

MATH 525a Homework 3

Qilin Ye

September 23, 2021

Problem 1: (Folland, 1.26)

Prove that if $E \in \mathcal{M}_\mu$ and $\mu(E) < \infty$ then for every $\epsilon > 0$ there is a set A that is a finite union of open intervals such that $\mu(E \Delta A) < \epsilon$. (Hint: use Theorem 1.18.)

Proof. By Theorem 1.18, given E , there exist $U \supset E$ open and $K \subset E$ compact such that

$$\mu(E - K) < \frac{\epsilon}{2} \quad \text{and} \quad \mu(U - E) < \frac{\epsilon}{2}.$$

Next, since U is open, it can be written as a countable union of open intervals, i.e., $U = \bigcup_{i=1}^{\infty} I_i$. (The proof is given in Folland's chapter 0.) Since K is compact, from $K \subset \bigcup_{i=1}^{\infty} I_i$ we know that we can extract a finite subcover $\{I_1, \dots, I_n\}$. If we define their finite union to be A , then

$$\mu(E \Delta A) = \mu(E - A) + \mu(A - E) \leq \mu(E - K) + \mu(U - E) = \epsilon. \quad \square$$

Problem 2: (Folland, 1.30)

If $E \in \mathcal{L}$ and $m(E) > 0$, prove that for any $\alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$.

Proof. Suppose not; that is, there exists $\alpha < 1$ such that $m(E \cap I) \leq \alpha m(I)$ for all open intervals I . Consider a collection $\{I_i\}_{i=1}^{\infty}$ that covers E (this is always possible since even $\mathbb{R} = \bigcup_{n=1}^{\infty} (-n, n)$), from which we have

$$m(E) = m\left(\bigcup_{i=1}^{\infty} E \cap I_i\right) \leq \sum_{i=1}^{\infty} m(E \cap I_i) \leq \alpha \sum_{i=1}^{\infty} m(I_i).$$

Taking the infimum over all possible covers of E using open intervals, we obtain

$$m(E) \leq \alpha \inf\left\{\sum_{i=1}^{\infty} m(I_i) : \bigcup_{i=1}^{\infty} I_i \supset E\right\} = \alpha m(E) < m(E),$$

clearly a contradiction. This proves the claim. \square

Problem 3: (I)

Suppose μ^* is an outer measure which is finitely additive. Show that μ^* is actually a measure.

Proof. We only need to verify countable additivity of disjoint sets, of which the subadditivity direction also follows from definition.

Now let $\{E_i\}$ be a countable collection of disjoint sets. By finite additivity

$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \geq \mu^*(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu^*(E_i)$$

for all n , so letting $n \rightarrow \infty$ we obtain \geq as well, proving the claim. \square

Problem 4: (II)

Suppose f is Lipschitz and $E \subset \mathbb{R}$ has Lebesgue measure 0. Show that $m(\{f(x) : x \in E\}) = 0$ also.

Proof. Since $m(E) = \inf\{\sum_{i=1}^{\infty} m(b_i - a_i) : \bigcup_{i=1}^{\infty} (a_i, b_i) \supset E\}$, there exists a covering $\mathcal{K} := \{(a_i, b_i)\}$ that is “ ϵ -optimal”, i.e.,

$$\sum_{i=1}^{\infty} m(b_i - a_i) < m(E) + \epsilon = \epsilon.$$

Since f is Lipschitz, each (a_i, b_i) can be mapped to an interval of length at most $L(b_i - a_i)$, where L is the corresponding Lipschitz constant. Since

$$\{f(x) : x \in E\} \subset \{f(a_i, b_i) : (a_i, b_i) \in \mathcal{K}\}$$

we have

$$m(\{f(x) : x \in E\}) \leq \sum_{i=1}^{\infty} m(f(a_i, b_i)) \leq L \sum_{i=1}^{\infty} m(b_i - a_i) < L\epsilon.$$

Since ϵ is arbitrary we see that $\{f(x) : x \in E\}$ indeed has Lebesgue measure 0. \square

Problem 5: (III)

Let (X, \mathfrak{M}, μ) be a measure space with $\mu(X) < \infty$, and let $\mathcal{A} \subset \mathfrak{M}$ be an algebra (not necessarily a σ -algebra!). A set $E \in \mathfrak{M}$ is called **approximable from inside by \mathcal{A}** if for every $\epsilon > 0$ there exists $A \in \mathcal{A}$ with $A \subset E, \mu(E - A) < \epsilon$.

Show that $\mathcal{C} := \{E \in \mathfrak{M} : E \text{ is approximable from inside by } \mathcal{A}\}$ is closed under countable unions.

