

Q1

Proof. Notice that we have another definition for $Y(s)$:

$$Y(s) = \sup\{t \in \mathbb{R} : F(t) < s\} = \inf\{t \in \mathbb{R} : F(t) \geq s\}. \quad (1)$$

Furthermore, by definition of supremum and infimum, whether or not the inequalities are strict impose no effect, so \leq and $<$, \geq and $>$ are freely interchangeable.

Now, given $F : \mathbb{R} \rightarrow [0, 1]$, the CDF of X , let $Y : \text{Range}(F) \rightarrow \mathbb{R}$ be its generalized inverse. Then by (1) we have

$$Y(F(t)) = \inf\{\tilde{t} \in \mathbb{R} : F(\tilde{t}) \geq F(t)\} \leq t$$

since t is in the set of which the infimum is taken. A symmetric argument for $F(Y(t))$ can be obtained analogously, and thus

$$Y(F(t)) \leq t \quad \text{and} \quad F(Y(s)) \geq s. \quad (2)$$

Also observe that Y is monotone increasing: if $a \leq b$ then

$$\{x : F(x) \geq b\} \subset \{x : F(x) \geq a\}$$

so

$$\inf\{x : F(x) \geq b\} = Y(b) \geq Y(a) = \inf\{x : F(x) \geq a\}. \quad (3)$$

Now we prove $\mathbb{P}(Y \leq t) = F(t)$. This is true because on one hand

$$\begin{aligned} \mathbb{P}(Y \leq t) &= \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : Y(s) \leq t\}) \\ &= \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : F(Y(s)) \leq F(t)\}) \\ &\leq \mathbb{P}_{\text{unif}}(\{x \in [0, 1] : s \leq F(t)\}) \quad [\text{By (2)}] \\ &= \int_0^{F(t)} 1 \, ds = F(t), \end{aligned}$$

and on the other hand

$$\begin{aligned} F(t) &= \mathbb{P}(X \leq t) = \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : s < F(t)\}) \\ &= \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : Y(s) < Y(F(t))\}) \\ &\leq \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : Y(s) < t\}) \quad [\text{By (2)}] \\ &= \mathbb{P}_{\text{unif}}(\{s \in [0, 1] : Y(s) \leq t\}) \quad [\mathbb{P}(Y(s) = t) = 0] \\ &= \int_0^t Y(s) \, ds = \mathbb{P}(Y \leq t). \end{aligned} \quad \square$$

Q2

Proof. Notice that the inverse transformations are given by

$$U_1 = \exp\left(-\frac{X^2 + Y^2}{2}\right) \quad \text{and} \quad U_2 = \frac{1}{2\pi} \arctan(Y/X).$$

(The first is obtained by taking $X^2 + Y^2$ to cancel out U_2 and the second is by taking Y/X to cancel out U_1 .)

Then, the Jacobian for the transformation $(X, Y) \mapsto (U_1, U_2)$ is

$$\begin{aligned} \begin{vmatrix} \partial U_1 / \partial X & \partial U_1 / \partial Y \\ \partial U_2 / \partial X & \partial U_2 / \partial Y \end{vmatrix} &= \begin{vmatrix} -\exp(-)X & -\exp(-)Y \\ -\frac{1}{2\pi} \frac{1}{1+Y^2/X^2} \frac{Y}{X^2} & \frac{1}{2\pi} \frac{1}{1+Y^2/X^2} \frac{1}{X} \end{vmatrix} \\ &= \left| -\exp\left(-\frac{X^2+Y^2}{2}\right) \frac{1}{2\pi} \frac{1}{1+Y^2/X^2} \left(1 + \frac{Y^2}{X^2}\right) \right| \\ &= \frac{1}{2\pi} \exp\left(-\frac{X^2+Y^2}{2}\right). \end{aligned}$$

Therefore,

$$\begin{aligned} f_{X,Y}(x, y) &= f_{U_1, U_2}(u_1, u_2) \mathcal{J}(u_1, u_2) \\ &= 1 \cdot \frac{1}{2\pi} \exp\left(-\frac{x^2+y^2}{2}\right) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}} e^{-y^2/2}. \end{aligned}$$

