

MATH 525a Homework 9a

Qilin Ye

December 7, 2021

Problem: (Folland 3.36)

Let G be a continuous increasing function on $[a, b]$ and let $G(a) = c, G(b) = d$.

(a) If $E \subset [c, d]$ is a Borel set, then $m(E) = \mu_G(G^{-1}(E))$.

(b) if f is a Borel measurable and integrable function on $[c, d]$, then

$$\int_c^d f(y) dy = \int_a^b f(G(x)) dG(x).$$

In particular,

$$\int_c^d f(y) dy = \int_a^b f(G(x))G'(x) dx$$

if G is absolutely continuous.

(c) The validity of (b) may fail if G is merely right continuous than continuous.

Proof. (a) First we assume E is an interval of form $[c_0, d_0]$. Since G is continuous on $[a, b]$, by IVT there exist $a_0 < b_0$ such that $G(a_0) = c_0$ and $G(b_0) = d_0$. Also, for $c_0 \leq y \leq d_0$, by IVT we have $G(y) = x$ for some $y \in [a, b]$, and by monotonicity of G , we further have $y \in [a_0, b_0]$. Hence $G^{-1}([c_0, d_0]) = [a_0, b_0]$. Therefore, for intervals $E = [c_0, d_0]$,

$$m(E) = d_0 - c_0 = G(b_0) - G(a_0) = \mu_G([a_0, b_0]) = \mu_G(G^{-1}(E)). \quad (1)$$

Next, if $m(E) = \mu_G(G^{-1}(E))$, then

$$\begin{aligned} m(E^c) &= m([c, d]) - m(E) = d - c - \mu_G(G^{-1}(E)) \\ &= \mu_G([a, b]) - \mu_G(G^{-1}(E)) = \mu_G([c, d] \setminus G^{-1}(E)) \\ &= \mu_G((G^{-1}(E))^c). \quad (\text{with respect to } [c, d]) \end{aligned}$$

To restate the result,

$$m(E) = \mu_G(G^{-1}(E)) \implies m(E^c) = \mu_G((G^{-1}(E))^c). \quad (2)$$

Finally, let us first note that if $E_1 \cap E_2 = \emptyset$, then $G^{-1}(E_1) = G^{-1}(E_2) = \emptyset$. Now if $\{E_n\}_{n \geq 1}$ is a countable collection of disjoint subsets of $[c, d]$ with $\mu(E_n) = \mu_G(G^{-1}(E_n))$ for all n , then

$$m(\bigcup_{n \geq 1} E_n) = \sum_{n=1}^{\infty} m(E_n) = \sum_{n=1}^{\infty} \mu_G(G^{-1}(E_n)) = \mu_G(G^{-1}(\bigcup_{n \geq 1} E_n)) \quad (3)$$

since m and μ_G are both measures and thus countably additive. (2), (3), along with the trivial fact that $m([c, d]) = \mu_G(G^{-1}([c, d]))$ and $m(\emptyset) = \mu_G(G^{-1}(\emptyset))$ imply that the collection

$$\{E : m(E) = \mu_G(G^{-1}(E))\}$$

forms a σ -algebra. Thus, the general principle along with (1) implies that all sets in the σ -algebra generated by intervals on $[a, b]$, i.e., $\mathcal{B}_{[a,b]}$ have the same property.

(b) If f is an indicator function χ_E for $E \in \mathcal{B}_{[a,b]}$, then

$$\int_c^d \chi_E(y) dy = m(E) = \mu_G(G^{-1}(E)) = \int_a^b \chi_{G^{-1}(E)}(x) d\mu_G(x) = \int_a^b \chi_E(G(x)) dG(x)$$

so the claim holds for indicator functions and thus simple functions (with standard representation). Next, for $f \in L^+([c, d])$, if we let φ_n be a sequence of indicator functions $\nearrow f$, then

$$\int_c^d f(y) dy = \int_c^d \lim_{n \rightarrow \infty} \varphi_n dm = \lim_{n \rightarrow \infty} \int_c^d \varphi_n dm = \lim_{n \rightarrow \infty} \int_a^b \varphi_n(G(x)) dG(x) = \int_a^b f(G(x)) dG(x).$$

Finally, for a general f , the result follows from decomposing f into f^+ and f^- .

