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Problem 1

Let X1, ...,Xn be a random sample of size n from an exponential distribution with unknown parameter θ > 0,

i.e., the PDF of X1 is θe−xθχx>0. Suppose we want to estimate the mean

g(θ) ∶= 1

θ
.

(1) Find the UMVU for g(θ). (Hint: Cramér-Rao.)

(2) Show that
√
X1X2 has smaller mean squared error than the UMVU, i.e.,

E(
√
X1X2 − 1/θ)2

is less than that of the UMVU.

(3) Does (2) contradict the definition of UMVU?

(4) (Optional) Find an estimator with even smaller mean square error than
√
X1X2 for all θ ∈ Θ.

Solution. (1) Claim: the sample mean
1

n

n

∑
i=1

Xi is the UMVU. In this case the UMVU is simply X ∶= (X1 +

X2)/2. The variance of X is var(X1)/n = 1/(nθ2). (In this case it’s just 1/(2θ2).) We now compute the

Fisher information IX(1/θ). Let λ ∶= 1/θ. Assuming xi > 0,

d2

dλ2
log fλ(X) =

d2

dλ2
log(

n

∏
i=1

λ−1e−xi/λ) = d2

dλ2
(

n

∑
i=1

log(1/λ) − xi/λ)

= d

dλ
[−n

λ
+ nx

λ2
] = n

λ2
− 2nx

λ3
.

Therefore Iλ(1/θ) = −E[n/λ2 − (2nX)/λ3] = n/λ2 = nθ2. Indeed we have

varλ(1/θ) =
1

IX(1/θ)
,

so Cramér-Rao shows the sample mean is the UMVU.

(2) Heilman said this question is best solved by brute force computation. Note that by independence

E(
√
X1X2 − 1/θ)2 = EX1X2 −

2

θ
E
√
X1X2 +

1

θ2
= (EX1)2 −

2

θ
(E
√
X1)2 +

1

θ2
= 2

θ2
− 2

θ
(E
√
X1)2. (1)
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It remains to compute E
√
X1 = ∫

∞

0

√
xθe−xθ dx = θ∫

∞

0

√
xe−xθ dx. Let

u =
√
x dv = e−xθdx

du = dx/(2
√
x) v = −e−xθ/θ.

Then

∫
∞

0

√
xe−xθ dx = −

√
xe−xθ

θ
∣
∞

x=0
+ ∫

∞

0

e−xθ

2θ
√
x
dx. (2)

Letting s ∶=
√
θ
√
x so that ds =

√
θ

2
√
x
dx, we have

∫
∞

0

e−xθ

2θ
√
x
dx = ∫

x=∞

x=0

e−xθ

2θ
√
x

2
√
x√
θ

ds = θ−3/2 ∫
∞

0
e−s

2

ds. (3)

By a well-known result that ∫
∞

−∞
e−s

2/2 ds =
√
2π we know ∫

∞

0
e−s

2/2 ds =
√
π/2 (this is related to a

Gaussian PDF; for proof, see here). Another simple u-substitution suggests ∫
∞

0
e−s

2

ds =
√
π/2. Thus (3)

becomes θ−3/2
√
π/2, and putting this back to (2) we obtain

∫
∞

0

√
xe−xθ dx = 0 + θ−3/2

√
π

2
.

Therefore,

E
√
X1 = θ∫

∞

0

√
xe−xθ dx =

√
π

2
√
θ
.

Finally, putting everything into (1), we have

E(
√
X1X2 − 1/θ)2 =

2

θ2
− 2

θ
⋅ (
√
π

2
√
θ
)
2

= 2

θ2
− π

2θ2
= 4 − π

2θ2
< 1

2θ2
= var(X).

(3) No, because
√
X1X2 is not unbiased a priori: since

√⋅ is not affine, Jensen’s inequality (for concave

functions) becomes strict in this case:

E
√
X1X2 <

√
EX1X2 =

1

θ
.

