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0.1 Introduction

A primary goal of this course is to study integration in a general context. However, our current methods are not
good enough. For example, we can have a sequence of continuous functions {f,} in L?([0,1]) which converges

(meaning that dx(f,, f) — 0 for some f) whereas the limit is not in L2([0,1]).
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Riemann integration is also not good enough — the rational indicator function xgn[o,1] is not Riemann integrable

as the upper sum is always 1 and the lower sum always 0.

Instead of partitioning the domain of the function, we instead consider partitioning the range of the function.

Instead we obtain a partition {yi, ...,y } of the range of the function and sets

A ={t:yis1 < f(t) <y}
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However, how do we define the “total length” 11(A;) of A; where A; can look really weird? Some possibilities:
(1) p(A) can stand for the probability of A for some random procedure.

(2) In physics, u(A) can be the mass or charge in A (for charge, we may want to allow negative u(A)).

Basic Definitions and Intuitions

Now we will review some basic concepts from set theory.

(1) Arelation on a set X is a set R of ordered paris (meaning a subset of X x X), for example < on R.

(2) A partial order is a relation < such that

(i) (transitivity) if z <y and y < z then z < z,
(i) (symmetry) if z <y and y < z then = = y, and
(iii) (reflexivity) = < z for all x.

An example of partial order can be defined on R? by u = (uy,us) < v = (vy,v9) if u1 < v; and uy < v5. Note

that points like (1,2) and (2, 1) are not comparable. Partial orders need only be defined on a subset of X x X.

(3) Alinear (total) order is a partial order also satisfying
(iv) any two elements are comparable, i.e., for all z,y € X, either z <y or y < z.
For example we can consider N with the order 2,4,6,...,1,3,5,.... In this example there is no “last number
before 1.

(4) A maximal element is an element z( such that zy < y only if y = z¢. A minimal element is defined similarly.

There can be multiple maximal elements.
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(5) Aset X is well-ordered by a relation < if X is linearly ordered and every nonempty subset E c X has a unique

minimal element. For example, N = {1,2,...} is well-ordered, but R is not, as (0,1) does not have a smallest

element. N written as {2,4,6,...,1,3,5, ...} is well-ordered but {...,6,4,2,...,5,3,1} is not.

(6) A Cartesian product of 2 sets A, A, is defined by

A1 X A2 = {(1‘171‘2) L X € Al}

or equivalently
{all functions f on {1,2} with f(i) € A;}.

(7) A general Cartesian product of {A4,,a € I'} (a collection of sets over the index set I) is

8

9

[ ] Aa{all functions f on I with f(«) € A, forall e I}.

ael

The Axiom of Choice says that for every nonempty collection {A,,« € I'}, [| A, is nonempty. This says that
ael
we can always “select one element from each A,”.

From the Axiom of Choice we can prove the Hausdorff Maximal Principle:

Every partially ordered set has a maximal linearly ordered subset.

(10) Zorn’s Lemma (which is equivalent to the Hausdorff Maximal Principle):

Let X be a poset (partially ordered set) such that every linearly ordered F ¢ X

has an upper bound (maybe not in E). Then X has a maximal subset.

Beginning of Aug.25, 2021

Hausdorff = Zorn’s. let X be as in Zorn’s lemma (i.e., every lienarly ordered subset has an upper bound). By
Hausdorff, X has a maixmal linearly ordered E (which cannot be enlarged). Zorn’s assumption says that E has
an upper bound. Call it e. We claim that e is maximal.

Suppose for contradiction that e is not maximal, so there existss y such that y > e. But then the set F u {y} is
linearly ordered and bigger than FE, contradicting the Hausdorff assumption. Therefore no such y exists, i.e., e
is maximal.

For the converse, see p.5 of text. O

Example 0.1.1: Application of Zorn’s Lemma. Let V be an infinite dimensional vector space, W a sub-
space, and f : W — R a linear functional. Can we always extend f to all of V' (still linear)? Note that if V is

finite dimensional this is obvious.

Solution. Yes; first notice that we can always extend by one dimension. Take some x ¢ W and choose any value

f(z) =b. For every y € span{W u {x}} has form y = w + cx with w ¢ W. Then we can extend f by
fy) = f(w+cx):= f(w) +ch.

3
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It is easy to verify that f has been extended and is still linear.
Now we generalize. A definition first. If Wy, W, are subspace of V and ¢; : W; — R, we say (Ws,g2) is an
extension of (W7, gy) if

WQ o] W1 and gs =g1 on Wl.

(We write (W2, g2) > (Wh,¢91).) This is a partial order on
W := {all linear functionals on subspaces of V'}.

Now we check conditions for Zorn’s lemma. Does every linearly ordered subset of V' has an upper bound?
Suppose € = {(Wy,ga) : a € A} is a linearly ordered subset, meaning that any two W,,, Wjg, one always contains
the other. We consider

W = |J Wa and Gup = go O W
acA

Then (Wyp, gup) is an upper bound for all for £. Thus the assumption of Zorn’s lemma is satisfied.
Therefore by Zorn’s lemma W contains a maximal (Whax, gmax ). But Whiax must be all of W, otherwise we could
extend it by one dimension as mentioned above. This proves the claim!

O

—_—>0 D0

Theorem 0.1.2: The Well-Ordering Principle

Every nonempty set X can be well ordered.

Proof. Let W be the set of all subsets W ¢ Ex E ¢ X x X where E some subset of X and W is an ordering
on E. (In other words we are considering an ordering of orderings here, and soon we will attempt to find a
“maxiamal” ordering that hopefully applies to all of X, thereby making it a well-ordered set.) We can order W

(partially) via W7 < Wy if W, well-orders some E; (i = 1,2) and W5 extends the ordering “upward”:
(1) FE; c E5 and the 2 orders agree on F; (meaning W, c W as sets), and
(2) In the ordering W5, all elements of e; are < all elements in Es — Fj.

We want to apply Zorn’s lemma. Check hypothesis: suppose that some collection W* = {W,, : « € A} c W is
linearly ordered. Namely, any two orderings in W* satisfy (1) and (2). Then the union of all these sets, | J E,

«
is our candidate for upper bound. Pick z,y € | JE,. Is x < y? Pick x € E, and y € E3. One of E,, Ej is bigger,

«
say the latter. Then both z,y € E3 and the ordering of Eg will determine either z < y or y < z.

A similar argument shows that it is well-ordered. Hence the ordering on _J E, is an upper bound for the subset
acA
W* of W. Therefore, by Zorn’s lemma, WW* has a maximal element (maximal well-ordered subset of X). Call it

W, an well-ordering of some E c X. Clearly E = X. Otherwise, we can enlarge the ordering by setting some
y ¢ E at the top (z < y for all = € E), contradicting the maximality. O
Beginning of Aug.27, 2021
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[ Corollary 0.1.3: Well-Ordering Principle = AC

Proof: We well-order | J X, and let f(«) denote the mimimal element in X,. Then f ¢ [] Xa.
acA acA

Cardinality

[ Definition 0.1.4: Cardinality

Let E, F be sets. We say card(FE) < card(F') if there exists an injection f : F — F or, equivalently, there exists

a surjection g : F' - E. (This equivalence requires AC.)

Remark. Any two sets F, F' are comparable in this way. Let d be the set of all injections to F' defined on
subsets of E. We can order these injections (one being an extension of the other) and use Zorn’s lemma to
deduce that there exists a maximal injection f : Fp.x — F (with largest possible domain). Now consider any
two points x,y such that

ze€E - Fyax and y€F — f(Fmnax)-

Since f corresponds to the “maximal” injection, either x or y does not exist (or we can find a “larger”
injection). If x does not exist, i.e., Enay is all of E, then f : £ — F is injective. Otherwise, if f(FEmnax) is all of

F, then f : Enax — F is surjective.

If we have injections both ways, is there necessarily a bijection between the sets?

Theorem 0.1.5: Schroder-Bernstein Theorem

If card(X) < card(Y') and card(Y") < card(X), then card(X) = card(Y") (bijection exists!).

Proof. Let f: X - Y and g:Y — X be the injections.

We start from some g € X. If 29 € g(Y'), we can apply g~* to get ~*(z¢) = x1 € Y. If 79 ¢ g(Y') then we simply
stop.

We then repeat: if z; € f(X), we apply f! to get *(x1) = 25 € X. If 21 ¢ f(X), the process simply stops from
x.

We continue doing this as long as we can. Now we define

Xx ={xo € X : process eventually stops in X }
Xy = {xo € X : process eventually stops in Y}

Xo = {mo € X : process never stops}.

(Similarly we could define Yx, Yy, and Y...)

-1
For example, along the trajectory xg L,

7gt : .
T = To L, x3, all 4 points (xo, z1, x2, and x3) will end up at x3. Further
notice that each element can only appear in exactly one sequence.

Thus, g maps Yy bijectively to Xy (e.g. (r1) = xg,g(x3) = x2), and similarly f maps X x bijectively to Yx. Also,
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f maps X, bijectively to Y,,. Therefore, we can combine them and obtain a bijection h: X - Y:

g (o) ifxpe Xy
h(,’Eo) = f(.’E()) if T € XX
f(l‘o) 1fx0 € Xeo.

[ Definition 0.1.6: Countability, etc.

(1) We say X is countable if card(X) < card(N).
(2) We say X has the cardinality of the continuum, denoted ¢, if card(X) = card(R).

(3) The following sets all have cardinality c:
R P2z [01] {01}  [o,1]".
Theorem 0.1.7: R is Uncountable
Proof. The famous Cantor diagonalization. Omitted.
Theorem 0.1.8: Continuum Hypothesis

¢ is the smallest cardinality > card(N).

This has been proven to be undecidable using standard set theory. There is no answer as of now.



Chapter 1

Measures

We want to assign sizes u(FE) to sets E. The most intuitive, special case is by defining x(E) as the volume of E
in R". We want to also extend it to other sets. A natural question arises — what criterion should we choose when

defining such notion?

(1) w(Q) =1 for the unit cube Q. u(F) >0 for all E.
(2) p could be translation-invariant. If F' can be obtained by translation F then u(F) should be equal to u(F).

(3) pshould be countably additive. If { E,, } is a finite or countable collection of sets, then p of their union should
be sun of u(E,).

Some other properties which are consequences from above:
(4) If Ac Bthen u(A) < pu(B). Indeed, we can write B as (B - A)u A.

(5) u of asingleton is 0. Indeed, [0, 1] contains infinitely many points, so by (3),

p((0,1]) = >> pu({z}).

z€[0,1]

Example 1.0.1. u([1/5,25)) = 1/5 because

1= 1([0,1]) = ([0, 1)) = u([0,1/5)) + .. + u([4/5, 1)).

Similarly, £([0.23,0.43)) = 1/5.

Beginning of Aug.30, 2021

However, in fact we can find nonmeasurable sets where no u works satisfying all the axioms above.
Suppose we can find some subset A c [0,1) such that there are infinitely many disjoint translates Ay, As, ... whose

union in [0,1). Then
1=p([0,1)) = ;u(sz)

which is impossible!!
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Example of Non-Measurable Sets. We define an equivalence relation on [0,1) by a ~ b if a — b € Q. There are
uncountably many such equivalence classes, where class is countable (since Q is). Using AC, we may pick one
point from each equivalence class and form a set A. (There is no formula that describes what A looks like, but
we know we can.)

Then

(1) the difference between any two elements in A is irrational (since they below to different equivalence

classes), and
(2) each z€[0,1) can only be in exactly one equivalence class.

Therefore (1) implies that the translate A + r for some r € Q forms a new set that is disjoint from A, and (2)
implies that the countable union of sets of form A + r,r € Q is the entire [0, 1).

It follows that A cannot be in the domain of . O

Domain of Measure

The question arises — if not the entire power set, what should the domain of a measure be, then?
Clearly, given X, the domain of a measure p on X needs to be a collection § ¢ P(X). Using a weakened version

(compared to above), we tentatively require the following:
(i) § contains X and @.
(i) g is closed under complementation.

(iii) is closed under finite / countable unions. (Their intersection counterparts follow from De Morgan’s law and
p g

(ii).)

[ Definition 1.0.2: o-Algebra

We say § is an algebra (or field) if (iii) holds for finite unions. We say it’s a o-algebra (or o-field) if (iii)

holds for countable unions.

[ Proposition 1.0.3

The intersection of two o-algebras is still a o-algebra. One can simply verify this via the axioms.

More generally, let £ be a collection of subsets of X, and let
o(&) = intersection of all o-algebras containing €.
Then:
(1) o(€)is ao-algebra, and
(2) o(€) is the smallest o-algebra containing £: that is, for all o-algebra § o £, we have § > o (&).

We say o (&) is the o-algebra generated by £.
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[ Definition 1.0.4: Borel o-Algebra

A connection to topology — let X be a topological space, i.e., it has a family J of open sets (closed under
arbitrary union and finite intersections). The Borel o-algebra is the o-algebra generated by J (by all open
sets). We write Bx = o(J).

Note that open sets are NOT closed under arbitrary intersections, but Bx is, so (nearly in all cases) Bx is bigger.

Open sets do not constitute a o-algebra in general.

[ Definition 1.0.5: G5 and F,, Sets

A G set is a countable intersection of open sets. An F, set is a countable union of closed sets. Similarly, a

Gso set is a countable union of G sets, and so on...

Product Spaces

Recall that X = H X, is a Cartesian product, and 7, : X - X, is the projection onto the o coordinate. For
acA

E, c X,, the inverse image 7' (E, ) is almost the same product H Xa, except X, is now replaced by E,, (all other
a€cA
X,;’s remain the same; they do not bring changes to our projection).

[ Definition 1.0.6: Unrestricted Coordiante

An unrestricted coordinate in A is an « such that if 23 = 25 for all 5 # o, then x5 € A if and only if yz € A.
(Changing o’s coordinate never changes the membership in A.) For example consider a vertical cylinder in R3.

The z-coordinate is unrestricted.

[ Definition 1.0.7: Product Algebra

Suppose each X, corresponds to a o-algebra 9,. We define the product o-algebra in X = [ X, by
acA

& M,, = the o-alpha generated by{r,' (E,) :a € A, E, ¢ M,}.
acA

In other weeds, ) 91, is generated by all the preimages of all elements in 901,,’s.
acA
Note that this product o-algebra is closed under intersection, so it also contains sets of form

N7l (Ea,) with E,, € M., .

