MLE

The maximum likelihood estimator (MLE) Y is an estimator that maximizes the likelihood function.

In other words, Y = t(X), t ∶ Rn → Θ, X = (X1, ...,Xn), and t(x1, ..., xn) is defined to be any value of θ ∈ Θ

that maximizes ℓ(θ) =
n

∏
i=1

fθ(xi).

(The θ maximizing ℓ(θ) might not exist; even if it exists, it might not be unique.)

Remark: (4.33). Since log is monotone, whatever maximizes ℓ(θ) =
n

∏
i=1

fθ(xi) also maximizes log ℓ(θ) =
n

∑
i=1

log fθ(xi) and vice versa. Sometimes it might be more convenient to maximize the latter.

Example: (4.34). Let X1, ..,Xn be i.i.d. from fθ with fθ(xi) = χ[θ,θ+1)(xi), i.e., X is uniform on [θ, θ + 1].

Then the joint PDF is
n

∏
i=1

χxi∈[θ,θ+1].

Suppose for example that x1 = ... = xn = 0. Then ℓ(θ) = χ0∈[θ,θ+1] = χθ∈[−1,0], so any θ ∈ [−1,0] is a MLE in

this case. Uncountably many!

Example: (4.41). Consider a Gaussian with unknown µ ∈ R and unknown σ2 > 0 so θ = (µ,σ). Find its

MLE.

Solution. Here we maximize log ℓ(θ):

log ℓ(θ) = log
n

∏
i=1

1

σ
√
2π

exp(−(xi − µ)2

2σ2
) =

n

∑
i=1
[− logσ − log 2π

2
− (xi − µ)2

2σ2
] .

Computing its partials,
∂

∂µ
log ℓ(θ) = xi − µ

σ2

∂

∂σ
log ℓ(θ) =

n

∑
i=1
− 1
σ
+ (xi − µ)2

σ3
.

Setting them to 0, we obtain

µ = 1

n

n

∑
i=1

xi σ2 = 1

n

n

∑
i=1
(xi − µ)2.

(Note that we did not get 1/(n − 1) for σ2, but nevertheless this is still pretty good.)

Now that we found a critical point, we need to verify that it is a maximum. Write α ∶= 1/σ2. Then

log ℓ(θ) = 1

2
(

n

∑
i=1

logα − log 2π − α(xi − µ)2)
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For fixed α, log ℓ(θ) is strictly concave function of µ; likewise, fixing µ, log ℓ(θ) is a strictly concave function of

α, so the critical point must have been a global maximum. We have therefore found the (only) MLE:

θ = (µ,σ2) =
⎛
⎝
1

n

n

∑
i=1

Xi,(
1

n

n

∑
i=1
(Xi −

1

n

n

∑
i=1

Xi)2)
1/2⎞
⎠
.

Beginning of Oct.6, 2021

Definition 1.7.2: Convex & Strictly Convex Functions

A function φ ∶ Rn → R is convex if for all x ≠ y and λ ∈ [0,1],

φ(λx + (1 − λ)y) ⩽ λφ(x) + (1 − λ)φ(y).

φ is said to be strictly convex if the above holds with ⩽ replaced by <.
Replacing ⩽ and < by ⩾ and >, we obtain the definitions of concave and strictly concave functions.

Definition: (4.35) Log-Concavity

We say φ ∶ Rn → (0,∞) is log-concave if logφ is concave. We sayφ is strictly log-concave if logφ is.

Proposition: (4.36) MLE and Log-Concavity

Let fθ ∶ R → [0, θ) be a family of PDFs where θ ∈ Θ ⊂ Rk. If θ ↦ fθ(xi) is strictly log-concave for every

i ∈ {1, ..., n}, then the likelihood function

ℓ(θ) ∶ θ ↦
n

∏
i=1

fθ(xi)

has at most one maximum value.

Proof. The log of the likelihood function, log ℓ(θ), is
n

∑
i=1

log fθ(xi). By assumption this is the sum of strictly

concave functions so it itself is also strictly concave. But a strictly concave function has at most one maximum

(if x ≠ y are both maxima then 1/2(x + y) takes a higher function value by strict concavity, contradiction).

Beginning of Oct.8, 2021

Example: (4.42). Let X1, ...,Xn be i.i.d. uniform on [0, θ]. Let x1, x2, ..., xn ∈ R be given. For a MLE, we

need to find θ maximizing

ℓ(θ) = θ−nχ0⩽X(1),X(n)⩽θ.

To maximize this, of course we need the indicator function to be 1. While keeping this true, we need θ−n to

be as large as possible, so θ needs to be as small as possible. Thus the MLE for θ is simply X(n).

Recall that the UMVU in this case is (1 + 1/n)X(n). Hence our MLE is asymptotically equivalent though

biased.
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Example: (4.43). Let X1, ...,Xn be i.i.d. from the exponential density χx>0θe
−θx with θ unknown. The

log of the likelihood function is

log ℓ(θ) = logχxi>0∀i(n log θ − θ
n

∑
i=1

xi)

so, assuming xi > 0,
d

dθ
log ℓ(θ) = n

θ
−

n

∑
i=1

xi.

Setting this to 0, we see θ ∶= n/
n

∑
i=1

xi is a critical point (the only one), and it is clear that (log ℓ(θ))′ < 0 when

θ < n/
n

∑
i=1

xi and > 0 when >. Thus we have found the unique maximum of log ℓ(θ) and

Y ∶= n

∑n
i=1Xi

= ( 1
n

n

∑
i=1

Xi)
−1

is the MLE for θ.

How good are the estimators Yn?

Recall that EX1 = 1/θ and var(X1) = 1/θ2. The CLT states that

√
n(Xn − θ−1)

converges in distribution to a Gaussian with mean 0 and variance 1/θ2. Using Delta method with g(x) =
1/x, g′(x) = −1/x2, we see

√
n(1/Xn − g(1/θ)) =

√
n(1/Xn − θ) =

√
n(Yn − θ)

converges in distribution to a Gaussian with mean 0 and variance (g′(1/θ))2/θ2 = θ2 as n → ∞. This shows

the Yn’s are asymptotically unbiased and consistent. Hence

var(Yn) = var(1/Xn) ≈
θ2

n
.

(More rigorously, var(YN) = θ2/n(1 +O(1)).) On the other hand, Cramér-Rao says

var(Y ) ⩾ 1

IY (θ)
= 1

var( d
dθ
[n
θ
−∑n

i=1 xi])
= 1

var( d
dθ
[−∑n

i=1 xi])
= θ2

n
,

so the MLE is pretty close to the UMVU (if there is any) too.

Example: (4.44). Continuation of the previous example: the MLE for e−θ would simple be e−Y (because

exp is a bijection; see proposition below).

Proposition: (4.45) Functional Equivariance of MLE

Let g ∶ Θ→ Θ′ be a bijection. Then Y is the MLE for θ ⇒ g(Y ) is the MLE of g(θ).
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Proof. Since g is bijective, we write ℓ(θ) as ℓ(g−1g(θ)). Then ℓ(θ) attains maximum at θ = x ⇔ ℓ(g−1(g(θ)))
attains maximum when g−1(g(θ)) = x, i.e., when g(θ) = g(x).

