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0.1 Review of Probability

[ Definition 0.1.1: Axioms of Probability

Assume there exists some (nonempty) universal set ) that contains all other sets (events). We denote P as a

probability law on 2. The following are the three axioms of IP:
(1) Forall subsets AcQ,0<P(A)<1.
(2) Pis (countably) additive for disjoint sets, i.e., if {A4,,} are disjoint then P(|_J 4,) = Z P(A,).

i=1 n=1

(3) P(Q)-=1.

From (2) we immediately see that P(Au B) <IP(A) + P(B) and = can be obtained if and only if An B = @.

[ Definition 0.1.2: Conditional Probability

If A, B c Q, we define the conditional probability as

P(An B)

P(A|B) = P(B)

[ Definition 0.1.3: Continuous Random Variable, CRV

A random variable is a function X : 2 - R. We say X is continuous if
Pla< X <b) = /;bfx(x) dx
for some fx : R — [0,00) and for all —oco < a < b < co. We call fx the PDF, probability density function. We
also define the CDF, cumulative density function, by Fix (t) = P(X <t).
Example 0.1.4. Suppose X is uniformly distributed in [0,1]. Then for any 0 < a <b <1,
]P’(aSXsb):/ab dz=b-a,

indeed a CRV.

[ Definition 0.1.5: Independence of Finitely Many Sets

Let Ay, ..., A, c 2. We say they are independent if for any S c {1,2,...,n},

P(((A:)) = [TP(4).

ieS i€S

[ Definition 0.1.6: Independence of Countably Many Sets

We say {A,,} are independence if, for all n > 1, A4, ..., A,, are independent.
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Beginning of Aug.25, 2021

0.2 Some Random Variables

Example 0.2.1: Bernoulli. Let 0 < p < 1. Define a random variable by P(X =0)=1-pand P(X =1) = p.

Example 0.2.2: Binomial. Letn e N. For 0 < k < n, let P(X = k) = (Z)pk(l - p)"*. “Number of heads
flipped among n biased coin flips.”

Example 0.2.3: Geometric. For k ¢ N, define P(X = k) = (1 - p)*1p. “Number of coin clips needed to see
heads for the first time.”

[ Definition 0.2.4: Normal Random Variable |

Let u € R and o > 0 be two parameters. A random variable X is said to be normal or Gaussian if X has the
X has pdf

202

fx(w)= o 127r P (_ - _M)Q).

[ Definition 0.2.5: Gamma Function |

For all « > 0, define the Gamma function

I'(a):= f ezt da.
0

Integration by parts suggests that I" interpolates the factorial: I'(1) =1 and I'(n + 1) = (n + 1)T'(n).

[ Definition 0.2.6: Gamma Distribution & Chi-Squared Distribution

Let o, 8 > 0. We say X is an («, 8) distributed Gamma random variable if X has the pdf

2" exp(-/B)
o (a)

For example, if « = p/2 and S = 2, we get a chi-squared distribution. Its pdf with p degrees of freedom is

fx(z) = X[0,00) (). @

2?21 exp(-z/2) .
2T (p]2)

fx(z) = X[0,00) (T)- 2

(2) is the distribution of a sum of p independent, squared, standard Gaussian distributions (= 0,0 = 1).
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[ Definition: (1.36) Indicator Functions

Let A c Q. We define the indicator function x4 : 2 - {0,1} by

1 weA
xa(w) =
0 wtA.

[ Definition: (1.37) Expected Values

Let P be a probability law on Q. Let X : Q - [0,00) be a (nonnegative) random variable. The expected
value is defined by
E(X) := f P(X > 1) dt.
0

If X:Q - Rand if E|X| < oo, define
E(X) := E(max(X,0)) - E(max(-X,0))
If X is discrete, E(X) = > k-P(X = k).

keR
If X is continuous with PDF fx, E(X) = [ z- fx(z) dz.

[ Proposition: (1.43)

The expected value of (finite) sums is the (finite) sum of expected values:

[ Definition 0.2.7: Variance & Standard Deviation |

The variance of a random variable is defined by
var(X) = RE(X?) - (E(X))? = E(X - E(X))%

and the standard deviation is defined to be the square root of above.
Important property of variance:
var(aX +b) = a®

var(x)

[ Definition 0.2.8: Joint PDF |

Let X,Y be random variables and let fx y : R? - [0, o) be their joint pdf. Then

b d
IP’(a<X<b,c<Y<d):f / fxv(z,y)dy dz
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and

/: [ fxy(z,y)dyde=1.

[ Definition 0.2.9: Marginal Densities

Continuing on the previous example, the marginal of X is given by

fx@) = [ fxv (o) dy,

i.e., we “fix” = and integrate fx y over all possible values of y. Likewise for fy (y).

The density of the conditional X | Y =y is

fxy(z,y)
Iy (y)

fX|Y=y (v) =

[ Corollary 0.2.10

E(XY) = f h f " eyfey(X,Y) dz dy. Similarly, if g : R? - R, then

EG(X) = [ [ glen) fxy (o) dedy.

[ Definition 0.2.11: Independence of Random Variables

Let X1,..., X, : > R. We say they are independent if

Beginning of Aug.27, 2021

Theorem: (1.58) Independence and Variances

If X4,..., X, are independent random variables, then the variance of their sum is the sum of their variances:

var(i X;i) = ivar(Xi).

[ Proposition: (1.60) Independence and Expected Values

If X;,..., X,, are independent random variables, then

In general, this is not true. There exist X,Y such that E(XY) # E(X)E(Y). For example let X =Y and
P(X=1)=P(X =-1)=1/2. Then E(XY) =1 and E(X)E(Y) =0.
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[ Definition 0.2.12: Covariance |

The covariance of X and Y is given by
cov(X,Y) =E[(X -E(X)(Y -E(Y)].

By definition, cov(X, X) = var(X).

[ Definition 0.2.13: Correlation |

The correlation coefficient of XY is given by

cov(X,Y)
Vvar(X)var(Y)
Notice that covariance is affected by scaling but correlation is not (unless there involves a change of sign).
For example, cov(10X,Y) = 10cov(X,Y) whereas corr(10X,Y) = corr(X,Y). (We also assume that
var(X),var(Y) = 0.)

corr(X,Y) =

Correlation is invariant under scalar multiplication. Let ¢t + 0. Then

cov(tX,Y) B -ECO)NY-EMY)) | teov(NY) ey

corr(tX,Y) = = =
( ) Vvar(tX)y/var(Y) [t]y/var(X)+/var(Y) [t]y/var(X)+/var(Y")

O

Theorem 0.2.14: Cauchy-Schwarz

For all XY, [E(XY)| < /E(X?)\/E(Y?). This immediately implies that for any X,Y, -1 < corr(X,Y) < 1.
Heuristically: if corr(X,Y) is close to 1, then approximately Y = aX +b for a > 0. If the scatterplot of X, Y are

everywhere randomly, then their correlation is close to 0.
Theorem 0.2.15: Total Expectation Theorem
Let Ay,..., A, c Q be a partition of ) (i.e., union being € and pairwise disjoint). Then, for all B c (2,
P(B)= Y P(BnA) = Y B(B| A)E(A)
i=1 i=1
(assuming P(A;) # 0 for all 4 for the sake of well-definedness).
Theorem: (1.78)

Let X,Y be continuous random variables with joint PDF. Then
B0 = [ CBEX|Y =9)fr(y) dy,

where
IE(X|Y=3/):/_oo rfxy=y(z |y) dz fX"’y(x'y):fXJ’;((:;’)y)'



YQL - MATH 408 Notes 0.2 - Some Random Variables

Current file: 8-30.tex

[ Definition: (1.90) Convex Functions |

¢ :R > Ris convex if for any z,y e Rand 0 < ¢ < 1,

otz + (1 -t)y) <tp(x) + (1 -t)p(y).

Theorem: (1.91) Jensen’s Inequality

Let X be a random variable and let ¢ : R — R be convex. Then

P(EX) <Ep(X).

[ Corollary 0.2.16

Let () = 2. By Jensen’s inequality,
(EX)? <EX?.

Beginning of Aug.30, 2021

[ Proposition: (1.92) Markov’s Inequality

If E|X| < oo (if infinity then the claim is trivial), then

E[X
P(X|>t) < %

Also, for n € Z,,
E(X|"™
P(|X|>t) < (|t"| ).

[ Corollary: (1.97) Chebyshev’s Inequality

If EX < oo and var(X) < oo, then applying Markov’s inequality to X - EX, n = 2, gives

Var(X).

P(X - pl>t) < w

[ Proposition 0.2.17

Let X1, ..., X, be i.i.d. with finite variance. Then

o)< var(Yi, X;/n) _ 1 var(X1)
N t2 no ot

P(| % ilX -EX,

N———
sample mean

Note that as n — oo, the probability tends to 0. This gives the Weak LLN.
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Theorem 0.2.18: Weak Law of Large Numbers (WLLN)

Let X4,...,X,, be i.i.d. with finite variance. Then

=0.

1 X
>t) < lim 1 var(X3)
n—oo n, t2

lim IP(‘l 3 X, - EX,
niz1

n—>00

To put formally, »* X;/n converges in probability to EX; as n — oo.
i=1

Remark. For example, if X1, ..., X,, are the poll results for n random people in California, the larger n is,

the more likely it is accurate. Furthermore, note that this does not rely on the population size of California!

[ Definition: (1.106) Convolution |

Let f,g: R - R. We define the convolution of f and g to be

(9O = [ f@glt-a) da.

[ Proposition: (1.107)

Let X and Y be independent random variables with PDFs fx and fy. Then,

fm+y = fX >('fY~

[ Corollary 0.2.19

The sum of two independent Gaussians is a Gaussian.

[ Definition 0.2.20: Modes of Convergence

(1) (Def 2.1, used in SLLN) We say random variables Y;, : 2 - R converges almost surely (a.s.) to
Y:Q-Rif
P(limY,=Y)=1

or in more details,
P{weQ] 7}1_210 Yo(w)=Y(w)}) =1.
(Given € > 0, there exists N € N such thatif n > N thenY,, > Y on S c Q where P(Q2-.5) =0.)
(2) (Def 2.2, used in WLLN) We say {Y,,} converges in probability to Y if, given e > 0,
Tim P(|Y, - Y]>€) = 0.
(3) (Def 2.3, used in CLT) We say {Y,,} converges in distribution to Y if “the limit of the CDF is the CDF

of the limit” — to put formally, for all ¢ € R such that S —» P(Y < .5) is continuous at s = ¢

lim P(Y, <t) =P(Y <t).

n—o0
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Theorem 0.2.21: WLLN Restated

Let {X,,} be i.i.d. with finite variance. Then

converges in probability to EX; as n — oo.

Theorem 0.2.22: Central Limit Theorem (CLT)

The previous theorem states how X, + ... + X,, looks like, and this one states how far it would deviate from p.

Let {X,,} be i.i.d. with finite nonzero variance. For convenience write y := EX; and o := y/var(X;). Then

Xi+..+Xn —np
J\/ﬁ

(note that the numerator has mean 0) converges in distribution to a standard Gaussian.

Beginning of Sept.1, 2021
Theorem: (2.11) Strong Law of Large Numbers, SLLN

Let X1, X5, ... be i.i.d. with p := EX; finite. Then

X1+ + X,
P( lim L:u):l,

n—oo n

Theorem: (2.17) CLT Restated

Let X, Xo, ... be i.i.d. with 0 < var(X;) < co. Let pt:= EX; and o := \/var(Xy). Then, for all ¢ € R,

Xyt ot Xy -
lim p(22 P An T

n—oo g\/ﬁ

t
<t)=—= [ exp(-5°/2)ds=P(Z<t).