Proof. Let $\{E_n\}$ be a countable collection of sets in \mathcal{C} , and let $\{A_n\}$ be the corresponding sets in \mathcal{A} that can approximate E from inside with error $< \epsilon 2^{-n}$, i.e., $\mu(E_n - A_n) < \epsilon 2^{-n}$. We now consider $\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k A_n$ (since \mathcal{A} is not a σ -algebra, we should instead consider finite unions of A_n 's):

$$\begin{aligned} \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k A_n\right) &= \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k E_n\right) + \mu\left(\bigcup_{n=1}^k E_n - \bigcup_{n=1}^k A_n\right) \\ &\leq \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k E_n\right) + \mu\left(\bigcup_{n=1}^k (E_n - A_n)\right) \\ &\leq \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k E_n\right) + \sum_{n=1}^k \mu(E_n - A_n) < \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k E_n\right) + \epsilon. \end{aligned}$$

Note that the first term can be re-written as $\bigcup_{n=k+1}^{\infty} E_n$, and as k increases, this forms a nested decreasing sequence.

With the additional assumption that $\mu(X) < \infty$, we may use continuity from below and see that

$$\lim_{k \rightarrow \infty} \mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^k E_n\right) = \mu(\emptyset) = 0,$$

so there exists a sufficiently large K such that $\mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^K E_n\right) < \epsilon$. For such K ,

$$\mu\left(\bigcup_{n=1}^{\infty} E_n - \bigcup_{n=1}^K A_n\right) < 2\epsilon.$$

Since ϵ is arbitrary, we have done showing that \mathcal{C} is closed under countable unions. \square

Problem 6: (IV)

Let X be uncountable. For $A \subset X$, define

$$\mu^*(A) := \begin{cases} 1 & \text{if } A \text{ is uncountable} \\ 0 & \text{if } A \text{ is countable.} \end{cases}$$

- (a) If A is a countable subset of X , show that A is μ^* -measurable.
- (b) If A and A^c are both uncountable, show that A is not μ^* -measurable.

Proof. (a) Let A be countable so that $\mu^*(A) = 0$. If we take any $E \in \mathcal{X}$ and consider $A \cap E$ and $A \cap E^c$, it is obvious that both intersections need to be countable, so

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \quad \text{for all } E \in \mathcal{X},$$

which by definition means A is μ^* -measurable.

- (b) A is not μ^* -measurable because

$$\mu^*(X) = 1 < 2 = \mu^*(X \cap A) + \mu^*(X \cap A^c).$$

\square

Problem 7: (V)

For X a separable metric space, and μ a measure on \mathcal{B}_X , the **support** of μ is the smallest closed set F with $\mu(F^c) = 0$.

- (a) Suppose $F \subset \mathbb{R}$ is closed. Show that there is a finite measure ν on $\mathcal{B}_{\mathbb{R}}$ whose support is the set F .
- (b) Suppose the measure ν on $\mathcal{B}_{\mathbb{R}}$ is finite on bounded sets, and let F be its distribution function. Show that $x \in \text{supp}(\nu)$ if and only if $F(x') < F(x'')$ for all $x' < x < x''$.

Proof. (*) Following the hint, we first show that F has a countable dense subset. If F is bounded, then by

Heine-Borel it is compact; thus given $n \in \mathbb{N}$, the collection

$$\bigcup_{x \in F} B(x, 1/n) \supset F$$

admits a finite cover. Call this finite collection of these radii S_n . It follows that $\bigcup_{n=1}^{\infty} S_n$ is a countable set that is dense in F .

On the other hand, if F is unbounded, we first construct a countable dense subset for $F \cap [-k, k]$ for each $k \in \mathbb{N}$. Taking the countable union over $k \in \mathbb{N}$, we obtain another countable dense subset that is dense in $\bigcup_{k=1}^{\infty} [-k, k] \supset F$. Therefore F also admits a countable dense subset.

(a) Let A be a countable dense subset of F and let $\{a_n\}_{n \geq 1}$ be an enumeration of A . We define

$$\mu(a_n) := 2^{-n} \quad \text{and} \quad \mu \equiv 0 \text{ everywhere else.}$$

Then μ is a finite measure with $\mu(\mathbb{R}) = 1$ and the support of $\mu = \overline{A} = F$.

(b) If $x \notin \text{supp}(\nu)$, then there exists $\epsilon > 0$ such that $\nu \equiv 0$ on $(x - \epsilon, x + \epsilon)$ (because by definition its distribution function is 0 on some sufficiently small interval). Then if we pick $x' \in (x - \epsilon, x)$ and $x'' \in (x, x + \epsilon)$ we see that $F(x') = F(x'')$ whereas $x' < x < x''$. This proves \Leftarrow .

