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Problem: (Folland 2.3)

If {fn} is a sequence of measurable functions on X, prove {x ∶ lim fn(x) exists} is a measurable set.

Proof. Note that [lim fn(x) exists] ⇔ [lim sup fn(x) − lim inf fn(x) = 0]. By proposition 2.7, lim sup fn and

lim inf fn are both measurable, and by proposition 2.6, so is g ∶= lim sup fn − lim inf fn. It remains to notice that

{x ∶ lim fn exists} = g−1({0})

so this is indeed a measurable set.

Problem: (Folland 2.13)

Suppose {fn} ⊂ L+, fn → f pointwise, and ∫ f = lim∫ fn <∞. Show that ∫
E
f = lim∫

E
fn for all E ∈M.

However this need not to be true if ∫ f = lim∫ fn =∞.

Proof. Writing f as lim inf fn, for any E ∈M we have

∫
E
f = ∫

E
lim inf fn ⩽ lim inf ∫

E
fn ⩽ lim sup∫

E
fn (Fatou)

= lim sup(∫ fn − ∫
Ec

fn)

∗= lim∫ fn − lim inf ∫
Ec

fn = ∫ f − lim inf ∫
Ec

fn

⩽ ∫ f − ∫
Ec

lim inf fn = ∫ f − ∫
Ec

f = ∫
E
f. (Fatou again)

The starred equation is because if xn → x then lim sup(xn − yn) = limxn + lim sup(−yn) = limxn − lim inf yn (a

standard fact from 425a; proof attached below). Therefore all inequalities must attain equality and in particular

∫
E
f = lim inf ∫

E
fn = lim sup∫

E
fn = lim∫

E
fn.
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Proof of subclaim. We use Rudin’s [?] definition: lim supxn ∶= supE where E is the set of subsequential

limits of {xn} (and likewise lim inf = inf E). Let Ey be the set corresponding to yn. Since xn → x, the set

corresponding to {xn} is simply {x}. Since xn converges to x, {xnk
+ ynk

} converges to p if and only if the

corresponding {ynk
} converges to p − x, the set of subsequential limits of {xn + yn} is simply x +Ey. Thus

sup(x +Ey) = x + sup(Ey) Ô⇒ lim sup(xn + yn) = limxn + lim sup yn.

This, along with lim sup(−yn) = − lim inf(yn), gives the subclaim. END OF PROOF OF SUBCLAIM

If we allow ∫ f = lim∫ fn ∶= ∞, consider fn ∶= nχ(0,1/n) + χ[1,∞) and f ∶= χ[1,∞), both defined on (0,∞). Let

E = (0,1). Then ∫
E
fn = 1 for all n whereas ∫

E
f = 0.

Problem: (Folland 2.14)

If f ∈ L+, let λ(E) ∶= ∫
E
f dµ for E ⊂ M. Show that λ is a measure on M and for any g ∈ L+, ∫ g dλ =

∫ fg dµ. (Hint: first suppose that g is simple.)

Proof. It is clear that λ(∅) = 0, so it remains to check countable additivity. First, if E1,E2 are disjoint then

λ(E1 ∪E2) = ∫
E1∪E2

f dµ = ∫ fχE1∪E2 dµ = ∫ fχE1 dµ + ∫ fχE2 dµ = λ(E1) + λ(E2),

so induction shows finite additivity. Now let {Ei}∞i=1 ⊂M be a countable collection of disjoint sets. By MCT

λ(
∞
⋃
i=1

Ei) = ∫
⋃∞i=1 Ei

f dµ = ∫ fχ⋃∞i=1 Ei dµ = lim
n→∞∫ fχ⋃n

i=1 Ei dµ = lim
n→∞

λ(
n

⋃
i=1

Ei) =
∞
∑
i=1

λ(Ei).

This shows that λ is a measure.

For the second part, first assume g is simple. Let
n

∑
i=1

ciχEi be a standard representation. Then

∫ g dλ =
n

∑
i=1

ciλ(Ei) =
n

∑
i=1

ci ∫
Ei

f dµ =
n

∑
i=1

ci ∫ fχEi dµ = ∫
n

∑
i=1

cifχEi dµ = ∫ fg dµ.

For general g ∈ L+, let {φj} be a sequence of simple functions with φn ↑ g. By using MCT twice,

∫ g dλ = ∫ lim
j→∞

φj dλ = lim
j→∞∫ φj dλ = lim

j→∞∫ fφj dµ = ∫ lim
j→∞

fφj dµ = ∫ fg dµ.

Problem: (II)

Suppose f is measurable from (X,M) to (R,BR), and let F ⊂ M be the σ-algebra {f−1(E) ∶ E ∈ BR}.
Suppose g is measurable (X,F) to (R,BR). Show that g = h ○ f for some h ∶ R→ R.

Proof. First we claim that if there does not exist such g, then for some a, b ∈ X, we have f(a) = f(b) but

g(a) ≠ g(b). Indeed, assuming the negation of the second statement, i.e., for all a, b ∈ X, if f(a) = f(b) then

g(a) = g(b), the map R→ R defined by f(x)↦ g(x) is well-defined.

Now for contradiction, assume no g exists; we find a, b ∈ X with the property above. Since g is measurable and
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g(a) is a singleton in R, we see S ∶= g−1(g(a)) ∈ F .

Problem: (III)

Let (X,M, µ) be a measure space with µ finite, and let f ∶X → [0,∞) be a measurable function. Show there

exists an increasing g ∶ [0,∞)→ [0,∞) for which lim
x→∞

g(x) =∞ but g ○ f integrable.

Proof. We first prove the hint:

Lemma. If {an} ⩾ 0 and
∞
∑
n=1

an <∞, then there exists {bn} with bn →∞ but
∞
∑
n=1

anbn <∞.