=1
There is another o-algebra in X =[] Xa:
«

§ := the o-algebra generated by {all abstract rectangles [ | E, with E, € 9, }.
acA

The first way is to get a collection of abstract rectangles with restriction on one coordinate, and the second starts
with completely unrestricted rectangles. Then we generate two o-algebras from these two.

Notice that () 91, c §: indeed, the latter has a larger generator.
acA

9
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[ Proposition 1.0.8

If §,® are o-algebras and § contains all generators of &, then § > &.

Indeed, & is the smallest o-algebra containing its generators, so §, another o-algebra, cannot be smaller.

[ Proposition 1.0.9

If A is countable, then the aformentioned ) 97, = F.
acA

Proof. It suffices to prove the > direction.

When A is countable, every abstract rectangle is simply the countable intersection of rectangles in which we each

impose one restriction, so by o-algebra’s closure under countable intersection, each

[TE.= N7t (E.) e @M.
acA AEA——— acA
€®qea Mo

Remark: (General Principle). Suppose that
(1) Y is a collection of sets each having some property P.
(2) P, the collection of all sets with such property, is a o-algebra.

Then every set in o(Y") has this property.
Proof: since P is a o-algebra and P oY, we have P > o(Y).

Upshot: to show that a o-algebra has some property, we only need to verify its “generators”.
P g prop y g

Beginning of Sept.1, 2021

[ Proposition 1.0.10

If A is uncountable (and 91, is assumed to be nontrivial, i.e., not just containing A, and @), then

X M, = 3.

acA

Proof. Consider the property P of a set B defined by “B has only countably many restricted coordinates.” For
example, the generators 7' (E,) all have one restricted coordinates so they each have P. It follows that P is
closed under complements and countable unions[!] so it is a o-algebra. Therefore, the general principle says that
every set in (X) 901, has this property. However, in § we have sets with uncountably many restricted coordiantes.

acA
Therefore F is strictly bigger. O

10
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[ Proposition 1.0.11

If each M1, is generated by some collection &, then

{7 M(Ey) : Eq € Eq,a0e A}
generates [ ] M.

acA

Example 1.0.12. Let Bg be the Borel sets in R, generated by the colleciton of open sets who are in turn
generated by the open intervals. By definition Br x By is generated by

& ={all sets G xR or R x G with G open},

but this example states that it is also generated by

D ={all sets I xR or R x I with I open}.

Proof. Every set in £ is a countable union of sets in D so one direction £ c o(D) is trivial. Also, D c &, so

(D) co(€), and the two sets are indeed equal. O

Example 1.0.13: Special Example: Metric Spaces. Let X, ..., X,, be metric spaces with metrics d; in X.

Then there are two ways to make a o-algebra in [ [ X;:
j=1

(1) Geta o-algebra in X; first, for example By,. Then take () Bx;,.

=1

(2) Define the product metric d(z,y) = max di(xi,y;) on [ | X;. This creates open sets in the product space
LS i=1

and generates Borel sets Bx from them.

Are these two the same? It relates to separability.

[ Proposition 1.0.14

Suppose X7, ..., X,, are metric spaces and X = HXi with the product metric. Then ) Bx, c Bx. If in
=1 =1
addition each X is separable, the two are equal.

Proof. Note that &, := {open sets in X;} generates Bx,, so

{m; ! (us) | wi € £}

n
generates (X) By,. All of these ;! (u;)’s are open so
i=1

Q@ Bx, c o(all open sets in X) = Bx.
i=1

11
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Now for the separable case: each X; contains a countable dense subset Y;. Define
&; = {all “special” balls in X; with centers in Y; with rational radius}

which is countable. Then, if G c X; is open and p € G, there exists a ball B(r,q) € £ with p € B(r,q) c G.
Therefore, every p € G is in such a ball, and G is a countable union of special balls from &;.

Now we generalize this into the product space. If U ¢ X is open and x € U, then each coordinate of x is
contained in a “special open ball”. Analogously, U is a union of products of special balls. In particular, since &;’s
are countable, U is a countable union of such balls. Therefore, the product o-algebra contains all open sets and
therefore the Borel algebra, i.e.,

By = o(all of U) « & B,
=1

Example 1.0.15: What goes wrong in the non-separable case?. For the countable case, for example
R x R, we can let £ = {open intervals in R with rational endpoints}. Then £ is countable and every open
interval is a union of sets in E. Then, given U c R x R open, for all p € U, there exists I;,I, € £ with
pel x Iy cU. The set

KL x| L1, I,eE, 1 x I, cU}

isall of U, so U is a countable union of sets I; x I5.

However, for a non-separable metric space X, there exists uncountably many disjoint open sets, say {G,, « €
A}. Then

U=J GaxGq
acA

is open in X x X. We can show that this is not in the product o-algebra B, x B, but it’s open and therefore

in Bxxx. In this case Bxxx # Ba % Ba.

[ Definition 1.0.16: Elementary Family

An elementary family is an £ ¢ P(X) such that

(1) @eé,

(2) £ is closed under finite intersection, and

(3) forall E €&, E€ is a finite disjoint unions of members of £.

For example, the collection of all abstract rectangles (product of two intervals, possibly infinite and possibly
degenerate) in R? consist of an elementary family. (1) is clear. (3) is clear for “basic” rectangles: R? - [a, b] x
[c,d] is the disjoint union of 8 “infinite” rectangles. (Indeed, z = c¢,x = d,y = a, and y = b divide R? into 9
disjoint “rectangles” and we took away one of them.) It follows that finite intersections also preserve this

property, and hence (2) holds.

Beginning of Sept.3, 2021
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1.1 Measures

[ Definition 1.1.1: Measures, etc.

Let X be a set with a o-algebra 91, the collection of measurable sets. We call (X,9)t) a measure space.

We say a function p : 9t — [0, oo] is @ measure if
1) w(w)=0and

(2) pis countably additive: if { E;} are disjoint in 9t then
N(Z E;) = ZM(Ez)
i=1 i=1

Note that if we let the tail of {E;} to be &, we obtain finite additivity of x as well.

[ Proposition 1.1.2: Monotonicity of Measure

IfE,FeMand FE c F, then u(E) < u(F).
Proof: write F = Eu (F - E).

[ Definition 1.1.3: Finite, o-finite, & Semifinite Measures

If 41(X) < oo then p(E) < oo for all E € M. If so we call i a finite measure.
We say p is o-finite if X can be written as a countable union of sets, each of which has finite measure.

We say u is semifinite if every E with u(E) = oo has a subset F' ¢ F with finite measure.

Example 1.1.4: Lebesgue Measure (later). The Lebesgue measure m is defined on (R, Br) such that y(7)
is the length of I for all interval I. Then u(R) = oo but R is the countable union of [n - 1,n) so m is o-finite

but not finite.

Example 1.1.5. Ifwelet X =R, 9t = P(R) and define

0 E countable
n(E) =
oo FE uncountable,

then p is neither o-finite nor semifinite.
Example 1.1.6: Point Mass. Let A c 91 and define ;(A) = 1 if z € A and 0 otherwise.

Theorem 1.1.7: More Properties of Measures
1 is subadditive: if F; € 91 then

(U Es) <. u(Ey).

21 21

13
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Proof. We define F; := E;— (| E;). Then the F;’s are disjoint and the claim follows from the additivity of disjoint
1<J
sets and monotonicity. O

[ Proposition 1.1.8: Continuity from Below

(1) Suppose E; c E c ... in 9. Then
p(U E) = lim p(E).

iz1

(2) Suppose E; > E5 > ... in M and some E,, has finite measure. Then

W) Ex) = lim ju(Ey).

121

Proof.

(1) Let Ey=@. Then

(U B = n(U(E: - Eir)) = iuwi CEiy)- 15{3@2#(151*7) - lim p(B,).

i>1 21

(2) Analogous —if {E;} is decreasing, then { E{} is increasing, and we can apply (1).

More formally, fix n and let F; = E,, - E; for i > n. It follows that F,,; ¢ F},,2 c ..., and

En = (U Fz) )] (m Ez)

izn 121

Therefore,
w(En) = () Ei) = p(U Fi) = lim u(F) = lim (u(Ey) - p(E3)),
i1 i>n rmee tmee
and since p(E,) < oo, subtracting makes sense and we are done.

Note that u(FE;) < oo is important: if we let £, := [n, o) then the infinite intersection is @ whereas the

limit of p(E,,) = oo.

[ Definition 1.1.9: Null Set |

A null set is a set F with u(E) = 0. (What’s null depends on p.)

We say “something is true almost everywhere (a.e)” if something is true on all x ¢ F where F is a null set.

Remark. If u(E) =0, there might be “bad” sets F' c E with F' ¢ 9t. But we want to assign a measure 0 to
them as well. However, we cannot add one set to 9t as 2 u {F'} is not a o-algebra anymore. This leads to

the following notion called completion.

14



YQL - MATH 525a Notes 1.1 - Measures Current file: 9-8.tex

| Definition 1.1.10

A measure p is called complete if for all F' ¢ E where F € 9 with u(FE) =0, we have u(F') = 0.

Example 1.1.11. Let x be the Lebesgue number on [0, 1] and let C be the standard middle-thirds Cantor
set. It turns out that C is a null set.

C is “isomorphic to [0,1]” in the sense that there exists a monotone bijection ¢ : [0,1] — C by
binary to “ternary (left or right)”: (0.00101...) » (LLRLR...)

for example. One can show that if A is non-Borel in [0, 1] then ¢(A) is a non-Borel set in C.

Theorem 1.1.12: Completion

Let (X, 2, 1) be a measure space, and define
N := {all null sets of x in M}

and
M:={FuF|EecMand F c N for some N ¢ N}.

Then 91 is a o-algebra and there is a unique way to extend y to i which is a complete measure on 9.

Proof. First we show that 91 is a o-algebra. Complementation is given by

(EUF) = (EuN)°uU(N-EUF)eM.
— Y—
em cN

For a countable collection of {E; U F;} € 9,

UE.uFE,)=(UE,u(lU F,) eM.

nz1 nx1 n>1
————— — e
em n=0

We define 7z on 9 by ii(E u F) = u(E). To check that this is well-defined, if £, u Fy = Es U Fy, by definition
F, c N for some null set N,. Then
E1 CEQUFQ CEQUNQ

and so
n(Er) € p(E2) = p(Na) = p(Es)

and likewise u(Es3) < u(E1).
The rest of the problem is left as a homework problem... O

Beginning of Sept.8, 2021
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1.2 Outer Measure

For example, consider A the set of finite unions of rectangles in R2. This an algebra but not a s-algebra. We can
define i on A by assigning the area to it. It follows that y is finitely additive. On the other hand we may sometimes
want to extend p to 1z on a o-algebra, say o(A). Core idea: define an outer measure p*, an “upper bound” for our

measure, and then show that the restriction of u* to o(A) is indeed a measure.

[ Definition 1.2.1: Outer Measure |

A function p* : P(X) — [0, o] (containing oo) is an outer measure if
(1) w(2)=0,
(2) u*is monotonous: A c B implies p*(A) < p*(B), and

(3) p* is countably subadditive:

(o) oo

u(JA) <3 (),

i=1 i=1

If we are able to define such outer measure, then for all countable collection {A;} that covers E, we have
(E) <E(U(A) < 2 pul4i).
1= =1
More formally,
p*(E)=inf{) u(4;): Aje A,Ec|JA;}.
i=1 i=1

However, it is not immediately clear whether p* is additive, in particular finitely additive. Our goal’s to show that

in general
(1) p* is an outer measure, and

(2) p*|ya) is ameasure, and p* = p on A.

[ Proposition 1.2.2

Let EcP(X) and p: E — [0, oo] satisfying p, X € E and p(2) = 0. For all A c X, we define
p(A)=inf{) p(E;): Eie E,Ac | E;}
i=1 =1

is an outer measure. Note that we require no additional assumptions on E and p besides the very basic ones.

Example 1.2.3. Let X = R2, F be the set of rectangles, and p the area. The propositions tates that we can

extend p to o(FE), which is a o-algebra rather than simply an algebra.

Proof. Notice that p* is well-defined (worse case sceneraio: X covers A so there’s always a cover). Also,
p* (@) = 0 can be obtained by letting F; = @. Monotonicity is clear. For subadditivity, suppose A = U;2; A;. Let

€ > 0 be given; it suffices to show that
1 (A) < Qo p(Ai) +e
i=1

16
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Indeed, we can choose a “near-optimal” cover where
(EF k> 1) with Y p(EF) < 5" (A;) + 2i
%

Therefore the errors add up to < e:

(@

3

S u(E) < 2m<Ai)+e,

=1

Il
i
=

and it is clear that { EF} covers A. O

There are 3 “types” of outer measures:

(1) General — any function satisfying the axioms;

(2) Derived from sums over covers (taken infimum as above); and

(3) Derived from sums over covers of a premeasure (something we want to extend to an algebra) on an algebra.

What is a “nice” set? Any A splits X into A and A¢. The outer measure should add for “nice” A in the sense that

cutting A into pieces and adding the outer measure of each part should result in the same as p*(A), namely

pw(E)=p*(EnA)+u*(EnA°) for all F c X.

If so, we call A a p*-measurable set. If ;1(E) = oo the equation is clear. If u(E) < oo, it is obvious from subadditivity

that the LHS < the RHS, so to have a “nice” A, it suffices to show
p(E) > p (EnA)+p"(EnA%).

Theorem 1.2.4: Carathéodory’s Theorem

Let 1* be an outer measure on P(X) and

9 := {all u*-measurable subsets of X }.

Then 9 is a o-algebra and p* |oy is a complete measure.

Proof.
(1) TItis clear that 9t is closed under complements: the statement is symmetric.

(2) M is closed under finite unions: if A, B € 9 then we want to show that Au B € 9. This can be done quite

easily:
p(E)=p " (AnE) +p*(A°n E)
= (AnEnB)+ " (AnEnB)+u* (A°nEnB)+p*(A°n En B°)
> ((AuB)nE)+p* ((AuB)* nE)
where > is by subadditivity.
(3) Miis closed under differences A — B because A - B = (A u B)°.

(4) 9Mis closed under countable union. Let {A;} be a countable collection of sets and WLOG assume they are

17
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disjoint. Since for all E£,, and all n,
p(En (J40) = L u" (0 4),
we have
W (E) = (B0 (U 4)) + ' (En (U 4)°)

Zn;,u (EnA)+p (Em( A;)9).

