

MATH 525a Homework 2

Qilin Ye

September 11, 2021

Problem 1: (Folland §1.3)

Let \mathfrak{M} be an infinite σ -algebra. Prove that

- (1) \mathfrak{M} contains an infinite sequence of disjoint sets, and
- (2) $\text{card}(\mathfrak{M}) \geq \mathfrak{c}$.

Proof. (a) Since \mathfrak{M} is infinite, we may construct a sequence of sets $\{E_i\}$ by setting $E_1 := \emptyset$ and choosing

$$E_i := \text{any set in } \mathfrak{M} - \{E_1, \dots, E_{i-1}\}.$$

Since \mathfrak{M} is infinite whereas the power set of $\{E_1, \dots, E_n\}$ is finite, it follows that we can obtain a countable set $\{E_i\}_{i \geq 1}$. It is also clear that they are pairwise disjoint. This proves (a).

(b) We consider a function $f : \mathbb{P}(\mathbb{N}) \rightarrow \mathfrak{M}$ by

$$S \mapsto \bigcup_{i \in S} E_i.$$

Since \mathfrak{M} is closed under countable unions, this map is well-defined; furthermore, since E_i 's are disjoint, if $S_1 \neq S_2$ then $f(S_1) \neq f(S_2)$ so f is injective. It follows that

$$\text{card}(\mathfrak{M}) \geq \text{card}(\mathbb{N}) = \mathfrak{c}.$$

□

Problem 2: (Folland §1.4)

Prove that an algebra \mathcal{A} is a σ -algebra if and only if it is closed under countable increasing unions, i.e., if

$$\{E_i\} \subset \mathcal{A} \text{ and } E_1 \subset E_2 \subset \dots, \text{ then } \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}.$$

Proof. Note that \Rightarrow follows directly from the definition of σ -algebra.

For \Leftarrow , let $\{S_i\}$ be a countable (countably infinite) collection of sets in \mathcal{A} . We define $E_n := \bigcup_{i=1}^n S_i$. It follows immediately that $\{E_n\}$ is an increasing sequence of sets whose union, by assumption, lies in \mathcal{A} . This completes the proof as

$$\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} \bigcup_{i=1}^n S_i = \bigcup_{i=1}^{\infty} S_i.$$

□

Problem 3: (Folland §1.6)

Complete the proof of Theorem 1.9 (completion of measures).

Proof. To show that $\bar{\mu}$ is a complete measure, let A be such that $A \subset B$ and $\bar{\mu}(B) = 0$. By definition we know $B = E \cup F$ for some $E \in \mathfrak{M}$ and $F \subset N$ with $\mu(N) = 0$. Also, by definition we know $\mu(E) = \bar{\mu}(B) = 0$. Since

$$A = \emptyset \cup A$$

implies $A \in \bar{\mathfrak{M}}$ (indeed, $\emptyset \in \mathfrak{M}$ and $A \subset B$ where $\mu(B) = 0$), by monotonicity of $\bar{\mu}$ we have $\bar{\mu}(A) = 0$.

Next, to show that $\bar{\mu}$ is unique, suppose that $\bar{\mu}, \bar{\mu}'$ extend μ on \mathfrak{M} to on $\bar{\mathfrak{M}}$. Let $A = E \cup F \in \bar{\mathfrak{M}}$ where $E \in \mathfrak{M}$ and $F \subset N \in \mathfrak{M}$ for some N satisfying $\mu(N) = 0$. Note that $E, E \cup N \in \mathfrak{M}$, so

$$\mu(E) = \bar{\mu}'(E) \leq \bar{\mu}'(A) \leq \bar{\mu}'(E \cup N) = \mu(E \cup N) \leq \mu(E) + \mu(N) = \mu(E),$$

so the inequalities must all be $=$'s, and so $\bar{\mu}'(A) = \mu(E) = \bar{\mu}(E)$. This proves uniqueness. \square

Problem 4: (Folland §1.8)

Let (X, \mathfrak{M}, μ) be a measure space and $\{E_i\}_{i=1}^{\infty} \subset \mathfrak{M}$. Prove that $\mu(\liminf E_i) \leq \liminf \mu(E_i)$. Also prove that if $\mu(\bigcup_{i=1}^{\infty} E_i) < \infty$ then $\mu(\limsup E_i) \geq \limsup \mu(E_i)$.

Proof. Following the hint, we consider $\{F_k\}$ and $\{G_k\}$ where $F_k := \bigcap_{n=k}^{\infty} E_n$ and $G_k := \bigcup_{n=k}^{\infty} E_n$.