Remark. For example, if we let n = 1 million, ¢ = 1, and X; the result representing a coin flip (1 for heads,
~1 for tails), then = EX; = 0 and var(X;) = E(X; -EX;)? =EX? =1, so ¢ = 1. By the CLT,

X1+t X, - Xy 4.+ Xp 1 rt
Lt ny Lgl)mif exp(-52/2) ds ~ 0.84.
NG vn V2am S

Note that (X + ... + X,;)/\/n < 1 means X; + ... + X,, < /n = 1000. Hence if we flip 1 million coins, the
probability that (#heads — #tails < 1000) is approximately 0.84 or, equivalently, the probability that we get

P(

<1)=P(

< 500500 heads is approximately 0.84.

Remark. Let X, Xo,... be defined as above. Then (X; + ... + X,, — nu)/(0/n) has mean 0 (obvious) and
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variance 1:

1
var(...) = %Var(Xl .+ X —np)

1 X
- o var(X, ¢ X,) = PR
a°n a°n

=1.

The random variables Z,, := (X; + ... + X,, - nu)/(o+/n) appear in the CLT. We have shown that Z,,’s have
the same mean and variance as the standard Gaussian. That var(Z,) = 1 explains why we chose to put \/n

in the denominator, not n, which might have seemed to be more natural on first glance.
Theorem: (2.30) Berry-Esseén Theorem

Let o > 0 and Xy, X», ... be i.i.d. with mean zero so that EX? = ¢%. Furthermore, assume that E|X;|? < co.

Let Z be a standard Gaussian random variable. Then, for all n > 1,

X1t ot X - X1+t Xy,
p(otte T A Ty p(z <) :‘P(Mgt)—P(th)
ovn ovn
E|X,
NEENA

This provides an improvement of the CLT.

—=>0CZ00<
End of Review for 407
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Chapter 1

Random Samples

[ Definition: (3.1) Random Sample

A random sample of size n is a sequence X1, ..., X, of i.i.d. random variables.

[ Definition: (3.2) Statistic

A statistic is a function of a random variable:

Let X1, ..., X,, be a random sample of size n and let ¢ : R" — R*. A statistic is a random variable of the form
Y i=t(X1, ..., X))

(where the output of Y contains k¥ numbers). The distribution of Y is called the sampling distribution.

Example: (3.3, 3.4). The sample mean of X1, ..., X,,, denoted X, is the following statistic:

Xi+...+X,
- .

X =
For n > 2, sample standard deviation, denoted S, is the following statistic:
| = 1/2
S=|—S(X;-X)2| .
(7 Eon-7)

The sample variance is simply S2.

Example: (3.5) Why n - 1 in Sample Sample Deviation?. Let X;,..., X, be i.i.d. with p:=EX; € R and

o :=+/var(X;) < co. Then

(1) ES? =42 (If we divide by anything other than n - 1, there will be extra constants involved.)

(2) var(X) =d?/n.

Beginning of Sept.3, 2021

11
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[ Proposition: (3.7)

Let n > 2 and let Xj..., X,, be a random sample from a Gaussian distribution with mean p € R and variance
o2. Then

(1) X and S are independent;
(2) X is also Gaussian with mean y and variance o2 /n;

(3) (n-1)S?/0? has the same distribution as x?_; (chi-squared with degrees of freedom n - 1).

Proof for n = 2. By definition X = (X; + X3)/2and S = \/(X1 - X)2 + (X, - X)2, o, after rewriting X,

S=/(Xy-X1)2/4+ (Xo - X1)2/4=/(X1 - X5)2/2.

Note that it suffices to show that X; + X5, X; — X, are independent (given both are i.i.d. Gaussians). On one
hand,

E(X; + Xo) (X1 - X3) =EX? -EXZ =0

On the other hand, X, X, have the same mean, which implies E(X; — X5) = 0 so E(X; + X2)E(X; - X3) =0.
In general, EXEY = E(XY') does not imply independence of X and Y (the converse does), this implication is

in fact true given that X and Y are Gaussians!

Gaussian Independence Proof. WLOG assume that X;, X, are standard Gaussians. By assumption X, X»

are independent and we want to show that X; + X5, X; — X5 are independent. By definition of independence,

P((X1,X2) e A) = % ffAexp(—(;v% +122)/2) dzidz,. D

In order to show X; + Xo, X; — X, are independent, we want to show that their JPDF is the product of their
PDFs, i.e., we need to show that, for B,C € R,

P(Xl +X2 € B,Xl —XQ € C) =P(X1 +X2 € B)]P(Xl —X2 € O)
Manipulating the LHS,
P(X1+XoeB, X1 - XpeC) =P({(X1,X2),(1,1)) € B, ((X1,X2),(1,-1)) e C)

/ﬁotanon o exp( (lz% + C5'3)2/2) dzidzs

[/B 7eXp( (27 +23)/2) dzydas

xC 2T

exp(-22/2) da; exp(-22/2) dzy

- [, 7 =
= IF)(<(X1X2)7 (17 1)> € B)P(«XDXQ)? (1’ _1)> € C)
We can generalize this to n > 2: if X; are independent (standard) Gaussians, then X - X; are independent. [J

O

Beginning of Sept.8, 2021

12
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Remark. S is not Gaussian. To find its distribution, one way is to notice that both S and S? are positive, so
(n-1)t%/c?
P(S<t)=P(S?<t?) =P((n-1)S%/c* < (n - 1)t?*/o?) =P(x*_, < (n - 1)t*/o?) = f frz_ (@) da.
o 2

Differentiating the above expression (along with chain rule) would give us the pdf of S.

1.1 Student’s t-distribution

Recall that
Xi+...+ X, —nu

o\/n

has mean 0 and variance 1, given X1, ..., X,, are i.i.d. with finite mean and variance in (0, o). Dividing both the

numerator and the denominator by n gives

(Xi+..+ X)) n-p X-p
a//n NG

Now suppose that u, o are unknown, and we want to find them using X1, ..., X,,.

It may be annoying to have two unknowns in one such equation, so sometimes we replace o by the sample standard
deviation, S, so that y is the only free parameter, despite the fact that we don’t know o either:

X-u

S/n

If X4,..., X, are i.i.d. Gaussians, then the above quotient has the Student’s ¢-distribution.

[ Proposition: (3.7) Student’s ¢t-distribution

Let X be a standard Gaussian random variable. Let Y be a chi-squared random variable with p degrees of

freedom. Assume X and Y are independent. Then

X

Y/p

has a student’s t-distribution with

teR.

)

I((p+1)/2) (1 . t?)“’*””

LD =t U

Proof. First we define Z := /Y /p. It follows that for any y > 0,

d d , . d
- Spz<y) = SR(Y <y?p) = —

fz(y) i (Z <y) i (Y <y°p) i

d y2p xp/Q—le—:r/Q

-4 f T g

dy Jo 20/2T(p/2)

-y°p/2 | 1
T (p]2)

-

2PI20(p/2)

=2yp - pP/*yP e

_ 2yp71pp/2€fy2p/2 .

13
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Now we look at the CDF of X /Z:

P(X/Z <t)=P(xX <t2) = [[ ., Fx.2(w,y) dody
y>0

[independence] = ff fx (@) fz(y) dzdy. (A)
Now we apply change of variable ¢ : R? - R? by (a,b) = (ab,a) and ¢ *(z,y) = (y,z/y). Then
b
|7 (a,b)| = abs value of = lal.
a

Then (A) becomes

ff f(z,y) dzdy = ffwl(...) fe(a,0)|T(,)| dadb
- fﬁ<t|a|fx(ab)fz(b) dab

a>0

b=t a=00
- fb:_w fa , lalfx(ab)fz(b) da db. ©

Recall that we will eventually d/d¢ everything — this is exactly why we want b = ¢ as the upper limit of the outer

integral: the derivative of this integral becomes

Fxpa() = SE(X/Z <)

- [ lalsx(at)fz(a) da
* 1 -a*t?/2, p/2 p-1_-a’p/2 1
= — dg» —————
/0 o prae ¢ 2r/2-11(p/2)
P -

Cl2
= 4 -—(? d
Vo ppa) Jo exp( 2 ”’)) ‘

2\1/5 - exp (—g(t2 +p)) dz

(p=1)/2,~(t*+p)z/2 4,

pp/2 /00 p/2
= x .
V2m2e/2-17(p/2) Jo

o -
Vm/zr(p/z)fo ‘

where the integrand is related to a Gamma distribution with parameters o -1 = (p - 1)/2 and 3 = 2/(¢*> + p).

Therefore it evaluates to 3°T'(«). Hence

L pPET() (e 1)/2) (“#)“”*”/2

Ixz(t) = V2r 2020(p/2) T /pTl(p/2) P

Beginning of Sept.10, 2021

The Delta Method

If X,,..., X, are i.i.d., we have a “good” way to estimate the mean in the sense that

— — 0'2
EX =EX; var(X) = —.
n

14



YQL - MATH 408 Notes 1.1 - Student’s ¢-distribution Current file: 9-13.tex

What about 1/ or u? or other functions?

Theorem: (3.13) Delta Method

Let # € R, and let Y7, Y5, ... be random variables (not necessarily i.i.d.!) such that
\/E(Yn - 0)

converges in distribution to a Gaussian with mean 0 and positive variance. Let f : R - R. Assume f'(6)

exists. Then
V(f(Ya) - f(0))

converges in distribution to a Gaussian with mean 0 and variance o2 (f’(6))2.

Example: (3.14). If welet f(z) = 1/z, let X =Y}, and assume that \/n(X - 1) converges in distribution

to a Gaussian with mean 0 and positive variance, then the Delta method says that

V(f(Ya) = f(1))

converges in distribution to a Gaussian with mean 0 and variance o?y~*. Therefore 1/X has expected value

~ 1/p and variance ~» n~to%u~*. As n — oo the variance becomes small, so 1/X is a “good” estimate of 1/.

Upshot: 1/X might still be a biased estimate of 1/u, but as n — oo the limit becomes 1/. In other words,
1/X are an asymptotically unbiased estimate of 1/.
Beginning of Sept.13, 2021
Proof Sketch. By Taylor expansion around 6,
f(y) = £(0) + f'(0)(y - 0) + Error.
Substituting Y,, into the above equation and making some arrangements,
VA(f(Ya) = F(9)) = /nf'(8)(Y, - 6) + Exror.

The claim “then follows” as the error — 0. O

Remark. Currently, if f'(9) = 0, we get a mean zero variance zero Gaussian, which is simply a constant

random variable. The theorem below fixes this issue:
Theorem: (3.16) Second-Order Delta Method

Following the previous theorem, if we further assume that f’(9) = 0 but f”(0) exists and is nonzero, then

n(f(Yn) - f(6))

converges in distrbution to a chi-squared random variable with one degree of freedom (%), multiplied by

a?f"(0)/2.

15
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Proof Sketch. Like above we have

f(Y) =f0)+ f(0)(y-0)+ %f”(@)(y - 0)? + Error

——
=0

SO
n(f(Ya) = 1(6)) = 5" (0)(Ys - 6)* + Error.

