

# MATH 525a Homework 8a

Qilin Ye

November 17, 2021

## Problem: (I)

We say two signed measures  $\nu_1, \nu_2$  on  $(X, \mathfrak{M})$  are **compatible** if there exists a decomposition  $X = P \cup N$  which is a Hahn decomposition for both measures. According to Proposition 3.14, for  $\nu_1, \nu_2$  finite signed measures,

$$|\nu_1 + \nu_2|(E) \leq |\nu_1|(E) + |\nu_2|(E). \quad (*)$$

Let  $\mu = |\nu_1| + |\nu_2|$  and  $f_j = d\nu_j/d\mu$  for  $j = 1, 2$ . Show that the following are equivalent:

- (1)  $\nu_1$  and  $\nu_2$  are compatible;
- (2) equality holds in  $(*)$  for all  $E$ ; and
- (3)  $\mu(\{f_1 > 0\} \cap \{f_2 < 0\}) = \mu(\{f_1 < 0\} \cap \{f_2 > 0\}) = 0$ .

*Proof.*  $((1) \Rightarrow (2))$ . If  $\nu_1, \nu_2$  are compatible, we let  $X = P \cup N$  be the Hahn decomposition for both. Then  $\nu_1 + \nu_2$  is positive on  $P$  and negative on  $N$ , so

$$\begin{aligned} |\nu_1 + \nu_2|(E) &= (\nu_1 + \nu_2)(E \cap P) - (\nu_1 + \nu_2)(E \cap N) \\ &= \nu_1(E \cap P) - \nu_1(E \cap N) + \nu_2(E \cap P) - \nu_2(E \cap N) \\ &= |\nu_1|(E) + |\nu_2|(E). \end{aligned}$$

$((2) \Rightarrow (3))$ . Suppose (3) does not hold; WLOG assume

$$\mu(\{f_1 > 0\} \cap \{f_2 < 0\}) > 0.$$

Then,

$$\begin{aligned} |\nu_1 + \nu_2|(\{f_1 > 0\} \cap \{f_2 < 0\}) &= \int_{f_1 > 0, f_2 < 0} |f_1 + f_2| d\mu \\ &< \int_{f_1 > 0, f_2 < 0} |f_1| + |f_2| d\mu \\ &= \int_{f_1 > 0, f_2 < 0} |f_1| d\mu + \int_{f_1 > 0, f_2 < 0} |f_2| d\mu \\ &= |\nu_1|(\{f_1 > 0\} \cap \{f_2 < 0\}) + |\nu_2|(\{f_1 > 0\} \cap \{f_2 < 0\}). \end{aligned}$$

Thus the contrapositive has been proven. Finally, to show  $((3) \Rightarrow (1))$ , define

$$P := \{f_1 \geq 0\} \cap \{f_2 \geq 0\} \quad \text{and} \quad N := P^c.$$

It is clear that  $\nu_1, \nu_2$  are both positive on  $P$ . To show that  $\nu_1, \nu_2$  are both negative on  $N$  (and thus  $P \cup N$  is a Hahn decomposition), it suffices to show that  $\nu_1$  is negative on  $\{f_1 < 0\} \cap \{f_2 \geq 0\}$  and  $\{f_1 \geq 0\} \cap \{f_2 < 0\}$  (the argument for  $\nu_2$  is analogous). Indeed, on one hand

$$\nu_1(E) = \int_E f_1 \, d\mu < 0 \quad \text{for all } E \subset \{f_1 < 0\} \cap \{f_2 \geq 0\}.$$

On the other hand, note that

$$S := \{f_1 \geq 0\} \cap \{f_2 < 0\} = (\{f_1 > 0\} \cap \{f_2 < 0\}) \cup (\{f_1 = 0\} \cap \{f_2 < 0\}) =: S_1 \cup S_2.$$

For any  $E \subset S$ , define  $E_1 := E \cap S_1$  and  $E_2 := E \cap S_2$ . Then

$$\begin{aligned} \nu_1(E) &= \int_E f_1 \, d\mu = \int_{E_1} f_1 \, d\mu + \int_{E_2} f_1 \, d\mu \\ &= \int_{\mu\text{-null set}} f_1 \, d\mu + \int_{E_2} 0 \, d\mu = 0. \end{aligned}$$

