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Problem 1: (Folland, 1.26)

Prove that if £ € M, and u(E) < oo then for every e > 0 there is a set A that is a finite union of open intervals

such that u(EAA) < co. (Hint: use Theorem 1.18.)

Proof. By Theorem 1.18, given E, there exist U > E open and K c FE compact such that

wW(E-K) < and u(U—E)<§.

N |

Next, since U is open, it can be written as a countable union of open intervals, i.e., F = | JI;. (The proof is
i=1

given in Folland’s chapter 0.) Since K is compact, from K c | J I; we know that we can extract a finite subcover
i=1
{I1,...,I,}. If we define their finite union to be A, then

WEAA)=pw(E-A)+uw(A-E)Su(E-K)+u(U-FE) =e. O
Problem 2: (Folland, 1.30)

If E e £ and m(E) > 0, prove that for any « < 1 there is an open interval I such that m(EnT) > am(I).

Proof. Suppose not; that is, there exists a < 1 such that m(E nI) < am([) for all open intervals I. Consider a

collection {I;}:2, that covers E (this is always possible since even R = |_J (-n,n)), from which we have

n=1

m(E) = m(QEmIZ-) < im(EmIZ-) < aim([i).

Taking the infimum over all possible covers of E using open intervals, we obtain
m(E) < ainf{d m(L;) : U I > E} = am(E) < m(E),
i=1 i=1

clearly a contradiction. This proves the claim. O
Problem 3: (I)

Suppose p* is an outer measure which is finitely additive. Show that p* is actually a measure.
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Proof. We only need to verify countable additivity of disjoint sets, of which the subadditivity direction also

follows from definition.
Now let {E;} be a countable collection of disjoint sets. By finite additivity

u"(U1 Ei)> M*(U1 E;) =1 (E
i= i= i=1

for all n, so letting n — co we obtain > as well, proving the claim. O
Problem 4: (II)

Suppose f is Lipschitz and F c R has Lebesgue measure 0. Show that m({f(z): 2z € E}) =0 also.

Proof. Since m(E) =inf{) m(b; - a;) : | J(a;,b;) > E}, there exists a covering K := {(a;,b;)} that is “c-optimal”,
i=1 i=1
ie.,

ilm(bi—ai)<m(E)+e:

Since f is Lipschitz, each (a;,b;) can be mapped to an interval of length at most L(b; — a;), where L is the

corresponding Lipschitz constant. Since

{f(x):xe B} c{f(asb;): (a;,b;) e C}

we have
m({f(z):zeE}) <> m(f(ai,b;)) <L) m(b; —a;) < Le.
=1 i=1
Since ¢ is arbitrary we see that {f(z) : z € E'} indeed has Lebesgue measure 0. O

Problem 5: (III)

Let (X,9%, 1) be a measure space with u(X) < oo, and let A c 9 be an algebra (not necessarily a o-
algebra!). A set E € 9t is called approximable from inside by .A if for every e > 0 there exists A € A with

AcE u(E-A)<e.
Show that C := {E ¢ M : E is approximable from inside by .4} is closed under countable unions.

Proof. Let {E,} be a countable collection of sets in C, and let {A,} be the corresponding sets in .A that can
k

approximate F from inside with error < 27", i.e., u(E,, - A,,) < €2™". We now consider | J E, - | 4,, (since A

n=1 n=1

is not a o-algebra, we should instead consider finite unions of A4,,’s):

k k
z)"‘U(U E, - U An)

C:r

M(UE UA) u@ J
oo k
<u(J - L:Jl )+ iU (B - 4)

V/aN
=}
(@
tlj
Ca-

k
EDWICH A)<M(UE UE)+e

S
I
—
S
I

Note that the first term can be re-writtenas | J E,, and as k increases, this forms a nested decreasing sequence.
n=k+1
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With the additional assumption that (X)) < co, we may use continuity from below and see that

tim (U B U B) = (@) =0,

n=1 n=1

o K
so there exists a sufficiently large K such that u(| ) E, - |J E») <e. For such K,

n=1 n=1

oo k
N(UEH_ U Ap) < 2e.
n=1 n=1

Since ¢ is arbitrary, we have done showing that C is closed under countable unions. O

Problem 6: (IV)

Let X be uncountable. For A c X, define

i} 1 if A is uncountable
p'(A) =
0 if A is countable.

(a) If Aisa countable subset of X, show that A is *-measurable.

(b) If A and A° are both uncountable, show that A is not p*-measurable.

Proof. (a) Let A be countable so that p*(A) = 0. If we take any E € X and consider An F and An E€, it is

obvious that both intersections need to be countable, so
w(A)=p (AnE)+pu (AnE°) forall Fe X,
which by definition means A is ;*-measurable.
(b) A is not p*-measurable because

w(X)=1<2=p"(XnA)+p (X nA°).

