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Problem 1: (Folland, 1.26)

Prove that if E ∈Mµ and µ(E) <∞ then for every ϵ > 0 there is a set A that is a finite union of open intervals

such that µ(E∆A) <∞. (Hint: use Theorem 1.18.)

Proof. By Theorem 1.18, given E, there exist U ⊃ E open and K ⊂ E compact such that

µ(E −K) < ϵ

2
and µ(U −E) < ϵ

2
.

Next, since U is open, it can be written as a countable union of open intervals, i.e., E =
∞
⋃
i=1

Ii. (The proof is

given in Folland’s chapter 0.) Since K is compact, from K ⊂
∞
⋃
i=1

Ii we know that we can extract a finite subcover

{I1, ..., In}. If we define their finite union to be A, then

µ(E∆A) = µ(E −A) + µ(A −E) ⩽ µ(E −K) + µ(U −E) = ϵ.

Problem 2: (Folland, 1.30)

If E ∈ L and m(E) > 0, prove that for any α < 1 there is an open interval I such that m(E ∩ I) > αm(I).

Proof. Suppose not; that is, there exists α < 1 such that m(E ∩ I) ⩽ αm(I) for all open intervals I. Consider a

collection {Ii}∞i=1 that covers E (this is always possible since even R =
∞
⋃
n=1
(−n,n)), from which we have

m(E) =m(
∞
⋃
i=1

E ∩ Ii) ⩽
∞
∑
i=1

m(E ∩ Ii) ⩽ α
∞
∑
i=1

m(Ii).

Taking the infimum over all possible covers of E using open intervals, we obtain

m(E) ⩽ α inf{
∞
∑
i=1

m(Ii) ∶
∞
⋃
i=1

Ii ⊃ E} = αm(E) <m(E),

clearly a contradiction. This proves the claim.

Problem 3: (I)

Suppose µ∗ is an outer measure which is finitely additive. Show that µ∗ is actually a measure.
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Proof. We only need to verify countable additivity of disjoint sets, of which the subadditivity direction also

follows from definition.

Now let {Ei} be a countable collection of disjoint sets. By finite additivity

µ∗(
∞
⋃
i=1

Ei) ⩾ µ∗(
n

⋃
i=1

Ei) =
n

∑
i=1

µ∗(En)

for all n, so letting n→∞ we obtain ⩾ as well, proving the claim.

Problem 4: (II)

Suppose f is Lipschitz and E ⊂ R has Lebesgue measure 0. Show that m({f(x) ∶ x ∈ E}) = 0 also.

Proof. Since m(E) = inf{
∞
∑
i=1

m(bi − ai) ∶
∞
⋃
i=1
(ai, bi) ⊃ E}, there exists a covering K ∶= {(ai, bi)} that is “ϵ-optimal”,

i.e.,
∞
∑
i=1

m(bi − ai) <m(E) + ϵ = ϵ.

Since f is Lipschitz, each (ai, bi) can be mapped to an interval of length at most L(bi − ai), where L is the

corresponding Lipschitz constant. Since

{f(x) ∶ x ∈ E} ⊂ {f(ai, bi) ∶ (ai, bi) ∈ K}

we have

m({f(x) ∶ x ∈ E}) ⩽
∞
∑
i=1

m(f(ai, bi)) ⩽ L
∞
∑
i=1

m(bi − ai) < Lϵ.

Since ϵ is arbitrary we see that {f(x) ∶ x ∈ E} indeed has Lebesgue measure 0.

Problem 5: (III)

Let (X,M, µ) be a measure space with µ(X) < ∞, and let A ⊂ M be an algebra (not necessarily a σ-

algebra!). A set E ∈M is called approximable from inside by A if for every ϵ > 0 there exists A ∈ A with

A ⊂ E,µ(E −A) < ϵ.
Show that C ∶= {E ∈M ∶ E is approximable from inside by A} is closed under countable unions.