Therefore  $\nu_1$  is negative on  $N$ . This completes the proof, as  $P \cup N$  is indeed a Hahn decomposition.  $\square$

**Problem: (VI)**

- (1) Let  $(X, \mathfrak{M}, \mu)$  and  $(Y, \mathfrak{N}, \nu)$  be  $\sigma$ -finite. Suppose the measure  $\lambda$  on  $\mathfrak{M} \times \mathfrak{N}$  satisfies  $\lambda(A \times B) = \mu(A)\nu(B)$  for all  $A \in \mathfrak{M}, B \in \mathfrak{N}$ . Show that  $\lambda = \mu \times \nu$  on  $\mathfrak{M} \times \mathfrak{N}$ .
- (2) Suppose  $\mu_1, \nu_1$  are  $\sigma$ -finite on  $(X, \mathfrak{M})$  and  $\mu_2, \nu_2$  are  $\sigma$ -finite on  $(Y, \mathfrak{N})$ . Suppose  $\nu_1 \ll \mu_1$  and  $\nu_2 \ll \mu_2$ . Show that  $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$  and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x, y) = \frac{d\nu_1}{d\mu_1}(x) \frac{d\nu_2}{d\mu_2}(y).$$

*Proof.* (1) Let  $\mathcal{A}$  be the collection of finite union of abstract rectangles in  $\mathfrak{M} \otimes \mathfrak{N}$ . From the fact that  $\lambda(A \times B) = \mu(A)\nu(B)$  we see that  $\lambda$  defines a premeasure on  $\mathcal{A}$ . Since  $\mathfrak{M} \otimes \mathfrak{N}$  is the  $\sigma$ -algebra generated by  $\mathcal{A}$ , by the Carathéodory's theorem,  $\lambda$  can be *uniquely* extended to a measure on  $\mathfrak{M} \otimes \mathfrak{N}$ . Since  $\mu \times \nu$  is one such measure, we must have  $\lambda = \mu \times \nu$ .

- (2) Let  $f, g$  be the corresponding Radon-Nikodym derivatives  $d\nu_1/d\mu_1, d\nu_2/d\mu_2$ , respectively. If  $A \times B \subset \mathfrak{M} \times \mathfrak{N}$ , then

$$\begin{aligned} (\nu_1 \times \nu_2)(A \times B) &= \nu_1(A_1)\nu_2(A_2) \\ &= \int_A f_1 \, d\mu_1 \int_B f_2 \, d\mu_2 = \int \chi_A f_1 \, d\mu_1 \int \chi_B f_2 \, d\mu_2 \\ &= \iint f_1 f_2 \chi_{A \times B} \, d\mu_1 d\mu_2 = \int f_1 f_2 \chi_{A \times B} \, d(\mu_1 \times \mu_2) \end{aligned}$$

by definition and Tonelli. Thus for abstract rectangles of form  $A \times B$ , we have  $\nu_1 \times \nu_2 = (f_1 f_2)(\mu_1 \times \mu_2)$ . By linearity the same holds for *finite* unions of abstract rectangles, which form an algebra  $\mathcal{A}$  that generates  $\mathfrak{M} \otimes \mathfrak{N}$ . By the first part, this extends to all of  $\mathfrak{M} \times \mathfrak{N}$ . This  $(f_1 f_2)$  implies  $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$  and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x, y) = f_1(x) f_2(y) = \frac{d\nu_1}{d\mu_1}(x) \frac{d\nu_2}{d\mu_2}(y). \quad \square$$

**Problem: (VII)**

Suppose  $\nu \ll \mu$  are finite positive measures and let  $\rho = \mu + \nu$ ,  $f = d\mu/d\rho$ ,  $g = d\nu/d\rho$ .

- (1) Show that  $f + g = 1$  and  $f > 0$   $\mu$ -a.e.
- (2) Show that  $d\nu/d\mu = g/f$ .

*Proof.* For all  $E$ , we have

$$\rho(E) = \mu(E) + \nu(E) = \int_E f \, d\rho + \int_E g \, d\rho = \int_E f + g \, d\rho = \int_E 1 \, d\rho.$$

Since  $E$  is arbitrary we see  $f + g = 1$   $\rho$ -a.e., that is, the exception takes place on a set  $F$  with  $\rho(F) = 0$ . However,  $\rho(F) = \mu(F) + \nu(F)$ , so this implies  $\nu(F) = 0$ , i.e.,  $f + g = 1$   $\mu$ -a.e.

