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Problem 1

(a) Show that [0,1] and [0,1]N have the same cardinality.

(b) Show that (0,1)N have the same cardinality as the sets in (a).

(c) Show that RN have the same cardinality as the sets in (a).

(d) Show that R has the same cardinality as the sets in (a).

Proof. I will reset the notation for each part, so the function f in (a) is totally unrelated to that in (b) and so on.

(a) According to the hint, we will make use of Schröder-Bernstein. Consider a mapping f ∶ [0,1] → [0,1]N

such that

0.x1x2...↦ (g ∶ N→ [0,1]) where g(n) = xn/10.

We further assume that 0.x1x2... does not end in a string of nines; if this is not the case, set all of them to

0 and increase the digit before the string by 1 (carrying allowed), and we have gotten rid of this nuisance,

and every x ∈ [0,1] has a unique decimal representation.

If 0.x1x2... ≠ 0.y1y2..., then for some n we have xn ≠ yn, and so [g(0.x1x2...)](n) ≠ [g(0.y1y2...)](n). This

means that the mapping f is injective and so card([0,1]) ⩽ card([0,1]N).

For the converse, let h be a function from N to [0,1]. For each n ∈ N, h(n) is a decimal with countably

many digits; on the other hand, N contains countably many n’s, so the union of all these digits is again

countable, and there exists some method to arrange these digits and form a new decimal in [0,1]. The

mapping from h to its corresponding number ∈ [0,1] is clearly injective, so card([0,1]N) ⩽ card([0,1]). By

Schröder-Bernstein, the two sets are equicardinal.

(b) By the same token we can easily show that (0,1) and (0,1)N are equicardinal. It remains to show that

card((0,1)) = card([0,1]). Consider the bijection f ∶ (0,1)→ (0,1] by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x x = 1/2n, n ∈ N

x otherwise.

In other words, f maps the sequence {1/2,1/4,1/8, ...} to {1,1/2,1/4, ...} and does nothing to other num-

bers. Analogously we can show that there exists a bijection between (0,1] to [0,1]. This proves the claim.
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(c) First notice that the tangent function is a bijection between (−π/2, π/2) and R. Clearly we can scale the

argument and obtain a bijection f between (−1,1) and R.

To see that card((0,1)N) = card(RN), consider the mapping (g ∈ (0,1)N) ↦ (f ○ g ∈ (RN)). If g1 ≠ g2, then

for some n ∈ N g1(n) ≠ g2(n), and so (f ○ g1)(n) ≠ (f ○ g2)(n), which implies (f ○ g1) ≠ (f ○ g2). The other

direction’s injectivity follows analogously since f is bijective. Therefore,

card(RN) = card((0,1)N) = card([0,1]N).

(d) This follows from the previous three parts:

card(R) = card((0,1)) = card([0,1]).

Problem 2

Show that C([0,1]) has the same cardinality as R.

Proof. That card(C([0,1])) ⩾ card(R) is clear: for each x ∈ R we just consider the constant function x.

For the converse, consider C(Q ∩ [0,1]) instead: since Q ∩ [0,1] is equicardinal to N, we have

card(C(Q ∩ [0,1])) = card(RN).

(Enumerate all rationals in [0,1]; at each rational, assign it the value that the function in C(Q ∩ [0,1]) takes.)

It remains to notice that C(Q ∩ [0,1]) is equicardinal to C([0,1]): if f, g ∈ C([0,1]) agree on all rationals in

[0,1], then by density of Q, for any x ∈ [0,1] we can find a rational sequence {xn}→ x. This implies

f(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(x),

so indeed f ≡ g. We have therefore proven the claim.

Problem 3

Find a poset X which has a unique maximal element but no greatest type in the sense that there is no x ∈X
for which y ≺ x for every y ∈X.

Proof. Following the hint, consider S ∶= {(x,x) ∶ x ∈ [0,1)} ∪ {(1,0.5)}, namely, the diagonal of the unit square

excluding (1,1) and with an extra point (1,0.5). We also define the partial order by

(x1, y1) ≺ (x2, y2) if x1 ⩽ y1 and x2 ⩽ y2.