As n — oo, (Vn(Y, —0))?f"(0) converges in distribution to the square of a mean zero Gaussian, multiplied by
a2 f"(6)/2. O

Example 1.1.1. Let Xy, X5, ... bei.i.d., let f(x):= 2%, and let Y}, := (X; +...+ X,,) /n. Then the second-order
Delta method says that n(Y,? - 0) converges in distribution to x? multiplied by o2 f”(0)/2, i.e.,

1
E(nY?) ~ 502 2=0"
In other words, EY;? ~ o2 /n. Also,
var(nYy,)? ~ var(x3 - 0% "(0)/2) = o* var(x3) = 2¢*,

so var(Yy,)? ~ 201 /n?.

1.2 Simulation of Random Variables

When we simulate random quantities on a computer, the numbers generated are not actually random, as computers
cannot store arbitrary real numbers. Instead, what’s generated are pseudorandom. We check whether a PRNG
(pseudorandom random number generator) behaves like a random variable by checking if it agrees with the LLN
and the CLT.

Example: (3.18) Simulating Discrete RVs. If we are able to use computer to generate a uniformly
distributed random variable U in (0, 1), we can simulate a discrete random variable by partitioning (0, 1)
into subintervals, each corresponding to an outcome of the discrete random variable, based on the probability

of each. For example,

1 U<1/3
X(U)=12 1/3<U<2/3
3 2/3<U<1

simulates a discrete random variable that takes values in {1, 2,3}, each with probability 1/3.

Beginning of Sept.15, 2021

Example 1.2.1: Simulating Continuous RVs. If the CDF of a continuous random variable is given by F,

then we can simulate it using the inverse F~!. To put formally:

16
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Let X be a continuous random variable. Let F(t) := P(X < t). If F~! exists and if U is a uniform random

variable on (0, 1), then F~!(U) is a random variable with

FHU<t) = F(1).

Proof. P(F-Y(U) <t) = P(F(FY(U)) < F(t)) = P(U< F(t)) = F(t). O

1.3 Parameter Estimation
A basic problem in statistics is to fit data to an unknown probability distribution. For example, if we have data
distribution of some unknown Gaussian distribution, what are some ways to figure out the mean and variance?

Stated formally, let X1, ..., X,, be a random variable of size n from a family of distributions {fy : 6 € ©}. (For example
we can think of f4 as a PDF or a PMF.)

If we are “guessing” the parameters of a Gaussian, © would be R x [0, c0) and # would be of form (u,0?):

{fu,az(x) : (/~L102) € Rzaﬂ €R, o > 0}

[ Definition 1.3.1: Estimator |

If Y is a statistic that is used to estimate a parameter , then we call Y a point estimator or estimator.

(Some examples include sample mean and sample variance we’ve previously talked about.)

Example 1.3.2. Let X3,..., Xo9 be a random sample of 20 from a Gaussian with unknown mean and vari-

ance. Then the family {fy : 6 € ©} is of form

1 (x-p)?Y . 2
{27.[_0_6}(1:)(—%‘_2 -ILLER,O' >0¢.

An estimator for the mean p is X := (X + ... + X»)/20 (this is a good one!), and a not-so-good one is for

example X, + X,. Similarly, an estimator for o2 is
— (X -X)~.
19 7

Of course we can also have “worse” estimators too.

[ Definition 1.3.3: Unbiased Estimator |

Let X1, ..., X,, be a random sample of size n from a family of distributions {fp: 0 € ©}. Let Y = ¢t(X1,..., X;)
be an estimator for g(6) (e.g., in the Gaussian example we can have an estimator for not only 1 but also 2,

or also any function of ;). Here t : R” - R* and ¢ : # - R*. We say Y is unbiased if
Eo(Y) = g(0) for all 6 € ©.

In other words, the expected value of the estimator is exactly what it estimates.

17
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Remark. Sample mean and sample variance are unbiased.

Besides asking “how good an estimator is”, another natural question arises — “how to get a good estimator?”

Example 1.3.4. Let Xi,..., X,, be a random sample of size n. By the Weak LLN, if Ey|X5| < co for all 6 € ©,
then the sample mean (X; +... + X,,)/n is not only unbiased but also converges in probability to the constant
variable [Ey X;. We say this estimator is consistent.

More generally, for j € N, if Eg|X; |/ < oo, then
1 & ;
M](H) = — ZXZJ,
L)

the sample ;% moment, is also consistent: M, () converges in probability to ji;(0);=EgX { as n — oo.

[ Definition: (4.5) Methods of Moments |

Suppose we want to estimate g(6) and suppose there exists  : R’ - R¥ such that

9(0) = h(pa, ., p1j)-

Then the estimator h(Mj, ..., M;) is called the method of moments estimator for g(6).

Example 1.3.5. Let g(6) be the variance. We know var(X) = EX? - (EX)2. Then the MoM for g(#) is

2
n 1n
Mg—Mf:n;Xf—(n;Xi) .

Beginning of Sept.17, 2021

[ Definition: (4.3) Consistency

Let Y1,Y5,... be a sequence of estimators for g(6). We say Y1,Ys,... is consistent for g(0) if Y7,Y5,...

converges in probability to the constant random variable g(6) with respect to fj.

Example: (4.6). Following the previous example, define

n

Vi X~ (ﬁ;Xi/nV.

i=1

Since (a,b) ~ Va - b2 is continuous, and since ¥, X?/n and Y, X;/n converge to EX? and EX respec-
tively, we claim that Y,, » \/EX? — (EX)? as n — oo. This implies that Y, is consistent.

However, Y, is biased! Take n = 1 and X the uniform distribution on [0, 1]. Then
1

1 1 1
EX = -,EX?=-,var(X)= —, ando = ——.
2 3 12 2V/3

On the other hand,

EvVX?2-X2=0.

18
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Therefore Y, is consistent but biased.

Example 1.3.6: Unbiased but inconsistent estimator. Let X1,..., X, be i.i.d. uniform on (0,1). Let Y}, :=
X, for every n. Then EY,, = EX = 1/2 for all n, meaning that it is unbiased, yet they do not converge to the

constant variable 1/2 as X itself isn’t a constant variable, so Y,, is inconsistent.

Example: (4.7) . Suppose X3, ..., X, is a random variable sample of size n, uniform on [0, 8] where 6 > 0
is unknown. What is a MoM estimator for 6?

Since EX; = 6/2, the MoM estimator for 6 is given by Y,, := 211 =2¥ 7, X;/n.

Clearly Y,, is unbiased: EY,, = 6 for all n. It is also consistent: since }I; X;/n converges in probability to

EX = 60/2, multiplying both sides by 2 gives our desired claim.

Beginning of Sept.20, 2021

Example: (4.7). Let X,...,X,, be a random sample of size n from a uniform distribution on [0, ], where

0 is unknown. We showed last time that

M=

2
YnZ:* Xi
n f

=1

is an unbiased and consistent estimator of 6. Also,
4 62
var(Yy,) = — -n-var(Xy) = —.
n 3n

It turns out that there is an even “better” unbiased, consistent estimator

1 1
(1+7)X(n):(1+7)maxX7; A)
n nJ 1<isn
with smaller variance: )
0
1+1/n)X = —
var(14 1/m)Xe) = ooy

This means, in some sense, that this estimator is much more accurate than the previous one.

Upshot: the method of moments may not give the best estimator.

Proof sketch. For convenience call the estimator in (A) as §. Then (recall that EX = f P(X >t)dt)
0

E()) = (1 " %) /OQIP’(X(n) > 1) dt

1

[
1+ / P(Xy >ty X > ¢ dt
n 0
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For variance, recall that [!] EX" = f nz"'P(X > t) dt, so
0

(n+1)

var(f) = EX(,) -6
2
(n+1) / 2P(X () > t) dt - 6?
(n+1)2/ 9 62
= 2t(1— (t/0)") dt — 0> = ... = ————.
n? 0 (1=(/0)") n(n +2)

It turns out that among all unbiased estimators, § has the smallest variance. We say (1+1/n)X (n) is the uniform

minimum variance unbiased estimator (UMVU estimator) for 6. O

1.4 Sufficient Statistics

[ Definition: (4.9) Sufficient Statistic

Suppose X = (X3,...,X,,) be a random sample of size n from a distribution f where f € {fp: 0 € ©} is a
family of PDFs or PMFs. Let t : R® - R* so that Y := t(X1,..., X,,) is a statistic. We say Y is a sufficient
statistic for the parameter 0 if, for all y ¢ R* and for all § € ©, the conditional distribution of X = (X1, ..., X,,)
given Y = y does not depend on 6.

That is, Y provides sufficient information to estimate (not determine!) what 0 is from our sample X1, ..., X,,.

Example: (4.10). Let X,..., X,, be a random sample of size n from a Bernoulli distribution with unknown

parameter 6 € (0,1). Claim: Y, := X; + ... + X,, is sufficient for 6.

Proof. By definition we compute the probability of X = (x4, ...,x, ) conditioned on Y = y (assuming by definition

that z; € {0,1}). Note that Y is a binomial with parameters n and p.

_ P(X1, ... Xn,Y) = (21,0 Tp, y)

P((X1,..s Xn) = (21,00 20) | Y =) P(Y = y)

If y + x1 + ... + x,, then the numerator is just 0, which does not depend on 6, and we are done with the proof. If
Yy =1 + ... + T, then the numerator is just P((X1, ..., X,,) = (z1,...,2,)), and so
_ P(Xl,.. X ) = (Z‘l,...,l‘n)
P(Y =y)

ML P(Xi=) L, 07(A=0)"" (n)_l
P(Y =y) (Mer-oyv  \y)

Beginning of Sept.22, 2021

Example: (4.11). Let X1, ..., X,, be ii.d. Gaussians with known variance ¢ > 0 and unknown mean. We

will show that
Y= l(X1 +..+X,)
n

is sufficient for .
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Proof. Let x1,...,x, € R and let y ¢ R. Then Y is Gaussian with mean v and variance o%/n. We have

fx ,...,X,,y(:vl 0, T y)
fX1,..‘,Xn|Y(l’17...,In | y) = 1 n s eeeybing

fy ()
:fXl ..... X,V (T15 ey Ty (21 + o+ ) [10)
fy(v)
* Ixyox, (1, p)
fy ()
I R
T+ e+ 1) /0 - p)?
fr(y) exp(_(( + 24;2/72/ 1) )/(\/ﬂa/\/ﬁ)

_ o @m) T exp(=(ad + o+ @) [(20°) —np?[(207) + 31 v 1))

ni2g-1(27)~1/2 exp(-y3n/(202) —np?/(202) + npy/c?)

o (2m) ™2

LA o R exp(—ix?>/(202>/exp(—fn/(za%).

nl2g-1(27)1/2
where (+) is because Y is a function of X3, ..., X,, (so once z1,...,z, have been determined, y is automatically

chosen). Since the last expression does not depend on i, we have shown that Y is sufficient for p. O

Theorem: (4.12) Factorization Theorem

This theorem provides an “easy” way to find or identify sufficient statistics. Suppose X1, ..., X, is a random
sample from {fy : 6 € ©}, where f is a joint PDF of X1, ..., X,,. Suppose Y = ¢(X1,...,X,,) is a statistic and
t:R™ — R*. Then Y is sufficient for @ if and only if there exist h : R™ — [0, 00) and gy : R¥ — [0, c0) such that

Jo(x) = go(t(x))-h(x) forall 6 € ©.

Problem: (HW3 p4)

Let # € R be an unknown parameter. Consider the density

exp(—(z -0 x>0
o BP0 >
0 x<0.

Suppose X1, ..., X;, is a random sample of size n such that each X; has density f,. Show that X(;y = min X;

1<ign
is a sufficient statistic for 6.