From above we see that  $\mu \ll \rho$ . Also, if  $\mu(E) = 0$ , since  $\nu \ll \mu$  we have  $\nu(E) = 0$  so  $\rho(E) = 0 + 0 = 0$ . This implies  $\rho \ll \mu$  as well. Since both measures are finite, by chain rule

$$\frac{d\rho}{d\mu} \frac{d\mu}{d\rho} = \frac{d\rho}{d\rho} = 1 \quad \mu\text{-a.e. and } \rho\text{-a.e.}$$

$f$  clearly cannot be negative on a set of positive  $\rho$ -measure (otherwise the integral evaluates to a negative number while also corresponding to the  $\mu$ -measure of a set), and the claim holds verbatim replacing  $\rho$ -measure by  $\mu$ -measure. Along with the equation above, we see that  $f > 0$  a.e.

For (2), using the identity above and the fact that  $\nu \ll \lambda$  as well (clearly as  $\ll$  is transitive),

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\rho} \frac{d\rho}{d\mu} = \frac{g}{f}.$$

□

**Problem: (VIII)**

For a Borel set  $E \subset \mathbb{R}^n$ , its density  $\rho_E(x)$  at  $x$  is defined to be

$$\rho_E(x) := \lim_{r \rightarrow 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever it exists.

- (1) If  $E$  is a square and  $x$  a corner, what is  $\rho_E(x)$ ?
- (2) Show that for a.e.  $x$ , the limit exists and has value 0 or 1. Up to a null set, what is the set where the limit is 1?
- (3) Suppose  $E_1 \subset E_2 \subset \dots$  and  $E := \bigcup_{n \geq 1} E_n$ . Is it necessarily true that  $\rho_{E_n} \rightarrow \rho_E$  a.e.? If  $\rho_{E_n}(x)$  and  $\rho_E(x)$  exist for all  $x$ , is it necessarily true that  $\rho_{E_n} \rightarrow \rho_E$  pointwise?

*Proof.* (1) 1/4.

- (2) By Theorem 3.18, since  $\chi_E \in L^1_{\text{loc}}$ ,

$$\lim_{r \rightarrow 0} A_r \chi_E(x) = \lim_{r \rightarrow 0} \frac{1}{m(B(r, x))} \int_{B(r, x)} \chi_E(y) \, dy = \chi_E(x)$$

for a.e.  $x \in \mathbb{R}^n$ . Rewriting the definition above, we have

$$\lim_{r \rightarrow 0} \frac{m(E \cap B(r, x))}{m(B(r, x))} = \chi_E(x).$$

Hence the limit = 1 for a.e.  $x \in E$  and = 0 for a.e.  $x \in E^c$ .

(3) For the first case, yes. By assumption  $\chi_{E_n} \rightarrow \chi_E$  as  $n \rightarrow \infty$ . By the previous part,  $\rho_E(x) = 1$  a.e. for  $x \in E$  and  $\rho_E(x) = 0$  a.e. for  $x \notin E$ . Hence  $\rho_E \equiv \chi_E$  a.e. and similarly  $\rho_{E_n} \equiv \chi_{E_n}$  a.e. Therefore  $\chi_{E_n} \rightarrow \chi_E$  implies  $\rho_{E_n} \rightarrow \rho_E$  a.e.

For the second case, no. Consider  $E_1 := \mathbb{R} - [-1, 1]$  and similarly  $E_n := \mathbb{R} - [-1/n, 1/n]$ . Then  $E_1 \subset E_2 \subset \dots$  and  $\bigcup_{n \geq 1} E_n = \mathbb{R} - \{0\}$ . Also set  $x = 0$ . For each  $E_n$ , the numerator eventually becomes 0 for sufficiently small  $r$ , so the limit  $\rho_{E_n}(0) = 0$ . However, for  $E$ , the ratio is always 1 since

$$m(E \cap B(r, 0)) = m(B(r, 0) - \{0\}) = m(B(r, 0)).$$

Hence  $\rho_E(0) = 1$ , providing a counterexample. □