Remark. Under some technical assumptions, MLE is always consistent, asumptotically unbiased, and

achieves Cramér-Rao equality.

30



Chapter 2

Hypothesis Testing

Recall MLE asks “what is a good estimator of an unknown parameter?”

Hypothesis testing asks “does an unknown parameter lie in some range [a, b] with at least 90& certainty?”

Definition: (5.11) Null Hypothesis, Alternative Hypothesis

Let {fθ ∶ θ ∈ Θ} be a family of distributions. Let Θ0 ⊂ Θ. A null hypothesis H0 is an event of form

{θ ∈ Θ0}.

Define Θ1 ∶= Θc
0 so Θ = Θ0 ⊔Θ1. The alternative hypothesis H1 is the event {θ ∈ Θ1}.

Goal: test whether or not H0 is true or false.

Let X ∶ Ω→ Rn be a random variable with distribution fθ ∈ {fθ ∶ θ ∈ Θ}.

Definition: (5.4) Critical/Rejection Region

Let H0 be a null hypothesis. A hypothesis test of H0 vs. H1 is specified by a subset C ⊂ Rn. The set C is

called the critical region or the rejection region.

(1) If X ∉ C, we accept H0.

(2) If X ∈ C, we reject H0 and assert that H1 is true.

The complement Cc ⊂ Rn is called the acceptance region. The performance of the test is quantified by the

power function β ∶ Θ→ [0,1] by

β(θ) ∶= Pθ(X ∈ C) = 1 − Pθ(X ∉ C).

31



YQL - MATH 408 Notes Current file: 10-13.tex

Remark. Ideally, we want to find a “perfect” test in the sense that β(θ) = 0 for all θ ∈ Θ0 and β(θ) = 1 for

all θ ∈ Θ1, i.e., if the null hypothesis is true then we accept it with probability 1 and if it is false, we accept it

with probability 0. However, this might not always happen.

Definition: (5.5) Type II Error: false negative

A type II error for a hypothesis test occurs when X ∉ C with positive probability but H0 is actually false.

That is, β(θ) < 1 for some θ ∈ Θ1. In other words, H0 is accepted to be true whereas it is actually false. The

quantity 1 − β(θ) is the probability of occurrence of a type II error for θ ∈ Θ1.

Definition: (5.6) Type I Error: false positive

A type I error for a hypothesis test occurs when X ∈ C with positive probability but H1 is actually false.

That is, β(θ) > 0 for some θ ∈ Θ0. In other words, H1 is accepted to be true whereas it is actually false. The

value of β(θ) is the probability of occurrence of a type I error for θ ∈ Θ0.

Definition 2.0.1: Significance Level

The significance level α is defined as

α ∶= sup
θ∈Θ0

β(θ).

This shows the “worst” probability of a type I error (false positive) occurring.

Beginning of Oct.13, 2021

Example: (5.7). Let X be a binomial r.v. with parameters n = 5 and θ ∈ [0,1] =∶ Θ. We let H0 ∶= {0 ⩽ θ ⩽
1/2} and H1 ∶= {1/2 < θ ⩽ 1}.
If θ is small, we expect X to take smaller values more likely, so a “good” hypothesis test should use a rejection

region corresponding to large values of X.

We first let the rejection region to be C ∶= {5}. That is,

If X ∉ C, i.e., if 0 ⩽X ⩽ 4, accept H0

If X ∈ C, i.e., if X = 5, reject H0.

In this case

β(θ) = Pθ(X ∈ C) = Pθ(X = 5) = θ5.

Then

α = sup
[0,1/2]

θ5 = 2−5.

The worst probability of a type I error happening is pretty small. However, type II errors are much more

likely to happen: for small θ > 0.5, 1 − β(θ) is not close to 1. For example 1 − β(0.6) ≈ 0.92.
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Now instead consider another test and let C = {3,4,5}. In this case

β(θ) = Pθ(X ⩾ 3) = θ5 + 5θ4(1 − θ) + 10θ3(1 − θ)2.

For this one, α = 1/2 is worse, but type II errors are better: for example 1 − β(0.6) ≈ 0.32.

Question. Is there a “best” hypothesis test?

Definition: (5.8) Uniformly Most Powerful Test (UMP)

Let Θ0 ⊂ Θ and denote Θ1 ∶= Θc
0. Let H0 be the hypothesis θ ∈ Θ0 and H1 be {θ ∈ Θ1}. Let T be a family

of hypothesis tests. A hypothesis test in T with power function β(θ) is called the uniformly most powerful

class T test if β(θ) ⩾ β′(θ) for all θ ∈ Θ1 for every β′(θ) corresponding to a hypothesis test in T .

Remark. Since UMP only focuses on Θ1, it is sometimes helpful to fix α > 0 and let T be the class of all

hypothesis tests with significance level ⩽ α.

Remark. The existence of a UMP for general Θ is a difficult question, but if Θ consists of exactly two points,

UMP always exists, and we can explicitly construct them.

2.1 Neyman-Pearson Testing

Lemma: (5.9) Neyman-Pearson

Let Θ = {θ0, θ1}, Θ0 ∶= {θ0}, and Θ1 ∶= {θ1}. Let H0 be the hypothesis {θ = θ0} and H1 be {θ = θ1}. Let

{fθ0 , fθ1} be two multivariable PDFs or PMFs. Fix k ⩾ 0. Define the likelihood ratio test with rejection

region C in the following way:

C ∶= {x ∈ Rn ∶ fθ1(x) > kfθ0(x)}. (1)

As usual, define

α ∶= sup
θ∈Θ0

β(θ) = β(θ0) = Pθ0(X ∈ C). (2)

Let T be the class of hypothesis tests with significance levels ⩽ α. Then:

● (Sufficiency) Any hypothesis test satisfying (1) is a UMP class T test.

● (Necessity) If there exists a hypothesis test satisfying (1) and (2) with k > 0, then any UMP class T test

has significance level equal to α, and any UMP class T test satisfies (1), except possibly on a null set

D with Pθ1(X ∈D) = 0.

Beginning of Oct.18, 2021
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Proof. Assume fθ ’s are PDFs. Also recall that α = sup
θ∈Θ0

β(θ) = β(θ0). Let β(θ) be the power function of the

test corresponding to C, and let C ′ be the rejection region of any UMP class T test with β′(θ) being its power

function. By definition of C,

[χC(x) − χC′(x)][fθ1(x) − kfθ0(x)] ⩾ 0.

(If x ∈ C then the second term ⩾ 0 and the first term is 1 − χC′ , also nonnegative. Likewise if x ∉ C, the second

term < 0 and the first term ⩽ 0.) Therefore,

0 ⩽ ∫
Rn
[χC(x) − χC′(x)][fθ1(x) − kfθ0(x)] dx

= Pθ1(X ∈ C) − Pθ1(X ∈ C ′) − k[Pθ0(X ∈ C) − Pθ0(X ∈ C ′)]

= β(θ1) − β′(θ1) − k[β(θ0) − β′(θ0)]. (3)

By definition of T , the significance level of the test corresponding to C ′ is ⩽ α, so β(θ0)−β′(θ0) ⩾ 0. (3) therefore

implies β(θ1) − β′(θ1) ⩾ 0, i.e., the C test is UMP class T .

