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December 7, 2021

Problem: (Folland 3.36)

Let G be a continuous increasing function on [a, b] and let G(a) = c,G(b) = d.

(a) If E ⊂ [c, d] is a Borel set, then m(E) = µG(G−1(E)).

(b) if f is a Borel measurable and integrable function on [c, d], then

∫
d

c
f(y) dy = ∫

b

a
f(G(x)) dG(x).

In particular,

∫
d

c
f(y) dy = ∫

b

a
f(G(x))G′(x) dx

if G is absolutely continuous.

(c) The validity of (b) may fail if G is merely right continuous than continuous.

Proof. (a) First we assume E is an interval of form [c0, d0]. Since G is continuous on [a, b], by IVT there

exist a0 < b0 such that G(a0) = c0 and G(b0) = d0. Also, for c0 ⩽ y ⩽ d0, by IVT we have G(y) = x for some

y ∈ [a, b], and by monotonicity of G, we further have y ∈ [a0, b0]. Hence G−1([c0, d0]) = [a0, b0]. Therefore,

for intervals E = [c0, d0],

m(E) = d0 − c0 = G(b0) −G(a0) = µG([a0, b0]) = µG(G−1(E)). (1)

Next, if m(E) = µG(G−1(E)), then

m(Ec) =m([c, d]) −m(E) = d − c − µG(G−1(E))

= µG([a, b]) − µG(G−1(E)) = µG([c, d]/G−1(E))

= µG((G−1(E))c). (with respect to [c, d])

To restate the result,

m(E) = µG(G−1(E)) Ô⇒ m(Ec) = µG((G−1(E))c). (2)

Finally, let us first note that if E1 ∩E2 = ∅, then G−1(E1) = G−1(E2) = ∅. Now if {En}n⩾1 is a countable

collection of disjoint subsets of [c, d] with µ(En) = µG(G−1(En)) for all n, then

m(⋃
n⩾1

En) =
∞
∑
n=1

m(En) =
∞
∑
n=1

µG(G−1(En)) = µG(G−1(⋃
n⩾1

En)) (3)
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since m and µG are both measures and thus countably additive. (2), (3), along with the trivial fact that

m([c, d]) = µG(G−1([c, d])) and m(∅) = µG(G−1(∅)) imply that the collection

{E ∶m(E) = µG(G−1(E))}

forms a σ-algebra. Thus, the general principle along with (1) implies that all sets in the σ-algebra generated

by intervals on [a, b], i.e., B[a,b] have the same property.

(b) If f is an indicator function χE for E ∈ B[a,b], then

∫
d

c
χE(y) dy =m(E) = µG(G−1(E)) = ∫

b

a
χG−1(E)(x) dµG(x) = ∫

b

a
χE(G(x)) dG(x)

so the claim holds for indicator functions and thus simple functions (with standard representation). Next,

for f ∈ L+([c, d]), if we let φn be a sequence of indicator functions ↗ f , then

∫
d

c
f(y) dy = ∫

d

c
lim
n→∞

φn dm = lim
n→∞∫

d

c
φn dm = lim

n→∞∫
b

a
φn(G(x)) dG(x) = ∫

b

a
f(G(x)) dG(x).

Finally, for a general f , the result follows from decomposing f into f+ and f−.

In particular, if G is absolutely continuous then G is differentiable a.e. with dG(x) = G′(x) a.e. so

∫
d

c
f(y) dy = ∫

b

a
f(G(x)) dG(x) = ∫

b

a
f(G(x))G′(x) dx.

(c) Let [a.b] ∶= [−1,1], [c, d] ∶= [0,1], and G ∶= χ[0,1], an increasing, right-continuous function on [−1,1]

with G(−1) = 0, G(1) = 1. Finally, let f(x) ∶= x on [0,1]. Then ∫
1

0
f(x) dx = 1

2
whereas

∫
1

−1
f(G(x)) dG(x) = ∫

0

−1
0 dG(x) + ∫

1

0
1 dG(x) = 1.

Problem: (I)

It can be shown, and you may assume, that there exists a measurable set E ⊂ [0,1] with 0 <m(E ∩I) <m(I)
for all interval I ⊂ [0,1] with m(I) > 0. Let F (x) = m(E ∩ [0, x]) for x ∈ [0,1]. Show that F is absolutely

continuous and strictly increasing, but F −1 is not absolutely continuous.

Proof. First we show F is strictly increasing. Suppose not, i.e., for some 0 ⩽ x < y ⩽ 1 we have

F (x) =m(E ∩ [0, x]) =m(E ∩ [0, y]) = F (y).

Taking the difference we have m(E ∩ [x, y]) = 0 whereas m([x, y]) > 0, contradiction.