On one hand, $F_1 \subset F_2 \subset \dots$ so **continuity from below** implies

$$\begin{aligned} \mu(\liminf E_i) &= \mu\left(\bigcup_{n \geq 1} \bigcap_{i \geq n} E_i\right) = \mu\left(\bigcup_{n \geq 1} F_n\right) = \lim_{n \rightarrow \infty} \mu(F_n) \\ &\leq \lim_{n \rightarrow \infty} (\inf_{i \geq n} \mu(E_i)) = \liminf \mu(E_i). \end{aligned}$$

On the other hand, $G_1 \supset G_2 \supset \dots$. If we also assume that $\mu(G_1) < \infty$, then **continuity from above** implies

$$\begin{aligned} \mu(\limsup E_i) &= \mu\left(\bigcap_{n \geq 1} \bigcup_{i \geq n} E_i\right) = \mu\left(\bigcap_{n \geq 1} G_n\right) = \lim_{n \rightarrow \infty} \mu(G_n) \\ &\geq \lim_{n \rightarrow \infty} (\sup_{i \geq n} \mu(E_i)) = \limsup \mu(E_i). \end{aligned} \quad \square$$

Problem 5: (Folland §1.12)

Let (X, \mathfrak{M}, μ) be a measure space. Prove that:

- If $E, F \in \mathfrak{M}$ and $\mu(E \Delta F) = 0$, then $\mu(E) = \mu(F)$;
- If we say $E \sim F$ if $\mu(E \Delta F) = 0$, then \sim defines an equivalence relation on \mathfrak{M} ; and
- For $E, F \in \mathfrak{M}$, define $\rho(E, F) := \mu(E \Delta F)$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$ and hence ρ defines a metric on the space \mathfrak{M}/\sim .

Proof. (a) If $\mu(E\Delta F) = \mu(E - F) + \mu(F - E) = 0$ then clearly $\mu(E - F) = \mu(F - E)$. Hence

$$\mu(E) = \mu(E - F) \cup \mu(E \cap F) = \mu(F - E) \cup \mu(E \cap F) = \mu(F).$$

(b) Reflexivity and symmetry of \sim are clearly trivial. For transitivity, assume that $E \sim F$ and $F \sim G$; that is,

$$\mu(E\Delta F) = \mu(E \cap F^c) + \mu(F^c \cap E) = \mu(F\Delta G) = \mu(F \cap G^c) + \mu(G^c \cap F) = 0.$$

(Of course, notice that $E \cap F^c$ is just another way of writing $E - F$, but this will make things more convenient below.) Then,

$$\begin{aligned} \mu(E\Delta G) &= \mu(E \cap G^c) + \mu(E^c \cap G) \\ &= \mu(E \cap F \cap G^c) + \mu(E \cap F^c \cap G^c) + \mu(E^c \cap F \cap G) + \mu(E^c \cap F^c \cap G) \\ &\leq \mu(F \cap G^c) + \mu(F^c \cap G^c) + \mu(E^c \cap F) + \mu(E^c \cap F^c) = 0. \end{aligned}$$

(c) The computation is identical to those in (b), with the last $= 0$ replaced by $= \mu(E\Delta F) + \mu(F\Delta G) = \rho(E, F) + \rho(F, G)$. \square

Problem 6: (I)

Suppose $\{\mu_n\}$ is a sequence of finite measures on (X, \mathfrak{M}) and $\mu_n \uparrow \mu$ on \mathfrak{M} for some set function μ . Show that μ is a measure.

Proof. That $\mu(\emptyset) = 0$ is clear so it remains to show countable additivity for disjoint sets. To this end, let $\{E_i\}$ be a countable collection of disjoint sets in \mathfrak{M} . Then,

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \rightarrow \infty} \mu_n\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \rightarrow \infty} \sum_{i=1}^{\infty} \mu_n(E_i) \leq \lim_{n \rightarrow \infty} \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} \mu(E_i).$$

On the other hand,

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \rightarrow \infty} \mu_n\left(\bigcup_{i=1}^{\infty} E_i\right) \geq \lim_{n \rightarrow \infty} \mu_n\left(\bigcup_{i=1}^k E_i\right) = \lim_{n \rightarrow \infty} \sum_{i=1}^k \mu_n(E_i) = \sum_{i=1}^k \lim_{n \rightarrow \infty} \mu_n(E_i) = \sum_{i=1}^k \mu(E_i).$$

Taking the supremum over k , we obtain $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \geq \sup_{k \in \mathbb{N}} \sum_{i=1}^k \mu(E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. \square

Problem 7: (II)

Let $\mathcal{B}_{\mathbb{R}}$ be the Borel sets in \mathbb{R} , so by definition $\mathcal{B}_{\mathbb{R}}$ is generated by the collection \mathcal{E} of all open intervals. Define the measure

$$\mu(E) = \begin{cases} 0 & \text{if } E = \emptyset, \\ \infty & \text{if } E \neq \emptyset. \end{cases}$$

Find another measure ν such that $\mu = \nu$ on the generators \mathcal{E} but μ and ν do not agree on all of $\mathcal{B}_{\mathbb{R}}$.

