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Problem 1: (Folland §1.3)

Let M be an infinite σ-algebra. Prove that

(1) M contains an infinite sequence of disjoint sets, and

(2) card(M) ⩾ c.

Proof. (a) Since M is infinite, we may construct a sequence of sets {Ei} by setting E1 ∶= ∅ and choosing

Ei ∶= any set in M − {E1, ...,Ei−1}.

Since M is infinite whereas the power set of {E1, ...,En} is finite, it follows that we can obtain a countable

set {Ei}i⩾1. It is also clear that they are pairwise disjoint. This proves (a).

(b) We consider a function f ∶ P(N)→M by

S ↦ ⋃
i∈S

Ei.

Since M is closed under countable unions, this map is well-defined; furthermore, since Ei’s are disjoint, if

S1 ≠ S2 then f(S1) ≠ f(S2) so f is injective. It follows that

card(M) ⩾ card(N) = c.

Problem 2: (Folland §1.4)

Prove that an algebra A is a σ-algebra if and only A is closed under countable increasing unions, i.e., if

{Ei} ⊂ A and E1 ⊂ E2 ⊂ ..., then
∞
⋃
i=1

Ei ∈ A.

Proof. Note that⇒ follows directly from the definition of σ-algebra.

For ⇐Ô , let {Si} be a countable (countably infinite) collection of sets in A. We define En ∶=
n

⋃
i=1

Si. It follows

immediately that {En} is an increasing sequence of sets whose union, by assumption, lies in A. This completes

the proof as
∞
⋃
i=1

Ei =
∞
⋃
i=1

n

⋃
i=1

Si =
∞
⋃
i=1

Si.
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Problem 3: (Folland §1.6)

Complete the proof of Theorem 1.9 (completion of measures).

Proof. To show that µ is a complete measure, let A be such that A ⊂ B and µ(B) = 0. By definition we know

B = E ∪ F for some E ∈M and F ⊂ N with µ(N) = 0. Also, by definition we know µ(E) = µ(B) = 0. Since

A = ∅ ∪A

implies A ∈M (indeed, ∅ ∈M and A ⊂ B where µ(B) = 0), by monotonicity of µ we have µ(A) = 0.

Next, to show that µ is unique, suppose that µ,µ′ extend µ on M to on M. Let A = E ∪ F ∈M where E ∈M and

F ⊂ N ∈M for some N satisfying µ(N) = 0. Note that E,E ∪N ∈M, so

µ(E) = µ′(E) ⩽ µ′(A) ⩽ µ′(E ∪N) = µ(E ∪N) ⩽ µ(E) + µ(N) = µ(E),

so the inequalities must all be =’s, and so µ′(A) = µ(E) = µ(E). This proves uniqueness.

Problem 4: (Folland §1.8)

Let (X,M, µ) be a measure space and {Ei}∞i=1 ⊂M,. Prove that µ(lim inf Ei) ⩽ lim inf µ(Ei). Also prove that

if µ(
∞
⋃
i=1

Ei) <∞ then µ(lim supEi) ⩾ lim supµ(Ei).

Proof. Following the hint, we consider {Fk} and {Gk} where Fk ∶=
∞
⋂
n=k

En and Gk ∶=
∞
⋃
n=k

En.

On one hand, F1 ⊂ F2 ⊂ ... so continuity from below implies

µ(lim inf Ei) = µ(⋃
n⩾1
⋂
i⩾n

Ei) = µ(⋃
n⩾1

Fn) = lim
n→∞

µ(Fn)

⩽ lim
n→∞
(inf
i⩾n

µ(Ei)) = lim inf µ(Ei).

On the other hand, G1 ⊃ G2 ⊃ .... If we also assume that µ(G1) <∞, then continuity from above implies

µ(lim supEi) = µ(⋂
n⩾1
⋃
i⩾n

Ei) = µ(⋂
n⩾1

Gn) = lim
n→∞

µ(Gn)

⩾ lim
n→∞
(sup
i⩾n

µ(Ei)) = lim supµ(Ei).

Problem 5: (Folland §1.12)

Let (X,M, µ) be a measure space. Prove that:

(a) If E,F ∈M and µ(E∆F ) = 0, then µ(E) = µ(F );

(b) If we say E ∼ F if µ(E∆F ) = 0, then ∼ defines an equivalence relation on M; and

(c) For E,F ∈ M, define ρ(E,F ) ∶= µ(E∆F ). Then ρ(E,G) ⩽ ρ(E,F ) + ρ(F,G) and hence ρ defines a

metric on the space M/ ∼.
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Proof. (a) If µ(E∆F ) = µ(E − F ) + µ(F −E) = 0 then clearly µ(E − F ) = µ(F −E). Hence

µ(E) = µ(E − F ) ∪ µ(E ∩ F ) = µ(F −E) ∪ µ(E ∩ F ) = µ(F ).

(b) Reflexivity and symmetry of ∼ are clearly trivial. For transitivity, assume that E ∼ F and F ∼ G; that is,

µ(E∆F ) = µ(E ∩ F c) + µ(F c ∩E) = µ(F∆G) = µ(F ∩Gc) + µ(Gc ∩ F ) = 0.

