MATH 525a Homework 4

Qilin Ye

October 6, 2021

Problem: (Folland 2.3)

If {f.} is a sequence of measurable functions on X, prove {x :lim f, (z) exists} is a measurable set.

Proof. Note that [lim f,(z) exists] < [limsup f,(x) — liminf f,(x) = 0]. By proposition 2.7, limsup f, and

liminf f,, are both measurable, and by proposition 2.6, so is g := limsup f,, — liminf f,,. It remains to notice that

{x :lim f, exists} = g~*({0})

so this is indeed a measurable set. O

Problem: (Folland 2.13)

Suppose {f,} c L*, f, — f pointwise, and [ f= limf fn < co. Show that [ f= lim[ fn forall E € 9.
E E
However this need not to be true if f f=1lim f fn =00,

Proof. Writing f as liminf f,,, for any F € 9t we have

fE f- /}; liminf £, < liminf /E fn < limsup /}; I (Fatou)
~timsup( [ fu= [ £2)
élimffn—liminffchnzff—liminf[chn
g[f—/;climinffn:ff—[ch:/Ef (Fatou again)

The starred equation is because if x,, - « then limsup(z,, - y,) = limz,, + limsup(-y,) = limz, - liminfy, (a

standard fact from 425a; proof attached below). Therefore all inequalities must attain equality and in particular

[Eleiminf/Efn:limsup[Efn:lim[Efn.
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Proof of subclaim. We use Rudin’s [?] definition: limsupz, := sup E where F is the set of subsequential
limits of {x,} (and likewise liminf = inf E). Let E, be the set corresponding to y,. Since z, — z, the set
corresponding to {x,,} is simply {z}. Since z,, converges to z, {z,, + yn, } converges to p if and only if the

corresponding {y,, } converges to p — z, the set of subsequential limits of {z,, + y,, } is simply = + E,. Thus
sup(z + Ey) =z +sup(E,) = limsup(zy, +yy,) = limz, + limsupyy.
This, along with lim sup(-y,,) = - liminf(y, ), gives the subclaim. END OF PROOF OF SUBCLAIM
If we allow f f= limf Jn 1= 00, consider f,, := nX(0,1/n) + X[1,00) 80 f = X[1,), Doth defined on (0, c0). Let
E =(0,1). Then fEfn:Ifor all n whereas '/];fzo. O

Problem: (Folland 2.14)

If felL® let \(F) := [Ef dp for E c 9. Show that A is a measure on 9t and for any g € L*, / g dX =
/ fg du. (Hint: first suppose that g is simple.)

Proof. It is clear that \(@) = 0, so it remains to check countable additivity. First, if E, Fy are disjoint then

MEE) = [ fau= [ Pewm dis [ e dus [ e dus MEB)D < A(B),

so induction shows finite additivity. Now let { E;}:2; c 90t be a countable collection of disjoint sets. By MCT

)‘(QEi) =)o

i=1

tan= [ oz e di= i [ fxon e ode= Jim AU ED) = D AE).
i=1 i=1
This shows that ) is a measure.

n
For the second part, first assume g is simple. Let Z cix g, be a standard representation. Then
i=1

Joar=Seaw)=3e [ ran=e [ e dn= [ 3o du= [ foan

For general g € L*, let {¢;} be a sequence of simple functions with ¢,, 1 g. By using MCT twice,
[odr= [ timg;ax=tim [ dn=tim [ fo;du= [ lim fo;du= [ fgdp O
Jj—>00 Jj—>00 Jj—>00 J—>oo
Problem: (II)

Suppose f is measurable from (X,9) to (R,Bg), and let F c 9 be the o-algebra {f '(E) : E € Bg}.
Suppose g is measurable (X, F) to (R, Bg). Show that g = ho f for some h: R - R.

Proof. First we claim that if there does not exist such g, then for some a,b € X, we have f(a) = f(b) but
g(a) # g(b). Indeed, assuming the negation of the second statement, i.e., for all a,b € X, if f(a) = f(b) then
g(a) = g(b), the map R — R defined by f(z) ~ g(x) is well-defined.