(Alternatively, part 2 suggests E
√
X1X2 = (E

√
X1)2 = (

√
π/(2
√
θ))2 = (π/4)(1/θ) < 1/θ.)

Problem 2

Let f ∶ Rn → R be convex. Let x ∈ Rn be a local minimum of f . Show that x is a global minimum.

If f is strictly convex, show there exists at most one global minimum of f .

Now suppose additionally that f is C1 and x ∈ Rn with ∇f(x) = 0. Show that x is a global minimum of f .

Proof. Let x∗ be a local minimum. That is, there exists r > 0 such that x∗ is the minimum on the ϵ-neighborhood

of x:

f(x∗) ⩽ f(y) for all y with ∥y − x∗∥ < r.
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Thus, for all y ∈ Rn, there exists ϵ > 0 sufficiently small so that x∗+ ϵ(y−x∗) is in the r-neighborhood of x∗. Then

f(x∗) ⩽ f(x∗ + ϵ(y − x∗))

= f(ϵy + (1 − ϵ)x∗)

⩽ ϵf(y) + (1 − ϵ)f(x∗).

This implies ϵf(x∗) ⩽ ϵf(y). Since ϵ > 0, f(x∗) ⩽ f(y), showing that x∗ is a global minimum.

Now suppose f is strictly convex. If x1, x2 are global minima and x1 ≠ x2, then by convexity (x1+x2)/2 is a third

point at which f takes a strictly smaller value. Contradiction. Hence global minimum in this case is unique.

Finally, if ∇f(x) = 0 then x is a critical point. By a well-known result (see e.g. here, p3 Theorem 2)

f ∈ C1 and f convex ⇐⇒ f(y) ⩾ f(x) +∇f(x)T (y − x) for all x, y ∈ Rn,

if ∇f(x) = 0 then we obtain f(y) ⩾ f(x) + 0 for all y ∈ Rn.That is, x is a global minimum.

Problem 3

Let A be a real m × n matrix. Let x ∈ Rn and b ∈ Rm. Show that f ∶ Rn → R defined by f(x) = ∥Ax − b∥2/2 is

convex. Moreover show that

∇f(x) = AT (Ax − b) ∇2f(x) = ATA.

Proof. Let x, y ∈ Rn and le λ ∈ (0,1). We want to show

f(λx + (1 − λ)y) ⩽ λf(x) + (1 − λ)f(y).

2 times the LHS is

∥A(λx + (1 − λ)y) − b∥2 = ∥λAx + (1 − λ)Ay − b∥2

= ∥λ(Ax − b) + (1 − λ)(Ay − b)∥2

= λ2∥Ax − b∥2 + (1 − λ)2∥Ay − b∥2 + 2λ(1 − λ) ⟨Ax − b,Ay − b⟩
∗
⩽ λ2∥Ax − b∥2 + (1 − λ)2∥Ay − b∥2 + 2λ(1 − λ)∥Ax − b∥2 + ∥Ay − b∥2

2

= λ2∥Ax − b∥2 + (1 − λ)2∥Ay − b∥2 + λ(1 − λ)(∥Ax − b∥2 + ∥Ay − b∥2)

= λ∥Ax − b∥2 + (1 − λ)∥Ay − b∥2

(The starred ⩽ is because a2 − 2ab + b2 ⩾ 0 so ab ⩽ (a2 + b2)/2. Cauchy-Schwarz then gives ⟨u, v⟩ ⩽ ∥u∥∥v∥ ⩽
(∥u∥2 + ∥v∥2)/2.) 2 times the RHS is

λ∥Ax − b∥2 + (1 − λ)∥Ay − b∥2.

Thus f is convex.

We write f(x) ∶= 1

2
((Ax − b)T (Ax − b)) = 1

2
⋅ ((Ax)TAx − 2bTAx + ∥b∥2). Then differentiating w.r.t. x gives

∇f(x) = xTATA − bTA = ATAx −AT b = AT (Ax − b).

