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Problem 1: (Folland 2.33)

If fn ⩾ 0 and fn → f in measure, show ∫ f ⩽ lim inf ∫ fn.

Proof. By Fatou’s lemma we know ∫ lim inf fn ⩽ lim inf ∫ fn. First pick a subsequence {fnk
} such that

∫ fnk
→ lim inf ∫ fn.

Immediately we see {fnk
} also converges to f in measure. Using Theorem 2.30, there exists a further sub-

sequence {fnkj
} that converges a.e. to f . For this sub-subsequence we also have

∫ fnkj
→ lim inf ∫ fn.

Using Fatou’s lemma on this sub-subsequence, we have

∫ f = ∫ lim inf fnkj
⩽ lim inf ∫ fnkj

= lim inf ∫ fn.

Problem 2: (Folland 2.35)

Show that fn → f in measure if and only if for every ϵ > 0 there exists N ∈ N such that µ({x ∶ ∣fn(x)− f(x)∣ ⩾
ϵ}) < ϵ for all n ⩾ N .

Proof. The ⇒ direction follows from the definition of convergence measure: if fn → f in measure then µ({x ∶
∣fn(x)− f(x)∣ ⩾ ϵ})→ 0 for all ϵ, so there exists large N after which the corresponding sets all have measure < ϵ.
Conversely, the assumption implies a weaker variation:

For every ϵ, δ > 0 there exists N such that µ({x ∶ ∣fn(x) − f(x)∣ ⩾ ϵ}) < δ for all n ⩾ N .

(Simply take ϵ′ ∶= min{ϵ, δ} and apply the assumption to ϵ′.) This is precisely the ϵ − δ definition showing that

lim
n→∞

µ({x ∶ ∣fn(x) − f(x)∣ ⩾ ϵ}) = 0, i.e., fn → f in measure.
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Problem 3: (Folland 2.38)

Suppose fn → f in measure and gn → g in measure.

(a) Show that fn + gn → f + g in measure.

(b) Show that fngn → fg in measure if µ(X) <∞ but not necessarily when µ(X) =∞.

Proof. (a) Using the characterization from 2.35, given ϵ > 0, there exist N1,N2 such that

µ({x ∶ ∣fn(x) − f(x)∣ ⩾ ϵ/2}) < ϵ/2 for all n ⩾ N1

and

µ({x ∶ ∣gn(x) − g(x)∣ ⩾ ϵ/2}) < ϵ/2 for all n ⩾ N2.

Since ∣fn(x)+ gn(x)− (f + g)∣ ⩽ ∣fn(x)− f(x)∣+ ∣gn(x)− g(x)∣, if the LHS ⩾ ϵ, at least one on the RHS ⩾ ϵ/2.

Therefore,

{x ∶ ∣fn(x) + gn(x) − (f(x) + g(x))∣ ⩾ ϵ} ⊂ {x ∶ ∣fn(x) − f(x)∣ ⩾ ϵ/2} ∪ {x ∶ ∣gn(x) − g(x)∣ ⩾ ϵ/2}.

Hence, for all n ⩾max{N1,N2}, we have

µ({x ∶ ∣fn(x) + gn(x) − (f(x) + g(x))∣ ⩾ ϵ}) < ϵ.

This shows fn + gn → f + g in measure.

(b) We first show that if fn → f in measure and µ(X) <∞ then f2
n → f2 in measure.

Proof. Suppose not, that is, there exists δ > 0 and a sequence {fnk
} such that µ({x ∶ ∣f2

nk
(x) − f(x)2∣ ⩾

ϵ}) ⩾ δ for all k. Since {fnk
} converges to f in measure as well, it has a further subsequence {fnkj

}
converging to f a.e., so f2

nkj
→ f2 a.e. as well. Since µ(X) <∞, Egoroff’s theorem states that f2

nkj
→ f2

almost uniformly. This implies f2
nkj
→ f2 in measure. (For ϵ > 0 we can pick E with µ(E) < ϵ such

that the convergence is uniform on Ec, so for large index, the “violation set” is merely E.) However

we have assumed that each f2
nkj

has violation ⩾ δ, contradiction. Therefore f2
n → f2 in measure, as

claimed. END OF PROOF OF SUBCLAIM

By (a) and the subclaim, (fn + gn)2 → (f + g)2 in measure, i.e., f2 + 2fngn + g2n → f2
n + 2fg + g2 in measure.