For necessity, we now show that if C ′ is UMP class T then C ′ corresponds to a likelihood ratio test. Since the

previous part implies C must be UMP too, β(θ1) = β′(θ1). Therefore (3) implies

0 − k[β(θ0) − β′(θ0)] ⩾ 0 Ô⇒ β(θ0) − β′(θ0) = α − β′(θ0) ⩽ 0 Ô⇒ α ⩽ β′(θ0).

Since C ′ is UMP class T , by assumption its significance level is (again) ⩽ α, so β′(θ0) ⩽ α. Thus we must have

β′(θ0) = α.

Now we have β(θ1) = β(θ1) and β(θ0) = β′(θ0). Hence (3) is zero:

∫
Rn
[χC(x) − χC′(x)][fθ1(x) − kfθ0(x)] dx = 0.

Since the integrand is nonnegative, this implies that it is nonnegative almost everywhere.

Example: (5.12). Suppose X is binomial with parameters 2 and θ ∈ {1/2,3/4}. Let H0 be θ = 1/2 and let

H1 be θ = 3/4. The lemma says we simply need a likelihood ratio test to determine the UMP among tests

with an upper bound on significance level. Note that X only takes three values:

f3/4(0)
f1/2(0)

= 1

4

f3/4(1)
f1/2(1)

= 3

4

f3/4(2)
f1/2(2)

= 9

4
.

Thus,

(1) If 3/4 < k ⩽ 9/4, then H0 is rejected if and only if X = 2, and this test is the unique UMP for tests with

significance level ⩽ P1/2(X = 2) = 1/4.

(2) If 1/4 < k < 3/4, then H0 is rejected if and only if X ∈ {1,2}, and this test is the unique UMP for tests

with significance level ⩽ P1/2(X ∈ {1,2}) = 3/4.

(3) If 0 < k ⩽ 1/4, then the likelihood ratio test always lands in C so H0 is always rejected. This test is the

unique UMP for tests with significance level P1/2(X ∈ {0,1,2}) = 1.

(4) If k > 9/4, thent he likelihood ratio test never lands in C, so H0 is never rejected. This test is the unique

UMP for tests with significance level at most P1/2(X ∈ ∅) = 0.
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Beginning of Oct.20, 2021

2.2 Hypothesis Tests & Confidence Intervals

Definition: (5.14) Confidence Interval, Confidence Region

Let X ∶ Ω → Rn be a random variable with distribution fθ ∈ {fθ ∶ θ ∈ Θ}. Let g ∶ Θ → R. Let u, v ∶ Rn → R be

such that u(x) ⩽ g(x) for all x ∈ Rn. A 100(1 −α)% confidence interval for a parameter g(θ) is a random

variable of form [u(X), v(X)] satisfying

Pθ(g(θ)) ∈ [u(X), v(X)] ⩾ 1 − α for all θ ∈ Θ.

More generally, if c ∶ Rn → 2R
n

(power set), then a 100(1 −α)% confidence region for g(θ) is a random set

c(X) satisfying

Pθ(g(θ) ∈ c(X)) ⩾ 1 − α for all θ ∈ Θ.

Example: (5.15) CLT and confidence intervals. Let X1, ...,Xn be i.i.d. with values in [0,1], known

σ2 ∈ (0,1), but unknown µ ∈ [0,1]. Let X ∶= 1

n

n

∑
i=1

Xi be the sample mean. Then EX = µ and var(X) = σ2/n.

By Berry-Esséen (CLT with error bound),

sup
t∈R
∣P(X1 + ... +Xn − nµ

σ
√
n

) − P(Z < t)∣ ⩽ 1

σ3
√
n
.

If we take t = 2 and t = −2 separately and subtract the results,

∣P(−2 < X1 + ... +Xn − nµ
σ
√
n

< 2) − P(−2 < Z < 2)∣ ⩽ 2

σ3
√
n
.

That is,

P(X − 2σ√
n
< µ <X + 2σ√

n
) ⩾ P(−2 < Z < 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≈0.95

− 2

σ3
√
n
.

In our notation,

Pµ(µ ∈ [u(X), v(X)]) ⩾ 0.95 −
2

σ3
√
n

where

u(X) =X − 2σ√
n

v(X) =X − 2σ√
n
.

Theorem: (5.16) Confidence Region / Hypothesis Test Duality

Heuristically, we have a hypothesis test if and only if we have a confidence region. Let X ∶ Ω→ Rn.

(1) Fix α ∈ (0,1). Assume that for every θ0 ∈ Θ, there is a hypothesis test with significance level α of

hypothesis H0 {θ = θ0}. Let C(θ0) denote the rejection region of the test. Then

c(X) ∶= {θ ∈ Θ ∶X ∉ C(θ)}
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is a 100(1 − α)% confidence region for θ.

(2) Let c ∶ Rn → 2Θ. Assume that c(X) is a 100(1 − α)% confidence region for θ. Define a hypothesis test

with rejection region

C(θ) ∶= {x ∈ Rn ∶ θ ∉ c(x)}.

Then this test has significance level at most α.

Beginning of Oct.22, 2021

Proof.

(1) Since H0 corresponds to {θ = θ0}, the significance level is easy to compute:

α = sup
θ∈Θ0

β(θ) = β(θ0) = Pθ(X ∈ C(θ0)).

Therefore by the definition c(X) = {θ ∈ Θ ∶X ∉ C(θ)}, we have

Pθ(θ ∈ c(X)) = Pθ(X ∉ C(θ)) = 1 − Pθ(X ∈ C(θ)) = 1 − α (∆)

when θ = θ0. Since by assumption (∆) holds for every θ0 ∈ Θ, this is indeed a 100(1 − α)% confidence

region, as claimed.

(2) The assumption that c(X) is a 100(1 − α)% confidence region for θ says

1 − α ⩽ Pθ(θ ∈ c(X)).

By the definition of C(θ), for any θ ∈ Θ,

1 − α ⩽ Pθ(θ ∈ c(X)) = Pθ(X ∉ C(θ)) = 1 − Pθ(X ∈ C(θ)).

Therefore Pθ(X ∈ C(θ)) ⩽ α. Therefore, in particular

sup
θ∈Θ0

β(θ) = β(θ0) = Pθ0(X ∈ C(θ0)) ⩽ α.

In other words this test has significance level ⩽ α.

2.3 p-value

Stated informally, p-value is a measure of belief of rejecting null hypothesis. A small p-value corresponds to a high

probability that the null hypothesis is false.
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Definition: (5.17) p-value

Let X1, ...,Xn be real-valued random sample with fθ ∈ {fθ ∶ θ ∈ Θ}. Define X ∶= (X1, ...,Xn) for convenience.

Let Y ∶= t(X) where t ∶ Rn → R. For all c ∈ R, consider the hypothesis test with rejection region {x ∈ Rn ∶
t(x) ⩾ c}. Let p ∶ Rn → [0,1] be defined by

p(x) ∶= sup
θ∈Θ0

Pθ(t(X) ⩾ t(x)) for all x ∈ Rn.

The p-value for the hypothesis test is defined to be the statistic p(X).