LCS

Since this holds for all n, letting n — oo we have

ACESWACIFRRVECRIERD

i=1

> uH(En (_szlAm st (En (L=J1Ai)“‘)

oo
so again the infinite union shows _J A; € 91, and so 901 is closed under countable unions.
i=1

(o)

(5) p* is countably additive on 91: in the above inequality, replacing E by E n ( U ) gives

p(EN (U A)) = 3wt (B0 4.
i= i=1
Taking F = X gives countable additivity.

6) u

o 18 complete. If 4" (A) =0 and E c X then
1w (E) < i (En A) + 5" (B0 A%) < (E)

so all < are =, so p*(F) = u*(EnA) + u*(En A°), so A e M.

Premeasure

Now we try to extend p on an algebra A to iz on o(A). We have previously talked about generalizing “length” or

“volume” to “Lebesgue measure” on all Borel sets. In general, questions include
(1) What p can be extended?
(2) Do the notions of length or area work?

(3) How to extend?

[ Definition 1.2.5: Premeasure |

Given A c P(X) an algebra, i : A — [0, 00] is a premeasure if

(1) wp(@)=0,and

18
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(2) for {A;} a countable disjoint union in A with union also in A, p(|J Ai) = Z w(A;). (For example, a
i=1 i=1
countable union of rectangles may be a rectangle, but they may as well form a weird shape, in which

case (2) does not follow.)

A premeasure p produces an outer measure p* via “sums over covers”:

w*(E) = 1nf{2u ) | A; EAECUA}
It follows that ;* is a measure on all p*-measurable sets, but is this the extension we want?
(1) Are all setsin A p*-measurable?
(2) Do p* and p agree on A?

Theorem 1.2.6

Let u be a premeasure on an algebra A and let * be the corresponding “sums over squares” outer measure.

Proof. We first show that p < p*. Let E € A and let {A;} be a cover of E (by sets in .4). We can make them
disjoint by defining
Bn = (An - U Al) nkE.

<n

Then | J B, =E <€ Aso

n=1
W(E) = 3 1(Br) < 3 1(Ay).
n=1 n=1
Since the above inequality holds for any cover of E, taking infimum gives p(E) < p*(E).

Now we show that u* < u: since E, @, @, ... is a cover of E by sets in A, we have

w(E)<Su(E)+0+...= u(E).
Hence p* = pon A.

Now we show that all sets in 0(.A) is p*-measurable. Indeed, let £ c X, A € A, and € > 0 be given. By definition
of infimum there exists a cover {B;} c A that is < e-optimal:
Ec|JB; and D u(By) < (E) +e.
i=1 i=1
Since each B; can be split into B; n A and B; n A°, we obtain

(E)+€>ZM(B)

i=1

Zu(B nA)+ i,u(BiﬁBc).

=1 =1

8

Note that the first term is a cover of £ n A and the second of E n A¢. Hence
pt(E) > p" (EnA)+p*(EnA°).

19
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Since ¢ is arbitrary, we are done — any set in A is p*-measurable. O

Theorem 1.2.7

Let A be an algebra and p a premeasure on A. Let u* be the outer measure obtained from . Then:

(1) The restriction 7 := u* is a measure on o(.4) which extends p := ﬁ| n

o(A)
(2) 7 is the “largest” extension: if v is any other extension of yg to o(A) then
(i) v<pmono(A),
(i) v(E)=u(E)ifa(F) < oo, and
(iii) v=pmon o(A) if ug is o-finite.

Note that the second statement says that u and v differ only when (1) v(FE) < oo and u(E) = oo for some
E and (2) o is not o-finite.

Beginning of Sept.13, 2021

Proof of “uniqueness”. If v is an extension of ;i to a measure on any o-algebra 91 containing .4, then for all
E < 9 there exists a cover {A;} of E by sets in A.

8

~
Il
[

o(E) =< 3" u(Ay) - iuo(Ai)-

Taking infimum over covers implies x(E) < u*(FE) (and on c-algebra p* = f).
On the other hand, suppose (E) < co for some E € o(A). We want to show that i(E) < v(E) + € for any € > 0.

Indeed, choose a cover {A4;} that is “optimal within €”:
B(E) +e=p"(B) 2 Y po(As) = Y (A) > m(U A)
i=1 i=1 i=1

o) ﬁ(([j A;) - E) < e. Therefore

A(E) < (U A = im n(@lAa - lim u(L:JlAZ—)
- ”@f‘i) ~ u(E) +v<@1Ai> - E)
<o(E) +ﬁ((gAi) _E) <v(E) +e.

O

Proof of v and 1. Suppose /i is o-finite. There exists By ¢ By ¢ A pu(B;) < oo such that | J B; = X. Then for all
i=1
E ¢ o(A), we can write F as a limit:

(E) = lim fu(E n B;)

by continuity from below. Each 7z( F n B;) are finite, so iz and v agree on each one of them by the previous part.
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Thus
o(E)=limp(EnB;) =limv(EnB;)=v(E).

1.3 Borel Measures on R

Here we consider the h-intervals of form (a,b] where —oco < a < b < co. Note that the collection of these intervals

form an elementary family, so the collection of finite unions of them form an algebra (not o-algebra). Define
2 := {all finite unions of h-intervals}.

We take a measure p on (R, Br) that is finite on bounded sets. Define its distribution function
—u((ac, OD <0
F(z):=140 =0

w((0,z])  x>0.

[ Proposition 1.3.1: Properties of F

Clearly F' is nondecreasing. It is right-continuous: for all z > 0 and y,, | =,
F™) = lim F(yn) = lim 5((0,9n1) = ([ (0,9a]) = (0, 2]) = (@),

and a similar argument proves the case for x < 0 and y,, | « using continuity from below.

Also, p((a,b]) = F(b) - F(a) for a < b. For 0 < a < b, this is proven by

F(b) - F(a) = p((0,6]) - (0, a]) = u((a, B]).

Conversely, if we have a nondecreasing, right continuous function F, then we can obtain a measure j described by

p((a,b]) = F(b) - F(a).

[ Proposition 1.3.2

If F: R - R is nondecreasing and right-continuous, define p on A := {finite union of h-intervals} by u(@) =0

and

u(L:'Jl(ai,biJ) i(F(b» ~F(a))

for disjoint h-intervals (a;,b;]. Then p is a premeasure on A (i.e., from finite additivity we can deduce

countable additivity).

Proof. We first note that u is well-defined (for finite unions, even if there are more than one ways to represent a

union, all middle terms cancel each other out).

Now we show that p is countably additive “within A”, i.e., countably additive for h-intervals whose countable

union is still an h-interval. To put formally, if I = (a,b] is a countable disjoint unions I; := (a;,b;], then we need
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to show that u(I) = Y u(I;).

j=1
The > direction is easy: it suffices to show p(I) > > pu(I;) and take limits in n. Note that I -Uj_, I; € A, so finite
j=1
additivity of p implies
n n n
wUJ9;) = > w(I) = p(I) = (I - U 1) < (D).
i =1 j=

The < direction is harder. First suppose that (a, b] is bounded. Let € > 0 be given.
Idea: we want to modify {I;} to open covers that cover a compact set. To this end, we shrink (a,b] to [a + ,b] and

(a;,b; + 6;) and therefore obtain a finite subcover satisfying (1) < Y. u(I;) + € for arbitrary € > 0. For detailed
i=1

construction, refer to Folland’s book. O

Beginning of Sept.15, 2021
Remark. A follow up on the previous F': for ¢ > 0 and any a,, 1 a, we have

p((0.)) = p(U (0.0,)) = lim p((0.a,]) = lim F(a,)

n>1

so 11((0,a)) = F(a™). (A similar argument holds for a < 0). Hence F'(a) — F'(a™) is the jump in F' at a, and

p({a}) = u((0,a]) - u((0,a)).

Remark. Back to the latest proposition — since u is o-finite, it can be uniquely extended to a measure on

the Borel sets!
Theorem 1.3.3: Correspondence Between Measures and Distribution Functions

Given F': R — R that is increasing and right-continuous, there is a unique measure, which we call jr, on Bg

with the property stated in the previous proposition:
p((a,b]) = F(b) - F(a) for all a < b.

In addition, observe that ur = u¢ if and only if F'— G = a constant.

Conversely, given p on By finite on bounded sets, there is an increasing right-continuous F with p = pp.

[ Definition 1.3.4: Lebesgue-Stieltjes Measure & Lebesgue Measure (on R)

Recall we can completed the above up to a unique complete measure (also called pr). This measure is

called the Lebesgue-Stieltjes measure associated to F'. Its domain is
{D U E: D Borel, E c some null Borel set}.

(What is a null set depends on F'.)

If F(x) = x, we obtain the Lebesgue measure on R.
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Example 1.3.5. Define

T ifx<?2
F(z) =
z+3 ifx>2.

Let m be the Lebesgue measure. Then pur = m on (-00,2) U (2,00), and ur(E) =m(E) +3if2¢ E.

In general, if u(R) < co, we can write F'(a) = u((-o0,a]). Then lim F(a) =0and lim F'(a) = u(R).

—> 00—

Lemma 1.3.6

Let p be a o-finite premeasure on an algebra 4, u* the outer measure (obtained by infimum covering), and
9" = {all u*-measurable sets}, M = {DuUE: Deo(A), E cnull}

(i.e., 9 is the domain of completion). Then M* = M, and p*

o+ 18 the completion of .

Proof. Carathéodory’s theorem implies that p*

oy is complete, so the domain must include D U E and we must

have y*(Du E) = u* (D). Hene 9 c M*. The other inclusion is a Folland exercise. O

For the special case y = jur on (R, Bg), 1 extends to 9T = M, with

up(E) = i (B) =inf {3 e ((as,bi]) : E © Qwi,bi]}.

i=1

Sometimes we want to cover with open sets rather than h-intervals. Does it work if we replace (a;, b;] by (a;,b;)?

On one hand, every open interval can be expressed as a countable union of h-intervals, so clearly

inf{iup((ai,bi]) Fc Dl(a,»,bi]} < inf{iup((ai,bi)) Ec Q(ai,bi)}.

The converse is also true. Given E c | J(a;,b;], since F' is right-continuous, for each 7 there exists a d; such that
=1
F(b+6;) - F(b;) < €27". Then we can always find “c-optimal” covers {(a;, b; + §;)}, from which the other direction

of inequality follows.

Remark. From the derivation above, given £ c R and ¢ > 0, we can approximate F by an open G > FE

where (G - E) < e. Hence we can approximate general Borel sets by open sets.

Beginning of Sept.17, 2021
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1.4 Measure-Topology Connections

Lemma 1.4.1

In R¥, let 1 be a finite measure on Bg:. Let E be closed and G open. Then
w(E) =inf{u(U):U > F and U open}, @)

and

u(G) =sup{u(K): K c E and K compact}. (2)
If a Borel measure satisfies the equalities above, it is called regular.
Proof. Clearly < in (1) and > in (2) hold. To prove = in (1), we consider the “ 1/n neighborhoods”
U, ={z:d(z,y) < 1/n for some y € E}.

Taking the intersection of all U,,’s we obtain equality. Since U; > U, > ... and p is finite, (| U, = E as E is closed,
so lim u(U,) = u(E).
To prove = in (2), let xg € G and K, := {x : d(x,y) > 1/nforally € G} n B(xg,n) (i.e., a bonded set whose

n=1

distance at least 1/n from the complement). Then the union of these K,’s is the original G: Since K; c K5 c ...,
we have | J K, = G, so lim u(K,,) = p(G). O
n=1

Theorem 1.4.2

If 11 is a finite measure on Byx completed to M1 : {all u* — measurable sets}, then for all E € 9N,
(1) w(E)=inf{w(U):U > E,U open}, and

(2) w(E)=sup{u(K): K c E,K compact}.

Proof. Let £ be the collection of Borel sets that satisfy (1) and (2). The lemma implies open sets satisfy (2),
whereas for (1) we simply take U = E. Thus open sets meet both criteria. By the General Principle we want to
show that £ is a o-algebra.

Let B, Es,... € £. We want to show that their union is in £. Indeed, let ¢ > 0. Since E,, € £, there exists
U,, K, ¢ E (open and compact, respectively) with pu(U,,) < u(E,) +¢/2™ and u(K,) > p(E,) —€/2™.

(Note that the union of finitely many compact sets is compact, but this does not hold for countable unions in general.)

Note that
N

N N €

n=1

oo

N
Using continuity from below, we can choose N sufficiently large such that u(|J E,) - u(|J E») < €. Then the

n=1 n=1

LHS above is < 2e away from |_J E,,, so (2) holds for this set. For (1),

n=1

(D U) (U ) + (U= E) <p(J B+
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Therefore £ is closed under countable unions. To check that it is closed under complementation, since y is finite,
p(E) = p(R) - p(E) = p(R*) - inf{u(U) : U > E, U open}
= sup{,u(]Rk) -p(U):U c E,U open}
=sup{u(F): F c E°, F closed}.

Finally, to upgrade from closed sets to compact sets, we need to intersect with “large closed balls”, which would
give us compact K c E¢ with measure close to u( E€). Showing E° has (1) is much easier as the complement of

a compact set is an open set — no nuisance. So £ is indeed a o-algebra.

Since £ is a o-algebra and it contains all open sets, it contains all Borels. Let
M ={FUF:FE Borel, F c null Borel}.
Let ¢ > 0 and F c N null. We know that E/, N € &, so there exists K compact and U open such that

KcEcEFuFcEuUNCcU

with
w(K)>p(E)-e  wU) <p(EUN) +e.
But then
p(K)>p(E)—e=p(EuF)-e  p(U)<p(EUN)+e=p(EUF)+e,
which shows that Mt c £. O

Remark. If there exist {K,} (compact) and {U, } (open) that approximate F by 1/n, then
u( UlKn) = u(E) = u( ﬂ1 Un)

where the countable union is a F, set and the intersection a G set. This shows that if y, v are regular and

4 = v on open sets, then u = v on Borels.

1.5 Lebesgue Measure

[ Definition 1.5.1: Lebesgue Measure

Lebesgue measure m on R is the complete measure associated to the distribution function F(z) = x. Its

domain £ is the completion of Bg for pp.