It is clear that (1,0.5) is a maximal element: if (1,0.5) ≺ (x, y), then x ⩾ 1 and y ⩾ 0.5, but the only point

satisfying x ⩾ 1 is (1,0.5) itself. On the other hand, S has no “greatest element”: clearly (1,0.5) isn’t because,

say, (0.75,0.75) is not comparable with (1,0.5). It is also clear that no point on the open diagonal is maximal as

there is no largest number in [0,1). Hence S does not have a “greatest” element.

2



YQL

Problem 5

One type of poset is a collection of subsets of some set Y , ordered by inclusion. In other words, the poset

has form (S,⪯) where S ⊂ P(Y ) and A ⪯ B means A ⊂ B. Show that every poset (X,⩽) is isomorphic to

some poset of this special type, that is, there exists Y and S ⊂ P(Y ) and a bijection f ∶X → S such that x ⩽ y
if and only if f(x) ⪯ f(y).

Proof. Following the hint, let Ix ∶= {z ∈ X ∶ z ⩽ x}. From the Hausdorff Maximal Principle, let X ′ ⊂ X be the

largest totally ordered subset. Define Y ∶=X and

S ∶= {Ix ∶ x ∈X ′} ⊂ P(Y ).

We also define f ∶X → S by f(x) = Ix. We claim that x ⩽ y if and only if f(x) ⪯ f(y).
To see⇒, let α ∈ f(x). It follows that α ⩽ x and therefore α ⩽ y. Hence α ∈ f(y), so f(x) ⪯ f(y).
To see ⇐, suppose f(x) ⪯̸ f(y), that is, for some β we have Iβ ∈ f(x) but Iβ ∉ f(y). Therefore, β ⩽ x but β ≰ y.

It follows from transitivity of ⩽ that x ≰ y (or we would have a contradiction). This proves the claim.

Problem 6

Suppose X,Y , and Z are sets with card(X) ⩽ card(Y ), card(Y ) < card(Z). Prove that card(X) < card(Z).

Proof. Since card(X) ⩽ card(Y ), there exists an injection f ∶ X → Y . Let Y ′ ⊂ Y be the range of f . Since

card(Y ) < card(Z), there exists an injection g ∶ Y → Z. It follows that g∣
Y ′

is also injective. Thus the composition

g∣
Y ′
○ f is an injection from X to Z and card(X) ⩽ card(Y ).

Next, since card(Y ) < card(Z), there cannot exist a surjection from Y to Z (or Schröder-Bernstein would imply

that they have the same cardinality). Also note that, for the g above, any function h ∶ Z → Y of form

h(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y if g(y) = z for some y

any k ∈ Y if no g(y) = z

is a surjection from Z to Y , so by Schröder-Bernstein there cannot be an injection from Z to Y . This further

implies no injection exists between Z and X, and we recover the strict inequality card(X) < card(Z).

Problem 7

Let Y ⊂ X where Y is at most countable and X − Y is infinite. Show that there exists a bijection between

X − Y and X.

Proof. Since X −Y is infinite, we are able to find a countably infinite subset Z ⊂X −Y . WLOG assume Y and Z

are disjoint. It is clear that there exists a bijection f ∶ Z → Y ∪ Z. Now consider the function g ∶ (X − Y ) → X

defined by

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) x ∈ Z

x x ∈X − Y −Z.

This is a bijection and we are done.
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Problem 8

Suppose P = (X,⩽) is a finite poset containing a smallest element x0, that is, x0 ⩽ x for all x ∈ X. Suppose

f ∶ X → X is order-preserving, that is, x ⩽ y ⇒ f(x) ⩽ f(y). Show that f has a fixed point, that is, an x ∈ X
such that f(x) = x.

Proof. Since x0 is the smallest element, either x0 = f(x0) or x0 < f(x0). The former case already provides a

fixed point. Since f is order-preserving, if x0 < f(x0) we have

x0 < f(x0) ⩽ f2(x0) ⩽ f3(x0) ⩽ ...

where fn denotes the composition of n copies of f . This is an infinite sequence and a subset of X, yet X is finite.

Therefore, there must exist some n such that fn(x) = fn+1(x), and so fn(x) ∈X is a fixed point of f .
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