Remark: (5.18). Fix c ∈ R. By our definition of C, β(θ) = Pθ(X ∈ C) = Pθ(t(X) ⩾ c). Thus the significance

level is

α ∶= sup
θ∈Θ0

β(θ) = sup
θ∈Θ

Pθ(t(X) ⩾ c).

This is very similar to the definition of p(x)— p(x) is equal to α where c = t(x).

Also notice that as c increases, for each θ, Pθ(t(X) ⩾ c) gets smaller, so the supremum gets smaller. Thus as

c increases, α decreases. We say p(x) is the smallest significance level such that the hypothesis test rejects

the null hypothesis.

Remark: (5.19). Let Y = t(X) be continuous. Fix θ ∈ Θ. For c ∈ R, define F−Y (c) ∶= P(−Y ⩽ c), and for all

x ∈ Rn, denote

gθ(x) ∶= Pθ(t(X) ⩾ t(x)) = Pθ(−t(X) ⩽ −t(x)) = F−Y (−t(x)).

Then

gθ(X) = F−Y (−Y ) = Pθ(F−Y (−Y ) ⩽ c) = Pθ(−Y ⩽ F −1−Y (c))

= F−Y (F −1−Y (c)) = c.

Therefore by definition of p(x), since p(x) = supPθ(t(X) ⩾ t(x)) = sup gθ(x), we have p(X) ⩾ gθ(X) and so

Pθ(p(X) ⩽ c) ⩽ Pθ(gθ(X) ⩽ c) = c.

Therefore, when θ ∈ Θ0, probability of p(X) being small is small. For example p(X) ⩽ 0.05 has probability

⩽ 0.05. In other words, with probability ⩾ 0.95, θ is not supposed to be in Θ0, i.e., the null hypothesis is false.

This explains why small p-value suggests a rejection of the null hypothesis.

Example: (5.20). Let X be binomial, n = 5, and θ ∈ [0,1] unknown. Let H0 be {θ = 1/2} and H1 be

{θ ∈ [0,1] ∶ θ ≠ 1/2}. For c ∈ R, let the rejection regions be of form C ∶= {x ∈ N ∶ x ⩾ c}.
First suppose X = 2. Then

p(2) = sup
θ∈Θ0

Pθ(X ⩾ 2) = P1/2(X ⩾ 2) = 1 − P1/2(X ⩽ 1) = 0.8125,

which suggests we are not at all confident in rejecting H0.
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Alternatively, suppose X = 4. Then the corresponding p-value is

p(4) = sup
θ∈Θ0

Pθ(X ⩾ 4) = P1/2(X ⩾ 4) = 0.1875,

in which case we are more confident in rejecting H0.

Beginning of Oct.25, 2021

2.4 Generalized Likelihood Ratio Tests

Let X1, ...,Xn be i.i.d. from fθ ∈ {fθ ∶ θ ∈ Θ}. In particular X1 has distribution fθ. The joint PDF is given by

n

∏
i=1

fθ(xi).

If we have x = (x1, ..., xn) ∈ Rn, then recall that the likelihood function ℓ ∶ Θ→ [0,∞) is defined to be

ℓ(θ) ∶= fθ(x) =
n

∏
i=1

fθ(xi).

Also recall that Neyman-Pearson states that, when Θ consists of two points, then the likelihood ratio test is UMP

among all tests with significance level ⩽ α. The rejection region was defined as

C ∶= {x ∈ Rn ∶ fθ1I(x) > kfθ0(x)}.

When Θ contains more than two points, we want an analogue of the region defined above. In this case, we define

C ∶= {x ∈ Rn ∶ sup
θ∈Θ1

fθ(x) ⩾ k sup
θ∈Θ0

fθ(x)}.

Definition: (5.22) Generalized Likelihood Ratio Test

Let k > 1. The generalized likelihood ratio test of a hypothesis H0 that {θ ∈ Θ0} is defined by the following

region:

C ∶= {x ∈ Rn ∶ sup
θ∈Θ

fθ(x) ⩾ k sup
θ∈Θ0

fθ(x)}.

Remark. If 0 < k ⩽ 1 then obviously sup
θ∈Θ
⩾ sup

θ∈Θ0

, and so C = Rn entirely. The test becomes trivial, so we

restrict it to k > 1.

Example: (5.24). Let X1, ...,Xn be i.i.d. Gaussians with known σ2 > 0 but unknown µ ∈ R. Fix µ0 ∈ R.

Suppose H0 is µ = µ0 and H1 is µ ≠ µ0. Hence Θ = R,Θ0 = {µ0}, and Θ1 = R−{µ0}. Also, for x = (x1, ..., xn) ∈
Rn,

fµ(x) = fµ(x1, ..., xn) =
n

∏
i=1

1

σ
√
2π

exp(−(xi − µ)2

2σ2
) .

Our null region contains µ0 only so sup
µ∈Θ0

fµ(x) = fµ0(x). Also recall that the MLE in this case is the sample
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mean. That is,

sup
µ∈Θ

fµ(x) = fµ(x)

where µ = (x1 + ... + xn)/n. Therefore,

C = {x ∈ Rn ∶ fµ(x) ⩾ kfµ0(x)}.

That is,

C = {x ∈ Rn ∶
n

∏
i=1

exp(−(xi − x)2 + (xi − µ0)2

2σ2
) ⩾ k}

= {x ∈ Rn ∶ exp(− 1

2σ2

n

∑
i=1
((xi − x)2 − (xi − µ0)2)) ⩾ k}

=
⎧⎪⎪⎨⎪⎪⎩
x ∈ Rn ∶

n

∑
i=1

⎡⎢⎢⎢⎣
(xi −

1

n

n

∑
j=1

xj)2 − (xi − µ0)2
⎤⎥⎥⎥⎦
⩽ −2σ2 log k

⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩
x ∈ Rn ∶ −n( 1

n

n

∑
j=1

xj − µ0)2 ⩽ −2σ2 log k

⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩
x ∈ Rn ∶ ∣ 1

n

n

∑
j=1

xj − µ0∣ ⩾
√
2σ2 log k/n

⎫⎪⎪⎬⎪⎪⎭
.

Intuitively, the rejection region consists of points where the sample mean is far from µ0.

Beginning of Oct.27, 2021

Remark. Recall that the sample mean is a sufficient statistic for µ, so C is a function of a sufficient statistic.

This is reasonable since a sufficient statistic has “sufficient information” to estimate µ.

Remark. Denote X = (X1, ...,Xn). If H0 is true, then

2 log
supθ∈Θ fθ(X)
supθ∈Θ0

fθ(X)
= n

σ2
( 1
n

n

∑
i=1
(Xi − µ0))

2

=
⎛
⎝

1

σ
√
n

n

∑
j=1
(Xi − µ0)

⎞
⎠

2

,

whose distribution is the square of a standard normal, i.e., a χ2
1. In general, even if Xi’s are not Gaussian, as

n→∞, the quotient above still converges to a χ2
1.

Remark. In the Gaussian case, the p-value is

p(x) ∶= Pθ0 (∣
1

n

n

∑
i=1

Xi − µ0∣ ⩾ ∣
1

n

n

∑
i=1

xi − µ0∣) .

