

Math 408 Quiz 3 Sketch

Qilin Ye

October 4, 2021

Q1

Proof. Note that for each x_i ,

$$f_\theta(x_i) = \begin{cases} 1/\theta & x_i \leq \theta \\ 0 & x_i > \theta. \end{cases}$$

Since X_i 's are i.i.d., for $x = (x_1, \dots, x_n)$ we have

$$f_\theta(x) = \prod_{i=1}^n f_\theta(x_i) = \theta^{-n} \chi_{[0, \theta]}(\max_{1 \leq i \leq n} x_i).$$

We see that $f_\theta(x)$ can be written entirely as a function g_θ depending on $X_{(n)}$ (and an identity function $h(x)$). Therefore by the factorization theorem $X_{(n)}$ is sufficient. Also, since $\chi_{[0, \theta]}(\max x_i)$ cannot be re-written as a function depending on $(x_1 + \dots + x_n)/n$ times a function depending on x , we see that the sample mean is not sufficient. \square

Q2

Proof. (1) Recall the identity $a^b = \exp(b \log a)$. Therefore the joint distribution is given by

$$\begin{aligned} f_{X_1, \dots, X_n}(x_1, \dots, x_n) &= \prod_{i=1}^n \frac{x_i^{\alpha-1} \exp(-x_i/\beta)}{\beta^\alpha \Gamma(\alpha)} \\ &= \frac{1}{\beta^{n\alpha} \Gamma(\alpha)^n} \cdot \prod_{i=1}^n x_i^{\alpha-1} \cdot \exp\left(-\sum_{i=1}^n x_i/\beta\right) \\ &= \frac{1}{\beta^{n\alpha} \Gamma(\alpha)^n} \cdot \prod_{i=1}^n \exp((\alpha-1) \log(x_i)) \cdot \exp\left(-\sum_{i=1}^n x_i/\beta\right) \\ &= \underbrace{\frac{1}{\beta^{n\alpha} \Gamma(\alpha)^n} \exp\left((\alpha-1) \sum_{i=1}^n \log(x_i)\right)}_{g_\theta(Y)} \underbrace{\exp\left(-\sum_{i=1}^n x_i/\beta\right)}_{h(x)} \end{aligned} \tag{1}$$

which, by factorization theorem, shows that $\sum_{i=1}^n \log(x_i)$ is sufficient.

(2) Note that $\prod_{i=1}^n X_i = \exp\left(\sum_{i=1}^n \log(X_i)\right)$, so

$$g_\theta\left(\sum_{i=1}^n \log(X_i)\right) = g_\theta\left(\log\left(\exp\left(\sum_{i=1}^n \log(X_i)\right)\right)\right) = g_\theta\left(\log\left(\prod_{i=1}^n X_i\right)\right), \tag{2}$$

and modifying (1) using (2) shows that $\prod_{i=1}^n X_i$ is also sufficient.

(3) Since X_i 's are i.i.d., $\mathbb{E}(\prod_{i=1}^n X_i) = \prod_{i=1}^n \mathbb{E}X_i = \alpha^n \beta^n$.

(4) If $\beta = 1$ then $\mathbb{E}X = \alpha$. We know that $\bar{X} := n^{-1} \sum_{i=1}^n X_i$ is an unbiased and consistent estimator for α , and we know that $\prod_{i=1}^n X_i$ is sufficient. Furthermore $\text{var}(\bar{X})$ is finite. We define

$$\hat{\alpha}_n := \mathbb{E}_\theta[\bar{X}_n \mid \prod_{i=1}^n X_i].$$

It follows that $\hat{\alpha}_n$ is a function of $\prod_{i=1}^n X_i$ for all n :

$$\hat{\alpha}_n = g(Z) \text{ where } g(z) = \mathbb{E}_\theta[\bar{X}_n \mid \prod_{i=1}^n X_i = z].$$

By the total expectation theorem, $\mathbb{E}\hat{\alpha}_n = \mathbb{E}_\theta\bar{X}$ so $\hat{\alpha}$ is unbiased. Finally, by Rao-Blackwell,

$$\text{var}(\hat{\alpha}_n) \leq \text{var}(\bar{X}_n),$$

so $\lim_{n \rightarrow \infty} \text{var}(\bar{X}_n) = 0$ implies $\lim_{n \rightarrow \infty} \text{var}(\hat{\alpha}_n) = 0$. It remains to notice that this, along with $\mathbb{E}\hat{\alpha}_n = 0$, implies that $\hat{\alpha}_n$ is consistent: indeed, let $\epsilon > 0$ be given. By Chebyshev's inequality,

$$\mathbb{P}(|\hat{\alpha}_n - \alpha| > \epsilon) \leq \frac{\text{var}(\hat{\alpha}_n)}{\epsilon^2} = \frac{\text{var}(X)/n}{\epsilon^2} \rightarrow 0. \quad \square$$

Q3

Proof. For each x_i , the distribution function is given by

$$f_{X_i}(x_i) = \begin{cases} 1 & \theta - 1/2 \leq x_i \leq \theta + 1/2 \\ 0 & \text{otherwise.} \end{cases}$$

Since the X_i 's are i.i.d. we have

$$f_{X_1, \dots, X_n}(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } x_i \in [\theta - 1/2, \theta + 1/2] \text{ for all } i \\ 0 & \text{otherwise.} \end{cases}$$

In other words, the joint PDF can be written as

$$\chi_{[\theta-0.5, \infty)}(X_{(1)}) \cdot \chi_{(-\infty, \theta+0.5]}(X_{(n)})$$

which by the factorization theorem shows that the pair $(X_{(1)}, X_{(n)})$ is sufficient.

If we use $X_{(n)}$ alone, we lose information on how small the random sample can be, and likewise if we only use $X_{(1)}$ then we have no information on the maximum value of this random sample. \square

Q4

Proof. Let $W := g(Z)$ where $g(z) := \mathbb{E}(Y \mid Z = z) = \int_{-\infty}^{\infty} y f_\theta(y \mid Z = z) dy$. Since Z is sufficient, $f_\theta(x \mid Z = z)$ does not depend on θ . It follows that $f_\theta(y \mid Z = z)$, a function of x only, has the same property. \square