Example 1.5.2. Recall that the Cantor set C is the set of all € [0, 1] with ternary expansion consisting of

only 0’s and 2’s. The Cantor-Lebesgue function is a bijection F': C — [0, 1] by replacing 2’s by 1’s in binary.
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We can extend the domain of F to [0, 1]: for example
F'(.0220120021...) := F(02200222...).

This gives the Devil’s staircase; F' is constant on removed intervals in C.

Beginning of Sept.20, 2021

Note that F is bijective except for conutably many points, for example F'(1/3) = F'(2/3) = 1/2. We can also construct
a “pseudo-inverse” F': [0,1] — C by
F~ ' (y) =inf{z: F(z) =y},

so for example F~!(1/2) = 1/3, not anything in (1/3,2/3]. It follows that
Fl(y) =2 < y<F(a). )

Since F' is nondecreasing and has no jump discontinuity, F' is continuous. Furthermore, F' is differentiable (with
derivative 0) except on a null set C (i.e., F'(z) = 0 almost everywhere). However, F is not continuous: F(0) = 0
and F'(1) =1. Then ur([0,1] -C) =0, ur([0,1]) =1, and so up(C) = 1. We say up “lives on” C.

Let (X, 1) be a measure space and (Y, ®) be another measurable space (with or without a measure). Then

f:X - Y gives a measure v on (Y, ®) by
v(E) = v({r e X : f(x) € B}) = v(f ().
(Note we require f~}(E) e M for all £ e &.)

Example 1.5.3. Let F:C — [0,1] and F~':[0,1] - C be defined as above. Consider ([0,1], B,m) where m
is the Lebesgue number be the domain of F~! and ([0, 1], B) be the range. Now we analyze the push-forward

of m by F~!: for 2 € C, we define

m({y: F~'(y) € (0,2]}) = m({y : y < F(2)}) = m([0, F(z)]) = F(x).

Thus the push-forward for z € C is just up. Since F is constant on [0,1] — C so ur(C°) = 0, this is also true
for x € [0,1] - C.

In this sense, ur is the “uniform measure” on C.
s 1
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Chapter 2

Integration

2.1 Measurable Functions

[ Definition 2.1.1: Measurable Function |

Let (X,91) and (Y,9t) be measurable spaces. A function f: X - Y is said to be (2, 9t)-measurable if

fHE)em for all E € M.

Recall that inverse images commute with set operations:
FHEUF) = [TU(E)ufH(F),

and
fHUENF) = Y (E)n fH(F).

The unions and intersections can be finite, countable, or uncountable. Therefore,
{EeY: fY(E)em

is a o-algebra. In particular, if the set contains some collection £ then it contains o (&).

[ Proposition 2.1.2

If £ generates 9 and f~!(E) e m for every E € £, then f is (9, N)-measurable.

Example 2.1.3. If (V,0) = (R,Bgr), £ = {(-o0,t] : t € R}, (X,9M) is another space, then f: X — R is
(90, Br)-measurable if and only if
{z:f(z)<tieMforallteR.

(Since we can also take &£ := {(-o0,t) : t € R}, we can replace < in the above inequality by <; > and > would

also work.)
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Example 2.1.4. Let (Y, By ) be generated by £ := open setsin Y}. Then f: X - Y (where X = (X,Bx))
is continuous if and only if f~'(U) is open for U c €. If so, since f~(U) is Borel for all U ¢ £, we see that f

is Borel measurable.

Beginning of Sept.22, 2021

We chose inverse images because forward images are not so “well-behaved”. For example, consider F': C — [0,1]
(the Cantor function discussed earlier) and the Vitali (nonmeasurable) set A discussed in the beginning of this
course. Consider F~!(A). The Lebesgue measure of C is 0, and since it is complete, we see that F~!(A) should be

Lebesgue measurable and null. This shows that the image of a measurable set may become nonmeasurable.

——>0C=Z00<

If f, g are measurable, what about fog, f + g, fg, etc.? What about f,, — f?

Example 2.1.5: Composition of measurable function is measurable. Let g : (X,0) — (Y,M) and f :
(Y,9) - (Z,9Q) be measurable functions. Immediately we see by definition that if E €  then
(foa) ' (B)=g ' (JTH(B)) e,

N—_——
eNn

which means f o g is measurable.

Example 2.1.6: Product of measurable functions. Consider f : X - [] Y, where Y, = (Y,,9,) are
acA

measurable spaces, and let f, := 7w, o f, the a™ coordinate function.

Claim: f is measurable into X) 91, if and only if f, is measurable into 91, for each a.
acA

Proof. Recall that (X) M, is generated by {7 ' (E), E € M,,« € A}, so each , inverse images of the generators
aeA
and are hence measurable.

Therefore, if f is continuous, f,, a composition of measurable functions, is measurable.
Conversely, suppose each f, is measurable. To show f is measurable, it suffices to show that f~!(7;}(E)) is

measurable for all generator 7! (F)’s. However, this is nothing but f;*(E) so it is indeed measurable. O

[ Proposition 2.1.7

If f,g: X > R (or C) are measurable, then so are f + ¢ and fg.

Proof. Write x — f(x)g(x) as  — (f(z),9(z)) » f(x) = g(z). Since uv -~ wu + v is continuous and z ~

(f(x),g(x)) is measurale, by definition we obtain measurability of f + g. Likewise for fg. O
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2.2 Taking Limits

For R, we allow finite values as well as +oo, i.e., we use the extended real line system R. Recall that for a sequence

{z,} c R, we have

n—oo

limsupz, = lim (supzy) = inf (supzy)
N=>0 k>n n=0 kxn

and

limsup 2, = lim (supzy) = sup (sup ).
n—>00

n—oo k>n n—oo k>n
From this we have

limsup z,, < z if and only if supxzy <t for some n.

n—oo k>n
Also recall that

limsup x,, = largest subsequential limit

(and parallel for lim inf).

For a sequence of functions {f, }, we define lim sup f,, to take the pointwise limit superior, i.e.,

f=limsup f, by f(z) :=limsup f,(x).

n—o0o n—oo

Finally, two equations that will be helpful later on:

{wisup ful2) >t} = Ul fulo) > £} &
n n=1
(note the strict inequality), and
(2 inf fo(x) <t} = ULz fule) <t). @)
n n=1

[ Proposition 2.2.1

Suppose {f,} are measurable (extended) real-valued functions. Then
sup f, inff, limsupf, liminff,

are all measurable.

Proof. Sup follows from (1), inf from (2). Using the definition lim sup = inf sup, the third claim follows from

first using (1) and then using (2), and likewise the last one follows from using (2) and then (1). O

[ Corollary 2.2.2

If {f.} is a sequence of measurable C-valued functions and f,, - f pointwise, then f is measurable. (Check

real and complex parts separately.)
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2.3 Integration

We begin by examining integration of nonnegative functions. To this end, we decompose f into nonnegative

functions
fT(z) == max{f(x),0} and f~(x) := —min{f(z),0} = max{-f(z),0}.

It follows immediately that f = f* = f~.

[ Definition 2.3.1: Simple Functions

A simple function is a (complex valued) function that takes only finitely any values. In particular, we can

write a simple function as a linear combination of indicator functions:

n
f = Z CiXE;-
i=1

Beginning of Sept.24, 2021
Remark. A standard representation means that the E;’s are pairwise disjoint, so £; = f71(c;).

Theorem 2.3.2: Approximation by Simple Functions

(1) If f: X - [0,00] is measurable, then there exist measurable functions 0 < ¢,, 1 f uniformly on any set

where f is bounded.

(2) If f: X - C, a similar claim holds with value replaced by magnitude.

Proof. For ¢,,, we divide the y-axis into small intervals of length 1/2", and we define a “2~" floor function” by

k/2 i kj2" < f(x) < (k+1)/2" and f(z) <2"
en(@)={2n i f(a) > 2"
0 if f(z)=0.

Intuitively, as n gets large, the error in approximation is < 1/2™ which tends to 0. It is also clear that {¢,,} is an

increasing sequence.

For the complex case, apply the real case to fRef and Jmf separately. O

Example 2.3.3. If f,, is measurable and f,, — f pointwise, then f is measurable. However, almost every-
where convergence does not preserve this property: let C be the Cantor set and let £ c C be non-Borel.
Let f, = 1 for all n and let f(xz)xg- (so it is 1 almost everywhere). Then f, — f a.e. but f is not Borel-

measurable. (It is Lebesgue measurable, though, as the Lebesgue measure is complete.)

[ Proposition 2.3.4

Suppose p is complete, all f,’are measurable (R- or C-valued), and f,, - f a.e. (1), then f is measurable.
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Proof. Define E := {z : f,(z) — f(x)}. By assumption E° is contained is a null set (if x is incomplete, it is
contained in a null set). We instead consider the functions f,,, f where f, = f,,, f = f on E and 0 on E*, that is,
fn:anE f:fXE'

Then f, — f pointwise[!] so f is measurable. Since f = f a.e., we have f measurable too. O

Lebesgue Integeration

Consider (X, 9, ). We define £* := {all measurable f : X — [0,00]}. For a simple function ¢ with standard
representation, we simply define .
f @ dp:= Z;aiN(Ei)~
(This is basically the same as Riemann integration: sum (;f value times size.)
Q: does this integral depend on the representation of ?
A: if E;’s are disjoint, in each representation, we can group together disjoint pieces with the same ¢ value (hence

the horizontal “slicing”). Hence the answer is no.

If Ac X and ¢ = ) a;xp, simple, then we define
i1

f @ dp:= f oxadp =Y aijp(E;n A).
A X i=1

(so we “force” o to be 0 outside A).

[ Proposition 2.3.5: Properties of the Lebesgue Integral

(1) Integrals can take infinite value (as we are only dealing with addition of integral of positive simple

functions).
(2) (Linearity) f codp=c f o dyu for ¢ >0,
(3) (Linearity) f (p+1p)du= f pdp+ f Y dp.
(4)  (Monotonicity) If ¢ < 1 then f o du < f & dp.
(5) The mapping A ~ [A  du defines a measure on A.

For (2), (3), (4), simply “divide” the corresponding {E;}, {F;} into a collection of smaller sets.

Beginning of Sept.27, 2021

Proof. For (5), the only nontrivial claim is countable additivity. If Ay, As, ... are disjoint then

L Za]XE dN

rle

M?r-

a;i(Ej ﬂ(U An))

<.
Il
—_

MS

n(E;nAy)

a;
1

<
I
—_

n

k oo
Zaj,u(EjﬁAn): Z;[q o dp.

Jj=1

MS

1
—

n
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O

Remark. Since A — [ ¢ du defines a measure, continuity from below states that, if A; ¢ A; c ... and
A

A={J A, then

n=1

d f .
fAnw n [ e du

Defining Lebesgue Integral on General (Nonnegative) Functions

For f > 0, we are tempted to define [ f du by choosing a sequence ¢,, 1 f and let f fdp = lim [ Yn du.
However, this might depend on a particular sequence of ¢,,. A better definition uses

f fdu=sup{fwdu:0<w<f,<psimple}-
(Note that this is well-defined for simple functions too.)

Basic question. If f,, — f a.e., does the integral converge?

Answer. No. Let f,, = nQX[OJ /n]- They converge (almost) everywhere on (0, 1] whereas the integral — co. Alter-
natively, consider f,, := 1/n on R: pointwise converging to 0 but integral is always co. We've given an example of
“large values on small sets” and an example of “small values on large sets”. Without balance, issues like this arise.

This question, however, has a positive answer for monoetone sequences of functions.
We define £* := {all measurable functions f > 0}.

Theorem 2.3.6: Monotone Convergence Theorem (MCT)

Suppose f1 < f2 < ... with f,, € £* and f is the pointwise limit of f,,. Then
/ F=1im [ f,.

Proof. The > direction is clear as | f > f fn for all n. For g, let € > 0 be given and we want to show that

lim [ f,>2(1-¢) / f. For this, we show that lim [ f, > f (1-¢)¢p for every simple ¢ < f. (Idea: for large n

n—oo

we have f,, > (1 - €)p, but we can’t just say this because the convergence is not uniform.)
Let ¢ < f be given. Let E,, := {z € X : f,(z) > (1 - ¢)p(z)}. By pointwise convergence, for each n, there exist n,
such that

nzn, = fo(z)2(1-€)p(z) = xekE,.

Hence Ey c E; c ... and | E,, = X. Also,

n=1
ffn>fEnfn>fEn(1-6)s0,

so taking the limit of E,, (recall that E,, —» [  defines a measure!) gives
E,

n— oo n—oo

lim [ f,> lim (l—e)ap:f(l—e)gp for all simple ¢ < .
En

Letting € — 0, we obtain our claim. O
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| Definition 2.3.7 |

For a general real-valued f (not f > 0), recall that f = f* - f~. We define

[ ran= [ rrdp- [

(the integral is not defined if the above subtraction takes form oo — o). If both are finite (so f f is finite),

we say f is integrable. Note that since |f| = f* + f~, being integrable is equivalent to f |f] dp < o0.

If f is C-valued, when both exist, we define

ffdpzzfmefd;uifjmfdu.

Also note that saying this is finite is equivalent to saying f |f| dpe < oo. To this end, we define

L' := {all C - valued integral functions f on (X, M, u)}.

[ Proposition 2.3.8

ffdu Sflfldu-

Proof. For R-valued f,

For f e L',

‘[f‘:‘/f+—/f*<[f++/f:j|f|.

For a C-valued function, we “rotate” f to make it R-valued: choose # such that

fr-1f

S0 / ¢' f is real. Therefore,

[l | S| feon| & fimeenis fieon= fin

where (+) is by the first part of this proof. O

Beginning of Sept.27, 2021

Remark: MCT on downward convergence. What if f, | f? If g > f then we write g— f, 1 g—f. If g is
integrable (i.e., the following does not take the form oo — c0) then the MCT gives

J@-to=[w-n—= [o- [t [o- [t = [~ [+

Howevery, if g is not integrable, this claim fails: consider f,,(z) := 1/n on R.
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| Corollary 2.3.9

Iffn>0then2fnTan If each f, € £* and f := an,then[f Z/fn

i=1 n=1

Proof. First we verify finite additivity: for f;, fo we have sequences of nonnegative simple functions ¢,, 1 f; and

¥n 1 f2. By linearity of integral for simple functions,

f(<pn+1l)n)=/<pn+/wn.

k
Letting n — oo we see /(f1 +fa) = / fi+ f f2. The rest of the claim follows from MC on Z fn- O
n=1

[ Proposition 2.3.10

For f € L™, the integral [ f=0if and only if f = 0 almost everywhere.