Using (a) again to subtract the squared terms, we have 2fngn → 2fg in measure, so fngn → fg in measure.

When µ(X) = ∞, this claim easily breaks down. For example, consider f(x) = g(x) ∶= x and fn(x) =
gn(x) ∶= x + 1/n, all defined on R with the Lebesgue measure. Then the assumptions are met, but

∣fn(x)gn(x) − f(x)g(x)∣ =
2x

n
+ 1

n2
> 2x

n
.

For ϵ > 0 and any n, the set {x ∶ ∣fn(x)gn(x) − f(x)g(x)∣ ⩾ ϵ} is unbounded from above and therefore has

infinite measure, so as n→∞, the measure does not converge to 0, showing that fngn ↛ fg in measure.

Alternatively, we could do the standard way by noticing that

{x ∶ ∣fngn − fg∣ > ϵ} ⊂ {x ∶ ∣fn∣∣gn − g∣ > ϵ/2} ∪ {x ∶ ∣g∣∣fn − f ∣ > ϵ/2}

⊂ {∣fn∣ >M} ∪ {∣gn − g∣ > ϵ/2M} ∪ {∣g∣ >M} ∪ {∣fn − f ∣ > ϵ/2M}.

By picking a suitable M according to problem (I) below, we can make µ(RHS) arbitrarily small for large n.
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Problem 4: (I)

(a) Suppose µ(X) < ∞ and f is a real-valued measurable function. Then given ϵ > 0 there exists M such

that µ({x ∶ ∣f(x)∣ >M}) < ϵ.

(b) Suppose µ(X) < ∞ and fn, f are real-valued with fn → f in measure. Then part (a) can be done

uniformly in n: given ϵ > 0, there exists M such that µ({x ∶ ∣fn(x)∣ >M}) < ϵ for all n.

Proof. (a) Consider the sets En ∶= {x ∶ ∣f(x)∣ > n}. Clearly they are nested, i.e., E1 ⊃ E2 ⊃ ... and lim
n→∞

En =
∅. Using continuity from above with µ(X) <∞, we see µ(En) → 0. Therefore, there exists some large M

such that µ(EM) = µ({x ∶ ∣f(x)∣ >M}) < ϵ.

(b) Note that ∣fn(x)∣ ⩽ ∣f(x)∣ + ∣fn(x) − f(x)∣. Hence for all M ,

{x ∶ ∣fn(x)∣ >M} ⊂ {x ∶ ∣f(x)∣ >M − 1} ∪ {x ∶ ∣fn(x) − f(x)∣ > 1}.

By convergence in measure, there exists N such that µ({x ∶ ∣fn(x) − f(x)∣ > 1}) < ϵ/2 for all n ⩾ N + 1.

There also exists a sufficiently large M for which µ({x ∶ ∣f(x)∣ >M − 1}) < ϵ/2. For f1, ..., fn, by (a) there

exists Mi such that µ({x ∶ ∣fi(x)∣ >Mi}) < ϵ for 1 ⩽ i ⩽ n (i.e., we are bounding the set directly rather than

using triangle inequality). Setting M ′ ∶=max{M,M1, ...,Mn} proves the claim.

Problem 5: (II)

Suppose fn, f are measurable functions from (X,M, µ) to C with fn → f in measure.

(a) Show that if φ ∶ C→ C is uniformly continuous, then φ ○ fn → φ ○ f in measure.

(b) Show that if φ ∶ C→ C is continuous and µ(X) <∞, then φ ○ fn → φ ○ f in measure.

(c) Give an example showing that if µ(X) =∞, you cannot remove the word “uniformly” in (a).

Proof. (a) By uniform continuity, given ϵ > 0 there exists δ > 0 such that ∣x − y∣ < δ Ô⇒ ∣φ(x) − φ(y)∣ < ϵ.
That is, if ∣φ(x) − φ(y)∣ ⩾ ϵ then ∣x − y∣ ⩾ δ. Therefore,

{x ∶ ∣φ(fn(x)) − φ(f(x))∣ ⩾ ϵ} ⊂ {x ∶ ∣fn(x) − f(x)∣ ⩾ δ}.