(Of course, notice that E∩F c is just another way of writing E−F , but this will make things more convenient

below.) Then,

µ(E∆G) = µ(E ∩Gc) + µ(Ec ∩G)

= µ(E ∩ F ∩Gc) + µ(E ∩ F c ∩Gc) + µ(Ec ∩ F ∩G) + µ(Ec ∩ F c ∩G)

⩽ µ(F ∩Gc) + µ(F c ∩Gc) + µ(Ec ∩ F ) + µ(Ec ∩ F c) = 0.

(c) The computation is identical to those in (b), with the last = 0 replaced by = µ(E∆F ) + µ(F∆G) =
ρ(E,F ) + ρ(F,G).

Problem 6: (I)

Suppose {µn} is a sequence of finite measures on (X,M) and µn ↑ µ on M for some set function µ. Show

that µ is a measure.

Proof. That µ(∅) = 0 is clear so it remains to show countable additivity for disjoint sets. To this end, let {Ei} be

a countable collection of disjoint sets in M. Then,

µ(
∞
⋃
i=1

Ei) = lim
n→∞

µn(
∞
⋃
i=1

Ei) = lim
n→∞

∞
∑
i=1

µn(Ei) ⩽ lim
n→∞

∞
∑
i=1

µ(Ei) =
∞
∑
i=1

µ(Ei).

On the other hand,

µ(
∞
⋃
i=1

Ei) = lim
n→∞

µn(
∞
⋃
i=1

Ei) ⩾ lim
n→∞

µn(
k

⋃
i=1

Ei) = lim
n→∞

k

∑
i=1

µn(Ei) =
k

∑
i=1

lim
n→∞

µn(Ei) =
k

∑
i=1

µ(Ei).

Taking the supremum over k, we obtain µ(
∞
⋃
i=1

Ei) ⩾ sup
k∈N

k

∑
i=1

µ(Ei) =
∞
∑
i=1

µ(Ei).

Problem 7: (II)

Let BR be the Borel sets in R, so by definition BR is generated by the collection E of all open intervals. Define

the measure

µ(E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if E = ∅,

∞ if E ≠ ∅.

Find another measure ν such that µ = ν on the generators E but µ and ν do not agree on all of BR.
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Solution. Consider ν as the counting measure — any open interval is uncountable so ν(E) = ∞ when E ≠ ∅.

Clearly, ν(∅) = ∅. However, µ({0}) =∞ ≠ 1 = ν({0}), so µ and ν are not identical.

Problem 8: (III)

Let A be a collection of pairwise disjoint subsets of a σ-finite measure space, and suppose that each set in A
has strictly positive measure. Show that A is at most countable.

Proof. By σ-finiteness (of our ambient space X), there exist a contable collection {Ei} such that X =
∞
⋃
i=1

Ei and

µ(Ei) <∞ for all i.

Now, for each A ∈ A, since µ(A) > 0, we know that µ(A∩Ei) > 0 for some i. Since there are only countably many

Ei’s but uncountably many A’s, by pigeon-hole there exists some Ej satisfying µ(A ∩ Ej) > 0 for uncountably

many A’s in A. For convenience let S denote the collection of such A’s. Now we define

Sk ∶= {A ∈ A ∣ µ(A ∩Ej) > 1/k}.

It follows that there are countably many Sn’s whose union is S. Once again, by pigeon-hole, since S is uncount-

able but each Sk is countable, for some n we have an uncountable Sn. But then

µ(Ej) ⩾ µ(Sk) = ∑
A∈Sk

µ(A ∩Ej) > ∑
A∈Sk

1/k =∞,

contradicting our assumption that µ(Ej) <∞. Hence A is at most countable.

Problem 9: (IV)

Suppose E ,F are subsets of P(X) with E ⊂ F ⊂ σ(E). Show that σ(F) = σ(E).

Proof. Since σ(E) is the smallest σ-algebra containing E and σ(F) is also a σ-algebra, we have σ(F) ⊃ σ(E).
On the other hand, since σ(F) is the smallest σ-algebra containing F and σ(E) is a σ-algebra, we also have

σ(F) ⊂ σ(E). Therefore σ(E) = σ(F).

Problem 10: (V)

Let (X,M, µ) be a measure space and let {Ei} be a sequence of sets in M such that each Ei intersects at

most one other set in the sequence. Show that

∞
∑
i=1

µ(Ei) ⩽ 2µ(
∞
⋃
i=1

Ei).

Proof. For each Ei, define Fi to be the part where Ei intersects with some other Ej and Gi to be Ei − Fi. It

is immediately clear that {Gi}∞i=1 is a collection of pairwise disjoint sets. Since one set intersects with at most

one other set, each nontrivial element (meaning not ∅) in {Fi}∞i=1 is counted exactly twice. Therefore there

exists a partition F1 and F2 of {Fi} such that the sets in F1 are pairwise disjoint and likewise for those in F2.
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Furthermore, sets in F1 ∪ {Gi} are also pairwise disjoint and their union is precisely
∞
⋃
i=1

Ei. Therefore,

∞
∑
i=1

µ(Ei) =
∞
∑
i=1

µ(Fi) +
∞
∑
i=1

µ(Gi) =∑
F1

µ(Fi) +
∞
∑
i=1

µ(Gi) +∑
F2

µ(Fi)

= ∑
F1∪{Gi}

µ( ⋅ ) +∑
F2

µ(Fi) = µ(
∞
⋃
i=1

Ei) + µ(⋃
F2

Ei)

⩽ µ(
∞
⋃
i=1

Ei) + µ(
∞
⋃
i=1

Ei) = 2µ(
∞
⋃
i=1

Ei).
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