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Problem 1: (Folland §1.3)

Let 9 be an infinite o-algebra. Prove that

(1) 9 contains an infinite sequence of disjoint sets, and

(2) card(M) > c.

Proof. (a) Since M is infinite, we may construct a sequence of sets { E;} by setting F; := @ and choosing

E;:=anysetin M- {E,...,FE;i1}.

Since M1 is infinite whereas the power set of { F1, ..., E,, } is finite, it follows that we can obtain a countable

set {E;}i»1. It is also clear that they are pairwise disjoint. This proves (a).

(b) We consider a function f : P(N) — 9t by

€S
Since 9 is closed under countable unions, this map is well-defined; furthermore, since E;’s are disjoint, if
S1 # S then f(S71) # f(S2) so f is injective. It follows that

card(9M) > card(N) =c. O

Problem 2: (Folland §1.4)

Prove that an algebra A is a o-algebra if and only A is closed under countable increasing unions, i.e., if

{E;}cAand F; c E;c ..., then | JE; € A.
=1

Proof. Note that = follows directly from the definition of o-algebra.

For <, let {S,} be a countable (countably infinite) collection of sets in .A. We define E,, := | S;. It follows

i=1
immediately that {E,, } is an increasing sequence of sets whose union, by assumption, lies in .A. This completes

the proof as

s
s

UEi: Si:

S;. O
=1 i=1i=1 i

=
<
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Problem 3: (Folland §1.6)

Complete the proof of Theorem 1.9 (completion of measures).

Proof. To show that i is a complete measure, let A be such that A ¢ B and u(B) = 0. By definition we know
B=FEUF forsome E ¢ 9 and F c N with u(NN) = 0. Also, by definition we know u(E) = z(B) = 0. Since

A=guUA

implies A € M (indeed, @ € M and A c B where u(B) = 0), by monotonicity of i we have fi(A) = 0.
Next, to show that 7z is unique, suppose that 7z, 7’ extend x on 9 to on 9. Let A = E U F € 9 where E € M and
F c N €9 for some N satisfying u(N) = 0. Note that £, Eu N € 90, so

p(E) =1 (E) <i'(A) < (EUN) = p(Bu N) < p(E) + u(N) = u(E),
so the inequalities must all be =’s, and so ' (A) = u(F) = @(E). This proves uniqueness. O
Problem 4: (Folland §1.8)

Let (X,90, 1) be a measure space and {E;}2, ¢ M,. Prove that y(liminf £;) < liminf u(E;). Also prove that
if u(|J E;) < oo then p(limsup E;) > limsup p(E;).

i=1

Proof. Following the hint, we consider {F} and {G}} where F} := (| E, and Gy := | E,.
n=k n=k
On one hand, F; c F; c ... so continuity from below implies

p(iminf £) = (U (Vi) = p(U Fn) = lim u(F,)
nzlizn n>1 noee
< lim (1£1fu(El)) = liminf u(E;).

On the other hand, G; > G5 > .... If we also assume that u(G1) < oo, then continuity from above implies

p(limsup B) = () U B) = () G) = lim ju(Go)

nzlizn n>1

> lim (sup u(E;)) = limsup u(E;). O

Problem 5: (Folland §1.12)

Let (X,9, 1) be a measure space. Prove that:
(@ IKE FeMand u(EAF) =0, then u(E) = u(F);
(b) Ifwesay E ~ F if u(EAF) =0, then ~ defines an equivalence relation on 91; and

(c) For E,F €9, define p(E,F) := u(EAF). Then p(E,G) < p(E,F) + p(F,G) and hence p defines a

metric on the space M/ ~.
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Proof. (@) f W(EAF)=u(E-F)+u(F - E) =0 then clearly u(E - F) = u(F - E). Hence
p(E) =w(E-F)op(EnF)=p(F-E)uu(EnF) = u(F).
(b) Reflexivity and symmetry of ~ are clearly trivial. For transitivity, assume that £ ~ F' and F' ~ G; that is,
WEAF)=i(EnF)+u(FnE)=u(FAG) = u(FnG°) +u(G°nF)=0.

(Of course, notice that EnF“ is just another way of writing £'-F', but this will make things more convenient

below.) Then,
w(EAG) = w/(EnG) + u(E°n Q)
=u(EnFnG)+u(EnFnG)+uw(E°nFnG)+ (BN F°n@G)
S(FnG)+uw(FnG)+uw(E°nF)+ p(E°n F°) =0.