Proof. For <, notice that for simple functions ¢ = Z a;xg, =0 a.e. We have m(E;) =0 for all i so f ¢ = 0. For
i=1

general f with f =0 a.e., since any simple function below it has integral 0, [ f=0as well.

For =, notice that (f = 0 almost everywhere) < (u({z : f(x) > 1/n}) = 0 for all n). Let E, be the set

corresponding to 1/n. Since f > 1/n-xg, , [ f 2 u(Ey)/n. Therefore u(E,) = 0 for all n, which shows that f =0
almost everywhere. O

Remark. By the same token, in general if f > 0 and [ f < oo, then p(E,,) < oo for all n.

[ Corollary 2.3.11

If f f= f g for all F (and f, g are integrable), then f = g a.e.
E E

Proof. Consider {z: f(x) > g(x)} = (f —¢)71((0,)), a measurable set. Let it be F. If f = g a.e. then f —g=0
a.e.,sofE(f—g):OforallE,andsofEf:[Ega.e. O

Theorem 2.3.12: Fatou’s Lemma

For {f,} c L*,
hm mf fn € hm mf[ fn-

Proof. Notice that in£ f» monotonically increases as k increases and its limit is lim inf f,,(«). By MCT
nz n—o0

liminf f,, = lim / inf f, = liminf f inf f, < lim inf f Fe.
— 00 ;—> 00 n— —>00

n—oo n>k
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[ Proposition 2.3.13

(@) For felLl, {x: f(x)+ 0} is o-finite.

(b) For f,geLl,
/EfszgforallEeiméf|f—g|=0©f:ga.e.

Proof.
(a) We showed that {z: f(z) #0} = | J{z:|f(x)| > 1/n} where each “1/n” set (call it E,,) satisfies
n=1
1
“p(Ea) < [1f]< o,
n
(b) We’ve shown f|f —-g|=0if and only if |f - g| =0 a.e., i.e., f = g a.e. For the first <>, the < is given by

[Ef—ng :‘f(f—g)xE <f|f—g|XE<f|f—g|-

Conversely, suppose f /= [ g for all E € 9. For real-valued functions take F := {z : f(z) > g(«)}. Then
E E

0=[Ef—ng=f(f—g)xE,

>0

so (f —g)xE = 0 almost everywhere. A similar argument follows for {z : f(z) < g(z)}. The claim follows.

For C-valued functions, we apply the same argument to Re(f — ¢) and IJm(f — g).

[ Definition 2.3.14: L' Norm

Note that f f makes sense for f even if f is undefined on a null set. Define

P(f79)1:f|f—g| for f,ge L'

the “L! distance”. (Note that this is a pseudometric since p(f,g) = 0 only implies f = g a.e.) To this end, we
define an equivalence relation f ~ g if f = g a.e. Then p is a metric on these equivalence classes.

Note that for indicators, |xg — XF| = XEAF, SO

w(BAF) = [ e - xel= e xr)

also gives a (pseudo)metric on sets. This verifies one of the HW2 problems.

Beginning of Oct.1, 2021
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Example 2.3.15: Fatou for limsup. Fatou’s lemma states that lim inf / fn 2 f liminf f,,. For the limsup

argument, if there exists g integrable with g > f,, for all n,

9(x) = limsup fn () = liminf(g(x) - f())

so in this case

fliminf(g(w)—f(ﬂc))<liminf/(fn—gn)

and thus f limsup f,, > limsup f fn-

Example 2.3.16. If f, := xg, then

1 if x € E, for infinitely many n
limsup x g, (z) =
noee 0 ifnot.

Hence limsup E,, = {z : x € E,, for infinitely many FE,’s}. The limsup variation of Fatou implies

n—o00

w(limsup E,) > limsup u(E,).

n—oo n—oo

(Integrating x gives measure of set.) For example if finitely many F,,’s have measure > 1/3, then

p({x : x € B, for infinitely many n}) >

W =

Example 2.3.17: Counting Measure. Let u(F) := |E| the cardinality (either finite or infinite). On N, we

can write /:= Y §,. We can take 90 := P(N). We can think of a function f on N as a sequence {a, }y>1.

n=1

Weclaimthat[fd,u:[fd(ién):i[fdén:ilan.

n=1

k
To see this, we first show that the claim holds for ¢ (simple functions): if ¢ := >" ¢;xp,, then
J=1

k
f@dﬂ = > ¢lEl
j=1

where |E;| is the number of times ¢; appears in the sequence.

Now for general g > 0: we know
f fdu=sup{fsodu:0<so<f,<psimple}~

oo
In particular consider the truncated sequence {a, }*_;; the supremum evaluates to . f(n).

n=1

For general f, taking f = f* - f~, the claim holds provided )  f(n) converges absolutely.

n=1
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s

Example 2.3.18: Nonnegative double arrays. How to compare » > ap,and > > aj,?
k=1 n=1 k=1

n=1

Solution. We can denote ay,,, by fi(n) and let p be the counting measure. Then the LHS is f fr dp
k=1

and the RHS is f Z fr du. If ax ,, > 0 then the MCT gives =. The general case is shown later. O
k=1

Example 2.3.19: Do integrals define measures?. Suppose pu,v are finite Borel measures on [0,1] and

f fdu= f f dv for all continuous f. Does u = v?

Solution. It is enough to examine indicators x[o) for ¢ € [0,1] (as u,v are both generated by distribution

functions).

For a given t, there exist continuous functions f,, | f := x[0]. Consider MCT on 1 - f,:

1= [ fdu= [a-pan=tim [(-f)de=lim [ (1= f) dv
Therefore F), = F, and so p = v.

Theorem 2.3.20: Lebesgue’s Dominated Convergence Theorem (DCT)

Let f, € L' with f, — f a.e. and suppose that there exists g € L' with |f,| < g for all n. Then f e L' and
Example 2.3.21. Let p be a finite Borel measure on R. Define the Fourier transform
F(t):= / e p(dx) teR.

Question: does F'(t) = f ize'™ p(dr)?

Solution. Notice that

F(t+h) - F(t eim(Hh) _ eitm
(em=F() _ r o).

h h
N —
=1tpp ()

Take h = h, and let h, — 0. Then lim v, (z) = ize’™ = ¢(z). Thus we have v, — 1 and we wonder if

f%*fz/* Indeed:

[ (2)] = "]

eiachn -1 ’

and the numerator is

where |ie’| < 1. Hence
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This means |, (x)| < |z|. Thus if f |z| dp < o0, the claim holds according to DCT.

Beginning of Oct.4, 2021
More generally, given a function G(¢, ), does %f G(t,x)pu(dx) = / %G(t,x}u(dx)?

G(t+ hp,x) - G(t,x)
hn,
It is sufficient that all |+,,| is bounded by some integrable g. MVT states

By the same token, we take h,, » 0 and ¢, (z) :=

and ¢(x) = %G(t,x).

oG
E(t JZ‘)

[t ()] < sup

so it is sufficient if we can find ¢ € L' with sup %G(t,x) < g(z).
t

Proof of the Lebesgue DCT. First change f,,, f to 0 on a null set where pointwise convergence fails. Then f,, - f

everywhere. Then |f,,| < g means |f| < g and so f € L.

WLOG assume f is real-valued (complex-valued proof is analogous by considering Ref,,, Jmf, separately). It

suffices to show that lim inf f fn2 f f 2 limsup [ fn-

Since f, > —g, fn + g >0, so Fatou’s lemma gives
1iminfffn+/gzliminff(fn+g) > fliminf(fn+g) = f(f+g).

Since ¢ is integrable, subtracting gives lim inf f fn 2 inf f. Similarly, for - f,, we have

_hmsupffn:liminf[—fan(—f)

“w

so taking gives the claim.

Example 2.3.22: DCT on series. If (f, ¢ L' and) ), f\fn| < oo, then ) f, € L' with f M fu =
n=1 n=1 n=1

Sometimes showing [ f, — infx f requires different methods on different parts of X, e.g., MCT on A and DCT on

A¢. Consider the fowling example.

Example 2.3.23. Let f ¢ L', f > 0. Note that %uthzo = log u. Consider the equality
1'm1f(f€ 1) flof
im — -1)= .
e—0 € JX X &

To prove this, let €,, be a sequence converging to 0.

To use DCT, we need

< g(z) € L* for small e.

‘f(ﬂf)e—1
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In other words, do we have |(t¢ — 1)/e| < Ct for some C, all ¢, and small ¢? The answer is not for small ¢,
because this tends to [log | as € — 0 and |logt| - —oo as t — 0.
However, if we only consider ¢ > 1, this is equivalent to considering ¢€ < 1 + ¢Ct for small €. Define p(t) := ¢

and 9 (t) := 1 + eCt. Then
o) _tt 1
() C O

Taking C' =1 then ¢’ <4’ so ¢ < for ¢ > 1; that is, for e small and ¢ € [1,00), DCT works on A := {x: f(z) >
1}.

For A°, f(xz) =t < 1,500 > (f—1)/e; as e | 0, this quotient monotonically decreases to log f. We can then

©(0) <(0) and

multiply by —1 and apply MCT on A°. Thus,

hm—f(fe"— = hm—/(fe"—l)+hm— Ac(fe”—l)

n—o0 €, n—oo €,

:Alogf+[4010gf:/10gf-
S N e’

Example 2.3.24: Other limits besides limits. Consider F'(t) := ff(t,x),u(dx) ast - to. If (-,x) is
continuous at tq for all z, i.e., f(¢,x) - f(to,x) as t - to for all  and |f(¢,z)| < g(x) for all x and ¢ near ¢,
then by DCT F(t) - F(to).

@ gin(tx)

” dz. (We define the quotient to be 1 if the division is of form 1/1.)
T

Example 2.3.25. Find ;ir% [
t—~0 Jo

Indeed (¢,z) — f(0,z) as t — 0. Also, the function is dominated by 1, and 1 is integrable on [0, a]. Thus
lim [ sm(tm) f 1dz =a.
t-0 Jo

Beginning of Oct.6, 2021

Approximation in L!

Theorem 2.3.26

Integrable simple functions are dense in L'. (The distance is w.r.t. to d(f, g) = [ lf =gl

Proof. Let f € L'. Recall that there exists a sequence {(,} of simple functions with |¢,| 1 |f| pointwise, i.e.,
lon — f| = 0 pointwise. Since |p,, — f| is dominated by 2| f| € L', by DCT f|<pn - f|—=0. O

[ Definition 2.3.27: Step Function

A step function is a simple function that is constant on intervals.
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Theorem 2.3.28

For 1 a Lebesgue-Stiltjes measure on R, step functions are dense in L!.

Proof. Let ¢ >0 and f € L' (u). From the previous theorem there exists a simple ¢ = )" a;x, with f If =l <e.
j=1

We may assume a; # 0 and all E;’s are bounded (if not, intersect it with [-A/, Mj for sufficiently large M,
because p(E; n[-n,n]) - p(E;) as n — oo).

Fix j. We can approximate E; by a bounded open U > E with u(U - E;) < ¢/(m/|a,|). Write U as _J I} a union
k>1
of open intervals. Then there exists n such that

u(U—kCJIk)<7

mla;|

Defining F) _Ulk,wehave f|XE - XF| < | 0

If we define 1) := Z a;xr, a step function, we obtain the desired approximation:

j=1
U 2¢
flf—wléflf—¢|+f|<p—w|<e+j;|ajl-wm|sse

Theorem 2.3.29

For 1 a Lebesgue-Stieltjes measure on R, continuous functions are dense in L'.

Proof. Let ¢ >0 and f € L'. There exists a step function 1) = _ a;x;, with f |f — | < e. We take I;’s open with
j=1

I; = (aj,b;). Main idea: approximate each x;, by a piecewise linear function (from (a;,0) to some (a; + 1/n,1)
to (b; - 1/n,1) to (b,0)) so that the L' between x;, and this function is < e/(m|a;]).
O

Lebesgue and Riemann Integrals

Beginning of Oct.8, 2021
Let f : [a,b] - R and let P, = {to,....tx} with a =ty < ... < t,, = b be a partition. Let M;, m; be the supremum and
infimum in [¢;_4,¢;]. In Riemann integration, we defined the upper and lower sums to be Gp, and gp, such that
Gp.=M;  gp =mjon[t;,t;].

Define the integrals of Gp,,gp, to Up, f, Lp, f, respectively. Suppose Gp, | G and gp, 1 g. Also define

H(zx) :=limsup f(y) and h(x) :=liminf f(y).
y—>x

Y-z

It follows that G(x) = H(x) if z ¢ | J Px. To make everything rigorous:
k>1
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Theorem 2.3.30

Let f be a bounded R-valued function on [a,b]. Then
(a) fis Riemann integrable = f is Lebesgue integrable and the integrals agree;

(b) fis Riemann integrable < {z : f is discontinuous at x} is a (Lebesgue) null set.

Proof.

T b b
(a) Note that f Gp, dm=Up [ | f £(z) dz and f gp. dm=Lp f 1 f f(x) da. Since f is bounded,

/kadm»/de:[Hdm
[ngdmefg]dm:fhdm.

Thus the upper and lower Riemann sums are the same if and only if f (H - h) dm = 0. Since H > h, this

and

is equivalent to H = h a.e., i.e., f continuous almost everywhere. Hence

f Riemann integrable = H = f = g a.e. = f Lebesgue measurable.

When does / fn+ / fevenif f, - fae. and pu(X) < 00?

Fix a large K. We truncate f,, f at +K such that

-K fn<-K
@) =3 fa@)  fule) e [-K, K]
K > K.

By assumption f,, — f a.e., we see f,(lk)(x) - f®)(z), a.e. Since u(X) < oo, all functions are bounded by the

integrable function K, so by Lebesgue DCT
f f,,(Lk) - [ o for all K.

Therefore, failure of [ frn — inf must be caused by large values (positive or negative) of f on small sets, for example

T = n2X(0,1/n]-

Modes of Convergence

Previously we talked about a.e. convergence, L' convergence, and uniform convergence. Here we introduce two

more modes of convergence:
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[ Definition 2.3.31: Convergence in Measure

We say f,, — f in measure if for every ¢ > 0,

p({z: [ fu(z) - f(x)] > €}) >0

[ Definition 2.3.32: Cauchy-ness in Measure

We say {f,} is Cauchy in measure if for every € > 0,

p({z: | fn(@) = frm(@)] > €}) = 0

Questions:

(1) Do these two new modes imply each other?