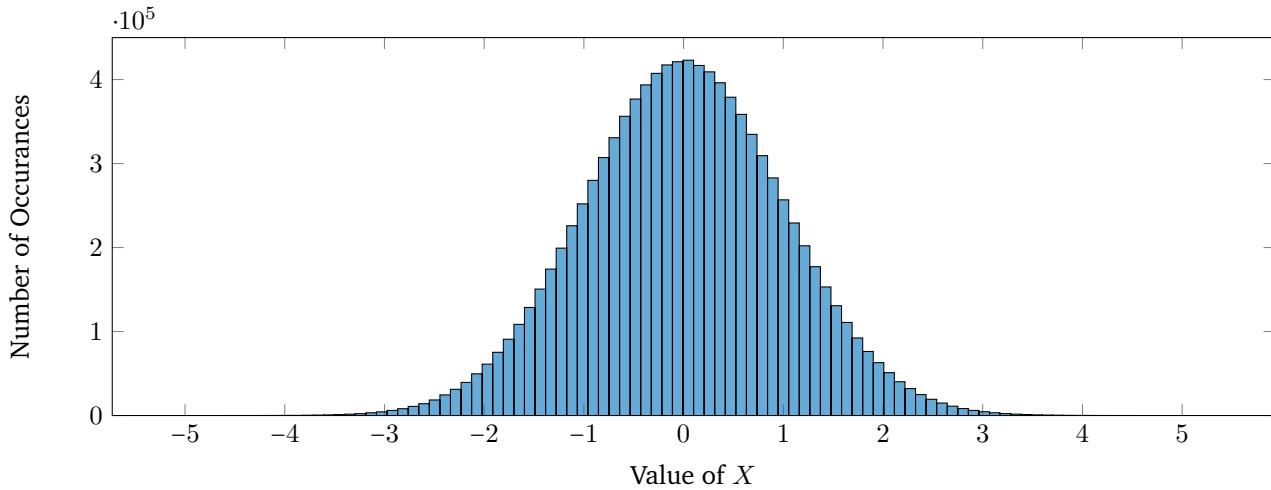
A simple calculation shows that the X -marginal and Y -marginal indeed have the PDFs of a Gaussian, and the claim therefore follows as $f_{X,Y}(x, y) = f_X(x)f_Y(y)$. \square

Code and output for X below:

```

1 U1 = rand(1,10^7);
2 U2 = rand(1,10^7);
3 X = sqrt((-2 * log(U1))) .* sin(2*pi*U2);
4 Y = sqrt((-2 * log(U1))) .* cos(2*pi*U2);
5
6 histogram(X,100);

```



Q3

Solution. According to the Delta method, if $\sqrt{n}(Y_n - 0)$ converges to $\mathcal{N}(0, 1/4)$ in distribution then

$$\sqrt{n}(f(Y_n) - f(0))$$

converges in distribution to $\mathcal{N}(0, f'(0)^2/4) = \mathcal{N}(0, \cos(2)^2/4)$. Then by identity $\mathbb{E}(Z^4) = 3\sigma^4$ we obtain $\mathbb{E}(Z^4) = 3\cos^4(2)/16$.

Q4

Solution. According to the second-order Delta method, since $\sqrt{n}(Y_n - 0)$ converges in distribution to $\mathcal{N}(0, 1/4)$, $f'(0) = 0$, and $f''(0) = 1 \neq 0$, we see that

$$n(f(Y_n) - f(0))$$

converges in distribution to $\chi_1^2 \cdot \sigma^2 f''(0)/2 = \chi_1^2/4$. Thus $\mathbb{E}[Z] = \mathbb{E}[\chi_1^2]/4 = 1/4$.

Q5

Solution. It is clear that in this case

$$\alpha = (\mathbb{E}X)^2/\mathbb{E}X^2 \quad \text{and} \quad \beta = \mathbb{E}X^2/\mathbb{E}X,$$

so the method of moments gives

$$\hat{\alpha} = \left(\frac{1}{n} \sum_{i=1}^n X_i \right)^2 \left(\frac{1}{n} \sum_{i=1}^n X_i^2 \right)^{-1} = \frac{1}{n} \left(\sum_{i=1}^n X_i \right)^2 \left(\sum_{i=1}^n X_i^2 \right)$$

and

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^n X_i^2 \right) \left(\sum_{i=1}^n X_i \right)^{-1} = \left(\sum_{i=1}^n X_i^2 \right) \left(\sum_{i=1}^n X_i \right).$$