(c) The computation is identical to those in (b), with the last = 0 replaced by = u(EAF) + p(FAG) =
p(E,F) +p(F,G). O

Problem 6: (I)

Suppose {u,} is a sequence of finite measures on (X, ) and p,, t 1 on M for some set function p. Show

that p is a measure.

Proof. That p(@) =0 is clear so it remains to show countable additivity for disjoint sets. To this end, let {F;} be

a countable collection of disjoint sets in 9)i. Then,
M(U1 E;) = lim ,un(U1 E;)=lm ) p,(E;) < im Y p(E;) = w(E;).
i= nTee s e =1 nTee=1 i=1
On the other hand,
o - k k k k
N(Ul E;) = lim Mn(Ul E;) > lim Mn(Ul E;) = lim > o (E;) = 3, lim o, (E7) = Y pu(E;).
i= nTeen = nTee s e i=1 =177 i=1

oo

k o0
Taking the supremum over k, we obtain u(|J E;) > sup Y, u(E;) = . u(E;). O
i=1 keN =1 i=1

Problem 7: (II)

Let Bg be the Borel sets in R, so by definition Bg is generated by the collection £ of all open intervals. Define

the measure
0 ifE=g,
w(E) =
oo ifE+@.

Find another measure v such that ;1 = v on the generators £ but p and v do not agree on all of Bg.
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Solution. Consider v as the counting measure — any open interval is uncountable so v(FE) = co when E # @.

Clearly, v(2) = @. However, u({0}) = o0 # 1 =v({0}), so x and v are not identical.

Problem 8: (III)

Let A be a collection of pairwise disjoint subsets of a o-finite measure space, and suppose that each set in A

has strictly positive measure. Show that A is at most countable.

Proof. By o-finiteness (of our ambient space X), there exist a contable collection {E;} such that X = G E; and
p(E;) < oo for all . -

Now, for each A € A, since u(A) > 0, we know that u(An E;) > 0 for some 7. Since there are only countably many
E,’s but uncountably many A’s, by pigeon-hole there exists some E; satisfying ;(A n E;) > 0 for uncountably

many A’s in .A. For convenience let S denote the collection of such A’s. Now we define
Sii={Aec Al p(AnE;) > 1/k).

It follows that there are countably many .S,,’s whose union is S. Once again, by pigeon-hole, since S is uncount-

able but each S}, is countable, for some n we have an uncountable S,,. But then

p(E;) > u(Sk) = Y w(AnEy) > ) 1/k = oo,
AeS) AeSy,

contradicting our assumption that ;(E;) < co. Hence A is at most countable. O

Problem 9: (IV)

Suppose &, F are subsets of P(X) with £ ¢ F c 6(£). Show that o(F) = o(&).

Proof. Since (&) is the smallest o-algebra containing £ and ¢(F) is also a o-algebra, we have o(F) o o(&).
On the other hand, since o(F) is the smallest o-algebra containing F and ¢(&) is a o-algebra, we also have
o(F) co(€). Therefore o(&) = o(F). O

Problem 10: (V)

Let (X,9M, 1) be a measure space and let {E;} be a sequence of sets in 9 such that each E; intersects at

most one other set in the sequence. Show that

2M(Ei) < 2M(CJIE,-).

Proof. For each E;, define F; to be the part where F; intersects with some other F; and G; to be E; - F;. It
is immediately clear that {G;}:2, is a collection of pairwise disjoint sets. Since one set intersects with at most
one other set, each nontrivial element (meaning not @) in {F;}{2; is counted exactly twice. Therefore there

exists a partition F; and F; of {F;} such that the sets in F; are pairwise disjoint and likewise for those in 7.

4
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Furthermore, sets in F; U {G,} are also pairwise disjoint and their union is precisely |_J E;. Therefore,
i=1
Sou(Ey) = Y pu(F) + 3 1(Gi) = Y u(F) + 0 ju(Gy) + ) p(Fy)
i=1 i=1 i=1 F i=1 Fa
= 2w+ u(F) = (U E) + (U E)
]—'lu{Gi} Fa i=1 Fa

O

<u(UE) +n(JE) =2m(J E).