(2) How do they relate to the previous modes?

as n — oo.

as min(m,n) - oco.

(3) Does there exist a metric d of functions such hat f,, - f in measure < d(f,, f) — 0?

Example 2.3.33. Some examples with Lebesgue measure on R:

fn f pointwise | a.e. | uniform || in L' | in measure
nXon | f= yes yes yes no yes
nxo,/n] | f= yes yes yes no yes

* f= no no no yes yes

The starred one refers to the indicator functions of

[0,1),[0,1/2),[1/2,1),[0,1/3),[1/3,2/3),[2/3,1),[0,1/4), ...

We refers to this as the “scanning interval”.

[ Proposition 2.3.34: L! Convergence = Convergence in Measure

If f,, - fin L then f,, — f in measure.

Heuristically, “violation eventually stops” implies “violation eventually gets small”.

Proof. Fix e. Define

n — oo. Since ¢ is arbitrary, this completes the proof.

En,e = {1' : |fn($) - f($)| > 6}'

Then |f, - f| > exE,, ., SO f|fn - f| 2 eu(E,,.). Since the LHS — 0 as n - oo, we must have u(E, ) - 0 as
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Beginning of Oct.18, 2021
Theorem 2.3.35

Let {f.} be measurable functions.
(1) {fn} is Cauchy in measure if and only if they converge in measure.
(2) If{f.} is Cauchy (or converges in measure), then some subsequence { f,,, } converges a.e.

(3) Unique limit in measure: if f,, —» f and f,, — g in measure, then f = g a.e.

Proof of (2). Choose {n;} so that u({z : |fn,(x) = fm(2)| > 377} < 277 for all m > n; (the bad sets). Define
correspondingly E; := {x : |fn,(2) = fa,,1()| 2 377}, Let Fy := |J Ej so u(F;) < 271, Let F = (1) Fj, (the

>k k>1
collection of z for which violations never stop). It follows that for = ¢ F', the violation stops, so

f(@) = lim £, (@)

exists. Thus for z ¢ F,

[ (@) = F@) € 2 [ fr (@) = frpa (@) € 20 37 = Se™
m=j m=j

s0 p({z: |fn, () = f(2)| > 3/2-€77}) < u(F;) < 277*1. Hence given € > 0, for large j we have 3/2-377 < e and

W({lfu (@)~ F(@)] > 1) <2741 0.

This says f,, — f in measure. O

Proof of (1). We now want to show that the full sequence f,, — f in measure. We compare the subsequence to

the full sequence:

{z:|fu(@) = f(@)] > €} = {z:|fu2) = fn, (@) > €/2} U{a: | fn, (2) = f(2)] > €/2}.

Take n; >n. Then n — oo implies n; - co. Cauchy in measure says p of the first set - 0. On the other hand, the
convergence in measure of subsequence implies that u of the second set also — 0.
The converse is trivial. O

Proof of (3). Suppose f,, - f and f, — g in measure. Then

p({a:1f(x) - g(2)| > e}) <p({z: [f(x) = fu(@)] > €/2}) + u({z : |g(x) - fu(2)] > €/2}) - 0

for all e. Note that the original expression does not contain f,,’s. Thus f = g a.e. O

Remark. There is no metric for pointwise convergence of functions on uncountable X. None for a.e.

convergence either.

Proof of Lebesgue case. We consider [0, 1] with Lebesgue. Suppose there were a metric d such that f,, — f a.e.

implies d( f,, f) = 0. In a metric space, if y,, » y, then there exists e > 0 and {y,, } such that d(y,, ,vy) > ¢. Hence
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no further subsequence {y,, ,, } can possibly converge to y.
We recall that the scanning interval example f,, — 0 in measure but not a.e. But then every subsequence f,, — 0
in measure, so does any further subsequence f,, . But this is not possible in a metric space, so there is no

metric for which f,, —» f a.e. if and only if d(f,, /) — 0. O

Lemma: Riemann-Lebesgue Lemma

Let f:R - R, f e L'(m). Then
/ ™™ f(x) m(dz) -0 as t - oo.
R

Beginning of Oct.20, 2021

Example 2.3.36. Define h,, on [0,1] by

hn(2) = 32 (F1 X(Gonaymgn] ()
j=1

Suppose f is integrable on [0,1]. Then lim ] fhy, dm =0.
1

n—oo [0

Proof. We can use a density argument and examine step functions. If ¢ = x (4,5}, most 1/n-intervals cancel each

other out except up to three 1/n-intervals. Hence

h, d
‘f[o,l] X(a,h]tn dM

For more general integrable f: let € > 0 be given. There exists a step function ¢ with f |f - | <e. Then

L/mj [ =2 +| [ b | e

We've shown that the second term — 0. For the first one, since |h,| < 1, f|hn||f -] < [If - ), so

[

<20
n

< +

< [Ihalls el

<e€.

lim sup
n—o0

Theorem 2.3.37: Riemann-Lebesgue (Lemma)
Let f: R — R be integrable. Then

'/R e f(z) m(dx) - 0 ast — oo.
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[ Definition 2.3.38: Almost Uniform Convergence

We say f,, — [ almost uniformly if for all € > 0, there exists £ ¢ X with u(F) < e such that f,, » f uniformly

on E°.

Example 2.3.39. Consider f,(z) := 1/(nz) for z € [0,1]. The convergence is obviously not uniform, but if

we take out [0, €] then the convergence on (e, 1] is uniform.
Theorem 2.3.40: Egoroff’s Theorem

If 4(X) < oo, then a.e. convergence implies almost uniform convergence.

Proof. We chance f,, f on a null set so that f,, — f pointwise. For each fixed x, the violations of bound /k
eventually stops: for big n > Ny (z),

|fu(@) = f(x)] <1/k.
On the other hand, “uniform on E°” means

> Nu(@) — |fu(z) - F(2)] s% for all z € E°. )

We want to combine (over k) the “bad sets” where (*) fails, with the combined set still small.

We write the bad sets
{z:|fn(x) - f(z)| > 1/k for some n > m}.

By pointwise convergence, these sets eventually shrink to @ as m — co. Hence for each k, there exists n; where
pw({z 2 |fu(z) - f(x)| > 1/k for some n > ny} < e27%.

Then the union FE of these sets has measure < e¢. For x € E°, the violation eventuallly stops: n > n, implies

|fr(z) — f(z)| < 1/k for all € E°. This shows almost uniform convergence. O

[ Corollary 2.3.41

If u(X)<o0,e>0, f, — f a.e., and f,, continuous, there exists a E such that u(E) < € and f,, — f uniformly
on F,so f

e 1S continuous.

Note that “f is continuous at z for all x € E°” is stronger than “f

. is continuous!” For example consider [0, 1],

F :=irrationals, and f = xyg. Then f | » = 1 but clearly f is not continuous at any point.

——>0 D0

Summary of Convergence.

(1) We showed (convergence in L') = (convergence in measure).
(2) For pu(X) < oo:
(i) (convergence a.e.) = (almost uniform) (Egoroff)
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(ii) (convergence a.e.) = (convergence in measure)

(3) For countable X, say X = N: we can assume u({z}) > 0 for all = by throwing out all points at which the
measure is 0. Suppose u(X) < oo so convergence a.e. = convergence in measure. Suppose f, — f in

measure. Fix 29 e Nand e > 0. If | f,,(zo) — f(x0)| > € for infinitely many n, then for these n,

p({z = |fn(x) = f(2)[ > €}) > p({zo}) >0,

a contradiction. Hence if f,, - f in measure, f,, — f must happen on all these points with positive measure.

Beginning of Oct.22, 2021

2.4 Product Algebra and the Fubini-Tonelli Theorem

Recall in calculus we have integrals of form /f f(z,y) dedy or /fD f(z,y) dA.

General picture: we want product measures. More specifically, let (X.9, 1) and (Y, 91, v) be two measure spaces,
and let M ® N be the product o-algebra generated by {A x B : A € M, B € N}, and we want a measure x x v such
such that (u x v)(A xb) = u(A)v(B).

Example 2.4.1. In R x R, the finite unions of geometric rectangles form an elementary family. We can use

this to get m x m (where m is the Lebesgue measure).

Example 2.4.2. In probability, let S,T be random quantities defined on (Q,§,P). We have the “push-

forward distribution”
w(A)=P(SeA) v(B)=P(T ¢ B)

where A, B € Bg. If S, T are independent then
P(SeA,TeB)=P(SecA)P(T e B),
ie.,

(uxV)(Ax B):=P((S,T) e Ax B) = u(A)v(B).

In general, let

A :={all finite disjoint unions of abstract rectangles}.

Then A is an algebra which generates 9t ® 91. To construct u x ¥ we need a premeasure on A; for
C = U Aj X Bj,
j=1
we define

(1 x)(C) = Z H(A)v(By).
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We need to first check if this notion is well-defined; that is, if the representation is not unique, for example C' =
m
| E; x F;, we need the definition to be consistent. Heuristically we can decompose the coordinates in X into smaller

;):iizces from which we can both assemble A; and A; and likewise we can break Y into smaller pieces to assemble B; and
Bj. The idea is that both original sums will become the same thing under this representation. This shows that p x v is
well-defined.

We can again verify p x v is a premeasure but the proof is omitted. Therefore i x v on A has an extension to a
measure on o(A) = M @ M. This extended p x v is called the product measure.

A similar definition holds for p; x ... x g, on NM; ® ... ® M,,.

[ Definition 2.4.3: Sections of a set

Let Ec X xY. Then
EV:={zeX:(z,y) e E}

and
E,={yeY:(x,y) e E}

are called the sections of F in the product space X x Y. (The first one is a horizontal slice and the second a
vertical slice.)
Sections commute with a set of operations: for a fixed =z,
(EuF),=E,uF, (EnF),=E,nF, (Ex)° = (E%)y.
The same holds for a fixed y. Unions and intersections also hold for arbitrary number of sets.

Similarly, we can apply the definitions to functions and define
fo()=f(z) ()= F().

Then
FHB)Y = (B ()7 = (FH(A).

[ Proposition 2.4.4

(1) If Ec9MxN,then all sections E,,, EY are measurable.

(2) If fis afunction on X x Y. If f is measurable with respect to 9t ® 91, then so are any f,, fY.

Proof.

(1) The claim is true for Ax Be M@ MN. Let £:={EF e M@ N : all sections are measurable}. We want to show

£ is a o-algebra. Since
(U E(j) ):Jv = U Ea(cj)
J J
we get £ is closed. Similarly £ is closed under complementation. Therefore F > M ® 1. Clearly £ c MM,

so they are equal.

(2) Recall that f;1(B) = (f1(B)),. Since f is measurable, f~*(B) is measurable. Hence f,!(B) is measur-
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able, and this says f, is measurable. Likewise for f,.

Beginning of Oct.25, 2021

Question. Does it hold in general that

(nx)(B) = [ w(Ew(dy) = [ v(B)u(d)? &)

Last time we show that each slice is indeed measurable, so v(E, ), u(EY) are well-defined. However a new question

arises — is v( F,) a measurable function of z, and is u(EY) a measurable function of y?

Recall the general principle. We define a property P by saying E has the property if v(E, ), u(EY) are measurable
functions of x,y and (A) holds for E.

Notice that originally the general principle requires that {sets with property P} to be a o-algebra, but there’s an

easier alternative:

[ Definition 2.4.5: Monotone class

A monotone class is a collection C of subsets of X such that C is closed under countable increasing unions

and countable decreasing intersections.

Note that o-algebras are always monotone classes but not the converse.

Just like o-algebra, a set £ generates a monotone class, which is defined to be the intersection of all monotone

classes containing F. Hence this monotone class is a (possibly non-strict) subset of o(E).

Lemma

Let A be an algebra and 9, C be the o-algebra and monotone class generated by A, respectively. Then 9t = C.

Upshot. For an algebra .4, the general principle works exactly the same if we show {sets with property P} is a
monotone class.

Proof. By definition C c 90 so it suffices to show C is a o-algebra so C > 9.

We say (F, F) forms a good pair if En F,E — F,F - E are all in C. We will show that all F, F' € C make good

pairs.

Clearly, if E, F' € 2 then this works by the definition of an algebra.

More generally, fix £ € C. Define C(F) := {F ¢C: (E,F) is a good pair}.

Claim. C(F) is a monotone class.

For countable increasing unions, suppose F; c F, c ..., all in C(E). We show that (E, | J F},) is a good pair so
n>1

the union is in C(F):

En(UF,)=U(ENE,)

n>1 n>1

where E n F,, forms an increasing sequence. Since C is a monotone class, the union is in C.

E-(UF)=(E-F)

nz1 n>1
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where F - F,, forms a decreasing sequence, so the intersection is again in C. Finally,

(UFn)_E: U(Fn_E)a

n>1 n>1

again an increasing union, which is therefore in C. Similarly we can show C(FE) is closed under decreasing

intersections. Hence C(F) is a monotone class.

Now notice that if £ ¢ A then C(F) o A, so C(E) > all of C. Hence (E, F') is a good pair for all E € . Aand F ¢C.
Equivalently A c C(F') for all F € C. But we showed C(F') is a monotone class, so A c C(F') ensures C c C(F).
This says (F, F') is a good pair for all E, F € C. Hence C is closed under the three “good pair” operations.

Finally, since @, X are in .4, they are also in C. Also, the “good pair” operations also ensure that C is closed
under complements. And it’s closed under finite intersections and countable increasing unions. Therefore C is

also closed under countable unions, i.e., it is a o-algebra. O

Now we show that v(FE,) and p(EY) are measurable functions of z and y.

Theorem 2.4.6

Let (X, 91, v) and (Y, M, v) be o-finite [!!] Then for all F e M e MN,
(1) The functions z — v(E,) and y — u(EY) are measurable, and

@ (uxv)(B) = [ v(E)u(dn) = [ u(E)w(dy).

Proof. We first consider finite measures i and v. Recall that it is enough to show that
C:={E:(1),(2) holds}

contains A := {all finite unions of abstract rectangles} and is either a o-algebra or a monotone class. For the
integration part, i.e., (2), the monotone class argument is easier because we can use MCT.
For an abstract rectangle,

v(B) xz€eA
W(E,) - (B)

0 otherwise
which is a function taking two values and therefore measurable. Similarly pu(EY) is measurable in this case.