Differentiating once more gives ∇2f(x) = ATA.
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Problem 4

Let f1, ..., fn ∶ R→ R be strictly convex and define g ∶ Rn → R by

g(x1, ..., xn) ∶=
n

∑
i=1

f(xi).

Show that g is strictly convex.

Proof. Let x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn and λ ∈ (0,1) be given. Then

g(λx + (1 − λ)y) = g(λx1 + (1 − λ)y1, ..., λxn + (1 − λ)yn)

=
n

∑
i=1

f(λxi + (1 − λ)yi)

<
n

∑
i=1
[λf(xi) + (1 − λ)f(yi)] (by strict convexity of f)

=
n

∑
i=1

λf(xi) +
n

∑
i=1
(1 − λ)f(yi) = λg(x) + (1 − λ)g(y).

Problem 5

Let f ∶ Rn → R. Suppose for any fixed 1 ⩽ i ⩽ n and any fixed x1, ..., xi−1, xi+1, ..., xn, the function

xi ↦ f(x1, ..., xn)

is strictly convex. Prove that f has at most one global minimum.

Proof. Suppose there exist two distinct global minima x, y ∈ Rn. It follows that xi ≠ yi for some i. But then for

the ith component, if we fix x1, ..., xi−1, xi+1, ..., xn, the map

x↦ f(x1, ..., xn)

is a strictly convex function with two distinct global minima. This is impossible by problem 2(b). Hence f has

at most one global minimum.

Problem 6

Let X1, ...,Xn be a random sample of size n from a Poisson distribution with unknown parameter λ > 0 (so

P(X1 = k) = e−λλk/k! for k ∈ N).

(1) Find an MLE for λ.

(2) Find an MLE for e−λ.

(3) How do your results compare to the previous homework, where we found two different estimators for

e−λ (one from the method of moments, and the other by applying the Rao-Blackwell Theorem)?
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Solution. (1) The likelihood function ℓ(λ) is given by

ℓ(λ) =
n

∏
i=1

fλ(xi) =
n

∏
i=1

e−λλxi

(xi)!
.

Taking log gives

log ℓ(λ) = −nλ +
n

∑
i=1

xi logλ −
n

∑
i=1

log(xi!).

Hence

ℓ′(λ) = −n + λ−1
n

∑
i=1

xi.

Setting ℓ′(λ) to 0, we see that the critical is the sample mean
1

n

n

∑
i=1

xi. Verify that this is a maximum:

ℓ′′(θ) = −λ−2
n

∑
i=1

xi ⩽ 0.

Hence
1

n

n

∑
i=1

Xi is an MLE estimator for λ.

(2) By functional equivariance of MLE (proposition 4.45), exp(− 1
n

n

∑
i=1

Xi) is an MLE for e−λ.

(3) It does agree with the estimator obtained from MoM.

Problem 7

Let X1, ...,Xn be a random sample of size n from a Gamma distribution with unknown α > 0 and known

β > 0.

(1) Try to find an MLE for α.

(2) Using a computer, after fixing some possible values of X1, ...,Xn, find an MLE for α using any com-

putational optimization method you want to use. Can you guarantee that you have found the global

maximum?

Solution. The likelihood function is given by

ℓ(θ) =
n

∏
i=1

xα−1
i exp(−xi/β)

βαΓ(α)
= 1

βnαΓ(α)n
⋅

n

∏
i=1

xα−1
i ⋅ exp(−

n

∑
i=1

xi/β).

The log-likelihood is therefore

log ℓ(θ) = −nα logβ − n log Γ(α) + (α − 1)
n

∑
i=1

logxi −
n

∑
i=1

xi/β.

Setting the derivative to 0, we need

d

dθ
log ℓ(θ) =

n

∑
i=1

logxi − n logβ − n
Γ′(α)
Γ(α)

= 0.

...fuck!
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