In particular, if G is absolutely continuous then G is differentiable a.e. with $dG(x) = G'(x)$ a.e. so

$$\int_c^d f(y) dy = \int_a^b f(G(x)) dG(x) = \int_a^b f(G(x))G'(x) dx.$$

(c) Let $[a,b] := [-1, 1]$, $[c, d] := [0, 1]$, and $G := \chi_{[0,1]}$, an increasing, right-continuous function on $[-1, 1]$ with $G(-1) = 0$, $G(1) = 1$. Finally, let $f(x) := x$ on $[0, 1]$. Then $\int_0^1 f(x) dx = \frac{1}{2}$ whereas

$$\int_{-1}^1 f(G(x)) dG(x) = \int_{-1}^0 0 dG(x) + \int_0^1 1 dG(x) = 1. \quad \square$$

Problem: (I)

It can be shown, and you may assume, that there exists a measurable set $E \subset [0, 1]$ with $0 < m(E \cap I) < m(I)$ for all interval $I \subset [0, 1]$ with $m(I) > 0$. Let $F(x) = m(E \cap [0, x])$ for $x \in [0, 1]$. Show that F is absolutely continuous and strictly increasing, but F^{-1} is not absolutely continuous.

Proof. First we show F is strictly increasing. Suppose not, i.e., for some $0 < x < y < 1$ we have

$$F(x) = m(E \cap [0, x]) = m(E \cap [0, y]) = F(y).$$

Taking the difference we have $m(E \cap [x, y]) = 0$ whereas $m([x, y]) > 0$, contradiction.

Next we show F is absolutely continuous. Let $\epsilon > 0$ be given and we let $\delta = \epsilon$. Then if $\{(a_i, b_i)\}$ are disjoint subsets of $[0, 1]$ with total length $< \epsilon$, we have

$$\sum_{i=1}^n |F(b_i) - F(a_i)| = \sum_{i=1}^n m(E \cap (a_i, b_i)) < \sum_{i=1}^n m((a_i, b_i)) = \sum_{i=1}^n |b_i - a_i|.$$

Finally, to show F^{-1} is not absolutely continuous, note by homework 8 problem VIII,

$$\lim_{h \searrow 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \searrow 0} \frac{m(E \cap (x, x+h])}{h} \leq \lim_{r \rightarrow 0} \frac{2m(E \cap B(r, x))}{B(r, x)} = \chi_E(x)$$

and likewise for $\lim_{h \nearrow 0}$, so F is differentiable with $F'(x) = 0$ a.e. on $F := [0, 1] \setminus E$. We know however that F has positive measure since $m(E) = m(E \cap [0, 1]) < 1$. The proof consists of two steps.

(Step 1). We first show that $m(f(F)) = 0$.

Let $\epsilon > 0$ be given. We define

$$F_n := \{x \in F : |x - y| < 1/n \Rightarrow |f(x) - f(y)| < \epsilon|x - y|\}. \quad (1)$$

For all $x \in F$, since $f'(x) = 0$, the derivative quotient $\frac{|f(x) - f(y)|}{|x - y|} \rightarrow 0$ as $|x - y| \rightarrow 0$. Thus, each $x \in F$ is contained in some F_n , i.e., $F = \bigcup_{n=1}^{\infty} F_n$. It is also clear that $F_1 \subset F_2 \subset \dots$, so by continuity from below,

$$m(F) = \lim_{n \rightarrow \infty} m(F_n). \quad (2)$$

From $F_1 \subset F_2 \subset \dots$ we obtain $f(F_1) \subset f(F_2) \subset \dots$ and from $F = \bigcup_{n=1}^{\infty} F_n$ we obtain $f(F) = \bigcup_{n=1}^{\infty} f(F_n)$. Therefore, using continuity from below once more,

$$m^*(f(F)) = \lim_{n \rightarrow \infty} m^*(f(F_n)). \quad (3)$$

For each n , there exists a collection $\{I_k\}$ of intervals with each $m(I_k) < 1/n$ and $\sum_{k=1}^{\infty} m(I_k) < m(F_n) + \epsilon$. Then,

$$m^*(f(I_k)) = |f(\sup I_k) - f(\inf I_k)| < \epsilon m(I_k) \quad \text{by (1),}$$

so

$$m^*(f(F_n)) \leq m^*\left(\bigcup_{k=1}^{\infty} f(I_k)\right) \leq \sum_{k=1}^{\infty} m^*(f(I_k)) < \epsilon \sum_{k=1}^{\infty} m(I_k) < \epsilon(m(F_n) + \epsilon).$$

Taking $n \rightarrow \infty$, we have

$$m^*(f(F)) = \lim_{n \rightarrow \infty} m^*(f(F_n)) \leq \lim_{n \rightarrow \infty} \epsilon(m(F_n) + \epsilon) = \epsilon(m(F) + \epsilon).$$

Since ϵ is arbitrary but $m(F)$ finite in our case, letting $\epsilon \rightarrow 0$ implies $m^*(f(F)) = m(f(F)) = 0$.