Then
[ wBnan) = [ v(B)xan(dn) =v(B)u(A) = (ux v)(E)

and the other one follows analogously. Thus E € C. It is clear that finite unions of abstract rectangles (disjoint)
are also in C.

Now we show that C is closed under increasing unions. Suppose E; c E5 c ..., all in C, and let E be their union.
Define f,(y) := u((E,)Y). By continuity from below, f,,(y) 1t u(EY). Call this limit f(y). Then f as a limit of

measurable f,,’s is measurable, and

[ nEway = im [ u((E)")v(dy) (M)
= lim (xv)(En) = () (B).
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By the assumption that y, v are finite, we can do the same for decreasing intersections: if F} > F5 > ... and
F := the intersection then F' € C (again, requires finite measure to use MCT). Therefore C is a monotone class

generated by A so it contains o (A) = M N.

Now we move to o-finite measures p and v. This means there are sets of finite measure 4,, 1 X and B, 1 Y.
Therefore for all £, En (A, x B,) 1 E, and (1) (2) are true for each En (4, x B,,). Using MCT we can take
limits as n — oo so that F satisfies (1) and (2) too. O

This theorem says that under the same assumptions

v(E,) = fXEndV = f xe(z,-) dv
for all fixed z. (2) says

[ et = [ [ ety vian | @) = [{ [ xetem) v vay).

Example 2.4.7. Calculus is not good enough! Define

22—y

f(xz,y) =0 at origin and m

at everywhere else.

For fixed z, its antiderivative in y is y/(z? + y?), so
1
1

fl $2_y2 dy: y )
0o (z2+y2)? w2 +y?|, 1+a?

1 Log2 g2 11 T
Y g4yl :f =T
fo [/0 (22 +y2)? y] Y T Rl

However, since x,y appear symmetrically up to a minus sign, if we integrate z first we obtain

1 1 562 _y2 T
————dx|dy=—-—.
.[0 |: 0 (22 +y3?)2 I:| Y=y

Things break down. This is because f has a singularity at (0,0), and the integral involves oo — oo, resulting

Then

in a non-measurable function.

Beginning of Oct.27, 2021

Example 2.4.8. We provide a discrete analogue which might be easier to understand. Consider the array

1 0 0 0 O
-1 1 0 0 O
-1 1 0 O
(ai;) =
-1 1 0
0 0 0o -1 1

We claim that ) > a;; # Y. > a;;. Indeed, if we sum over columns first and compute the sum over
i1 jeli=1
columns, we get 0+ 0 + ... = 0, whereas the row sums are 1, 0,0, ... so the sum is 0.
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o0 oo

However, if we have absolute convergence, i.e., Z Z|ai,j| < oo then the claim would have held. (We can
i=14=1

m n
find m,n such that the partial sum ) " is < ¢ away from the sum.)
i=1j=1

Remark. Problems arise when the positive and negative contributions to a sum or integral are both infinite
(so we have oo — 00). In this case, they cancel in different ways depending on the order of summation, so

order matters. The weird counterexample f above has

z,y) dydx = oo
[[{(I,y):ﬂo} f@y) dy

and
x,y) dedy = —oo.
ff{(rﬁy):fd)}f( ) Y
Theorem 2.4.9: Fubini-Tonelli

This theorem generalizes the previous theorem, in which we only focused on indicator functions.
Suppose (X, M, 1) and (Y, 91, v) are o-finite (like before!).

(1) (Tonmelli) If f € L*(u x v), the functions defined by integral along slices

fofmdv nyfydu

are measurable, i.e., the first one € L*(X) and the second L*(Y), and

J 1= | [f ! (f’fvw”(dy)]ﬂ(dfﬁ / [ / f(a?,y)u(dx)]y(dy), )

(They can all be 0.)

(2) (Fubini) If f e L'(u x v), we have

[r@yray) [ r@yue)

finite a.e. for x and y, respectively. Also, the a.e. defined functions

e [ Sy oy [ Sy

are in L'(u) and L' (v), respectively. Furthermore, (*) holds (with finite value too!).

Remark. Tonelli requires f > 0 and Fubini requires f to be integrable. Neither allows positive and negative

contributions to both have infinite magnitude.

Proof. For simple functions, this follows from the previous theorem. Since integration is linear, the theorem also

holds for simple functions too. For general f ¢ L*(X xY'), let f,, be simple functions converging 1 to f. By MCT,
90@) = [ fulaypv(@n t [ f@y)v(dy) = g()
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and similarly
ha(@) = [ falepu(@a)t [ Fyu(da) = n).

Since each g,,, h,, is measurable, g, h are measurable too. Then, using MCT once more,

[x [/y f(x’y)”(dy)] p(de) = [X g(z)p(dz)
= T}Lnolo fxgn(x),u(da:) = JLHolo /};XY fo d(px )

- [ fdGxw)

where the second last = is because g, is simple. This proves Torelli.

Now for Fubini, we first assume f > 0 (for general functions, decompose into positive and negative parts; for
complex functions, decompose into real and imaginary parts). If f is integrable, then by above, g < oo and h < oo

a.e., so f, e L'(v) for a.e. x and f¥ € L' (p) for a.e. . O

Example 2.4.10. Suppose p is a finite measure and g measurable. Suppose f(z,y) = g(z) - g(y) is

measurable. We claim that g is integrable.

Proof. Fubini says that since f is integrable, then f(z) = g(z) — g(y) is integrable over x for a.e. y. That is,
for a constant g(y), g(z) - g(y) is integrable. Since p(X) < oo, subtracting makes sense, and we see that g is

integrable. O

Example 2.4.11. (A non-example) Consider the product space of ([0,1],8,m) and ([0,1], B,v) where v is

the counting measure. Define
E={(z,2):2¢[0,1]}

a closed set and therefore a measurable set. Does
dv| dm = f [ d ] dv?
./[0,1] [ [0,1] XE V] m [0,1]1 LJ[0,1] A

Solution. For a fixed z,
f xe(z,y)v(dy) =1
[0,1]

because xg(z,y) = 1 for just one point y = z, and counting measure gives v({z}) = 1. Hence the LHS in the
example is 1. However, for fixed y, xg(z,y) = 0 for a.e. x, so the inner integral is always 0 and so is the entire

one.

This does not violate Fubini-Tonelli, as v is not o-finite!

Example 2.4.12. Here we provide another example in which we prove some property for simple functions,
then nonnegative functions, and finally general functions.

Let (X,91, ;1) be a measure space and g : X — R. Define v, to be the “push-forward” of 1 to Borels in R:

vy(A) = (g~ (A)) for A € Bg.

52



YQL - MATH 525a Notes 2.5 - Some Remarks on Lebesgue Measure m on R" Current file: 10-27.tex

For f: R —» R, what is f fdyg?

Solution. First, for an indicator function xg:

foE dvg=vg(E)=u(g"1(E))fXxg—1(E) du=fXxEogdu-

Linearity shows that if ¢ > 0 is simple then

fsodvg=f<ﬁ°gdu-
R X

For general measurable f > 0, let ¢,, 1 f be a sequence of simple functions. MCT implies

/fdug: lim | ¢, dyy = lim Ynogdu=lim fogdpu.
R R n—oo JX

Nn—>00 1n—> 00 X

Finally, for general f, we just need to decompose it into f*, f~, or real and complex parts, if necessary.

2.5 Some Remarks on Lebesgue Measure m on R”

We know how m works on R. However, we cannot define m on R? simply by taking the product of two copies of m

on R. In particular, the product of two complete measures is not necessarily complete.

For example, consider D = {(z,z) : x € R}, the diagonal line of R?, a measurable (null) set for m x m. Let A be a
nonmeasurable subset of R and let Ap := {(z,z): z € V}. so that Ap c D.

We claim that Ap is not £ x £ measurable, which means that m x m is not complete.

Proof. Let f : R — R? defined by f(z) = (z,z). We show f is measurable from L to £ x £. Indeed, generators of

L x L are the product of generators of L, i.e.,
{(EuF)x(GuH):E,G ¢ Bg, F, H contained in null Borel}.

Since
F*(EuF)x (GuH))=(EUuF)n(GUuH)eL

we see f is indeed measurable. If Ap were £ x £ measurable then A = f~'(Ap) € £, contradiction. Hence m xm

is not complete!! O

To this end, we modify the definition of m™ on R™ by completion:

[ Definition 2.5.1: Lebesgue measure m™ on R™

m™ on R” is defined to be the completion of m x ... x m.

Theorem 2.5.2

m' is translation-invariant.
The proof begins by checking rectangles and finite unions of them. Finite unions form an algebra A. u(FE);=

m"(E +x) defines a premeasure. Since i, m™ are o-finite, 1 can be uniquely txtended to Bgr so = m™ on Bgn.
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So do the completion.
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Chapter 3

Signed Measures and Differentiation

3.1 Signed Measures

In physics, for example, when integrating over charges, we sometimes need u(A) < 0.

For f € L™ we know E ~ / f du defines a measure. This should also give us “something like a measure” for
functions that become negatife sometimes. We therefore consider general countably additive set functions (functions
taking sets as input that are countably additive for disjoint sets) that are not necessarily > 0. However, this poses

some difficulties.

Example 3.1.1. Suppose p is finitely additive on an algebra .A (and it might take negative values). Suppose
for some A, B € A we have j(A) = oo, 1( B) — co. What can

w(A-B)  u(AnB)  u(B-A)
be? The first two add to co whereas the last two add to —oco. This is possible if and only if
w(A-B) =00 u(An B) finite w(B-A)=-o0.
However,
H(AAB) = (A~ B) + (B - A) = 00 - o0

which contradicts finite additivity of disjoint sets.

Example 3.1.2. Suppose u is a countably additive set function and A;, A,, ... are disjoint. Split them into

“positive” and “negative” sets:
T =45 n(4;) > 0}.

Suppose

Z /.L(AJ) =00 and Z M(A]) = —090.
jeJ J¢T

Then
(U Aj) =00 p(lJ A4j) =—oco.

JjeJ J¢TJ
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Again we have the problem encountered in the previous example when we try to take y of the union of all
Aj’S.
We see that we run into issue unless one between
(A ) u(Ay)
jeJ Jj¢J
is finite. In particular, if )" y(A;) < oo, then both above must be finite. Furthermore, in this case the terms

j=1
in this series must converge absolutely.

[ Definition 3.1.3: Signed measure

A signed measure on (X, 1) is a function p : M — [—o0, o] satisfying

@®  u(@)=0,
(ii) p assumes at most at most one of the values +oo (in other words we cannot have u(A) = oo and

u(B) = —oo for some A, B), and

(iii) for Ey, Es, ... disjoint, u(|J E;) = >_ u(E;), with absolute convergence if the sum is finite.
j=1 j=1

Note that our previous (positive) measures all satisfy these criteria.

Example 3.1.4.

(1) A function f : X — [—o0,00] is called extended u-integrable if f frdu, / f~ dv are not both oo.
Then
F):=
v(E)= [ fan

defines a signed measure. f is called the density of v with respect to p.

(2)  p =1 —pe where uq, us are positive measures and at least one being finite, is a signed measure.

Some important continuity properties of signed measures are inherited from positive measures:
(1) Signed measures are continuous from below.

(2) If u(X) < o0, then p is continuous from above.

Example 3.1.5. Let p have density sin x with respect to the Lebesgue measure on [0, 27].

If we strict the domain to [0, 7], the map E ~ f sin(z) dm is a positive measure. If we restrict it to
[7r,27] then p is purely negative. s

Question: can we always split the space into two parts, one on which the measure is positive, the other one
on which the measure is negative?

Also, another complication: p(E) = 0 no longer implies E is “small”: consider [7/2,37/2] for example. What

we get is instead a cancellation. This will give rise to our revised definition of null sets.
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[ Definition 3.1.6: Positive, negative, & null set

A measurable set F is a positive set for y if u(F) > 0 for all F c E. (Similar for negative set.)
It is called a null set if y(F) =0 forall F' c E.

Beginning of Oct.29, 2021

Example 3.1.7. Let A, B, u be such that u(A) = u(B) =3, pW(AnB) =8, and u(A-B) = u(B-A) = -5.
Thus we can have p(A), u(B) >0 but u(Au B) < 0!

Lemma

A countable union of positive sets is positive.

Proof. Suppose Ei, Es, ... are positive and B c | J E;. We make the sets disjoint by defining F; := E; - | J E;.
j=1 i<j

Then
v(B)=)Y v(BnF;)>0

j=1

since v(B n Fj) > 0 for each j (it’s a subset of £}). O

Note for the upcoming proof: suppose v is a signed measure and some set I’ contains no positive set but does

contain a set of positive measure.

Let E c F with v(FE) > 0. By assumption E cannot be positive so it contains some H with v(H) < 0. This means if
we discard it from F (resulting in E — H), the set gets bigger!
v(E-H)=v(E)-v(H)>v(E).

Thus, for all E c F with v(F) > 0, the measure can be increased by discarding some set. This never happens for a

positive measure.

Theorem 3.1.8: Hahn Decomposition Theorem

Let v be a signed measure on (X, 91). Then there exists a positive set P and a negative set N with X = PUN

and Pn N = @. The decomposition is unique up to null sets. That is, if X = P u N’ then PAP’, NAN’ are
both null.

Proof. We may assume that v is never +oo (similar if it’s never —oo0). Define m by
m = sup{v(F) : E is positive}.

(We don’t know if it’s achieved yet.) There exists a sequence of positive sets P; such that v(P;) — m. Also, v
never attains +oo implies m is finite. By the previous lemma, P := |_J P; is also positive. Since P > P; we know
v(P) > v(P;). Therefore we must have v(P) = m, i.e. the supremujnilis achieved!

We are half way done with the decomposition. Now it remains to show that N := P¢ is a negative set.

First, notice that if N has a subset F with v(E) > 0 then E cannot be positive. Otherwise, P u E would also be

positive, contradicting the maximality of P.
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In addition, this implies any £ ¢ N with v(F) contains a negative measure set C. That is, for B=E - C,
v(B) =v(E)-v(C)>v(E).

(Discarding C' from FE increases the measure!)

Now assume for contradiction that N is not a negative set. We can iterate this discarding. Let n; be the least
integer such that there exists Fy ¢ N with v(E;) > 1/n;. (This happens for some n; because N is not a negative
set so it contains subsets with positive measure.)