2.5 Case Study: Alpha Particle Emissions

The following table counts particle emissions of americium 241, Am-241. During 1207 disjoint intervals of 10 seconds

each, a number m of alpha particle emissions were observed.
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Question. What is a good model of understanding what’s going on?

We claim that the number of particle emissions in each of the intervals can be modelled as 1207 i.i.d. Poisson

distributions with unknown mean λ > 0. This is sensible since we are observing “low probability events” but

repeated many times.

Recall

Pλ(X = k) = e−λ ⋅
λk

k!
.

Since the average number of alpha particle emitted is 8.392, our naive guess is λ ≈ 8.392. (Note this is also the

MLE.)

Beginning of Oct.29, 2021

For j ⩾ 0, let qj ∶= P(#emission = j) so that
∞
∑
j=0

qi = 1.

Let H0 be that the emission follows a Poisson distribution, i.e., qj = e−λλj/j! for some λ > 0, and let the alternative

hypothesis H1 be that the emission does not follow a Poisson distribution.

We now consider a multinomial distribution with 1207 trials of rolling a 16-sided die (there are 16 columns in the

table above) and use this to model the probabilities of the counts of appearances of each side. Hence, we consider

the random variables X1, ...,X16 defined by

fθ(x) ∶= fθ(x1, ..., x16) ∶= P(Xi = xi∀i) = 1207!
16

∏
j=1

q
xj

j

xj !

subject to

xj ∈ Z+,1 ⩽ j ⩽ 16,
16

∑
j=1

xj = 1207

and qi = qi(θ), depending on θ.

(qi(λ) denotes qi depending on θ.) We will compute the GLR test, i.e., we compute

supθ∈Θ fθ(x)
supθ∈Θ0

fθ(x)
.

For the numerator sup
θ∈Θ

fθ(x), we want to maximize 1207!
16

∏
j=1

q
xj

j

xj !
above all {q1, ..., q16} subject to qj ⩾ 0 and

16

∑
j=1

qj = 1.

Note that
∂

∂qi
fθ(x) = 1207!∏

j≠i

q
xj

j

xj !
⋅ xiq

xi−1
i = xi

qi
fθ(x).

Using Lagrange multipliers, the constraint function
16

∑
j=1

qi has partial 1 for all components; that is, to maximize fθ,

we just need the partials of fθ to have the same number for each components. That is, the extrema is obtained

when x1 ∶ x2 ∶ ... ∶ x16 = q1 ∶ q2 ∶ ... ∶ q16, or

q1
x1
= q2
x2
= ... = q16

x16
and

16

∑
j=1

qj = 1.
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Since
16

∑
j=1

xj = 1207, this gives

qi =
xi

1207
1 ⩽ i ⩽ 16.

Notice on the boundary of
16

∑
j=1

qj = 1, some qi = 0, so the product fθ(x) is zero. Also, for each θ, fθ is continuous. We

found only one critical point in the interior, so it must be a maximum!

Therefore,

sup
θ∈Θ

fθ(x) = 1207!
16

∏
j=1

(xj/1207)xj

xj !
. (1)

Now we need to compute the supremum over θ ∈ Θ0. In this case qj ’s needs to satisfy qj = e−λλ−j/j! for 1 < j < 16.

Note that q1 and q16 are slightly different. The sumpremum over these is numerically computed to be λ ≈ 8.366,

pretty close to our original naive guess that λ = 8.392.

Beginning of Nov.1, 2021

The likelihood of the emission having a Poisson with parameter λ is the following.

15

∏
j=2

[e−λλj+1/(j + 1)!]xj

xj !
⋅ (e

−λ[1 + λ + λ2/2])x1

x1!
⋅ [1 − e

−λ∑16
i=0 λ

i/i!]x16

x16!

where the second term corresponds to the probability of having 0,1 or 2 emissions for a total of x1 times and the third

term represents the probability of having > 16 emissions for x16 times.

Therefore, the likelihood ratio sup
θ∈Θ

fθ(x)/ sup
θ∈Θ0

fθ(x) is approximately

[ x1/1207
e−8.37(1 + 8.37 + 8.372/2)

]
x1

[ x16/1207
e−8.37∑∞i=17 8.37i/i!

]
x16 15

∏
j=2
[ xi/1207
e−8.378.37j+1/(j + 1)!

]
xj

. (1)

We can find the asymptotic distribution of the GLR as m = 1207 tends to infinity.

How? If X1, ...,X16 are i.i.d. and X ∶= (X1, ...,X16), then

2 log
supθ∈Θ fθ(X)
supθ∈Θ0

fθ(X)
or equivalently − 2 log

supθ∈Θ0
fθ(X)

supθ∈Θ fθ(X)
(*)

converges in distribution to χ2
1 as n = 16 tends to∞.

We also claim that as m = 1207 tends to ∞, (*) converges in distribution to a χ2 with 16 − 1 − 1 = 14 degrees of

freedom. If the distribution says that the observed (*) is unlikely, then we can reject the null hypothesis. We finally

return to our original question — whether or not the original emission follows a Poisson distribution.

Proof. For simplicity, let pj(λ) be the probability of the jth entry of column occurring for a Poisson with parameter

λ (e.g., p1(λ) corresponds to a Poisson with parameter λ evaluating to 0,1, or 2). Then

2 log
supθ∈Θ fθ(X)
supθ∈Θ0

fθ(X)
= 2 log

16

∏
i=1

(Xj/1207)Xj

(pj(λ))Xj

= 2 log
16

∏
j=1
[
Xj/1207
pj(λ)

]
Xj

= 2
16

∑
j=1

Xj log
Xj/1207
pj(λ)

= 2 ⋅ 1207 ⋅
16

∑
j=1

Xj

1207
log [

Xj/1207
pj(λ)

] .
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If the emission resembles a Poisson, the quotient
Xj/1207
pj(λ)

should be close to 1. We let a ∶= Xj/1207 and

b ∶= pj(λ). Doing Taylor expansion of h(a) ∶= a log(a/b) around a = b gives

h(a) = h(b) + h′(b)(b − a) + 1

2
h′′(b)(b − a)2 +O((b − a)3).

The first derivative at a is
d

da
(a log(a/b)) = [a

b
+ log(a/b)]

a=b
= 1

At a, the second derivative is 0 + 1/a evaluated at b, i.e., 1/b.
Therefore

h(a) ≈ (a − b) + (a − b)
2

2b
.

Putting this back,

2 log(...) ≈ 2 ⋅ 1207
16

∑
j=1
[
Xj

1207
− pj(λ)] + 1207

16

∑
j=1

(Xj/1207 − pj(λ))2

pj(λ)

= 2 ⋅ 1207 ⋅
⎡⎢⎢⎢⎣

16

∑
i=1

Xj

1207
−

16

∑
j=1

pj(λ)
⎤⎥⎥⎥⎦
+ ...

=
16

∑
j=1

(Xj − 1207pj(λ))2

1207pj(λ)
=

16

∑
j=1

(Xj −EλXj)2

EλXj
.

This gives the Pearson’s chi-squared test statistic!

Beginning of Nov.3, 2021

For convenience call the last statistic S. With the corresponding λ ≈ 8.366 and the observed xi’s, we have S ≈ 8.94.