Problem 7: (V)

For X a separable metric space, and ; a measure on By, the support of . is the smallest closed set F with
p(F°) = 0.
(a) Suppose F c R is closed. Show that there is a finite measure v on Br whose support is the set F'.

(b) Suppose the measure v on By is finite on bounded sets, and let F' be its distribution function. Show

that « € supp(v) if and only if F(2') < F(2") for all 2’ <z < 2.

Proof. (*) Following the hint, we first show that F' has a countable dense subset. If F' is bounded, then by

3
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Heine-Borel it is compact; thus given n € N, the collection

U B(z,1/n) > F
xeF

admits a finite cover. Call this finite collection of these radii S,,. It follows that | J S, is a countable set
n=1

that is dense in F'.

On the other hand, if F' is unbounded, we first construct a countable dense subset for F' n [k, k] for each

k € N. Taking the countable union over k € N, we obtain another countable dense subset that is dense in

s

[-k, k] o F. Therefore F also admits a countable dense subset.
k

Il
—

(a) Let A be a countable dense subset of F' and let {a, },>1 be an enumeration of A. We define
w(ay):=27" and 1 = 0 everywhere else.
Then p is a finite measure with x(R) = 1 and the support of = A = F.

(b) If z ¢ supp(v), then there exists € > 0 such that v = 0 on (z—¢, z+¢) (because by definition its distribution
function is 0 on some sufficiently small interval). Then if we pick 2’ € (z — ¢,2) and 2" € (x,z + ¢) we see

that F(z") = F(a") whereas 2’ < z < z”’. This proves <.

For =, let z € supp(v) and let 2’ < 2 < 2. Let € be such that 2’ < z — e < z + € < . Then by definition of
support, there exists some ¢ € (x — ¢,z + ¢) such that F'(¢) > 0 (where F is the distribution). This implies
uw((z—e,x+¢))>0,s0

F(@")-F(@2") = pu((z',2")) <p(z - e,z +€) > 0. O

Problem 8: (VI)

(@) ForzeRand E cR. Show that the Lebesgue measure m on R is translation-invariant: u(E) = p(z+FE)
for all = € R and all Lebesgue-measurable E.

(b) From (a) it follows readily that Lebesgue measure on [0, 1] is translation-invariant “mod 1” in the sense
of the nonmeasurable sets given in the beginning of the course. Show that if A is that set and F c A is
Lebesgue measurable then u(E) = 0.

Proof. () Let | J(ai + z,b; + z) be any open cover of = + E. Then,

i1
Yomlai+x,bi+x) =Y p(ag +b;) > inf{)" pla;, b;) : J(ai, bi) > E},
=1 =1 =1 =1

so taking the infimum over all open covers of x + F gives u(x + E) > u(E). Likewise, F itself is a translate

of z + F, so u(FE) > p(x + E). Therefore u(F) = u(z + E), i.e., p is translation-invariant.

(b) We define E, := E+¢ and consider {E, : ¢ € [-1,1]nQ}. It follows that the E,’s are pairwise disjoint and

that the union is a subset of [-1,2]. Let {E}, Es, ...} be an enumeration of that collection. By countable

4
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additivity,
WU Eq) = 3 1(Ey) = 3, n(E) < p([-1,2]) =3,
i=1 i=1
and we easily see that a contradiction arises unless u(FE) = 0. O

Problem 9: (VII)

(a) Let X be an infinite set, and for £ c X define

0 ifF=g,
pw*(E):=11 if E is nonempty and finite
oo if F is infinite.
Show p* is an outer measure.

(b) Prove or disprove that every outer measure v* is continuous from below, i.e., if £; c F5 c ... then

v (U En) = lim v*(E,).

Proof. (a) It is clear that v*(@) = 0 and that v*(A) < v*(B) if A c B, so it remains to verify countable

subadditivity. Suppose for a countable collection {E,,} of sets we have p*(|J E») > Y p*(Ey).

n=1 n=1

The LHS of the inequality can be either 1 or co. If it is 1 then the RHS is 0, meaning that each F,, = @,
but then their union is also @, contradicting LHS = 1. If it is co then clearly some FE,, # @, so the RHS is
forced to be 1. This means that precisely one FE,, is nonempty and furthermore it needs to be finite. Then
E,uzu@u... = E,, so the LHS is u*(E,,) = 1, again contradicting our assumption that LHS = co. Therefore

w* (U En) > > w*(E,) can never happen and we are done showing that p* is an outer measure.
n=1 n=1

(b) The claim is false. Consider E,, := {1,...,n}. Then E; c Es c ... and let v* := u* as defined in (a). Then
V(U En) =v'(N)=oco#1=lim 1= lim v*(E,). O

—00 —>00
n=1 n n