For \Rightarrow , let $x \in \text{supp}(\nu)$ and let $x' < x < x''$. Let ϵ be such that $x' < x - \epsilon < x + \epsilon < x''$. Then by definition of support, there exists some $t \in (x - \epsilon, x + \epsilon)$ such that $F(t) > 0$ (where F is the distribution). This implies $\mu((x - \epsilon, x + \epsilon)) > 0$, so

$$F(x'') - F(x') = \mu((x', x'')) \leq \mu(x - \epsilon, x + \epsilon) > 0. \quad \square$$

Problem 8: (VI)

- (a) For $x \in \mathbb{R}$ and $E \subset \mathbb{R}$. Show that the Lebesgue measure m on \mathbb{R} is translation-invariant: $\mu(E) = \mu(x + E)$ for all $x \in \mathbb{R}$ and all Lebesgue-measurable E .
- (b) From (a) it follows readily that Lebesgue measure on $[0, 1]$ is translation-invariant “mod 1” in the sense of the nonmeasurable sets given in the beginning of the course. Show that if A is that set and $E \subset A$ is Lebesgue measurable then $\mu(E) = 0$.

Proof. (a) Let $\bigcup_{i=1}^{\infty} (a_i + x, b_i + x)$ be any open cover of $x + E$. Then,

$$\sum_{i=1}^{\infty} \mu(a_i + x, b_i + x) = \sum_{i=1}^{\infty} \mu(a_i, b_i) \geq \inf \left\{ \sum_{i=1}^{\infty} \mu(a_i, b_i) : \bigcup_{i=1}^{\infty} (a_i, b_i) \supset E \right\},$$

so taking the infimum over all open covers of $x + E$ gives $\mu(x + E) \geq \mu(E)$. Likewise, E itself is a translate of $x + E$, so $\mu(E) \geq \mu(x + E)$. Therefore $\mu(E) = \mu(x + E)$, i.e., μ is translation-invariant.

(b) We define $E_q := E + q$ and consider $\{E_q : q \in [-1, 1] \cap \mathbb{Q}\}$. It follows that the E_q 's are pairwise disjoint and that the union is a subset of $[-1, 2]$. Let $\{E_1, E_2, \dots\}$ be an enumeration of that collection. By countable

additivity,

$$\mu(\bigcup E_q) = \sum_{i=1}^{\infty} \mu(E_q) = \sum_{i=1}^{\infty} \mu(E) \leq \mu([-1, 2]) = 3,$$

and we easily see that a contradiction arises unless $\mu(E) = 0$. \square'

Problem 9: (VII)

(a) Let X be an infinite set, and for $E \subset X$ define

$$\mu^*(E) := \begin{cases} 0 & \text{if } E = \emptyset, \\ 1 & \text{if } E \text{ is nonempty and finite} \\ \infty & \text{if } E \text{ is infinite.} \end{cases}$$

Show μ^* is an outer measure.

(b) Prove or disprove that every outer measure ν^* is continuous from below, i.e., if $E_1 \subset E_2 \subset \dots$ then

$$\nu^*(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \rightarrow \infty} \nu^*(E_n).$$

Proof. (a) It is clear that $\nu^*(\emptyset) = 0$ and that $\nu^*(A) \leq \nu^*(B)$ if $A \subset B$, so it remains to verify countable subadditivity. Suppose for a countable collection $\{E_n\}$ of sets we have $\mu^*(\bigcup_{n=1}^{\infty} E_n) > \sum_{n=1}^{\infty} \mu^*(E_n)$.

The LHS of the inequality can be either 1 or ∞ . If it is 1 then the RHS is 0, meaning that each $E_n = \emptyset$, but then their union is also \emptyset , contradicting LHS = 1. If it is ∞ then clearly some $E_n \neq \emptyset$, so the RHS is forced to be 1. This means that precisely one E_n is nonempty and furthermore it needs to be finite. Then $E_n \cup \emptyset \cup \emptyset \cup \dots = E_n$, so the LHS is $\mu^*(E_n) = 1$, again contradicting our assumption that LHS = ∞ . Therefore $\mu^*(\bigcup_{n=1}^{\infty} E_n) > \sum_{n=1}^{\infty} \mu^*(E_n)$ can never happen and we are done showing that μ^* is an outer measure.

(b) The claim is false. Consider $E_n := \{1, \dots, n\}$. Then $E_1 \subset E_2 \subset \dots$ and let $\nu^* := \mu^*$ as defined in (a). Then

$$\nu^*(\bigcup_{n=1}^{\infty} E_n) = \nu^*(\mathbb{N}) = \infty \neq 1 = \lim_{n \rightarrow \infty} 1 = \lim_{n \rightarrow \infty} \nu^*(E_n).$$

\square