(Step 2). By homework 8b problem 4, if f^{-1} is absolutely continuous, then $m(f^{-1}(f(F))) = 0$, but $m(f^{-1}(f(F))) = m(F)$ and we know $m(F) > 0$. Therefore f^{-1} is not absolutely continuous. \square

Problem: (II)

Let $F : [a, b] \rightarrow \mathbb{R}$ be continuous. Let $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ be a partition of $[a, b]$ and let F_P be the function with $F_P(x_i) = F(x_i)$ and linear in between then x_i 's. We define a local minimum to be a pair (x, y) with $x \in (a, b)$ and $y = F(x)$ such that there exists an interval (u, v) containing x with $F \geq y$ on (u, v) . A local maximum is defined analogously. Let

$$N_F(y) = |\{x : F(x) = y\}| \quad \text{and} \quad N_{F,mm}(y) = |\{x : (x, y) \text{ is a local max/min}\}|$$

where $|\cdot|$ denotes the cardinality. It is given that both sets are measurable.

(a) Show that there are at most countably many local maxima and minima, so $N_{F,mm} = 0$ m-a.e.

(b) Show that for any partition P ,

$$\int_{\mathbb{R}} N_{F_P}(y) m(dy) = T_{F_P}([a, b]) \leq T_F([a, b])$$

where T_{F_P}, T_F denote the total variation of F_P and F on $[a, b]$.

(c) Suppose $P(1) \subset P(2) \subset \dots$ are partitions with mesh $\rightarrow 0$. Show that for all y with $N_{F,mm}(y) = 0$ we have $N_{F_{P(n)}}(y) \nearrow N_F(y)$.

(d) Show that

$$\int_{\mathbb{R}} N_F(y) m(dy) = T_F([a, b]).$$

Proof. (a) Suppose for contradiction that F takes uncountably many extrema values. That is,

$$\bigcup_{n \geq 1} [\{y = F(x) : F \leq y \text{ on } (x - n^{-1}, x + n^{-1})\} \cup \{y = f(x) : F \geq y \text{ on } (x - n^{-1}, x + n^{-1})\}]$$

is uncountable. Therefore for some m , the corresponding union is uncountable, and WLOG we assume

$$E_n := \{y = F(x) : F \leq y \text{ on } (x - 1/m, x + 1/m)\} \quad \text{is uncountable.}$$

Since F is continuous on a compact and connected domain, the range of F is connected and bounded. In particular E_n must have a limit point y_0 , and suppose $\{y_k\}_{k \geq 1} \subset E_n$, a sequence of distinct points in E_n , converges to y_0 . Define each x_k to be any number in $[a, b]$ such that $f(x_k) = y_k$. By compactness of $[a, b]$ there exists a further subsequence k_j of indices such that

$$y_{k_j} \rightarrow y_0, \quad y_{k_j} = f(x_{k_j}), \quad x_{k_j} \rightarrow \text{some } x_0, \quad \text{and } f(x_0) = y_0.$$

Let N be sufficiently large so that $|x_{k_{j_1}} - x_{k_{j_2}}| < 1/n$ for $k_{j_1}, k_{j_2} > N$. Then, since $y_{k_{j_1}} \neq y_{k_{j_2}}$, either $y_{k_{j_1}}$ fails to be a local maximum on $(x_{k_{j_1}} - n^{-1}, x_{k_{j_2}} + n^{-1})$ or $y_{k_{j_2}}$ fails on $(x_{k_{j_2}} - n^{-1}, x_{k_{j_2}} + n^{-1})$. Either way, we have a contradiction against the definition of E_n . Therefore F can take at most countably many extrema values, i.e., $N_{F,mm} = 0$ m-a.e.