Proof. We first write fy(z) = exp(—(2 — 0))x[0,00)(2:). Since X;’s are i.i.d., for Z := (z1,...,2,) € R",

=

fo(z) = 1] fo(xi) = exp(nf - im)ﬁX[e,m)(Ii)-

2

Il
[u

Note that fy(2) # 0 if and only if x; > 6 for all 4, i.e., X (1) > 6. That is,
fo(Z) = exp(nd - Z T5)X[6,00) (X (1))
i=1
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Therefore, fy(Z) admits a factorization

Jo(E) = exp(nB)x{s.00) (X)) -exp(= 3 0).

i=1

96(X (1))
ge (1) h(r)

which by the factorization theorem shows X, is sufficient. O
Proof of Factorization Theorem (discrete): sufficient = factorization. Suppose Y is sufficient for 4. Let x ¢ R™.
Then (the starred equation is again because both sides are equivalent)
fo(z) =Po(X =) ZPg(X =z and t(X) = t(x))
=Pe(Y =t(x)) -Po(X =2 | Y =t(z)).

Since Y is sufficient by assumption, the second term Pyp(X = 2 | Y = t(x)) does not depend on 6, i.e., it is a

function of x only. We have therefore obtained our factorization. O
Remark: (4.13). If we let t(z) := z for all x € R”, then the statistic ¢(X;, ..., X,,) = (X1, ..., X,,) is always

trivially sufficient. Therefore we always have a sufficient static. Our goal is find a minimal sufficient statistic,

using as little information as possible.

1.5 Evaluating Estimators

Beginning of Sept.24, 2021

[ Definition: (4.15) UMVU |

Let X1,...,X,, be i.i.d. from a distribution in {fy : 0 € ©}. Let g: © -> R, lett ¢ R” - R, and let ¥ :=
t(Xy,...,X,) is unbiased. We say Y is uniformly minimum variance unbiased (UMVU) if for any other

unbiased estimator Z for ¢g(6), we have

varg(Y') < varg(Z2) forall 0 € ©.
Remark. If we have an UMVU, we obtain the “best” unbiased estimator possible.

Example: (4.16) UMVU might not exist. Unfortunately UMVU might not exist. Suppose X is a binomial
with known parameter n but unknown 6 € (0, 1) and we want an estimator for g(6) := /(1 - 9).

There is not even any unbiased estimator for g(6)! For any estimator Y = ¢(X),
EyY = Egt(X) =Y (’7)15(@')9"(1 -0)’,
i=1 \?
a polynomial of 6, whereas 6/(1 — 0) itself isn’t. Therefore it’s impossible to have E,Y = 6/(1 - 6) for all

0e(0,1).

22
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Example 1.5.1. Even if an unbiased estimator exists, a UMVU might not exist. Let Y, Z be unbiased for

g(0) where 6 € [0,1]. It could happen that
varg(Y) < varg(Z) and vary (Z) < varg(Y).

Question. If an UMVU exists, how do we find it in practice? The following provides a possible method.

Theorem: (4.17) Rao-Blackwell

Let Z be sufficient for for {fy : 6 € ©}, and let Y be any unbiased estimator for g(6). Define W := Ey(Y | Z).
(Since Z is sufficient for 6, W is in fact not a function of .) Let 6 € © with vary(Y") < co. Then

varg(W) < varg(Y)

with equality only when W =Y.

Proof. By conditional Jensen’s inequality with p(z) = 22,
(W=6)*=(Eo(Y | 2) - 0)* <E((Y -6)*| 2).
Taking E of both sides gives (the first < and the second = are mentioned in HW3 p2)

varg(W) < E(W - 60)? =E(Ep[(Y - 0)? | Z]) = Eg(Y - 6)? = vary(Y).

Remark: (4.21). IfY is unbiaed, then EgW = Eyp(Ey[Y | Z]) = EoY =6, so W is always unbiased.
Beginning of Sept.29, 2021

Example: (4.23). Let Xy,..., X, be i.i.d. with unknown mean p. We compute E( X | Z X;).
=1

n n
Solution. For 1 < k < ¢ < n, the joint distribution (X}, Z X;) is the same as that of (X, Z X;), so
i=1 i=1

We=E(X1| ) X;) ==Y EX | ) X)=-EQ X;| ) Xi)=-> X
i=1 ni=1 i=1 noo4= i=1 niz1

In this case, var(X;) = o2 but var(W) = 0 /n. Rao-Blackwell gives an estimator with much smaller variance! (In

fact we are not explicitly using Rao-Blackwell; Z X; may not be sufficient (see quiz3 prep p1l), but nevertheless
i=1
W defined this way gives us a better estimator.)

1.6 Efficiency of Estimators

Previously we’ve talked about what is and how to find a good estimator. Now we turn our focus to “what makes an

estimator good?”
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[ Definition: (4.24) Fisher Information

Let {fp : 0 € O} be a family of multivariable PDFs or PMFs. Let # c R. Let X be a random vector with
distribution f,. The Fisher information of the family to be

2

1(6) = Ix () == Eg( d logfg(X)) forall g ¢ O,

de

if it exists and is finite.

Remark. In order to define I(6), the set {x € R : fy(z) > 0} should not depend on 6.

2
Example: (4.25). Leto > 0. Let fy(x) := b exp| - (z-0) for all x € R, 0 € R. (In other words we
oV 2w 202

have Gaussians.) We have

1 (x-0)2
1 =1 .
og fo() og(g\/ﬁ) 572
o) ,
d d -(X -0)
@1ng (X) d& 20_2 )
and so

d -(X-0)2\° X-0\> 1 1
I(G) ]E (d922) ]Eg( 02 ) :;Var(X_a)zﬁ.

Remark. When o is small, fy looks more like a sharp bump than a flat curve. A small o corresponds to a

larger I(6) which gives us “more information” about how the random variable is distributed.

Remark. Without the square,

Ey (%logfe(X)) fRn d/(;lce{a;x)f( Ydz = — T, f fo(z) dz = %(1) - 0.

d
Therefore, treating w log fo(X) as a random variable,

d
1(60) = By (...)? = varg (@ log fg(X)) .

24



YQL - MATH 408 Notes 1.6 - Efficiency of Estimators Current file: 10-1.tex

Remark. Alternatively,

Ee(jezlogfe( >) [ ) ) o

,/ Fo(@) g fo(@) = (5 fo(x))?
R™ (fo(x))?

L ) - (55 10gfe(w))2fe(w)d$

fo(x) dz

d02
d92( ) - f (*logfe(x) fo(z) dz =0-1(0) = -1(6).

[ Proposition: (4.26)

Let X,Y be independent where their distributions are from {fy: 0 € ©} and {gy : 6 € O} respectively. Then

I(X7y)(9) = Ix(e) + Iy(e)

Proof. Using the variance expression,
< d d
oy (6) = va (5 o (fo(X)gn (V))) = va (55 Q08 fo(X) +og 90 ()
% varg (i logfg(X)) +varg (i loggg(X)) = Ix(8) + Iy (6).
do dé
(The starred equations are because of independence.) O
Beginning of Oct.1, 2021

Theorem: (4.28) Cramér-Rao / Information Inequality

Let X : QQ — R” be a random variable with distribution from {fy: 0 € ©}, © c R. Let Y := ¢(X) be a statistic.
For 0 € ©, define g(0) := EoY. Then

g’ (0)]?
arg(Y) > =———~— for all 4 € ©.
Vi r9( ) IX(G)

In particular if Y is unbiased then g(6) = § and ¢'(6) =1, so

1
Y)2 —— forall 6 € ©.
varg(Y) ™0 orall f ¢
In both cases, “=” happens only when % € R for some 6 € ©.
- Ko

This theorem provides a lower bound on the variance of unbiased estimators of 6 — in general, we cannot get

estimators with arbitrarily small variance.

Remark: (4.29). If Xy,...,X,, areiid. and X = (X},...,, X,,), then (by last proposition) I'x(6) = nlx, (9).
IfEgY =6, then varg(Y) > 1/(nlx, (0)) forall 6 € ©.
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Proof. Define ¢g(#), Y, and ¢ accordingly. If X is continuous (similar for discrete),

l9"(0)]

‘ f S lo(@)(@) da

= f Fo(2)t(x) du| =

- fR @(logfg(x))t(x)fe(x) dz

1>

Cov(@(log fe(X))vt(X))‘

1/2
< (V&I‘g(%(lnga(X)))) varg(t(X))*/?
= IX(G)\/varg Y.

For =: %(log fo(x)) = 7 2 } a0 — fo(x) [note that t(z) is treated as a constant when doing d/df], and for =: if

EW =0, then cov(W, Z) = E[(W -EW)(Z - EZ)] =E[W(Z -EZ)] = E(W Z).

Note that equality in Cramér-Rao happens if and only if the Cauchy-Schwarz step is attained, i.e., when

d/dg(log fo(X)) ~E(...) _ d/dd(log fo(X))

= is a constant.
t(X) -E(te(X)) Y -EgY

Example: (4.30). Let fy(x) := 02° ' x(o,1)(z) for z € R and 6 > 0. Then for z € (0, 1),

d d d 1
= ! - “11 =~ tlogz.
0 0g fo(z) = — log(#z"") d9[0g9+(9 ) log x] 5 *logz

Then if X, ..., X, are i.i.d., for (z1,...,z,) € (0,1)™,
T lognfg(xz) 2(0 +logx;) = n( + logZJcl).

By Cramér-Rao, any multiple of —9 log H fo(X;) (plus a constant) is UMVU for EyY'.
i=1

For example, since E(—lognfg(X ) = 0, we know EZlogX = -n/f. Hence if we define ¥V :=

=1

-— log H X;, its expected valve is 1/6, and we claim that this is UMVU of its expectation.
n i=1

Beginning of Oct.4, 2021
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1.7 Maximum Likelihood Estimator (MLE)

[ Definition 1.7.1: Likelihood Function |

Let Xy,...,X, be iid. from fy € {fp : 6 € ©}. The joint distribution of X}, ..., X,,, by independence, is
[] fo(x:). Fix (1, ...,x,) € R". We define the likelihood function ¢ : © — [0, 00) by £(6) := [ fo(x:).
i=1 i=1

[ Definition: (4.32) MLE |

The maximum likelihood estimator (MLE) Y is an estimator that maximizes the likelihood function.
In other words, YV = ¢(X),t: R* - 0, X = (X31,...,X,), and t(z1,...,x,) is defined to be any value of § € ©
that maximizes £(6) = [ ] fo(z:).

=1

(The # maximizing ¢(#) might not exist; even if it exists, it might not be unique.)

Remark: (4.33).  Since log is monotone, whatever maximizes ¢() = [ | fo(x;) also maximizes log ¢(6) =
i=1

n
> log fo(x;) and vice versa. Sometimes it might be more convenient to maximize the latter.
i=1

Example: (4.34). Let Xy,.., X, beii.d. from fy with fy(x;) = x[9,0+1)(%:), i.e., X is uniform on [0, 6 + 1].
Then the joint PDF is [ | xu,e[0,041]-

=1
Suppose for example that z; = ... = 2, = 0. Then £(0) = Xoe[0,0+1] = Xoe[-1,0]> SO any 6 € [-1,0] is a MLE in

this case. Uncountably many!

Example: (4.41). Consider a Gaussian with unknown 4 € R and unknown o2 > 0 so 6 = (u,0). Find its
MLE.

Solution. Here we maximize log £(6):

log ¢(0) = lo
g0(0) ggam

exp( (@ —p)* ) i[ Clog2m  (xi-p)?