We claim that S is approximately a chi-squared distribution with 14 degrees of freedom. First recall that X1, ...,X16

follow a multinomial distribution with X1 + ... +X16 = 1207 and that each Xi is itself a binomial distribution. If

X1, ...,X16 are independent, then

S =
16

∑
j=1

(Xj −EXj)2

EXj
=

16

∑
j=1

⎛
⎝
Xj −EXj√

EXj

⎞
⎠

2

≈ sum of 16 independent Gaussians by CLT.

We don’t get a χ2
16 because X1, ...,X16 are not independent; heuristically, X16 = 1207 −X1 − ... −X15 and EX16 =

1207 −EX1 − ... −EX15. This implies

(X16 −EX16) = (
15

∑
i=1
(Xi −EXi))

2

Therefore,

S =
15

∑
j=1

(Xj −EXj)2

EXj
+ (∑

15
i=1(Xi −EXi))2

EX16

and it (somehow) has a distribution of 15 independent standard squared Gaussians if λ is fixed. (For simplicity we

denoted EλXi by EXi.) However, λ is not fixed! We used the fixed λ from the MLE but λ itself should also be a

function of X1, ...,X16. Therefore we lose another degree of freemdom, ending up having a chi-squared with 14

degrees of freedom.

Then the p-value is P(S ⩾ 8.94) ≈ 0.835 so the data does probably follow a Poisson distribution.
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Chapter 3

Comparing Two Samples

3.1 Comparing Independent Gaussians

Suppose X1, ...,Xn are i.i.d. Gaussians with unknown µX ∈ R and known σ2
X > 0. Suppose Y1, ..., Ym are i.i.d.

Gaussians with unknown µY ∈ R and known variance σ2
Y > 0. Also assume that X,Y are independent.

Goal. Give a confidence interval for µX − µY .

Notice that
⎛
⎝
1

n

n

∑
i=1

Xi −
1

m

m

∑
j=1

Yj

⎞
⎠
− (µX − µY )

has mean 0 and variance σ2
X/n + σ2

Y /m, so the above divided by
√
σ2
X/n + σ2

Y /m gives a standard normal. (Recall

that adding / subtracting independent Gaussians still result in a Gaussian, so this entire thing is obtained from a

shifted Gaussian divided by some constant. This of course is also a Gaussian.) That is, has mean 0 and variance

σ2
X/n + σ2

Y /m, so the above divided by
√
σ2
X/n + σ2

Y /m gives a standard normal. (Recall that adding / subtracting

independent Gaussians still result in a Gaussian, so this entire thing is obtained from a shifted Gaussian divided by

some constant. This of course is also a Gaussian.) That is,

W ∶=
( 1
n ∑

n
i=1Xi − 1

m ∑
m
j=1 Yj) − µX + µY√

σ2
X/n + σ2

Y /m
∼ N (0,1).

Therefore, P(−t ⩽W ⩽ t) = 1√
2π
∫

t

−t
e−s

2/2 ds, i.e., the expression below equals
1√
2π
∫

t

−t
e−s

2/2 ds:

P
⎛
⎝
X − Y − t

√
σ2
X

n
+
σ2
Y

m
< µX − µY <X − Y + t

√
σ2
X

n
+
σ2
Y

m

⎞
⎠
.

This gives a confidence interval for µX − µY .

Beginning of Nov.8, 2021

3.2 Mann-Whitney Test

Let m,n > 0 be integers. Suppose we run an experiment on m + n people, e.g., to cure a disease. Among all m + n
people, n of them are chosen uniformly at random to be in the control group, and the remaining m people are in

the treatment. The null hypothesis is that the treatment has no effect on people.
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Suppose we order the people by integer 1, ...,m+n so that 1, ..., n correspond to the control group and n+1, ..., n+m
correspond to the greatment group.

Suppose the quality of outcome of the ith person is xi ∈ [0,1] (high score good, low score bad).

Let us reorder x1, ..., xm+n by xI1 ⩽ xI2 ⩽ ... ⩽ xIm+n where {Ii} = {1, ...,m + n}.
We define the test statistic to be

Z ∶=
m+n
∑
j=1

jχ{1⩽Ij⩽n},

the sum of “ranks” of people in the control group. Ideally, if the null hypothesis is true (i.e., the treatment has no

effect), then the ranks should be completely random, i.e., for each Ii, the assignment of values {1, ...,m+n} should

all be equally likely. There are (m+n
n
) such assignments, each with probability (m+n

n
)−1. For k > 0, write cn,m,k as

the number of ways k can be written as a sum of n distinct integers among elements of {1, ...,m + n}, disregarding

order (because (m+n
n
) disregards it). Then

P(Z = k) =
cn,m,k

(m+n
n
)
.

For small values of m,n, we can easily compute P(Z = k) explicitly, whereas for large m,n, CLT may help.

Observe that, given m,n, 3 ⩽ Z ⩽ 2(m + n) − 1. For exmaple:

Beginning of Nov.10, 2021

Example: (6.4). Suppose n = 2,m = 3. Then 3 ⩽ Z ⩽ 9. The null hypothesis test is that the treatment has

no effect on people. By inspection, it is easy to see that

P(Z = k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/10 k = 3,4,8,9

1/5 k = 5,6,7.

Then EZ = 6. We reject the null when Z is close to 3 or 9 (i.e., when the treatment either has terrible bad

effect or amazing effect). We consider the hypothesis that we reject when ∣Z − 6∣ ⩾ c. If we observed that

Z = 7, then ∣7 − 6∣ = 1, and

P(∣Z − 6∣ ⩾ 1) = 1 − P(Z − 6) = 4

5
,

so we are not confident in rejecting the null. However, if we observed that Z = 9, then

P(∣Z − 6∣ ⩾ ∣9 − 6∣) = P(Z = 3 or 9) = 1

10
+ 1

10
= 1

5
,

in which case we are relatively more confident in rejecting the null.

Example 3.2.1. If X1, ...,Xm, Y1, ..., Yn are i.i.d. When m and n are large, we want to find an ultimate way

to approximate Z. (Like before, we have m people in the treatment group and n in control group, and Z

denotes the sum of ranks in the control group.) Then,

m

∑
i=1

n

∑
j=1

1Xi<Yj =
m

∑
i=1

n

∑
j=1

1X(i)<Y(j) ,

as the sum simply rearranges things. Then, notice that, after fixing j,
m

∑
i=1

1X(i)<Y(j) denotes the rank of Y(j)−j,

i.e., number of X(i)’s less than Y(j): among the first (rank of Y(j)) ranks, j are from Y and the remaining
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(rank of Y(j) minus j) must come from X ’s. Hence,

n

∑
j=1

m

∑
i=1

1X(i)<Y(j) =
n

∑
j=1
(rank of Y(j) − j).

Since
n

∑
j=1
(rank of Y(j)) = Z, we have

m

∑
i=1

n

∑
j=1

1Xi<Yj = Z −
n(n + 1)

2
.

Under null hypothesis, X1, ...,Xm, Y1, ..., Yn are i.i.d., and if the distribution of X1 is continuous then

E1X1<Y1 = 1/2. Therefore,

EZ = m(m + 1)
2

+mnE1X1<Y1
= mn

2
+ n(n + 1)

2
= n(m + n + 1)

2
.