Next we show F is absolutely continuous. Let ϵ > 0 be given and we let δ = ϵ. Then if {(ai, bi)} are disjoint

subsets of [0,1] with total length < ϵ, we have

n

∑
i=1
∣F (bi) − F (ai)∣ =

n

∑
i=1

m(E ∩ (ai, bi]) <
n

∑
i=1

m((ai, bi)) =
n

∑
i=1
∣bi − ai∣.

Finally, to show F −1 is not absolutely continuous, note by homework 8 problem VIII,

lim
h↘0

F (x + h) − F (x)
h

= lim
h↘0

m(E ∩ (x,x + h])
h

⩽ lim
r→0

2m(E ∩B(r, x))
B(r, x)

= χE(x)
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and likewise for lim
h↗0

, so F is differentiable with F ′(x) = 0 a.e. on F ∶= [0,1]/E. We know however that F has

positive measure since m(E) =m(E ∩ [0,1]) < 1. The proof consists of two steps.

(Step 1). We first show that m(f(F )) = 0.

Let ϵ > 0 be given. We define

Fn ∶= {x ∈ F ∶ ∣x − y∣ < 1/n⇒ ∣f(x) − f(y)∣ < ϵ∣x − y∣}. (1)

For all x ∈ F , since f ′(x) = 0, the derivative quotient
∣f(x) − f(y)∣

x − y
→ 0 as ∣x − y∣ → 0. Thus, each x ∈ F is

contained in some Fn, i.e., F =
∞
⋃
n=1

Fn. It is also clear that F1 ⊂ F2 ⊂ ⋯, so by continuity from below,

m(F ) = lim
n→∞

m(Fn). (2)

From F1 ⊂ F2 ⊂ ⋯ we obtain f(F1) ⊂ f(F2) ⊂ ⋯ and from F =
∞
⋃
n=1

Fn we obtain f(F ) =
∞
⋃
n=1

f(Fn). Therefore,

using continuity from below once more,

m∗(f(F )) = lim
n→∞

m∗(f(Fn)). (3)

For each n, there exists a collection {Ik} of intervals with each m(Ik) < 1/n and
∞
∑
k=1

m(Ik) <m(Fn) + ϵ. Then,

m∗(f(Ik)) = ∣f(sup Ik) − f(inf Ik)∣ < ϵm(Ik) by (1),

so

m∗(f(Fn)) ⩽m∗(
∞
⋃
k=1

f(Ik)) ⩽
∞
∑
k=1

m∗(f(Ik)) < ϵ
∞
∑
k=1

m(Ik) < ϵ(m(Fn) − ϵ).

Taking n→∞, we have

m∗(f(F )) = lim
n→∞

m∗(f(Fn)) ⩽ lim
n→∞

ϵ(m(Fn) − ϵ) = ϵ(m(F ) − ϵ).

Since ϵ is arbitrary but m(F ) finite in our case, letting → 0 implies m∗(f(F )) =m(f(F )) = 0.

(Step 2). By homework 8b problem 4, if f−1 is absolutely continuous, then m(f−1(f(F ))) = 0, but

m(f−1(f(F ))) =m(F ) and we know m(F ) > 0. Therefore f−1 is not absolutely continuous.

Problem: (II)

Let F ∶ [a, b] → R be continuous. Let P = {a = x0 < x1 < ... < xn = b} be a partition of [a, b] and let FP be

the function with FP (xi) = F (xi) and linear in between then xi’s. We define a local minimum to be a pair

(x, y) with x ∈ (a, b) and y = F (x) such that there exists an interval (u, v) containing x with F ⩾ y on (u, v).
A local maximum is defined analogously. Let

NF (y) = ∣{x ∶ F (x) = y}∣ and NF,mm(y) = ∣{x ∶ (x, y) is a local max/min}∣

where ∣ ⋅ ∣ denotes the cardinality. It is given that both sets are measurable.

(a) Show that there are at most countably many local maxima and minima, so NF,mm = 0 m-a.e.
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(b) Show that for any partition P ,

∫
R
NFP
(y)m(dy) = TFP

([a, b]) ⩽ TF ([a, b])

where TFP
, TF denote the total variation of FP and F on [a, b].

(c) Suppose P (1) ⊂ P (2) ⊂ ... are partitions with mesh → 0. Show that for all y with NF,mm(y) = 0 we

have NFP (n)(y)↗ NF (y).

(d) Show that

∫
R
NF (y)m(dy) = TF ([a, b]).