202 E 2 202

Computing its partials,

5} Tp— 0 L | —u)?
—log £(0) = —log £(6 = 7.
5 o) = TS o (0) = Y
Setting them to 0, we obtain
T B N ZTAY
u—n;xl o —n;(z‘l -

(Note that we did not get 1/(n - 1) for o2, but nevertheless this is still pretty good.)

Now that we found a critical point, we need to verify that it is a maximum. Write « := 1/o%. Then

log £(0) = %(Z log o — log 27 — au(z; — p1)?)
i=1
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For fixed «, log £(0) is strictly concave function of u; likewise, fixing u, log £(6) is a strictly concave function of

a, so the critical point must have been a global maximum. We have therefore found the (only) MLE:

1

0= (1,02) = (nle(i >(Xi- % ;xﬁ) )

Beginning of Oct.6, 2021

[ Definition 1.7.2: Convex & Strictly Convex Functions

A function ¢ : R™ — R is convex if for all  # y and A € [0,1],

p(Az+ (1-A)y) <Ap(z) + (1= A)p(y).

 is said to be strictly convex if the above holds with < replaced by <.

Replacing < and < by > and >, we obtain the definitions of concave and strictly concave functions.

[ Definition: (4.35) Log-Concavity

We say ¢ : R™ — (0, 00) is log-concave if log ¢ is concave. We sayy is strictly log-concave if log ¢ is.

[ Proposition: (4.36) MLE and Log-Concavity

Let fy : R — [0,6) be a family of PDFs where § € © c R¥. If § — fy(x;) is strictly log-concave for every
i €{1,...,n}, then the likelihood function

100 T o)

has at most one maximum value.

Proof. The log of the likelihood function, log¢(6), is >_log fo(x;). By assumption this is the sum of strictly
i=1

concave functions so it itself is also strictly concave. But a strictly concave function has at most one maximum

(if z # y are both maxima then 1/2(x + y) takes a higher function value by strict concavity, contradiction). O

Beginning of Oct.8, 2021

Example: (4.42). Let Xi,..., X, beii.d. uniform on [0,60]. Let 21,2, ...,z, € R be given. For a MLE, we
need to find  maximizing

((9) = H_nXOSX(l),X(n)$9'
To maximize this, of course we need the indicator function to be 1. While keeping this true, we need =" to
be as large as possible, so 0 needs to be as small as possible. Thus the MLE for ¢ is simply X .

Recall that the UMVU in this case is (1 + 1/n)X(,). Hence our MLE is asymptotically equivalent though

biased.
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Example: (4.43). Let Xi,..., X, be ii.d. from the exponential density y,>ofe ® with § unknown. The
log of the likelihood function is
log £(0) = log xz;>0vi(nlog -6 Z )
i=1
so, assuming xz; > 0,
i10 £(0) = n_ ix
ag BT T At

Setting this to 0, we see § :=n/ )" ; is a critical point (the only one), and it is clear that (log £(f))’ < 0 when
=1

¢ <n/> x; and > 0 when >. Thus we have found the unique maximum of log £(#) and
i=1

-1
n
Y = nn = (1 Z Xz)
Yic1 X ni

is the MLE for 6.

How good are the estimators Y,,?
Recall that EX; = 1/6 and var(X;) = 1/62. The CLT states that

\/ﬁ(yn - 9_1)

converges in distribution to a Gaussian with mean 0 and variance 1/62. Using Delta method with g(z) =

1)z, g'(z) = —1/2%, we see
V(% - 9(1/6)) = V(1K - 0) = /(Y - 0)

converges in distribution to a Gaussian with mean 0 and variance (g'(1/6))%/6? = 6? as n — co. This shows

the Y,,’s are asymptotically unbiased and consistent. Hence

2
var(Y,,) = var(1/X,,) ~ 9—
n

(More rigorously, var(Yy) = 6?/n(1+ O(1)).) On the other hand, Cramér-Rao says

var(Y) » = L = L o
T Iv(0) var(flf-Xhiw]) var(gl-Tiiw]) v

so the MLE is pretty close to the UMVU (if there is any) too.

Example: (4.44). Continuation of the previous example: the MLE for ¢~% would simple be e~ (because

exp is a bijection; see proposition below).

[ Proposition: (4.45) Functional Equivariance of MLE

Let g: © - ©’ be a bijection. Then Y is the MLE for § = ¢(Y") is the MLE of g(6).
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Proof. Since g is bijective, we write £(0) as (g 'g(6)). Then £(6) attains maximum at 0 = z < £(g7*(g(9)))

attains maximum when ¢g71(g(6)) = z, i.e., when g(0) = g(z). O

Remark. Under some technical assumptions, MLE is always consistent, asumptotically unbiased, and

achieves Cramér-Rao equality.
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Chapter 2

Hypothesis Testing

Recall MLE asks “what is a good estimator of an unknown parameter?”

Hypothesis testing asks “does an unknown parameter lie in some range [a, b] with at least 90& certainty?”

[ Definition: (5.11) Null Hypothesis, Alternative Hypothesis

Let {fy : 6 € ©} be a family of distributions. Let ©y c ©. A null hypothesis H, is an event of form
{9 € @0}

Define O := ©§ so © = Oy 1 ;. The alternative hypothesis H, is the event {6 € O, }.

Goal: test whether or not Hj is true or false.
Let X : 2 - R™ be a random variable with distribution fy € {fy : 6 € ©}.

[ Definition: (5.4) Critical/Rejection Region

Let Hy be a null hypothesis. A hypothesis test of Hy vs. H; is specified by a subset C' ¢ R™. The set C'is

called the critical region or the rejection region.
(1) If X ¢ C, we accept Hy.
(2) If X € C, we reject Hy and assert that H; is true.

The complement C¢ c R" is called the acceptance region. The performance of the test is quantified by the

power function 3:© — [0,1] by

B(0) :=Pg(X € C) = 1-Py(X ¢ C).
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Remark. Ideally, we want to find a “perfect” test in the sense that 5(0) = 0 for all § € Oy and 5(0) = 1 for
all 6 € ©4, i.e., if the null hypothesis is true then we accept it with probability 1 and if it is false, we accept it

with probability 0. However, this might not always happen.

[ Definition: (5.5) Type II Error: false negative

A type II error for a hypothesis test occurs when X ¢ C with positive probability but Hy is actually false.
That is, 3(#) < 1 for some 6 € ©. In other words, Hj is accepted to be true whereas it is actually false. The

quantity 1 - 5(6) is the probability of occurrence of a type II error for 6 € O;.

[ Definition: (5.6) Type I Error: false positive

A type I error for a hypothesis test occurs when X e C' with positive probability but H; is actually false.
That is, 5(#) > 0 for some 6 € ©. In other words, H; is accepted to be true whereas it is actually false. The

value of 5(#) is the probability of occurrence of a type I error for 0 € ©.

[ Definition 2.0.1: Significance Level

The significance level « is defined as

a:= sup 3(0).
0cO¢

This shows the “worst” probability of a type I error (false positive) occurring.

Beginning of Oct.13, 2021

Example: (5.7). Let X be a binomial r.v. with parameters n =5 and 6 € [0,1] =: ©. We let Hy := {0 <0 <
1/2} and Hy :={1/2< 0 <1}.

If 0 is small, we expect X to take smaller values more likely, so a “good” hypothesis test should use a rejection
region corresponding to large values of X.

We first let the rejection region to be C := {5}. That is,

If X ¢C, ie.,if 0< X <4, accept Hy
If X eC, ie., if X =5, reject Hy.

In this case
B(8) =Py(X € C) =Py(X =5) = 6°.

Then

a= sup 0°=275.
[0,1/2]

The worst probability of a type I error happening is pretty small. However, type II errors are much more

likely to happen: for small 6 > 0.5, 1 — 3(9) is not close to 1. For example 1 - 3(0.6) ~ 0.92.
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Now instead consider another test and let C' = {3,4,5}. In this case
B(0) =Pe(X > 3) = 6° +560*(1 - 6) +106°(1 - ).

For this one, « = 1/2 is worse, but type II errors are better: for example 1 - 3(0.6) ~ 0.32.

Question. Is there a “best” hypothesis test?

[ Definition: (5.8) Uniformly Most Powerful Test (UMP)

Let ©g c © and denote ©, := ©F. Let Hy be the hypothesis 6 € © and H; be {6 € ©,}. Let T be a family
of hypothesis tests. A hypothesis test in 7 with power function 3(#) is called the uniformly most powerful
class T testif 3(0) > 5'(0) for all § € ©, for every 8'(6) corresponding to a hypothesis test in 7.

Remark. Since UMP only focuses on Oy, it is sometimes helpful to fix o > 0 and let 7 be the class of all

hypothesis tests with significance level < «.

Remark. The existence of a UMP for general O is a difficult question, but if © consists of exactly two points,

UMP always exists, and we can explicitly construct them.

2.1 Neyman-Pearson Testing
Lemma: (5.9) Neyman-Pearson

Let © = {6p,01}, Og := {6y}, and ©1 := {6,}. Let Hy be the hypothesis {6 = 6y} and H; be {6 = 6,}. Let
{fo,, fo. } be two multivariable PDFs or PMFs. Fix k > 0. Define the likelihood ratio test with rejection

region C in the following way:

C:={xeR": fo,(x) > Ekfo,(x)}. D
As usual, define
Q= OSU@I) B(0) = B(bo) =P, (X € C). @)

Let 7 be the class of hypothesis tests with significance levels < a. Then:
. (Sufficiency) Any hypothesis test satisfying (1) is a UMP class T test.

. (Necessity) If there exists a hypothesis test satisfying (1) and (2) with k& > 0, then any UMP class 7T test
has significance level equal to «, and any UMP class 7 test satisfies (1), except possibly on a null set
D with Py, (X € D) =0.

Beginning of Oct.18, 2021
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Proof. Assume fy’s are PDFs. Also recall that o = sup 3(0) = 8(6p). Let 3(f) be the power function of the
0e®q

test corresponding to C, and let C’ be the rejection region of any UMP class T test with 5’(6) being its power
function. By definition of C,

[xc(z) = xcr(2)][ fo, () = kfo, ()] > 0.

(If z € C then the second term > 0 and the first term is 1 — x¢-, also nonnegative. Likewise if = ¢ C, the second

term < 0 and the first term < 0.) Therefore,

0< [ [xo@) = xe @)l fon (@) = kfay ()] da
=Py, (X eC)-Pp, (X €C") - k[Py, (X € C) - Py, (X € C")]
= B(01) = B'(61) - k[B(0o) - B'(60)]. 3)
By definition of T, the significance level of the test corresponding to C’ is < «, so 5(6p) -8’ (6p) > 0. (3) therefore
implies 8(61) - 8'(61) >0, i.e., the C test is UMP class 7.

For necessity, we now show that if C’ is UMP class 7 then C’ corresponds to a likelihood ratio test. Since the

previous part implies C' must be UMP too, 3(60) = 5'(01). Therefore (3) implies
0-k[B(60) ~B'(60)] 20 = B(fo) - B'(60) = a~'(6p) <O = a < (bo).

Since C' is UMP class 7, by assumption its significance level is (again) < a, so 5'(6y) < @. Thus we must have
B,(ao) = Q.
Now we have 8(6;1) = 8(01) and 8(0y) = 5'(6y). Hence (3) is zero:

[ o (@) = xer@)Uo, () = fay ()] de = 0.