Q6

Solution. To avoid confusion, I will replace σ by α since it is an arbitrary variable. Then

$$\mathbb{E}X = \frac{1}{2\alpha} \int_{-\infty}^{\infty} xe^{-|x|/\alpha} dx = 0$$

as the integrand is odd, and

$$\begin{aligned} \mathbb{E}X^2 &= \frac{1}{2\alpha} \int_{-\infty}^{\infty} x^2 e^{-|x|/\alpha} dx = \frac{1}{\alpha} \int_0^{\infty} x^2 e^{-x/\alpha} dx \\ &= \frac{1}{\alpha} \int_0^{\infty} (u\alpha)^2 e^{-u} du = \alpha^2 \int_0^{\infty} u^2 e^{-u} dx = \alpha^2 \Gamma(3) = 2\alpha^2, \end{aligned}$$

so $\alpha = \sqrt{\mathbb{E}X^2/2}$. The method of moments estimator for α is therefore

$$\hat{\alpha} = \left(\frac{1}{2n} \sum_{i=1}^n X_i^2 \right)^{1/2}.$$

Q7

Solution. Code and scatterplot attached.

```

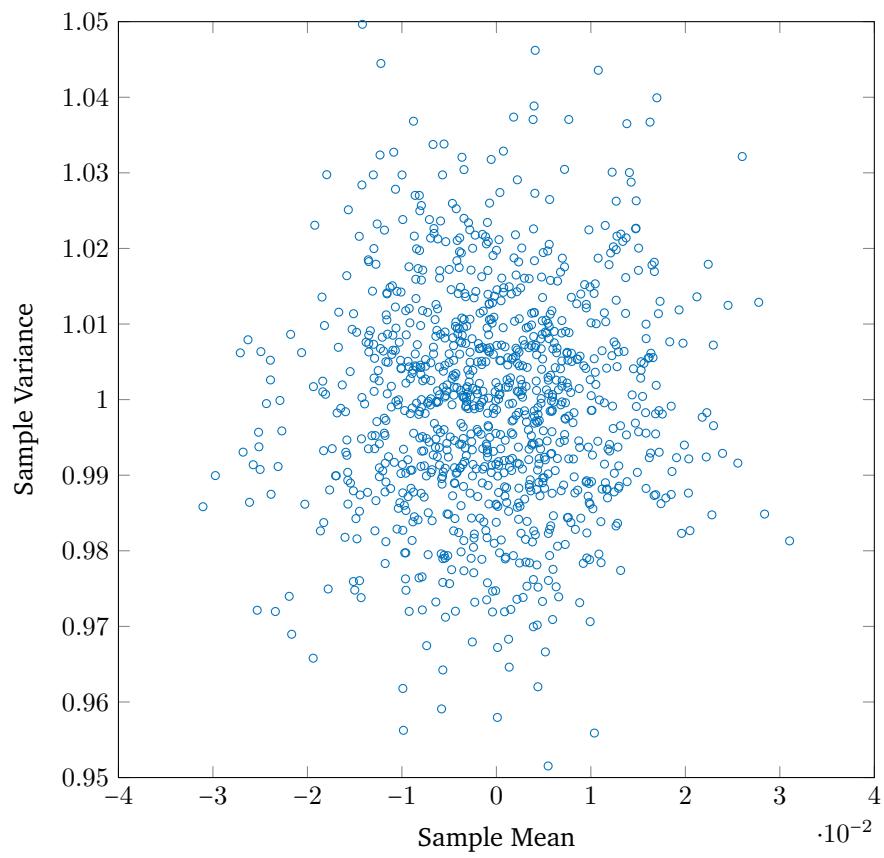
1 sample_mean = zeros(1,1000);
2 sample_var = zeros(1,1000);
3 for i = 1:1000
4     sample = zeros(1,10000);
5     for j = 1:10000
6         sample(j) = normrnd(0,1);
7     end
8     sample_mean(i) = mean(sample);
9     sample_var(i) = var(sample) / 9999 * 10000;

```

```

10 end
11
12 scatter(sample_mean, sample_var);

```



Q8

Solution. Code and output attached below. Since tikz is not very good at handling large amount of samples, the plot corresponds to $n = 10^6$.

```

1 Gaussian_array = randn(1,10^7); % 1*1mil Gaussian array
2 c = randn(2,10^7); % 2*1mil Gaussian array, first row Z1; second row Z2
3 chi_sq_array = sum(c.^2); % chi_sq with df2 = Z1^2 + Z2^2
4
5 quotient_array = Gaussian_array ./ (chi_sq_array /2).^-0.5;
6
7 yyaxis left
8 histogram(quotient_array);
9 xlim([-10,10]);
10 ylim([0,2*10^5]);
11 hold on
12
13 yyaxis right
14 x = [-10:0.1:10];
15 stu = tpdf(x,2);
16 plot(x,stu,'r', 'LineWidth', 3);

```

```
17 xlim([-10,10]);  
18  
19 legend
```

