

MATH 525a Homework 9b

Qilin Ye

December 4, 2021

Problem: (Folland 5.4)

If X, Y are normed vector spaces, then the map $(T, x) \mapsto Tx$ is continuous from $\mathcal{L}(X, Y) \times X$ to Y . That is, if $T_n \rightarrow T$ and $x_n \rightarrow x$ then $T_n x_n \rightarrow Tx$.

Proof. Let $T_n \rightarrow T$ (i.e., for all x , $T_n x \rightarrow Tx$) and let $x_n \rightarrow x$. By triangle inequality,

$$\|T_n x_n - Tx\| \leq \|T_n x_n - T_n x\| + \|T_n x - Tx\| \leq \|T_n\|_{\text{op}} \|x_n - x\| + \|T_n x - Tx\|.$$

The assumption that $T_n \rightarrow T$ implies the norms $\|T_n\|$ is a bounded sequence. Since we have $\|x_n - x\| \rightarrow 0$ and $\|T_n x - Tx\| \rightarrow 0$ as $n \rightarrow \infty$, taking limsup we see $\limsup_{n \rightarrow \infty} \|T_n x_n - Tx\| = 0$ so $T_n x_n \rightarrow Tx$ as claimed. \square

Problem: (I)

Consider $C([0, 1])$ equipped with $\|\cdot\|_{\sup}$. Let $R \subset C([0, 1])$ be the collection of continuously differentiable functions g with $g(0) = 0$. Define $T : C([0, 1]) \rightarrow C([0, 1])$ by $(Tf)(x) := \int_0^x f(t) dt$.

- (a) Show that the range of T is R and T is a bijection between $C([0, 1])$ and R .
- (b) Show that T is bounded, find its norm, and show that T^{-1} is not bounded.

Proof. (a) Clearly every $Tf \in R$ according to the fundamental theorem of calculus, and for any $g \in R$, the continuous derivative g' satisfies $Tg' = g$, so T is surjective. If $Tf_1 = Tf_2$ then $T(f_1 - f_2)$ is the zero function, so

$$\int_0^y f_1(t) - f_2(t) dt = 0 \quad \text{for all } y \in [0, 1].$$

Suppose f_1 is not identical to f_2 . WLOG assume for some $x \in [0, 1]$ we have $f_1 > f_2$. By continuity there exists an open interval $(x - \epsilon, x + \epsilon)$ on which $f_1 > f_2$. Thus,

$$\int_0^{x+\epsilon} f_1(t) - f_2(t) dt - \int_0^{x-\epsilon} f_1(t) - f_2(t) dt = \int_{x-\epsilon}^{x+\epsilon} f_1(t) - f_2(t) dt > 0,$$

so $\int_0^{x+\epsilon} (f_1 - f_2)$ and $\int_{x-\epsilon}^{x+\epsilon} (f_1 - f_2)$ cannot be both zero, contradiction. Therefore T is injective.

(b) The operator norm of T is 1: on one hand,

$$\begin{aligned} |(Tf)(x)| &= \left| \int_0^x f(t) dt \right| \leq \int_0^x |f(t)| dt \\ &\leq \int_0^1 |f(t)| dt \leq \int_0^1 \|f\|_{\sup} dt = 1 \cdot \|f\|_{\sup} \end{aligned}$$

which implies $\|T\|_{\text{op}} \leq 1$, whereas on the other hand, if we feed any constant function to T , the norm 1 is attained. Hence $\|T\|_{\text{op}} = 1$.

We now show that T^{-1} is unbounded. Consider $g_n(x) := \sin(nx)$. From (a) we know $g_n = Tf_n$ where $f_n(x) = g'_n(x) = n \cos(nx)$. While all g_n 's have sup norm 1, $\|f_n\|_{\sup} = n \rightarrow \infty$ as $n \rightarrow \infty$. This shows that T^{-1} is unbounded. \square

Problem: (II)

Show that ℓ^1 equipped with $\|\cdot\|_{\sup}$ is not complete.

Proof. Notice that $\ell^1 \subset \ell^\infty$, i.e., if $\sum_n |x_n| < \infty$ then $\sup_n |x_n| < \infty$. In ℓ^∞ equipped with $\|\cdot\|_{\sup}$, the sequence $x^{(n)} := (1, 1/2, \dots, 1/n, 0, 0, \dots)$ converges to $x := (1, 1/2, 1/3, \dots)$, but $x \notin \ell^1$ as the harmonic series is not summable. Thus, $\{x_n\}$ is Cauchy but does not have a limit in ℓ^1 , i.e., $(\ell^1, \|\cdot\|_{\sup})$ is incomplete. \square

Problem: (III)

Let V be a subspace of a NLS X and suppose V contains some open ball $B(x, r)$. Show that $V = X$.