(b) For $1 \leq i \leq n$, define a function p_i by

$$p_i(y) := \begin{cases} 1 & y \text{ is between } F(x_{i-1}), F(x_i) \text{ (inclusive)} \\ 0 & \text{otherwise.} \end{cases}$$

Notice that $\sum_{i=1}^n p_i(y)$ agrees with $N_{F_P}(y)$, except possible at the endpoints of the partition, where over-counting may occur. However, since there are only finitely many partition points, they do not affect the Lebesgue integral. Thus,

$$\int_{\mathbb{R}} N_{F_P}(y) m(dy) = \sum_{i=1}^n \int_{\mathbb{R}} p_i(y) m(dy) = \sum_{i=1}^n |F(x_i) - F(x_{i-1})| = T_{F_P}([a, b]).$$

By definition, T_F is taken over the supremum of all partitions, so $T_{F_P}([a, b]) \leq T_F([a, b])$.

(c) See the proof of 3(d). *I originally skipped 3(c), but I accidentally proved it when attempting 3(d).*

(d) By MCT,

$$\begin{aligned} \int_{\mathbb{R}} N_F(y) m(dy) &= \int_{\mathbb{R}} \lim_{n \rightarrow \infty} N_{F_{P(n)}}(y) m(dy) = \lim_{n \rightarrow \infty} \int_{\mathbb{R}} N_{F_{P(n)}}(y) m(dy) \\ &= \lim_{n \rightarrow \infty} T_{F_{P(n)}}([a, b]). \end{aligned}$$

It remains to show that

$$\lim_{n \rightarrow \infty} T_{F_{P(n)}}([a, b]) = \sup_P T_{F_P}([a, b]) = T_F([a, b]).$$

Let $\epsilon > 0$ and $P' = \{a = x'_0 < x'_1 < \dots < x'_k = b\}$ be a partition with $T_{F_{P'}}([a, b]) > T_F([a, b]) - \epsilon$. Since F is continuous on $[a, b]$, it is uniformly continuous, so there exists $\delta_0 > 0$ such that

$$|x - y| < \delta_0 \implies |f(x) - f(y)| < \frac{\epsilon}{k + 1}.$$

Let $\delta := \min\{\delta_0, \text{mesh}(P')\}$ and let n be sufficiently large so that $\text{mesh}(P(n)) < \delta$. We write $P(n)$ as $\{a = x_0 < x_1 < \dots < x_n = b\}$. Since $\text{mesh}(P(n)) < \text{mesh}(P')$, each subinterval of $P(n)$ can contain at most one partition point in P' . Define

$$\mathcal{J} := \{1 \leq k \leq n : (x_{k-1}, x_k) \text{ contains some } x'_i \in P'\}. \quad (\Delta)$$

Then $|\mathcal{J}| \leq \min(n, k + 1) \leq k + 1$ and

$$T_{F_{P(n)}} = \sum_{k=1}^n |F(x_k) - F(x_{k-1})| = \sum_{k \in \mathcal{J}} |F(x_k) - F(x_{k-1})| + \sum_{k \notin \mathcal{J}} |F(x_k) - F(x_{k-1})|.$$

Now define $P'' := P(n) \cup P'$, a refinement of both partitions. It follows that $T_{F_{P''}}([a, b]) \geq T_{F_{P'}}([a, b]) > T_F([a, b]) - \epsilon$. Also, (following the notation in (Δ)),

$$T_{F_{P''}}([a, b]) = \sum_{k \in \mathcal{J}} [|F(x_k) - F(x'_i)| + |F(x'_i) - F(x_{k-1})|] + \sum_{k \notin \mathcal{J}} |F(x_k) - F(x_{k-1})|.$$

Therefore,

$$\begin{aligned} T_{F_{P(n)}} &\geq \sum_{k \notin \mathcal{J}} |F(x_k) - F(x_{k-1})| \\ &= T_{F_{P''}}([a, b]) - \sum_{k \in \mathcal{J}} [|F(x_k) - F(x'_i)| + |F(x'_i) - F(x_{k-1})|] \\ &> T_{F_{P''}}([a, b]) - 2\epsilon|\mathcal{J}| > T_F([a, b]) - \epsilon - \frac{2\epsilon(k + 1)}{k + 1} = T_F([a, b]) - 3\epsilon. \end{aligned}$$

Since ϵ is arbitrary, we are done. □