Since the integrand is nonnegative, this implies that it is nonnegative almost everywhere. O

Example: (5.12). Suppose X is binomial with parameters 2 and 0 € {1/2,3/4}. Let Hy be 6 = 1/2 and let
Hy be 6 = 3/4. The lemma says we simply need a likelihood ratio test to determine the UMP among tests

with an upper bound on significance level. Note that X only takes three values:
f34(0) 1 faa(1) 3 f32(2) 9

fip0) 4 fip(l) 4 fip(2) 4
Thus,

(1) 1If3/4 <k <9/4, then Hy is rejected if and only if X = 2, and this test is the unique UMP for tests with
significance level <P/, (X =2) = 1/4.

(2) If1/4 < k< 3/4, then Hy is rejected if and only if X € {1,2}, and this test is the unique UMP for tests
with significance level <Py /5(X € {1,2}) = 3/4.

(3) If 0 <k < 1/4, then the likelihood ratio test always lands in C so Hj is always rejected. This test is the
unique UMP for tests with significance level P, (X € {0,1,2}) = 1.

(4) If k> 9/4, thent he likelihood ratio test never lands in C, so Hy is never rejected. This test is the unique

UMP for tests with significance level at most Py (X € @) = 0.
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Beginning of Oct.20, 2021

2.2 Hypothesis Tests & Confidence Intervals

[ Definition: (5.14) Confidence Interval, Confidence Region

Let X : Q —» R” be a random variable with distribution fy € {fg: 6 € ©}. Let g: © — R. Let u,v : R” - R be
such that u(x) < g(z) for all z ¢ R™. A 100(1 - )% confidence interval for a parameter g(f) is a random
variable of form [u(X),v(X)] satisfying

Po(g(0)) € [w(X),v(X)] 21 -« for all 6 € ©.

More generally, if ¢ : R — 28" (power set), then a 100(1 - )% confidence region for ¢(6) is a random set
¢(X) satisfying
Po(g(0) ec(X)) 21 -« for all 6 € ©.

Example: (5.15) CLT and confidence intervals. Let X;,..., X,, be i.i.d. with values in [0,1], known
_ 1 n
0% €(0,1), but unknown p € [0,1]. Let X := — > X; be the sample mean. Then EX = 1 and var(X) = o°/n.
n

=1
By Berry-Esséen (CLT with error bound),

sup
teR

<

P Xi+...+ X, —nu
o/n

If we take ¢ = 2 and ¢ = -2 separately and subtract the results,

)—IP’(Z<t)

1
a3\/n’

ploge Kite Xz o) polzooy< 2.
o/n a3\/n
That is,
— 20 — 20 2
PlX-—<pu<X+—|2P(-2<2<2)———.
( N ﬁ) ( N
~0.95
In our notation,
2
Bl [u(X), 0(X0]) 3 0.95 - 5
where
— 20 — 20
X)=X-— X)=X-—.
WX)=X- L w0 =X-"Z

Theorem: (5.16) Confidence Region / Hypothesis Test Duality

Heuristically, we have a hypothesis test if and only if we have a confidence region. Let X : ) — R™.

(1) Fix « € (0,1). Assume that for every 6, € ©, there is a hypothesis test with significance level a of

hypothesis Hy {0 = 0y }. Let C(6p) denote the rejection region of the test. Then

e(X)={00:X¢C(0)}
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is a 100(1 — a)% confidence region for 6.

(2) Letc:R™ - 2°. Assume that ¢(X) is a 100(1 — )% confidence region for 6. Define a hypothesis test
with rejection region
CO):={xeR":0¢c(x)}.

Then this test has significance level at most a.

Beginning of Oct.22, 2021
Proof.

(1) Since Hy corresponds to {6 = 6y}, the significance level is easy to compute:

o = Sup B(0) = B(bo) =Po(X € C(bh)).
Therefore by the definition ¢(X) ={# ¢ ©: X ¢ C(0)}, we have
Po(fec(X))=Pp(X ¢C(0))=1-Py(XeC(f)=1- (A)

when 6 = 6. Since by assumption (A) holds for every 6y € ©, this is indeed a 100(1 — @)% confidence

region, as claimed.
(2) The assumption that ¢(X) is a 100(1 — «)% confidence region for 6 says
1-a<Py(fec(X)).
By the definition of C'(6), for any 6 € ©,
1-a<Py(ec(X))=Pe(X ¢C(0)) =1-Py(X € C(0)).
Therefore Py(X € C(0)) < a. Therefore, in particular
sup B(6) = B(o) =Py, (X € C(bh)) < av.

0e®q

In other words this test has significance level < a.

2.3 p-value

Stated informally, p-value is a measure of belief of rejecting null hypothesis. A small p-value corresponds to a high

probability that the null hypothesis is false.
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[ Definition: (5.17) p-value

Let Xy, ..., X,, be real-valued random sample with fj € {fy : 6 € ©}. Define X := (X4, ..., X,,) for convenience.
Let Y := ¢(X) where ¢ : R™ - R. For all ¢ € R, consider the hypothesis test with rejection region {z € R™ :
t(z) > c}. Let p: R™ > [0, 1] be defined by

p(aj) = sup [P’g(t(X) > t(l‘)) for all x ¢ R™.
0€©¢

The p-value for the hypothesis test is defined to be the statistic p(X).

Remark: (5.18). Fix ¢ € R. By our definition of C, 3(0) = Py(X € C) = Py(¢t(X) > ¢). Thus the significance
level is

a:=sup B(0) =supPy(t(X) > ¢).
(Z3SH) 6O
This is very similar to the definition of p(z) — p(z) is equal to o where ¢ = ¢(x).

Also notice that as ¢ increases, for each 0, Py(t(X) > ¢) gets smaller, so the supremum gets smaller. Thus as
¢ increases, « decreases. We say p(x) is the smallest significance level such that the hypothesis test rejects

the null hypothesis.

Remark: (5.19). LetY =t(X) be continuous. Fix 6 € ©. For c € R, define F_y (¢) :=P(-Y < ¢), and for all

z € R", denote
go(x) =Po(t(X) > t(x)) = Po(-t(X) < —t(z)) = FLy (-t(z)).

Then

90(X) = Foy (-Y) =Py(F_y (-Y) <) =Py(-Y < F7}-(c))
=Fy(Fiy(c)=c

Therefore by definition of p(x), since p(x) = supPy(¢t(X) > t(x)) = sup go(x), we have p(X) > go(X) and so
Py(p(X) <c) <Po(go(X) <c) =c.

Therefore, when 6 € ©¢, probability of p(X) being small is small. For example p(X) < 0.05 has probability
< 0.05. In other words, with probability > 0.95, 6 is not supposed to be in Oy, i.e., the null hypothesis is false.

This explains why small p-value suggests a rejection of the null hypothesis.

Example: (5.20). Let X be binomial, n = 5, and 6 € [0,1] unknown. Let Hy be {6 = 1/2} and H; be
{6 €[0,1]:6 +1/2}. For c € R, let the rejection regions be of form C:= {zx e N: x > c}.
First suppose X = 2. Then

p(2) = sup ]PQ(X 2 2) = ]P)]_/Q(X 2 2) = 1 —Pl/Q(X < ].) = 08125,
96@0

which suggests we are not at all confident in rejecting Hy.
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Alternatively, suppose X = 4. Then the corresponding p-value is
p(4) = sup Po(X >4) =Py 5(X >4) = 0.1875,
6eOg

in which case we are more confident in rejecting Hy.

Beginning of Oct.25, 2021

2.4 Generalized Likelihood Ratio Tests
Let X1, ..., X,, be i.i.d. from fy € {fy : 6 € ©}. In particular X; has distribution fy. The joint PDF is given by
Z_ﬁl fo(@i).
If we have x = (1, ...,x,) € R", then recall that the likelihood function ¢: © — [0, o0) is defined to be
0) = Jo(w) = [ ol

Also recall that Neyman-Pearson states that, when © consists of two points, then the likelihood ratio test is UMP

among all tests with significance level < a. The rejection region was defined as
C:= {:17 eR™: f91I(CU) > kft%(x)}
When O contains more than two points, we want an analogue of the region defined above. In this case, we define

C:={xeR":sup fo(z) 2 ksup fo(z)}.
0O, 0O

[ Definition: (5.22) Generalized Likelihood Ratio Test |

Let k > 1. The generalized likelihood ratio test of a hypothesis Hj that {# € ©} is defined by the following
region:
C:={z eR":sup fo(z) > k sup fo(z)}.
0e® 0e®q

Remark. If 0 < £ < 1 then obviously sup > sup, and so C' = R" entirely. The test becomes trivial, so we
0O 0eOg
restrict it to k > 1.

Example: (5.24). Let X,...,X,, be i.i.d. Gaussians with known o2 > 0 but unknown y € R. Fix p € R.
Suppose Hy is i = p10 and Hy is p # po. Hence © =R, 0¢ = {uo}, and ©1 = R—{uo}. Also, for z = (x1, ...,x,) €
R™,

n T — 1)2
Bl = Follny ) = 1 — exp(_(zu)).

i1 oV 2T 202
Our null region contains p only so sup f.(z) = f,,(z). Also recall that the MLE in this case is the sample
/,1,6@0
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mean. That is,

sup fu(x) = fa(x)

neoe

where &t = (1 + ... + &, ) /n. Therefore,

C={xeR": fa(z) > kfu(x)}

That is,

202

xeR":ﬁexp(_(xi_x)z‘*(m_lm)z) ?k}
zeR":exp (—%iz il((xl -7)? - (z —M0)2)) 2 k}

J=1

zeR"™:—n(

:{J;ER”:

Intuitively, the rejection region consists of points where the sample mean is far from py.

= {x eR™: Zn: I:(xi - % Zn: z;)? - (z; - u0)2:| < -207 logk}
{ ixj —110)? < —20% log k}

n
ij—ﬂo

>\/202log k/n} .

Beginning of Oct.27, 2021

Remark. Recall that the sample mean is a sufficient statistic for y, so C is a function of a sufficient statistic.

This is reasonable since a sufficient statistic has “sufficient information” to estimate p.

Remark. Denote X = (Xq,..., X,,). If Hy is true, then

2

2
QIOgM- - (;Z;(Xi—,uo)) (J\l/ﬁ ;(X"_“O)) ’

Spgee, fo(X) o2

whose distribution is the square of a standard normal, i.e., a x2. In general, even if X;’s are not Gaussian, as

n — oo, the quotient above still converges to a x3.

Remark. In the Gaussian case, the p-value is

n

1
EZX’L'_'“O

i=1

n

1
EZ%‘—NO

i=1

2

p(a:) = ]P)Go (

)

2.5 Case Study: Alpha Particle Emissions

The following table counts particle emissions of americium 241, Am-241. During 1207 disjoint intervals of 10 seconds

each, a number m of alpha particle emissions were observed.
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m 0,lor2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >17
# of Intervals 18 28 56 105 126 146 164 161 123 101 74 53 23 15 9 b}

Question. What is a good model of understanding what’s going on?
We claim that the number of particle emissions in each of the intervals can be modelled as 1207 i.i.d. Poisson
distributions with unknown mean A > 0. This is sensible since we are observing “low probability events” but
repeated many times.
Recall
\E

Pyx(X =k)=e?- I
Since the average number of alpha particle emitted is 8.392, our naive guess is A ~ 8.392. (Note this is also the
MLE.)

Beginning of Oct.29, 2021

For j > 0, let ¢; := P(#emission = j) so that )_ ¢; = 1.
3=0
Let Hy be that the emission follows a Poisson distribution, i.e., g; = e *\’/;! for some A > 0, and let the alternative

hypothesis H; be that the emission does not follow a Poisson distribution.