Letting n → ∞, since fn → f in measure, the measure of the RHS converges to 0, hence so does the LHS,

i.e., φ ○ fn → φ ○ f in measure.

(b) Suppose for contradiction that φ ○ fn ↛ φ ○ f in measure. This means that for some ϵ > 0, there exist

δ > 0 and a subsequence {φ ○ fnk
} such that

µ({x ∶ ∣φ(fnk
(x)) − φ(f(x))∣ ⩾ ϵ}) > δ for all nk.

Since fnk
→ f in measure and µ(X) < ∞, there exists a further subsequence fnkj

converging to f a.e.

Since φ is continuous, φ ○ fnkj
converges to φ ○ f a.e. as well. But then

δ ⩽ lim
j→∞
(µ({x ∶ ∣fnkj

(x) − f(x)∣ ⩾ ϵ})) = lim
j→∞∫X

χviolation dµ = ∫
X

lim
j→∞

χviolation dµ = 0
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where the interchange of limits is justified by DCT since µ(X) <∞. Contradiction.

(c) Consider R with the Lebesgue measure. Let f(x) ∶= x, fn(x) ∶= x+1/n, and φ(t) ∶= t2. Then φ(f(x)) = x2

and φ(fn(x)) = (x + 1/n)2. We proved in 2.38(b) that (x + 1/n)2 does not converge in measure to x2.

Problem 6: (III)

Let f be Lebesgue measurable on [a, b].

(a) Show that there exists a sequence {fn} of continuous functions with fn → f almost uniformly on [a, b].

(b) (Lusin’s Theorem) Given ϵ > 0, show that there is a set E with µ(Ec) < ϵ such that f ∣
E

is continuous.

In fact one can take E to be compact.

Proof. (a) This proof needs to assume that f ∶ [a, b] → R as opposed to f ∶ [a, b] → R. Following the hint,

define the truncation fk ∶= f restricted to the set Ek ∶= {x ∶ ∣f(x)∣ ⩽ k} and let Fk ∶= Ec
k. In lecture we

showed that continuous functions are dense in L1, so for each fk there exists a sequence {gn,k}n⩾1 of

continuous functions converging to fk in L1. Then gn,k → fk in measure and therefore some subsequence

gnj ,k → fk a.e. Since m([a, b]) <∞, by Egoroff gnj ,k → fk almost uniformly. Now we relabel the functions.

For each k, given ϵ, δ > 0 we can find a continuous function g and a set S ⊂ [a, b] with m(S) < ϵ such that

sup{∣fk(x) − g(x)∣ ∶ x ∈ [a, b] − S} = sup{∣f(x) − g(x)∣ ∶ x ∈ [a, b] − S ∪ Fk} < δ. (1)

Since µ(Fk) → 0 by continuity from above, there exists a subsequence {Fnk
} of sets such that m(Fnk

) <
2−n−1. To each Fnk

, almost uniform convergence also guarantees a corresponding Snk
with m(Snk

) < 2−n−1.

Since δ is also arbitrary, (1) gives the existence of a continuous gk such that

sup{∣f(x) − gk(x)∣ ∶ x ∈ [a, b] − (Enk
∪ Fnk

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m(⋅)<1/2n

} < 1

k
.

Let the ϵ corresponding to almost uniform convergence be given. We simply need to pick N sufficiently

large so that m( ⋃
k⩾N
(Enk

∪ Fnk
)) ⩽ 2−N+1 < ϵ. Then for all k ⩾ N , ∥f − gk∥sup < 1/k → 0 on the complement

set. This shows gk → f almost uniformly.

(b) Let fn be a sequence of continuous converging almost uniformly to f on [a, b] by according to (a). For

ϵ > 0, there exists a set E ⊂ [a, b] with m([a, b] −E) < ϵ/2 [set-theoretic minus] such that fn → f uniformly

on E. By a result from MATH 425b, the uniform limit of a sequence of continuous functions is continuous,

so f ∣
E

is continuous. Also, since m is regular, there exists a compact K ⊂ E such that m(E −K) < ϵ/2.