Proof. Let {En} be a countable collection of sets in C, and let {An} be the corresponding sets in A that can

approximate E from inside with error < ϵ2−n, i.e., µ(En −An) < ϵ2−n. We now consider
∞
⋃
n=1

En −
k

⋃
n=1

An (since A

is not a σ-algebra, we should instead consider finite unions of An’s):

µ(
∞
⋃
n=1

En −
k

⋃
n=1

An) = µ(
∞
⋃
n=1

En −
k

⋃
n=1

En) + µ(
k

⋃
n=1

En −
k

⋃
n=1

An)

⩽ µ(
∞
⋃
n=1

En −
k

⋃
n=1

En) + µ(
k

⋃
n=1
(En −An))

⩽ µ(
∞
⋃
n=1

En −
k

⋃
n=1

En) +
k

∑
n=1

µ(En −An) < µ(
∞
⋃
n=1

En −
k

⋃
n=1

En) + ϵ.

Note that the first term can be re-written as
∞
⋃

n=k+1
En, and as k increases, this forms a nested decreasing sequence.
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With the additional assumption that µ(X) <∞, we may use continuity from below and see that

lim
k→∞

µ(
∞
⋃
n=1

En −
k

⋃
n=1

En) = µ(∅) = 0,

so there exists a sufficiently large K such that µ(
∞
⋃
n=1

En −
K

⋃
n=1

En) < ϵ. For such K,

µ(
∞
⋃
n=1

En −
k

⋃
n=1

An) < 2ϵ.

Since ϵ is arbitrary, we have done showing that C is closed under countable unions.

Problem 6: (IV)

Let X be uncountable. For A ⊂X, define

µ∗(A) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if A is uncountable

0 if A is countable.

(a) If A is a countable subset of X, show that A is µ∗-measurable.

(b) If A and Ac are both uncountable, show that A is not µ∗-measurable.

Proof. (a) Let A be countable so that µ∗(A) = 0. If we take any E ∈ X and consider A ∩E and A ∩Ec, it is

obvious that both intersections need to be countable, so

µ∗(A) = µ∗(A ∩E) + µ∗(A ∩Ec) for all E ∈X,

which by definition means A is µ∗-measurable.

(b) A is not µ∗-measurable because

µ∗(X) = 1 < 2 = µ∗(X ∩A) + µ∗(X ∩Ac).

Problem 7: (V)

For X a separable metric space, and µ a measure on BX , the support of µ is the smallest closed set F with

µ(F c) = 0.

(a) Suppose F ⊂ R is closed. Show that there is a finite measure ν on BR whose support is the set F .

(b) Suppose the measure ν on BR is finite on bounded sets, and let F be its distribution function. Show

that x ∈ supp(ν) if and only if F (x′) < F (x′′) for all x′ < x < x′′.

Proof. (*) Following the hint, we first show that F has a countable dense subset. If F is bounded, then by
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Heine-Borel it is compact; thus given n ∈ N, the collection

⋃
x∈F

B(x,1/n) ⊃ F

admits a finite cover. Call this finite collection of these radii Sn. It follows that
∞
⋃
n=1

Sn is a countable set

that is dense in F .

On the other hand, if F is unbounded, we first construct a countable dense subset for F ∩ [−k, k] for each

k ∈ N. Taking the countable union over k ∈ N, we obtain another countable dense subset that is dense in
∞
⋃
k=1
[−k, k] ⊃ F . Therefore F also admits a countable dense subset.

(a) Let A be a countable dense subset of F and let {an}n⩾1 be an enumeration of A. We define

µ(an) ∶= 2−n and µ ≡ 0 everywhere else.

Then µ is a finite measure with µ(R) = 1 and the support of µ = A = F .

(b) If x ∉ supp(ν), then there exists ϵ > 0 such that ν ≡ 0 on (x−ϵ, x+ϵ) (because by definition its distribution

function is 0 on some sufficiently small interval). Then if we pick x′ ∈ (x − ϵ, x) and x′′ ∈ (x,x + ϵ) we see

that F (x′) = F (x′′) whereas x′ < x < x′′. This proves⇐.