Solution. Consider ν as the counting measure — any open interval is uncountable so $\nu(E) = \infty$ when $E \neq \emptyset$. Clearly, $\nu(\emptyset) = 0$. However, $\mu(\{0\}) = \infty \neq 1 = \nu(\{0\})$, so μ and ν are not identical.

Problem 8: (III)

Let \mathcal{A} be a collection of pairwise disjoint subsets of a σ -finite measure space, and suppose that each set in \mathcal{A} has strictly positive measure. Show that \mathcal{A} is at most countable.

Proof. By σ -finiteness (of our ambient space X), there exist a countable collection $\{E_i\}$ such that $X = \bigcup_{i=1}^{\infty} E_i$ and $\mu(E_i) < \infty$ for all i .

Now, for each $A \in \mathcal{A}$, since $\mu(A) > 0$, we know that $\mu(A \cap E_i) > 0$ for some i . Since there are only countably many E_i 's but uncountably many A 's, by pigeon-hole there exists some E_j satisfying $\mu(A \cap E_j) > 0$ for uncountably many A 's in \mathcal{A} . For convenience let S denote the collection of such A 's. Now we define

$$S_k := \{A \in \mathcal{A} \mid \mu(A \cap E_j) > 1/k\}.$$

It follows that there are countably many S_n 's whose union is S . Once again, by pigeon-hole, since S is uncountable but each S_k is countable, for some n we have an uncountable S_n . But then

$$\mu(E_j) \geq \mu(S_k) = \sum_{A \in S_k} \mu(A \cap E_j) > \sum_{A \in S_k} 1/k = \infty,$$

contradicting our assumption that $\mu(E_j) < \infty$. Hence \mathcal{A} is at most countable. \square

Problem 9: (IV)

Suppose \mathcal{E}, \mathcal{F} are subsets of $\mathbb{P}(X)$ with $\mathcal{E} \subset \mathcal{F} \subset \sigma(\mathcal{E})$. Show that $\sigma(\mathcal{F}) = \sigma(\mathcal{E})$.

Proof. Since $\sigma(\mathcal{E})$ is the smallest σ -algebra containing \mathcal{E} and $\sigma(\mathcal{F})$ is also a σ -algebra, we have $\sigma(\mathcal{F}) \supset \sigma(\mathcal{E})$. On the other hand, since $\sigma(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} and $\sigma(\mathcal{E})$ is a σ -algebra, we also have $\sigma(\mathcal{F}) \subset \sigma(\mathcal{E})$. Therefore $\sigma(\mathcal{E}) = \sigma(\mathcal{F})$. \square

Problem 10: (V)

Let (X, \mathfrak{M}, μ) be a measure space and let $\{E_i\}$ be a sequence of sets in \mathfrak{M} such that each E_i intersects at most one other set in the sequence. Show that

$$\sum_{i=1}^{\infty} \mu(E_i) \leq 2\mu\left(\bigcup_{i=1}^{\infty} E_i\right).$$

Proof. For each E_i , define F_i to be the part where E_i intersects with some other E_j and G_i to be $E_i - F_i$. It is immediately clear that $\{G_i\}_{i=1}^{\infty}$ is a collection of pairwise disjoint sets. Since one set intersects with at most one other set, each nontrivial element (meaning not \emptyset) in $\{F_i\}_{i=1}^{\infty}$ is counted exactly twice. Therefore there exists a partition \mathcal{F}_1 and \mathcal{F}_2 of $\{F_i\}$ such that the sets in \mathcal{F}_1 are pairwise disjoint and likewise for those in \mathcal{F}_2 .

Furthermore, sets in $\mathcal{F}_1 \cup \{G_i\}$ are also pairwise disjoint and their union is precisely $\bigcup_{i=1}^{\infty} E_i$. Therefore,

$$\begin{aligned}
 \sum_{i=1}^{\infty} \mu(E_i) &= \sum_{i=1}^{\infty} \mu(F_i) + \sum_{i=1}^{\infty} \mu(G_i) = \sum_{\mathcal{F}_1} \mu(F_i) + \sum_{i=1}^{\infty} \mu(G_i) + \sum_{\mathcal{F}_2} \mu(F_i) \\
 &= \sum_{\mathcal{F}_1 \cup \{G_i\}} \mu(\cdot) + \sum_{\mathcal{F}_2} \mu(F_i) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right) + \mu\left(\bigcup_{\mathcal{F}_2} E_i\right) \\
 &\leq \mu\left(\bigcup_{i=1}^{\infty} E_i\right) + \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = 2\mu\left(\bigcup_{i=1}^{\infty} E_i\right).
 \end{aligned}$$

□