Proof. (a) Suppose for contradiction that F takes uncountably many extrema values. That is,

⋃
n⩾1
[{y = F (x) ∶ F ⩽ y on (x − n−1, x + n−1)} ∪ {y = f(x) ∶ F ⩾ y on (x − n−1, x + n−1)}]

is uncountable. Therefore for some m, the corresponding union is uncountable, and WLOG we assume

En ∶= {y = F (x) ∶ F ⩽ y on (x − 1/m,x + 1/m)} is uncountable.

Since F is continuous on a compact and connected domain, the range of F is connected and bounded. In

particular En must have a limit point y0, and suppose {yk}k⩾1 ⊂ En, a sequence of distinct points in En,

converges to y0. Define each xk to be any number in [a, b] such that f(xk) = yk. By compactness of [a, b]
there exists a further subseqeuence kj of indices such that

ykj → y0, ykj = f(xkj), xkj → some x0, and f(x0) = y0.

Let N be sufficiently large so that ∣xkj1
−xkj2

∣ < 1/n for kj1 , kj2 > N . Then, since ykj1
≠ ykj2

, either ykj1
fails

to be a local maximum on (xkj1
− n−1, xkj2

+ n−1) or ykj2
fails on (xkj2

− n−1, xkj2
+ n−1). Either way, we

have a contradiction against the definition of En. Therefore F can take at most countably many extrema

values, i.e., NF,mm = 0 m-a.e.

(b) For 1 ⩽ i ⩽ n, define a function pi by

pi(y) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 y is between F (xi−1), F (xi) (inclusive)

0 otherwise.

Notice that
n

∑
i=1

pi(y) agrees with NFP
(y), except possible at the endpoints of the parition, where over-

counting may occur. However, since there are only finitely many partition points, they do not affect the

Lebesgue integral. Thus,

∫
R
NFP
(y)m(dy) =

n

∑
i=1
∫
R
pi(y)m(dy) =

n

∑
i=1
∣F (xi) − F (xi−1)∣ = TFP

([a, b]).

By definition, TF is taken over the supremum of all partitions, so TFP
([a, b]) ⩽ TF ([a, b]).
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(c) See the proof of 3(d). I originally skipped 3(c), but I accidentally proved it when attempting 3(d).

(d) By MCT,

∫
R
NF (y)m(dy) = ∫

R
lim
n→∞

NFP (n)(y)m(dy) = lim
n→∞∫R

NFP (n)(y)m(dy)

= lim
n→∞

TFP (n)([a, b]).

It remains to show that

lim
n→∞

TFP (n)([a, b]) = sup
P

TFP
([a, b]) = TF ([a, b]).

Let ϵ > 0 and P ′ = {a = x′0 < x′1 < ... < x′k = b} be a partition with TFP ′ ([a, b]) > TF ([a, b]) − ϵ. Since F is

continuous on [a, b], it is uniformly continuous, so there exists δ0 > 0 such that

∣x − y∣ < δ0 Ô⇒ ∣f(x) − f(y)∣ <
ϵ

k + 1
.

Let δ ∶= min{δ0,mesh(P ′)} and let n be sufficiently large so that mesh(P (n)) < δ. We write P (n) as

{a = x0 < x1 < ... < xn = b}. Since mesh(P (n)) < mesh(P ′), each subtinterval of P (n) can contain at most

one partition point in P ′. Define

J ∶= {1 ⩽ k ⩽ n ∶ (xk−1, xk) contains some x′i ∈ P ′}. (∆)

Then ∣J ∣ ⩽min(n, k + 1) ⩽ k + 1 and

TFP (n) =
n

∑
k=1
∣F (xk) − F (xk−1)∣ = ∑

k∈J
∣F (xk) − F (xk−1)∣ + ∑

k∉J
∣F (xk) − F (xk−1)∣.

Now define P ′′ ∶= P (n) ∪ P ′, a refinement of both partitions. It follows that TFP ′′ ([a, b]) ⩾ TFP ′ ([a, b]) >
TF ([a, b]) − ϵ. Also, (following the notation in (∆)),

TFP ′′ ([a, b]) = ∑
k∈J
[∣F (xk) − F (x′i)∣ + ∣F (x′i) − F (xk−1)∣] + ∑

k∉J
∣F (xk) − F (xk−1)∣.

Therefore,

TFP (n) ⩾ ∑
k∉J
∣F (xk) − F (xk−1)∣

= TFP ′′ ([a, b]) − ∑
k∈J
[∣F (xk) − F (x′i)∣ + ∣F (x′i) − F (xk−1)∣]

> TFP ′′ ([a, b]) − 2ϵ∣J ∣ > TF ([a, b]) − ϵ −
2ϵ(k + 1)
k + 1

= TF ([a, b]) − 3ϵ.

Since ϵ is arbitrary, we are done.
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