To compute the variance, we first disregard the constant n(n+ 1)/2. Since var 1X1<Y1 = 1/4, E1Xi<Yj1Xi<Yk
=

1/3 (needs Xi to be the smallest among all three), and E1Xi<Yj
1Xj<Yk

= (1/2)2 = 1/4, we have

var(Z) = var(
m

∑
i=1

n

∑
j=1

1Xi<Yj)

=
m

∑
i.k=1

n

∑
j,ℓ=1

cov(1Xi<Yj ,1Xk<Yℓ
)

=
m

∑
i=k

n

∑
j=ℓ
+

m

∑
i=k

n

∑
j≠ℓ
+

m

∑
i≠k

n

∑
j=ℓ
+

m

∑
i≠k

n

∑
j≠ℓ

= mn

4
+ m(n2 − n)

12
+ n(m2 −m)

12
+ (m2 −m)(n2 − n)(0)

=mn
1 +m + n

12
.

Beginning of Nov.12, 2021

In summary, the following has mean zero and variance 1, assume H0 is true:

Z − n(m + n + 1)/2√
mn(m + n + 1)/12

.

As m,n → ∞, the above converges to a standard Gaussian random variable (so e.g. we can compute the p-value

approximately).

3.3 Signed Rank Test

In this section we compare dependent samples.

Suppose X1, ...,Xn are i.i.d., and Z1, ..., Zn are i.i.d., but X and Z are not necessarily independent. For example

consider a medical study where Xi denotes the blood pressure of the ith patient before treatment and Zi the one

after treatment. To check the efficacy of the treatment, we examine Z1 −X1, ..., Zn −Xn. and rank them

∣ZI1 −XI1 ∣ ⩽ ∣ZI2 −XI2 ∣ ⩽ ... ⩽ ∣ZIn −XI−n∣.
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We consider the statistic (assuming Zi −Xi ≠ 0)

W ∶=∑ ranks of positive Xi −Zi =
n

∑
i=1

max((rank of Zi −Xi) ⋅ sgn(Zi −Xi),0).

Let the null hypothesis be that the treatment has no effect. Under this, Z1 −X1 and X1 − Z1 should have the same

distribution, so sgn(Z −X) has probability 1/2 of being 1 and 1/2 for −1.

Let Y1, ..., Yn be i.i.d. uniformly distributed in {−1,1}. Then

W =
n

∑
i=1

max(iYi,0).

We can use convolutions to explicitly compute W , since

max(iYi,0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i with probability 1/2

0 with probability 1/2.

Since EW = n(n + 1)/4 and var(W ) = n(n + 1)(2n + 1)/24 ≈ n3/12,

Wn − n(n + 1)/4√
n3/12

converges to a standard Gaussian as n→∞ by Lindeberg’s CLT.
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Chapter 4

Analysis of Variance, ANOVA

Beginning of Nov.15, 2021

4.1 General Linear Model

Let A be n × m with known (deterministic) constants and let β ∈ Rm be an unknown vector of (deterministic)

constants. Let ϵ ∈ Rm be a random vector. Suppose our observation of data is the vector Y ∈ Rn given by Y = Aβ + ϵ.
Goal. Try to estimate β when we only have Y and A.

Example: (7.1) One-Way ANOVA. Let n1, n2, n3 > 0 be integers and let n = n1 + n2 + n3. Let β1, β2, β3 be

unknown real numbers.

Define

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1n1×1 0n1×1 0n1×1

0n2×1 1n2×1 0n2×1

0n3×1 0n3×1 1n3×1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1

β2

β3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let σ2 > 0 be fixed. Let Y1, ..., Yn be independent random variable such that

(1) For 1 ⩽ i ⩽ n1, Yi is a Gaussian with mean β1 and variance σ2;

(2) For n + 1 ⩽ i ⩽ n1 + n2, Yi is a Gaussian with mean β2 and variance σ2; and

(3) For each n1 + n2 + 1 ⩽ i ⩽ n, Yi is a Gaussian with mean β3 and variance σ2.

Finally, let ϵ ∈ Rn be of i.i.d. Gaussians with mean 0 and variance σ2. Let Y = (Y1, ..., Yn)T so that

Y = Aβ + ϵ.

Question. How to estimate βj ’s? Is it true that β1 = β2 = β3?

More generally, we could have n1, ..., nm and consider

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1n1×1 0n1×1 ⋯ 0n1×1

0n2×1 1n2×1 ⋯ 0n2×1

⋮ ⋮ ⋱ ⋮
0nm×1 0nm×1 ⋯ 1nm×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1

⋮
βm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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For example, we could set β1 = β2 = β3 to be our null hypothesis. Recall that we know to test the difference

of Gaussians using the difference of sample means.

Example: (7.2) Linear Regression. Another example of the general linear model: suppose we have

β1, β2 ∈ R unknown and we have x1, ..., xn ∈ R constant. Fix σ2 > 0. Define

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1

1 x2

⋮ ⋮
1 xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =
⎡⎢⎢⎢⎢⎣

β1

β2

⎤⎥⎥⎥⎥⎦
.

Let ϵ ∈ Rn be the column vector consisting of i.i.d. Gussians with mean 0 and variance σ2. Then Y = Aβ + ϵ
says that for all i with 1 ⩽ i ⩽ n,

Yi = β1 + β2xi + ϵi.

Example: Another View of Linear Regression – Least Squares. Let x1, .., , xn, y1, ..., yn ∈ R be given. We

want to find β1, β2 ∈ R minimizing
n

∑
i=1
(yi − (β1 + β2xi))2.

Beginning of Nov.17, 2021

Back to one-way ANOVA:

Recall that Yi = βp + ϵi for all mp−1 + 1 ⩽ i ⩽mp. Correspondingly, for each j, we define

Y j ∶=
1

nj

mj

∑
i=mj−1+1

Yi,

the sample mean of the random variables that have mean βj . Hence EY j = βj . Previously, we said that the

difference of two Gaussians can be transformed into a standard Gaussian:

(Y j − Y k) − (βj − βk)
σ
√
1/nj + 1/nk

∼ N (0,1).

More generally, for any linear combination
p

∑
j=1

cjY j , we have

∑p
j=1 cjY j −∑p

j=1 cjβj

σ
√
∑p

j=1 c
2
j/nj

∼ N (0,1).

On the other hand, suppose further that σ2 is also unknown. For each j, we define the jth sample variance to be

S2
j ∶=

1

nj − 1

mj

∑
i=mj−1+1

(Yi − Y j)2.

Then the following has a student t’s distribution with nj + nk − 2 degrees of freemdom (see Quiz 5 P4):

(Y j − Y k) − (βj − βk)
S
√
1/nj + 1/nk
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where

S2 =
(nj − 1)S2

j + (nk − 1)S2
k

nj + nk − 2
.

More generally, the following has student t’s distribution with −p +
p

∑
j=1

nj degrees of freedom:

∑p
j=1 cjY j −∑p

j=1 cjβj

S
√
∑p

j=1 c
2
j/nj

where S2 =
∑p

j=1(nj − 1)S2
j

−p +∑p
j=1 nj

. (*)

Upshot. We can get confidence intervals for
p

∑
j=1

cjβj , regardless of whether we know σ2.