We now consider a multinomial distribution with 1207 trials of rolling a 16-sided die (there are 16 columns in the
table above) and use this to model the probabilities of the counts of appearances of each side. Hence, we consider
the random variables X1, ..., X;¢ defined by

fo(x) := fo(x1,...,216) = P(X; = x;Vi) = 1207! H

j=1 Zj:

subject to
16
2 € Z,1<j <16, x; = 1207
j=1

and ¢; = ¢;(0), depending on 6.

(¢;(\) denotes ¢; depending on #.) We will compute the GLR test, i.e., we compute

Supgeo fo(2)
SUPgeq, fo(x) .

16 %7 16
For the numerator sup fy(z), we want to maximize 1207! ] | j—| above all {¢1, ..., q16} subjectto g; >0 and ) ¢; = 1.
0e® j=1 JJ] . j:1

Note that

Lj

q; o X
fo(w) = 1207 ] = - miq7 ™" = ;fe(x)

G Lje

0
0q;

16

Using Lagrange multipliers, the constraint function ) ¢; has partial 1 for all components; that is, to maximize fy,
j=1

we just need the partials of fy to have the same number for each components. That is, the extrema is obtained

when zi:29:...:216=¢1:G2: ... : q1g, OF
16
1 2 16
CIN - R . and Ygi=1.
T1 X2 Z16 j=1
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16
Since ) x; = 1207, this gives
j=1
g = —2 1<i<16.
1207

16

Notice on the boundary of " ¢; = 1, some g; = 0, so the product fy(x) is zero. Also, for each 6, fy is continuous. We
j=1

found only one critical point in the interior, so it must be a maximum!

Therefore,

bup fo(x) =1207!

H (mJ/f(')?)“ . (1)

J
Now we need to compute the supremum over 6 € ©g. In this case ¢,’s needs to satisfy ¢; = e *\77/;! for 1 < j < 16.
Note that ¢; and ¢y are slightly different. The sumpremum over these is numerically computed to be A ~ 8.366,

pretty close to our original naive guess that A = 8.392.
Beginning of Nov.1, 2021
The likelihood of the emission having a Poisson with parameter \ is the following.

}_l[

NG DI (AR X2[2)T [1- e S Nl
;! z1! 16!

where the second term corresponds to the probability of having 0,1 or 2 emissions for a total of x1 times and the third
term represents the probability of having > 16 emissions for x4 times.

Therefore, the likelihood ratio sup fo(z)/ sup fo(x) is approximately

0e®q

21/1207 o 216/1207 oo 11_5[ /1207 *
e 837(1+8.37+8.372/2) | | e 83752837 1/il | 53| eS378.375+1/(j +1)!

€y

—_—>0 D 0<
We can find the asymptotic distribution of the GLR as m = 1207 tends to infinity.
How? If X, ..., X3¢ are i.i.d. and X := (X3, ..., X16), then

SUDgeo, fo(X)
Supgeo Jfo (X)

SUPgee fo(X)
SUPgeo, fo (X)

converges in distribution to x7 as n = 16 tends to .

2log ™

or equivalently - 2log

We also claim that as m = 1207 tends to oo, (*) converges in distribution to a x? with 16 — 1 — 1 = 14 degrees of
freedom. If the distribution says that the observed (*) is unlikely, then we can reject the null hypothesis. We finally

return to our original question — whether or not the original emission follows a Poisson distribution.

Proof. For simplicity, let p;(\) be the probability of the j® entry of column occurring for a Poisson with parameter

A (e.g., p1(\) corresponds to a Poisson with parameter X evaluating to 0, 1, or 2). Then

o SUPgeo fe(X) (X /1207)X
2! SuPgee, fo(X) q (p; (M)
i 7 7
]2
_ X; j/12()7
=2-1207- 21207 [ ) ]
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X;/1207

If the emission resembles a Poisson, the quotient should be close to 1. We let a := X;/1207 and

D
b:=p;(X). Doing Taylor expansion of h(a) := alog(a/b)Jaround a =b gives
h(a) = h(b) + h'(b)(b-a) + %h”(b)(b -a)>+0((b-a)?).

The first derivative at a is

%(alog(a/b)) - [% . log(a/b)] -1

a=b
At a, the second derivative is 0 + 1/a evaluated at b, i.e., 1/b.

Therefore )
n(a) = (a-b) + D
Putting this back,
X; X;/1207 - p;(N))?
21 2.1207 (\) |+ 1207
08(-) Z[1207 ( )] ]21 2,00

16 X
=2-1207- A
L - jzlpx )]

3 X; —1207p;(N))* _ f (X; —IE,\Xj)z.
j=1 1207pj(/\) EAXJ'

j=1

This gives the Pearson’s chi-squared test statistic! O

Beginning of Nov.3, 2021

For convenience call the last statistic S. With the corresponding A ~ 8.366 and the observed z;’s, we have S ~ 8.94.
We claim that S is approximately a chi-squared distribution with 14 degrees of freedom. First recall that X1, ..., X4
follow a multinomial distribution with X; + ... + X1 = 1207 and that each X is itself a binomial distribution. If

X1,...,X16 are independent, then

2
X;-EX; 2 (X -EX;
Z ( ) => | =.==2| ~sum of 16 independent Gaussians by CLT.
X; =1\ VEX;
We don’t get a x%; because X, ..., X1 are not independent; heuristically, X5 = 1207 - X; — ... - X35 and EXy6 =
1207 - EX; - ... - EX;5. This implies

2
(X16 -EXy6) = (Z(Xi -EXi))

Therefore,

Z (X “EX))? (S5 (X - EXD))°
X; EXig
and it (somehow) has a distribution of 15 independent standard squared Gaussians if A is fixed. (For simplicity we
denoted E, X; by EX;.) However, X is not fixed! We used the fixed A from the MLE but ) itself should also be a
function of Xi, ..., X16. Therefore we lose another degree of freemdom, ending up having a chi-squared with 14
degrees of freedom.

Then the p-value is P(S > 8.94) ~ 0.835 so the data does probably follow a Poisson distribution.
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Chapter 3

Comparing Two Samples

3.1 Comparing Independent Gaussians

Suppose X1, ..., X,, are i.i.d. Gaussians with unknown ux € R and known 0% > 0. Suppose Yi,...,Y,, are i.i.d.

Gaussians with unknown py € R and known variance o3 > 0. Also assume that X, Y are independent.

Goal. Give a confidence interval for ux — py.

Notice that
12 12
—E X, - — E Y. |- -
(n¢=1 m & ]) (x = py)

has mean 0 and variance 0% /n + 02 /m, so the above divided by \/W gives a standard normal. (Recall
that adding / subtracting independent Gaussians still result in a Gaussian, so this entire thing is obtained from a
shifted Gaussian divided by some constant. This of course is also a Gaussian.) That is, has mean 0 and variance
0% |n + 0% /m, so the above divided by \/W gives a standard normal. (Recall that adding / subtracting
independent Gaussians still result in a Gaussian, so this entire thing is obtained from a shifted Gaussian divided by

some constant. This of course is also a Gaussian.) That is,
1 1
_ (52?:1Xi—527:1yj)_MX+MY

Vo [n+oi[m

1 t 2 1 t 2
Therefore, P(-t < W <t) = —— f e~ 12 ds, i.e., the expression below equals —— f e 1% ds:
( ) T P q ol

— 0'2 0-2 _ 0.2 0.2
IP’(X—Y—t X Xy —py <X -Y+t X+ X
n m n m

This gives a confidence interval for pux — iy .

W

~N(0,1).

Beginning of Nov.8, 2021

3.2 Mann-Whitney Test

Let m,n > 0 be integers. Suppose we run an experiment on m + n people, e.g., to cure a disease. Among all m +n
people, n of them are chosen uniformly at random to be in the control group, and the remaining m people are in

the treatment. The null hypothesis is that the treatment has no effect on people.
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Suppose we order the people by integer 1,...,m+n so that 1, ...,n correspond to the control group and n+1,...,n+m
correspond to the greatment group.

Suppose the quality of outcome of the i person is z; € [0, 1] (high score good, low score bad).

Let us reorder x1, ..., Typen by 7, <2, <...< 2y, Where {I;} ={1,...,m+n}.

m+n

We define the test statistic to be

Z = mian{léljén]w
j=1
the sum of “ranks” of people in the control group. Ideally, if the null hypothesis is true (i.e., the treatment has no
effect), then the ranks should be completely random, i.e., for each I;, the assignment of values {1, ...,m +n} should
all be equally likely. There are (") such assignments, each with probability ("””) For k > 0, write ¢, .1 as
the number of ways k can be written as a sum of n distinct integers among elements of {1, ...,m + n}, disregarding

order (because (m”‘) disregards it). Then
Cn,m,k

(")

For small values of m, n, we can easily compute P(Z = k) explicitly, whereas for large m, n, CLT may help.

P(Z=k) =

Observe that, given m,n, 3 < Z <2(m +n) — 1. For exmaple:
Beginning of Nov.10, 2021

Example: (6.4). Suppose n =2, m = 3. Then 3 < Z < 9. The null hypothesis test is that the treatment has
no effect on people. By inspection, it is easy to see that
1/10 k=3,4,8,9
P(Z=k)=
1/5 k=5,6,T.
Then EZ = 6. We reject the null when Z is close to 3 or 9 (i.e., when the treatment either has terrible bad
effect or amazing effect). We consider the hypothesis that we reject when |Z — 6| > ¢. If we observed that
Z=7,then|7-6|=1, and
4
P(|Z-6/21)=1-P(Z-6) = =
so we are not confident in rejecting the null. However, if we observed that Z =9, then
1 1 1
P(|Z-6|219-6])=P(Z=30r9)=—+— = —,
10 10 5

in which case we are relatively more confident in rejecting the null.

Example 3.2.1. If Xq,..., X,,, Y1,...,Y, are i.i.d. When m and n are large, we want to find an ultimate way
to approximate Z. (Like before, we have m people in the treatment group and n in control group, and Z
denotes the sum of ranks in the control group.) Then,

> lxey

J=1

ANgE!
||M§

n
Z Ixay<vy

I
—

3

as the sum simply rearranges things. Then, notice that, after fixing j, Z 1x,<v,;, denotes the rank of Y -7,

i.e., number of X(;y’s less than Y(;): among the first (rank of Y(;)) ranks j are from Y and the remaining
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(rank of Y(;) minus j) must come from X’s. Hence,

> Ix o<y = > (rank of Y{;) - j).

j=li=1 j=1

NgE!

Since " (rank of Y{;)) = Z, we have
i1

Under null hypothesis, X, ..., X,,,Y1,...,Y,, are i.i.d., and if the distribution of X; is continuous then
Elx, <y, = 1/2. Therefore,

_ m(m+1) Ly, oy, = % . n(n2+ 1) _ n(m +2n+ 1)'

EZ

To compute the variance, we first disregard the constant n(n +1)/2. Since var 1x,y; = 1/4, Elx,<y, 1x,<v;, =

1/3 (needs X; to be the smallest among all three), and Elx, .y, 1x,<y; = (1/2)? = 1/4, we have

var(Z) =var(}. > 1x.<v;)
i=1 =1

Z > cov(lx,<y;, Lx<ys)

+ + _ + (m2 - m)(n2 -n)(0)

Beginning of Nov.12, 2021
In summary, the following has mean zero and variance 1, assume Hj is true:

Z-n(m+n+1)/2
Vmn(m+n+ /12

As m,n — oo, the above converges to a standard Gaussian random variable (so e.g. we can compute the p-value

approximately).