For ⇒, let x ∈ supp(ν) and let x′ < x < x′′. Let ϵ be such that x′ < x − ϵ < x + ϵ < x′′. Then by definition of

support, there exists some t ∈ (x − ϵ, x + ϵ) such that F (t) > 0 (where F is the distribution). This implies

µ((x − ϵ, x + ϵ)) > 0, so

F (x′′) − F (x′) = µ((x′, x′′)) ⩽ µ(x − ϵ, x + ϵ) > 0.

Problem 8: (VI)

(a) For x ∈ R and E ⊂ R. Show that the Lebesgue measure m on R is translation-invariant: µ(E) = µ(x+E)
for all x ∈ R and all Lebesgue-measurable E.

(b) From (a) it follows readily that Lebesgue measure on [0,1] is translation-invariant “mod 1” in the sense

of the nonmeasurable sets given in the beginning of the course. Show that if A is that set and E ⊂ A is

Lebesgue measurable then µ(E) = 0.

Proof. (a) Let
∞
⋃
i=1
(ai + x, bi + x) be any open cover of x +E. Then,

∞
∑
i=1

µ(ai + x, bi + x) =
∞
∑
i=1

µ(ai + bi) ⩾ inf{
∞
∑
i=1

µ(ai, bi) ∶
∞
⋃
i=1
(ai, bi) ⊃ E},

so taking the infimum over all open covers of x +E gives µ(x +E) ⩾ µ(E). Likewise, E itself is a translate

of x +E, so µ(E) ⩾ µ(x +E). Therefore µ(E) = µ(x +E), i.e., µ is translation-invariant.

(b) We define Eq ∶= E+q and consider {Eq ∶ q ∈ [−1,1]∩Q}. It follows that the Eq ’s are pairwise disjoint and

that the union is a subset of [−1,2]. Let {E1,E2, ...} be an enumeration of that collection. By countable
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additivity,

µ(⋃Eq) =
∞
∑
i=1

µ(Eq) =
∞
∑
i=1

µ(E) ⩽ µ([−1,2]) = 3,

and we easily see that a contradiction arises unless µ(E) = 0. ‘

Problem 9: (VII)

(a) Let X be an infinite set, and for E ⊂X define

µ∗(E) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if E = ∅,

1 if E is nonempty and finite

∞ if E is infinite.

Show µ∗ is an outer measure.

(b) Prove or disprove that every outer measure ν∗ is continuous from below, i.e., if E1 ⊂ E2 ⊂ ... then

ν∗(
∞
⋃
n=1

En) = lim
n→∞

ν∗(En).

Proof. (a) It is clear that ν∗(∅) = 0 and that ν∗(A) ⩽ ν∗(B) if A ⊂ B, so it remains to verify countable

subadditivity. Suppose for a countable collection {En} of sets we have µ∗(
∞
⋃
n=1

En) >
∞
∑
n=1

µ∗(En).

The LHS of the inequality can be either 1 or ∞. If it is 1 then the RHS is 0, meaning that each En = ∅,

but then their union is also ∅, contradicting LHS = 1. If it is ∞ then clearly some En ≠ ∅, so the RHS is

forced to be 1. This means that precisely one En is nonempty and furthermore it needs to be finite. Then

En∪∅∪∅∪ ... = En, so the LHS is µ∗(En) = 1, again contradicting our assumption that LHS =∞. Therefore

µ∗(
∞
⋃
n=1

En) >
∞
∑
n=1

µ∗(En) can never happen and we are done showing that µ∗ is an outer measure.

(b) The claim is false. Consider En ∶= {1, ..., n}. Then E1 ⊂ E2 ⊂ ... and let ν∗ ∶= µ∗ as defined in (a). Then

ν∗(
∞
⋃
n=1

En) = ν∗(N) =∞ ≠ 1 = lim
n→∞

1 = lim
n→∞

ν∗(En).
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