Proof. By definition of a subspace, if $y \in B(x, r)$ and $x, y \in V$, then $x + n(y - x) \in V$ for all n . Letting y vary we see $B(x, nr) \subset V$ for all n . But $\bigcup_{n=1}^{\infty} B(x, nr) = X$, so $V \supset X$ and we are done. \square

Problem: (IV)

Let V be a subspace of a NLS X and let W be Banach. Let $T : V \rightarrow W$ be a bounded linear map. Show that there exists a unique extension \tilde{T} of T defined on \overline{V} with $\|\tilde{T}\|_{\text{op}} = \|T\|_{\text{op}}$.

Proof. Since \tilde{T} needs to be continuous, for each $x \in \overline{X} - V$, we define $\tilde{T}x := \lim \tilde{T}x_n = \lim T x_n$, where $\{x_n\}$ is any sequence converging to x . Also, this definition is well-defined: on one hand $T x_n$ is Cauchy in W so the limit exists; on the other hand, if $\{x_n\}, \{x'_n\}$ both converge to x , then $\lim_{n \rightarrow \infty} \|x_n - x'_n\| = 0$ and so

$$\lim_{n \rightarrow \infty} T x_n - \lim_{n \rightarrow \infty} T x'_n = \lim_{n \rightarrow \infty} T(x - x'_n) = T(0) = 0,$$

i.e., $\lim T x_n = \lim T x'_n$.

To show \tilde{T} is linear, let $x, y \in \overline{V}$ and let $\{x_n\}, \{y_n\}$ be points in V converging to x and y , respectively. Then by continuity of \tilde{T} , for $\lambda \in \mathbb{R}$,

$$\tilde{T}(\lambda x + y) = \lambda \tilde{T}x + \tilde{T}y = \lambda \lim_{n \rightarrow \infty} T x_n + \lim_{n \rightarrow \infty} T y_n = \lambda \tilde{T}x + \tilde{T}y.$$

To show uniqueness, if \tilde{T}, \tilde{T}' are both extensions, then $\tilde{T}x \neq \tilde{T}'x$ for some $x \in \overline{V} - V$. But this contradicts the uniqueness of $\lim T x_n$.

Finally, to show that $\|\tilde{T}\|_{\text{op}} = \|T\|_{\text{op}}$, let us note that

$$\|\tilde{T}\|_{\text{op}} = \sup_{\substack{x \in \overline{V} \\ \|x\|=1}} \|\tilde{T}x\| \geq \sup_{\substack{x \in \overline{V} \\ \|x\|=1}} \|Tx\| = \|T\|_{\text{op}}.$$

Suppose $\|\tilde{T}\|_{\text{op}} > \|T\|_{\text{op}}$. By definition of supremum there exists $x \in \overline{V}$ with $\|x\| = 1$ such that

$$\|\tilde{T}\|_{\text{op}} \geq \|\tilde{T}x\| \quad \text{with } \|\tilde{T}\|_{\text{op}} - \|\tilde{T}x\| < (\|\tilde{T}\|_{\text{op}} - \|T\|_{\text{op}})/2.$$

On the other hand, there exists a sequence $\{x_n\}$ converging to x , so in particular $Tx_n = \tilde{T}x_n \rightarrow \tilde{T}x$ as shown before. Hence there exists a sufficiently close x_n such that

$$\|\tilde{T}x - \tilde{T}x_n\| = \|Tx - \tilde{T}x_n\| < (\|\tilde{T}\|_{\text{op}} - \|T\|_{\text{op}})/2.$$

But then

$$\begin{aligned} \|\tilde{T}\|_{\text{op}} - \|\tilde{T}x_n\| &= \|\tilde{T}\|_{\text{op}} - \|\tilde{T}x\| + \|\tilde{T}x\| - \|\tilde{T}x_n\| \\ &\leq \|\tilde{T}\|_{\text{op}} - \|\tilde{T}x\| + \|\tilde{T}x - \tilde{T}x_n\| < \|\tilde{T}\|_{\text{op}} - \|T\|_{\text{op}}, \end{aligned}$$

implying that $\|Tx_n\| > \|T\|_{\text{op}}$, a contradiction to the definition of supremum. Hence $\|\tilde{T}\|_{\text{op}} = \|T\|_{\text{op}}$. \square