Proof of lemma. Since
∞
∑
n=1

an converges, by Cauchy convergence criterion, every ϵk ∶= 2−k corresponds to a nk

where ∑
n⩾nk

an < 2−k. We define bn = 1 for n < n1 to get rid of the early large terms. Then define bn = k for

nk ⩽ n < nk+1. On one hand, bn clearly tends to∞; on the other hand,

∞
∑
n=1

anbn =
n1−1
∑
n=1

an +
∞
∑
k=1

nk+1−1
∑

n=nk

anbn <
n1−1
∑
n=1

an +
∞
∑
k=1

k

2k
<∞.

END OF PROOF OF LEMMA

Now for the main proof, define En ∶= f−1([n − 1, n)). By construction X =
∞
⋃
n=1

En and En’s are disjoint, so

∞
∑
n=1

µ(En) converges. We construct a sequence of real numbers {gn} according to the lemma (i.e., gn →∞ with

∞
∑
n=1

µ(En)gn < ∞) and define a function such that g(0) = 0 and g∣(n−1,n] ≡ gn. Clearly g is stepwise increasing.

We claim that g has the desired property:

∫
X
g ○ f dµ =

∞
∑
n=1
∫
En

g ○ f dµ ⩽
∞
∑
n=1
∫
En

g ○ sup
x∈En

f dµ

=
∞
∑
n=1
∫
En

g(n) dµ =
∞
∑
n=1

g(n)µ(En) <∞.

Problem: (IV)

Suppose fn ∶ R→ R are nonnegative measurable functions. Prove or disprove by example

lim sup
n→∞

∫ fndm ⩽ ∫ lim sup
n→∞

fn dm.

Solution. The claim is false; consider fn ∶= nχ[0,1/n] where the integral of each fn is 1 but ∫ lim sup fn = 0.
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Problem: (V)

(a) Let (X,M, µ) be a measure space and f an integrable function. Show that for every ϵ > 0 there exists

δ > 0 such that

µ(A) < δ Ô⇒ ∫
A
∣f ∣ dµ < ϵ.

(b) For Lebesgue measure m, suppose f ∶ R → R is integrable and a ∈ R. Define F (x) ∶= ∫
x

a
f dm. Show

that F is continuous.

Proof. (1) Since ∣f ∣ is nonnegative, there exists a sequence of simple functions φn ↑ f . By the MCT

∫
X
∣f ∣ dµ = ∫

X
lim
n→∞

φn dµ = lim
n→∞∫X

φn dµ.

Since f is integrable, there exists a sufficiently large n such that ∫
X
∣f ∣ − φn dµ < ϵ/2. If we write φn using

its standard representation
k

∑
i=1

ciχEi and setting δ ∶= ϵ/(2max ci), then for any A with µ(A) < δ,

∫
X
∣f ∣ dµ = ∫

X
∣f ∣ − φn dµ + ∫

X
φn dµ

⩽ ∫
A
∣f ∣ − φn dµ + ∫

A
φn dµ

< ϵ

2
+

k

∑
i=1

ciµ(A ∩Ei)

⩽ ϵ

2
+ µ(A) ⋅max ci < ϵ.

(2) Let ϵ > 0 be given. By (1), there exists δ > 0 such that if m((c, d)) < δ then ∫
d

c
∣f ∣ dm < ϵ. Hence if

x′ ∈ (x − δ, x) we have

F (x) − F (x′) = ∫
x

x′
f dm ⩽ ∫

x

x′
∣f ∣ dm < ϵ,

and similarly if x′′ ∈ (x,x + δ) we have

F (x′′) − F (x) = ∫
x′′

x
f dm ⩽ ∫

x′′

x
∣f ∣ dm < ϵ.

This shows precisely that F is continuous.

Problem: (VI)

Let (X,F , µ) be a measure space with µ(X) = 1 and suppose F1, ..., F7 are sets with µ(Fj) ⩾ 1/2 for all j.

(a) Show that there exist indices i1 < i2 < i3 < i4 for which Fi1 ∩ Fi2 ∩ Fi3 ∩ Fi4 ≠ ∅.

(b) Would (a) be correct if we started with 6 measurable sets instead of 7?

Proof. (a) Consider the indicator functions χFi . By assumption,

∫
X

n

∑
i=1

χFi dµ =
7

∑
i=1
∫
Fi

dµ =
7

∑
i=1

µ(Fi) ⩾ 3.5 > 3.
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If any four Fi’s have empty intersection, then
7

∑
i=1

χFi is bounded above by 3, so

∫
X

n

∑
i=1

χFi dµ ⩽ ∫
X
3 dµ = 3, contradiction.

(b) No. For example consider ((0,1),B(0,1), µ) with F1 = F2 = F3 = (0,0.5) and F4 = F5 = F6 = (0.5,1).

Problem: (VII)

Let f ∶ [0,1] → R be continuous. Show that the graph {(x, f(x)) ∶ x ∈ [0,1]} has two-dimensional Lebesgue

measure 0.

Proof. Let ϵ > 0 be given. Since f is continuous on a closed interval, it is in particular uniformly continuous, so

there exists δ > 0 such that ∣f(x) − f(y)∣ < ϵ whenever ∣x − y∣ < δ. If we take n sufficiently large so that 1/n < δ
and partition [0,1] into n intervals evenly, we see

Graph(f) ⊂
n

⋃
i=1
[ i − 1

n
,
i

n
] × [mi,Mi]

where mi = min
x∈[(i−1)/n,i/n]

f(x) and Mi =maxx∈[(i−1)/n,i/n] f(x). It follows that

m(Graph(f)) ⩽
n

∑
i=1

1

n
⋅ ϵ = ϵ.

Since ϵ is arbitrary, we are done.
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