Now we test our hypothesis that β1 = β2 = ... = βp. Note that if we consider (*) with
p

∑
j=1

cj = 0, then

p

∑
j=1

cjβj = β1

p

∑
j=1

cj = 0,

assuming the hypothesis is true. Conversely, if for all combination
p

∑
j=1

cj = 0 we have
p

∑
j=1

cjβj = 0, then βi = βj:

indeed, letting c1 = 1, c2 = −1, cj = 0 for all j ⩾ 3 implies β1 = β2, and likewise all β’s are the same. Hence

β1 = β2 = ... = βp ⇐⇒
p

∑
j=1

cjβj = 0 for all {cj}pj=1 with
p

∑
j=1

cj = 0. (1)

Proposition: (7.4) F -Test

We define

F ∶= sup
∑p

j=1 cj=0

(∑p
j=1 cjY j −∑p

j=1 cjβj)2

S2∑p
j=1 c

2
j/nj

.

Idea: if all β’s are equal then F = 0. Also this statistic looks for the “worst” violation of β1 = ... = βp.

The supremum can be attained and Lagrange multipliers give an explicit formula:

F = S−2
p

∑
j=1

nj[(Y j − Y ) − (βi − β)]2

where Y ∶= (mp)−1
mp

∑
j=1

Yj , mp =
p

∑
j=1

nj , and β = EY = (mp)−1
mp

∑
j=1

EYj = (mp)−1
p

∑
j=1

npβp.

Moreover, F /(p − 1) has Snedecor’s F -distribution with p − 1 and mp − p degrees of freedom.

Beginning of Nov.19, 2021

Proof. Under the null hypotehsis β1 = ... = βp, βi = β, so

F = S−2
p

∑
j=1

nj(Y j − Y )2.

F can be found by minimizing the denominator, or just
p

∑
j=1

c2j/nj , subject to (1) the top being fixed, i.e.,
p

∑
j=1

ci(Y j−
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βj) and (2)
p

∑
j=1

cj = 0.

Recall that if we were to minimize h(c1, ..., cp) subject to r(c1, ..., cp) = s(c1, ..., cp) = 0, we need to solve

∇h = λ1 +∇r + λ2∇s for some λ1, λ2 ∈ R.

In other words,

2cj/nj = λ1(Y j − βj) + λ2 for all 1 ⩽ j ⩽ p.

Using lemma 7.6 in notes, we can find a minimum at which

(∑p
j=1 cjY j −∑p

j=1 cjβ − j)
2

∑p
j=1 c

2
j/mj

=
p

∑
j=1

nj((Y j − Y ) − (βi − β)).

Since
p

∑
j=1

c2j/nj is strictly convex and we found a minimum (indeed x2 only has a global min), it must be the

unique global minimum.

4.2 Linear Regression

Example: (7.7). Suppose we are presented with data (x1, y1), ..., (xn, yn). We want to find a line mx + b
that fits the data “best”. Among various ways to define the “wellness”, a standard one is to minimize the

least squares, i.e., to find m,b minimizing the following:

f(m,b) =
n

∑
i=1
(yi − (mxi + b))2.

Since this function is strictly convex, any critical point must be the global minimum. In this case,

m = ∑
n
i=1(xi − x)(yi − x)
∑n

j=1(xi − x)2
and b = y −mx.

Beginning of Nov.22, 2021

Alternate Presentation of Linear Regression

(7.2 revisited) Let x1, ..., xn ∈ R. Let σ2 > 0. Let β1, β2 ∈ R unknown. Let ϵ1, ..., ϵn be i.i.d. Gaussians with mean zero

and variance σ2 > 0.

We want to find β1, β2 so that Yi = β1 + β2xi + ϵi for all i; that is, Yi − [β1 + β2xi] = ϵi. We consider estimators that

are linear combinations of Yi’s, i.e., estimators of form
n

∑
i=1

ciYi. Goal: find unbiased estimators for β1, β2.

Claim. The two versions are equivalent.
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Theorem: (7.8)

Let c1, ..., cn ∈ R be such that
n

∑
i=1

ciYi is unbiased of β2. Then

var(
n

∑
i=1

ciYi) ⩽ var(
n

∑
i=1

c′iYi)

for any other combination coefficients c′1, ..., c
′
n ∈ R. Furthermore,

n

∑
i=1

ciYi =
∑n

i=1(Yi −∑n
j=1 Yj/n)(xi −∑n

j=1 xj/n)
∑n

k=1(xk −∑n
j=1 xj/n)2

. (1)

Similarly, if
n

∑
i=1

ciYi is unbiased for β1, then

var(
n

∑
i=1

ciYi) ⩽ var(
n

∑
i=1

c′iYi)

and
n

∑
i=1

ciYi = Y − (1) ⋅ x.

Proof. (First statement.) First note that E(
n

∑
i=1

ciYi) =
n

∑
i=1
(ci(β1 +β2xi + ϵi)) =

n

∑
i=1

ci(β1 +β2xi). By assumption this

equals β2, so
n

∑
i=1

ci = 0
n

∑
i=1

cixi = 1. (1)

On the other hand var(
n

∑
i=1

ciYi) =
n

∑
i=1

c2i var(Yi) = σ2
n

∑
i=1

c2i since var(Yi) = var(β1 + β2xi + ϵi) = var(ϵi) = σ2.

Thus, we’d like to minimize σ2
n

∑
i=1

c2i subject to (1). Using the lemma on Lagrange multiplier, this is mi minimized

when

ci =
xi − x

∑n
j=1(xj − x)2

,

so
n

∑
i=1

ciYi =
∑n

i=1 Yi(xi − x)
∑n

k=1(xk − x)2
.

Since
n

∑
i=1

Y (xi − x) = Y n(x − x) = 0, this can be re-written as

n

∑
i=1

ciYi =
∑n

i=1(Yi − Y )(xi − x)
∑n

k=1(xk − x)2
.

The second statement has an analogous proof, except that now the constraints are swapped.

4.3 Logistic Regression

We denote the logistic function as

h(x) ∶= 1

1 + e−x
for all x ∈ R.

Note that lim
x→∞

h(x) = 1 and lim
x→−∞

h(x) = 0.
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We use logistic regression to classify data into two bins, e.g., classifying emails into spam or “not spam” or deter-

mining if a turkey is cooked or uncooked, based on a threshold of h(x).

Let X1, ...,Xn be i.i.d. and let g ∶ R → {0,1} be an unknown function. Let Yi ∶= g(Xi). (Example: assume we’ve

never seen a turkey before; Xi = temperature of ith turkey; g(Xi) = 1 if cooked; and g(Xi) = 0 if uncooked.)

Beginning of Nov.29, 2021

Note that Y1, ..., Yn are i.i.d. Bernoulli, so there is some p ∈ [0,1] known such that p = P(Y1 = 1). Assume that there

exist a, b ∈ R such that p ≈ h(ax + b) ≈ g(x). Then the likelihood function is

ℓ(a, b) =
n

∏
i=1

pyi(1 − p)1−yi ≈
n

∏
i=1
[h(axi + b)]yi[1 − h(axi + b)]1−yi .

The best candidates for a, b might be given by the MLE.
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