3.3 Signed Rank Test

In this section we compare dependent samples.
Suppose X;,..., X, are i.i.d., and 71, ..., Z, are i.i.d., but X and Z are not necessarily independent. For example
consider a medical study where X; denotes the blood pressure of the i patient before treatment and Z; the one

after treatment. To check the efficacy of the treatment, we examine Z; — Xy, ..., Z, — X,,. and rank them

|Z[l _Xll‘ < |Z]2 —X]2| <...< |Z[n —X[,n|‘
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We consider the statistic (assuming Z; — X; + 0)
W =" ranks of positive X; - Z; = ) max((rank of Z; - X;) -sgn(Z; - X;),0).

=1
Let the null hypothesis be that the treatment has no effect. Under this, Z; - X; and X; - Z; should have the same
distribution, so sgn(Z — X) has probability 1/2 of being 1 and 1/2 for -1.
Let Yy,...,Y,, beii.d. uniformly distributed in {-1,1}. Then

W =" max(iY;,0).
=1

We can use convolutions to explicitly compute W, since

1 with probability 1/2
max(1Y;,0) = P w1/

0 with probability 1/2.

Since EW =n(n +1)/4 and var(W) = n(n+1)(2n +1)/24 ~ n3/12,
W, -n(n+1)/4

V/n3/12

converges to a standard Gaussian as n — oo by Lindeberg’s CLT.
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Chapter 4

Analysis of Variance, ANOVA

Beginning of Nov.15, 2021

4.1 General Linear Model

Let A be n x m with known (deterministic) constants and let 3 € R™ be an unknown vector of (deterministic)
constants. Let e € R” be a random vector. Suppose our observation of data is the vector Y ¢ R™ given by Y = AS +e.

Goal. Try to estimate 3 when we only have Y and A.

Example: (7.1) One-Way ANOVA. Let ny,n9,n3 > 0 be integers and let n = ny + ny + n3. Let 81, 82, B3 be

unknown real numbers.

Define
Tnixi Ongx1i Opyxa B1
A:=]0p,x1 lngxi Ongxa B=|B]-
Ongx1 Ongx1 Lngxa B3

Let 02 > 0 be fixed. Let Y7, ...,Y,, be independent random variable such that

(1) For1<i<mny,Y;isaGaussian with mean $; and variance o?;

(2) Forn+1<i<ng+ne,Y;isa Gaussian with mean 3, and variance ¢2; and

(3) For each nq + no + 1 <i<n, Y, is a Gaussian with mean (5 and variance 2.

Finally, let € € R” be of i.i.d. Gaussians with mean 0 and variance o2. Let Y = (Y1, ...,¥;,)T so that
Y =AB+e.

Question. How to estimate 3;’s? Is it true that 8; = 85 = 83?

More generally, we could have ny, ...,n,, and consider

1n1><1 0n1><1 On1><1 ﬁ
1
Ongxl lngxl Ongxl
A: B =
B
Onmxl Onmxl 1nmxl
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For example, we could set 3; = 35 = 83 to be our null hypothesis. Recall that we know to test the difference

of Gaussians using the difference of sample means.

Example: (7.2) Linear Regression. = Another example of the general linear model: suppose we have

B1, B2 € R unknown and we have 1, ..., z,, € R constant. Fix o2 > 0. Define

1 I

A 1z 7 5= [51‘|.
P o
1 z,

Let € € R™ be the column vector consisting of i.i.d. Gussians with mean 0 and variance o2. Then Y = AS + ¢
says that for all ¢ with 1 <i < n,
Yi =P+ Bazi + €.

Example: Another View of Linear Regression — Least Squares. Let z1,..,,2n,¥1, .., yn € R be given. We

want to find /31, 3> € R minimizing

i(m— (By + Bazi))>.

Beginning of Nov.17, 2021

Back to one-way ANOVA:

Recall that Y; = 3, + ¢; for all m;,_; + 1 <i <m,,. Correspondingly, for each j, we define
1™
Y] = Z Y;h
n] i:mj,ﬁ—l
the sample mean of the random variables that have mean 3;. Hence EY; = ;. Previously, we said that the

difference of two Gaussians can be transformed into a standard Gaussian:

V=Y -8 -5 _

(0,1).
mzl/nj + 1/’I’L;c
P
More generally, for any linear combination ) ¢;Y;, we have
j=1
Y =38 ¢iB;
j=1C1j 31J3NN(071)'

P2/
o\/ X5 G n;

On the other hand, suppose further that o2 is also unknown. For each j, we define the j® sample variance to be

Then the following has a student ¢’s distribution with n; + nj;, — 2 degrees of freemdom (see Quiz 5 P4):

(Y;=Y) - (8- Br)
S\/1/nj +1/ny
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where ) )
5 - (nj =1)S5 + (ny - 1)S;;
n; +ng — 2 '
p
More generally, the following has student ¢’s distribution with —p + )" n; degrees of freedom:
j=1

7 2
ZjaaYs—Eia il where S? = —Zﬁ:l(nj 15 ) ™

b
S\/Xh_ &/, P XN

p
Upshot. We can get confidence intervals for )" ¢;3;, regardless of whether we know o2.
j=1

>0 D 0<

p
Now we test our hypothesis that 5, = 52 = ... = 8,. Note that if we consider (*) with Z ¢; =0, then
j=1
p p
>, ¢iBi=51),¢ =0,
j=1 j=1

p p

assuming the hypothesis is true. Conversely, if for all combination )  ¢; = 0 we have ) ¢;3; = 0, then 3; = j3;:
j=1 j=1

indeed, letting ¢; = 1,¢p = -1,¢; = 0 for all j > 3 implies 51 = 35, and likewise all 5’s are the same. Hence

p P
ﬂl = 52 =..= Bp <~ Z Cjﬁj =0 for all {Cj}§=1 with Z Cj = 0. (1)
j=1 j=1
[ Proposition: (7.4) F-Test
We define o )
Fe sup (X8 6Y ;=501 ¢iB5) .
e ST
Idea: if all B’s are equal then F' = 0. Also this statistic looks for the “worst” violation of 5 = ... = (.

The supremum can be attained and Lagrange multipliers give an explicit formula:
p . _ _
F=872% n[(Y;-Y)-(8: - B))
j=1

my

_ mp 4 _ o P
where Y := (m;,)™' > Y;, m, = > n;,and B =EY = (mp)~! Y EY; = (mp)~" > npBp.
j=1 j=1 J=1 J=1

Moreover, F'/(p — 1) has Snedecor’s F-distribution with p — 1 and m, — p degrees of freedom.

Beginning of Nov.19, 2021

Proof. Under the null hypotehsis 5 = ... = §p, 5; = B, so
p —
F=52%n;Y;-Y)~.
j=1

P P —
F can be found by minimizing the denominator, or just »_ c? /nj, subject to (1) the top being fixed, i.e., >  ¢;(Y ;-
j=1 J=1
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B;) and (2) ch =0.

Recall that 1fwe were to minimize h(c, ..., ¢,) subject to r(cy,...,¢,) = s(c1, ..., ¢p) = 0, we need to solve

Vh =X +Vr+AaVs for some A\, Az € R.

In other words,
2cifnj=M(Y;-B;)+Ay  forall1<;j<p.

Using lemma 7.6 in notes, we can find a minimum at which

1cJY chj P _ _
AL AL ) = (T -¥) - (5:-F),

P

Since Z c? /n; is strictly convex and we found a minimum (indeed z* only has a global min), it must be the
j=1

unique global minimum. O

4.2 Linear Regression

Example: (7.7). Suppose we are presented with data (z1,y1), ..., (€n, ¥y, ). We want to find a line mz + b
that fits the data “best”. Among various ways to define the “wellness”, a standard one is to minimize the

least squares, i.e., to find m, b minimizing the following:
n
F(m,b) = 3" (yi = (ma; +b))*.
i=1

Since this function is strictly convex, any critical point must be the global minimum. In this case,

m = Zi:l(,xi —7) (v ~7) and b=7y-mZT.

Y1 (wi—7)?

Beginning of Nov.22, 2021

Alternate Presentation of Linear Regression

(7.2 revisited) Let x1, ...,z € R. Let 02 > 0. Let 51, B2 € R unknown. Let e, ..., €, be i.i.d. Gaussians with mean zero

and variance o2 > 0.

We want to find 34, 32 so that Y; = 8 + S22; +¢; for all ¢; that is, Y; - [81 + B22;] = €;. We consider estimators that
n

are linear combinations of Y;’s, i.e., estimators of form Z ¢;Y;. Goal: find unbiased estimators for 31, 2.
i=1

Claim. The two versions are equivalent.
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Theorem: (7.8)

Let ¢y, ...,c, € R be such that ) ¢;Y; is unbiased of 5. Then
=1

n n
var()_ ¢;Y;) < var() ¢)Y;)
i=1 =1
for any other combination coefficients i, ..., ¢;, € R. Furthermore,

Yis (Yi - Z?:l Y;/n)(z; - Z?:l zj/n)
St (T = Xy x5/n)?

Y - ©
)

n
Similarly, if Z ¢;Y; is unbiased for 3, then
i=1

var()_ ¢;Y;) <var() ¢iY;)
iz i=1

and

S

ZQY; :?—(1)

Proof. (First statement.) First note that E()_ ¢;V;) = > (¢;(B1+ Boxi +€;)) = Y. ¢;(B1 + B2x;). By assumption this
i=1 =1 =1
equals 32, so

ZCZ—:O ZC,L(EZ =1. (1)
i=1

i=1

n n n
On the other hand var(}_ ¢;Y;) = ) & var(Y;) = o* > ¢? since var(Y;) = var(B; + Box; + €;) = var(e;) = o2,
i=1 i=1 i=1
n
Thus, we’d like to minimize o2 > ¢ subject to (1). Using the lemma on Lagrange multiplier, this is mi minimized
i=1
when
T — T
G~ on .
-1 (z; -7)

e}
L 1 Yi(x; -7
Y.cYi= M
i=1 Yh-1(zx =)

Since Y Y (z; -7) = Yn(Z - T) = 0, this can be re-written as

i=1

Z ;Y = 21:1(3/11 - Y)(fi 2— ) '

i=1 Yh-1(zk - 7)

The second statement has an analogous proof, except that now the constraints are swapped. O
4.3 Logistic Regression
We denote the logistic function as
h(x) := L for all z € R.
1+e®

Note that lim A(z) =1and lim h(z)=0.

Tr—>00
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We use logistic regression to classify data into two bins, e.g., classifying emails into spam or “not spam” or deter-

mining if a turkey is cooked or uncooked, based on a threshold of h(x).

Let Xi,...,X,, beiid. and let g : R - {0,1} be an unknown function. Let Y; := g(X;). (Example: assume we've

never seen a turkey before; X; = temperature of i turkey; ¢(X;) = 1 if cooked; and g(X;) = 0 if uncooked.)
Beginning of Nov.29, 2021

Note that Y7, ..., Y,, are i.i.d. Bernoulli, so there is some p € [0, 1] known such that p = P(Y; = 1). Assume that there
exist a,b € R such that p ~ h(ax + b) ~ g(x). Then the likelihood function is

£(a,b) = pri(l —p)l_yi ~ H h(azx; + b))% [1 - h(az; + b)]1 Y,
i=1 i=1

The best candidates for a, b might be given by the MLE.
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