Now for contradiction, assume no g exists; we find a,b € X with the property above. Since g is measurable and

2
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g(a) is a singleton in R, we see S := g"!(g(a)) € F. O

Problem: (III)

Let (X, M, ) be a measure space with y finite, and let f : X — [0, o0) be a measurable function. Show there

exists an increasing ¢ : [0, 00) — [0, 00) for which lim g(z) = oo but g o f integrable.
xTr—> 00

Proof. We first prove the hint:

Lemma. If {a,} >0 and ) a, < oo, then there exists {b,,} with b,, > oo but " a,b,, < co.

n=1 n=1

o)

Proof Of lemma. Since Z a, converges, by Cauchy convergence criterion, every € = 2_k COI'I'eSpOIldS to a ng
n=1

where Z an < 27%. We define b,, = 1 for n < ny to get rid of the early large terms. Then define b,, = k for

n2ni

ni <n <ngy1. On one hand, b, clearly tends to co; on the other hand,

co ny-1 oo Mpp1—1 ni-1 S
Yoanby= ) an+ Y. Y, anbn<2an+22—k<oo.
n=1 n=1 k=1 n=ng n=1 k=1

END OF PROOF OF LEMMA

Now for the main proof, define E, := f~'([n - 1,n)). By construction X = | J E, and E,’s are disjoint, so
n=1

> w(E,) converges. We construct a sequence of real numbers {g, } according to the lemma (i.e., g, - oo with

n=1
oo

1w(Ey)gn < oo) and define a function such that g(0) = 0 and g| (n-1.n] = In- Clearly g is stepwise increasing.

n=1

We claim that g has the desired property:

fXQOfdu=nZ::1fEng<>fdu< Z[E”gosupfdu

n=1 zeE,

:ni[b“n g(n) duzzg(n)u(En) < 0. 0

Problem: (IV)

Suppose f, : R — R are nonnegative measurable functions. Prove or disprove by example

lim sup f fndm < f limsup f,, dm.

n—> 00 n—> 00

Solution. The claim is false; consider f, := nx(o,1/,) where the integral of each f,, is 1 but f limsup f, =0. O
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Problem: (V)

(a) Let (X,9, 1) be a measure space and f an integrable function. Show that for every ¢ > 0 there exists

/14 A (S — ’ d/l; €.

(b) For Lebesgue measure m, suppose f : R — R is integrable and a € R. Define F(x) := f f dm. Show

that F' is continuous.

Proof. (1) Since |f| is nonnegative, there exists a sequence of simple functions ¢,, 1 f. By the MCT

[ftan= [ tim ondp=tim [ o dn.
X X n—oo n—oo JX

Since f is integrable, there exists a sufficiently large n such that [ If| = on du < €/2. If we write ,, using
X

k
its standard representation ) ¢;x g, and setting ¢ := ¢/(2maxc;), then for any A with u(A4) <4,

=1
/Ifldu=f|f|—sondu+f on dpu
X X X
< —ond f L d
fAIfI pndut | o dp
€ k
<z+ Yy cu(AnE;)
2 4

< % +p(A) -maxc; <e.

d
(2) Let € > 0 be given. By (1), there exists § > 0 such that if m((c,d)) < § then f |f| dm < e. Hence if
2" € (x - 9,2z) we have
F(z)-F(z2') = / fde[ |f| dm <,
and similarly if 2" € (z,z + 0) we have
F(:v")—F(x):/ fdmsf [fldm <e.
This shows precisely that F' is continuous. O
Problem: (VI)
Let (X, F, 1) be a measure space with x(X') = 1 and suppose F1, ..., F; are sets with p(F;) > 1/2 for all j.
(a) Show that there exist indices i1 < is < i3 < i4 for which F; n F;, n F;, n F}, # @.

(b) Would (a) be correct if we started with 6 measurable sets instead of 7?

Proof. (a) Consider the indicator functions x r,. By assumption,
n 7 7
fZXFidM:Z[ dp =Y w(F;) >35> 3.
X =1 Fi i=1

4
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7

If any four F;’s have empty intersection, then ) x, is bounded above by 3, so
i=1

f Z XrF;, dp < / 3 du = 3, contradiction.
x4 X

(b) No. For example consider ((0,1), B 1y, ) with Fy = I, = F3 = (0,0.5) and Fy = F5 = Fs = (0.5,1). O
Problem: (VII)

Let f:[0,1] - R be continuous. Show that the graph {(z, f(z)) : € [0,1]} has two-dimensional Lebesgue

measure 0.

Proof. Let € > 0 be given. Since f is continuous on a closed interval, it is in particular uniformly continuous, so
there exists § > 0 such that |f(x) — f(y)| < e whenever |x - y| < . If we take n sufficiently large so that 1/n < §

and partition [0, 1] into n intervals evenly, we see

Graph(f) « U [ = | [ 1]

where m; = min f(x) and M; = max,c[(;-1)/n,i/n] f (). It follows that
ze[(i-1)/n,i/n] ’
21
m(Graph(f)) <) —-e=e.
=1
Since ¢ is arbitrary, we are done. O