Then m([a, b] −K) < ϵ/2 + ϵ/2 = ϵ and f ∣
K

is continuous, as claimed.

Problem 7: (IV)

Let m be Lebesgue measure on R and let fn, f ∈ L1(m). Suppose there is a constant C such that ∥fn − f∥1 ⩽
C/n2 for all n ⩾ 1. Show that fn → f a.e.
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Proof. Define En ∶= {x ∶ ∣fn(x) − f(x)∣ > ϵ}. The bound C/n2 implies

C/n2 ⩾ ∥fn − f∥1 = ∫
R
∣fn − f ∣ dm > ∫

En

ϵ dm = ϵµ(En) Ô⇒ µ(En) <
C

ϵ

1

n2
.

Therefore,

µ(E) ∶= µ(
∞
⋃
n=1

En) <
C

ϵ

π2

6
.

Now define Fn ∶= {x ∶ ∣fm(x) − f(x)∣ > ϵ for some m ⩾ n}. Then Fn = ⋃
k⩾n

Ek. Since µ(
∞
⋃
n=1

En) < ∞, we know

µ(
∞
⋃
k=n

Ek) → 0, so µ(Fn) → 0. Clearly F1 ⊃ F2 ⊃ ..., and µ(F1) = µ(
∞
⋃
n=1

En) = µ(E) < ∞. Therefore, continuity

from above implies

µ(
∞
⋂
n=1

Fn) = lim
n→∞

µ(Fn) = 0,

i.e.,

µ({x ∶ ∣fn(x) − f(x)∣ > ϵ infinitely many times}) = 0.

Since ϵ is arbitrary, the above becomes µ({x ∶ fn(x)↛ f(x)}) = 0, i.e., fn → f a.e.

Problem 8: (V)

(a) Suppose g1 ⩾ g2 ⩾ ... ⩾ 0 are measurable functions and gn → 0 in measure. Show that gn → 0 a.e.

(b) Let {fn} be measurable functions and let hn(x) ∶= sup
m⩾n
∣fm(x) − fn(x)∣. Show that if hn → 0 in measure

then {fn} converges a.e.

Proof. (a) Since gn → 0 in measure, there exists a subsequence {gnk
} converging to 0 a.e. Let E be the set

on which gnk
→ 0 so that Ec is a null set.

We now show that gn → 0 on E. Let ϵ > 0 be given. By convergence of gnk
there exists a sufficiently large

nk such that ∣gnk
(x) − 0∣ = gnk

(x) < ϵ. Since {gn} is decreasing, the same inequality holds for all n ⩾ nk.

This shows that gn → 0 on E. Hence gn → 0 a.e.

(b) Since hn → 0 in measure, for ϵ > 0 we pick a sequence {nk}k⩾1 such that

µ({x ∶ hnk
(x) > ϵ}) < ϵ/2k.

Define φn ∶= sup
k⩾n

hnk
. As n increases, the supremum is taken over a smaller set so φn is decreasing. Also,

by construction

µ({x ∶ φn(x) > ϵ}) <
∞
∑
k=n

2−k = 2−n+1 → 0,

so φn → 0 in measure. Then by (a) φn → 0 a.e., so lim sup
m,n→∞

∣fm(x) − fn(x)∣ = 0 a.e. Hence fn converges

a.e.1

1Credits to Jake for giving me hint on this φn.
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Problem 9: (VI)

Prove or disprove that for every open G ⊂ [0,1] the indicator function χG is Riemann integrable.

Solution. We disprove the claim using the contrapositive of the following fact mentioned in lecture:

If f is Riemann integrable, then the Lebesgue integral = the upper and

lower Riemann integrals.

Let {qi}∞i=1 be an enumeration of Q ∩ [0,1] and define G as

G ∶=
∞
⋃
i=1
(qi − 2−i−2, qi + 2−i−2)

so that G contains all rationals and

0 < µ(G) ⩽
∞
∑
i=1

µ(qi − 2−i−2, qi + 2−i−2) =
∞
∑
i=1

2−i−1 = 1

2
< 1.

Therefore the Lebesgue integral of χG is strictly less than 1. However, the upper Riemann integral is 1, as

rationals are dense and any subinterval from any partition pair will contain rationals.
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