Since F; cannot be positive, we can discard something from F; to make the measure bigger by our first observa-
tion: we pick ny to be the least integer such that there exists F5 c Ey with v(Es) > v(E;) + 1/ne. (Note ny < ngy
by construction.)

Done iteratively, the sets E; are getting smaller but v(F;) is increasing. We define

E = ﬂEJ

j>1

the undiscarded part. Continuity from above (recall we said v cannot take +o0) says v(E;) 1 v(E), so

1
oo >v(E) = Jlggo v(Ej)> . s
321 1

The series converges so we must have n; - oo. Also, from the definition of n; (the smallest integer that...), we

have

1 1
2v(E;-Ejo) =v(E;) -v(Eji-1) > —.
nj—1 v(E; i-1) = v(E;) —v(Ej-1) n;

So it is impossible to discard any larger set from E;.
However, we can discard something from E. Since F has positive measure, by our first observation, there exists
e>0and D c E where v(D) > v(FE) + ¢ (discard the negative set E — D). Since D c E;, this means

1

nj—

€<

for all j.

This contradicts n; - co. Hence N must be a negative set. This proves the existence claim.

For uniqueness, suppose P, N, P’, N’ satisfy the assumptions. Then P — P’ c P so it’s a positive set and P — P’ =
N’ - N e N’ so it’s a negative set. Hence every subset of P — P’ has measure both > 0 and < 0, i.e., they must

have measure 0. This means P — P’ is null. Similar for N' and N. O

We say X = Pu N is the Hahn decomposition of X with respect to the measure p.

[ Definition 3.1.9: Variations

Let X = PuU according to the Hahn decomposiion. We define the positive variation and negative variation
of v by
vi(E):=v(EnP) v (E)=-v(EnN).

This implies v*, v~ are positive measures and v(E) = v*(E) —-v~(E).
We define
V() = v™(E) + v (E)
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to be the total measure.

Remark. |v|(F) is not the same as |v(E)|! For example consider
E):= inzd 27 ].
v(E) /Esmx x on [0,27]
Let £ = [n/2,3w/2]. Clearly P = [0,7] and N = (7, 27]. Then
vi(E) =v([n/2,7]) =1 =-v((m,3n/2])v"(E)

so |v|(F) = 2. However, |v(E)| = 0.

[ Definition 3.1.10: Mutual singularity

Two measures u, v are mutually singular, written p 1 v, if there exist disjoint A, B with Au B = X such that

A is null for i and B is null for v. That is, ;4 “lives on” B and v “lives on” A.

Example 3.1.11. Let v be a signed measure. Then v* lives on P and v~ lives on N. X = Pu N is disjoint,
sovt Lv.

This implies Hahn decomposition gives v = v* — v~, so we can express v as a difference of two mutually
singular positive measures. Question: is this unique?

Suppose also that v = u* — v~ with p*, 4~ veubg mutually singular positive measures. Suppose p* lives on
E and p~ on F = E°. But then E is a positive set for v and F' a negative set, with X = F u F. By Hahn
decomposition, the decomposition is unique up to null sets, so u* = u| 2= 1/| p =V" (since EAP is null) and

similarly v~ = y| NV Therefore the decomposition is unique!

Theorem 3.1.12: Jordan Decomposition Theorem

Every signed measure v can be uniquely decomposed as v = v*—v~ with v*, v~ positive and mutually singular.

Example 3.1.13. Let m be the Lebesgue measure on [0, 1]. Let x be the “uniform measure on Canter set
C”. Then p is supported on C (null for m) and m is supposed on C¢ (null for ), so p L m.
Example 3.1.14. Consider the sum of point masses. Recall

1 z€A
0z (A) :=
0 x¢A.

Suppose i := Y a;0,,. Let B = {x1,x2,...}. Then u(A) is the amount of mass in A where there is mass a; at

i=1
each x;. Then p lives on B (1 = 0 on B¢) and m lives on B¢ (it is null on a countable set), so p L m.
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Beginning of Nov.1, 2021

Example 3.1.15. Let p, v be finite signed measures. Then |u + v| < |p| + |V

Proof. By decomposition, p = p* — p~ < p* + p~ = |p| and similarly —p < |p|. Therefore |p(A)| < |p|(A). (The first

one is absolute value; second one is total variation.) Thus, for subsets for P,
lw+v]=p+v<iul+]v

and for subsets of N,

lu+v|=—p—v< |+ v

Together we recover the original claim since any F splits into Fn P and En N. O
3.2 Absolute Continuity

This is heuristically the opposite of being mutually singular.

[ Definition 3.2.1: Absolute Continuity

Let u be a fixed positive measure and let v be a signed measure on (X, 9t). We say v is absolutely continuous

with respect to u, written v <« p, if u(E) = 0 implies v(FE) = 0.
Remark. v <« p means that if p lives on F then v lives on E too.

Remark. This definition is related to having the notion of density: recall that “v has a density with respect
to u” if there exists f such that
V(E) = f fdu  forall Eeom, 1)

that is, fE fdu= /;E f dupor dv = fdu for shorthand.

Under (1), if u(FE) = 0 then v(FE) = 0, so we obtain absolutely continuous measures from the notion of
density.
Question. Are there other ways to get v « u? (The answer is no, at least for the o-finite case. See

Lebesgue-Radon-Nikodym later.)

[ Definition 3.2.2: Equivalent measures

We say 1 and v (both positive) are equivalent if i, <« v and v « pu. In particular, they have the same sets:

lives on F if and only if v lives on E.

Example 3.2.3. Let f: R — R defined by
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Let dv = fdm. Then m(FE) =0 = v(F) =0, so v < m. However,
v((=00,0)) = 0 but m((-o0,0)) = oo # 0,

so m <« v. m and v are not equivalent.

Example 3.2.4. Following the previous example, if dv = fdu and f > 0 u-a.e., then u,v are equivalent.

Example 3.2.5. Consider two random processes evolving in time: Y (t), Z(t),t € [0,1]. That is, Y, Z may

be viewed as mappings from some (X, 91, P) to C([0,1]). Consider the induced push-forward measures
w(A) =P(Y e A) v(A)=P(Z e A).

Suppose we observe a process over ¢ € [0,1] and we don’t know if it’s produced by Y or Z.

If © 1 v, then we can (in principle) tell in one observation whether we say Y or Z, as there exists a partition
of C([0,1]) into A u B such that x lives on A and v lives on B, except for null sets. Then if our observed
process is in A if and only if the process is Y and likewise for B and Z.

A typical result: if Y, Z ~ Gaussians, then either i 1L v or u, v are equivalent.

Question. Why the word “continuity” in absolute continuity?

Theorem 3.2.6: « is related to continuity

Let i be positive and v a finite signed measure. Then

v << pu < forall e>0, there exists 6 >0: u(F) < = [v(E)|<e.

Proof. It suffices to prove this for |v| because we showed previously that [v(E)| < |v|(E). Hence, we may assume
that v is a positive measure too.

If the € - ¢ holds, and if ;(E) = 0, then this trivially implies ;(F) < ¢ for all 4, and p(E) < € for all ¢, so v(E) =0,
i.e., v < u, as claimed.

For the other direction, suppose the ¢ - ¢ fails. We want to find E with p(E) = 0 but v(E) > 0 (so v « p). Failure
means that for some ¢ > 0, no § works. In particular, for all n, there exists F,, with u(E,) < 27" but v(FE,,) > .

Define

:=F]
r—’L
E:=limsupE, () | E» = {z: z ¢ E, infinitely many times}.
n—oco k>1n>k

It is clear that for all %,
p(E) < p(Fr) € X0 p(Ep) <2754,

nzk

so u(E) = 0. However, continuity from above says (recall v is finite!)

v(E)=v(() Fx) = khjg v(Fy) 2 limsupv(Ey) > €.

k>1 k—o0

This provides a contradiction. O
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3.3 The Lebesgue-Radon-Nikodym Theorem

Theorem 3.3.1: Lebesgue-Radon-Nikodym

Let i be a positive measure and let v be signed, both o-finite. Then there exists a unique decomposition
v=XA+pwith A 1 4 and p « pu, and p has a density: that is, there exists an extended p-integrable f (that is,
f* and f~ are both both oo upon integration) such that dp = fdu. Also, f is unique p-a.e.

Remark. p should be viewed as an “underlying measure”. \ is singular and p is absolute continuous, both

relative to .

Remark. If v « p, then one decomposition is v = 0 + v. Uniqueness says this is the only one, and the

theorem says v has a density, dv = fdu. This is the Radon-Nikodym Theorem.
Remark. M\ is called the singular part of v and p the absolutely continuous part.

Remark. An identity we’ll use in the proof later:

fFXEdu=fxEanu=u(EﬂF)-

Remark. Let y be positive and o-finite on R. The atoms of x; are {z : v({z}) > 0}. Then o-finiteness implies

there are at most countably many atoms, say mass a; at each x;. Then Z «;d,, is the discrete part of v.
i>1
If we decompose v relative to m: dv = A + fdm with A L m, i.e., A lives on a m-null set. Subtracting the

discrete part from A,
y=A- Z 0y, .

i>1
This remaining + lives on a m-null set (since A does) but it has no atoms. Such a measure is called continu-

ous singular. Thus we have

du = " a;0,, (discrete) + y(cont. singular) + fdm .
i>1 —
abs. cont.

singular

Remark. Notation: we write f v g := max{f, g}, the pointwise maximum.

The main difficulty in proving the L.-R.-N. Theorem: we have to come up with a function f with certain properties,

when there is no function explicitly mentioned in the hypothesis. Where to get it?

Lemma

Let u,v be finite positive measures on (X,M). Then either ;1 1 v or there exists ¢ > 0 and E € 9t with

w(E) > 0 such that v > eu on E. That is, v(F) > eu(F) for all F c E, or equivalently v — eu is a positive
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measure when restricted on E.

Alternatively, we can say dv > ex gdu on all of X, since

vV(A)2v(AnE)z2eu(AnE) = fA exe du.
To put informally, there is “a little bit of density” inside v: if v + u, then

dv = exp dp + (some positive measure).
——
density

Beginning of Nov.3, 2021

Idea of proof of L-R-N. Consider the case v « pu. If a density f exists, how do we identify it?

If some function g is “too big” (¢ > f on some set E of positive measure), then

ng dp>v(E).

Equivalently, if for all E, f g du < v(F) then g < f while f f du = v(E). Thatis, f is the largest function with
E E

f fdu<v(E) for all E. However, we cannot use this as a definition because we don’t know whether such f exists
E

or not a priori. (This description still holds even if v <« p.)

Proof of Lemma. For all n, consider v — p/n. It's a signed measure so it admits a Hahn decomposition P, u N,,.
Let P= | J P, and N = (| N,,. Clearly N is a negaitve set for all v — u/n. If E c N then v(E) < pu(E)/n for all n.
Hence VTEI‘) = 0. Since ln??ils arbitrary, v(N) = 0.

If u(P)=0then p 1 v.

Otherwise, if u(P) > 0, then u(P,) > 0 for some n. Then P, is a positive set for v — u/n, so in particular

(v-p/n)(P,) 20,ie.,v>pu/non P,. O

——>0C=Z00<

Proof of L-R-N. We first assume that the measures are positive and finite. For this case, we first try to find a
density f. Define
Fi={f: X > [o,oo]:fEfdﬂgu(E) for all E ¢ ).

Claim: if f, g € F then the pointwise maximum fvg € F. (This shows that there cannot be two different maximal

functions.) Indeed, if so, for all F,

fE fvgdu= fEﬂ{DQ} fdu~ fEn{m} 9dp
<HBA{f>9) + UEn{f <g)) = v(E).

Now we look for the largest f by looking for the f maximizing f f du. Define
a=sup( [ fdu: feF).
By definition there exists a sequence {f,} in F whose integrals converge to a. Define g, := f; v ... v f, and

63



YQL - MATH 525a Notes 3.3 - The Lebesgue-Radon-Nikodym Theorem Current file: 11-3.tex

f = supg,. (This is well-defined because the pointwise limit either exists or is infinite.) Hence g, 1 f and

gn: [ € F.
Now, for all h € F, fx hdu<v(X),soa<v(X) < oo (we assumed v to be finite for now). Thus, we have

a>fg71dﬂ>ffndﬂ_’aa
ffdu:hm fgndu:a.

Since a < oo, we have f < oo a.e.-u. This proves the existence of a maximal f.

which, by MCT,

Now we show that f is the “right density function”. That is, A given by d\ = dv - fdu satisfies A 1L u. Suppose A
and p are not singular. By the previous lemma, there exists € > 0 and a set E such that d\ = exgdu + d7 for some
positive measure 7. That is,

dv = fdp + expdp +dr

where the term (f + exg)du implies that f is not the maximal element in F. Contradiction, so A 1 p as desired.
For uniqueness: suppose d\ + fdu =X + f'dp with A\, \' L u, then

(A=X) = (f" - fdp.

The LHS is something singular and the RHS something absolutely continuous, so both must be zero. Uniqueness

a.e. follows.

For the positive and o-finite case, we have, by definition, A; ¢ A3 c ... with p(A,) < o and | J 4, = X and
n>1
similarly B; ¢ By c with v(B,,) < o0 and | J B, = X.
n>1

We define
C’n::An—UAm Dn:Bn—UBm

m<n m<n

so C,;’s are dis disjoint and D,,’s are disjoint, and they both fill up the whole space. Hence
X = |J(C,nDy).
Name these sets as E4, ..., B, so that u(FE,),v(E,) < c. For each E,, we can apply the previous case, giving
v; = Aj + f;dp with f; =0 on Ef. By definition each ); is supported on E; so \; L .
Now we combine all of them! Define

A=2N =)0

j>1 j>1

(In particular f = f; on £;.) Then A L pand v = Z v =X+ fdp.
j>1

Finally, for the more general case, we apply above to v* and v~ separately. O
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Remark. When v « pu, L-R-N guarantees the existence of a function f with dv = fdu. We can write f as

d
€Y Then the very definition becomes
m

v(E) = / — dp for all £ € IM.

Remark. Making sense of dv = fdu — does it mean that [ gdu = f gf du? Atleast the definition implies

that this holds for indicator functions g = xg.

Lemma

Suppose . is a positive measure and dv = fdy is a signed measure. Then for all g € L' (v), we have fg e L'(u)

fgdv:fgfdﬂ«

Note that for signed v, f g dv means f gdvt - f g dv™ when both are finite.

and

Proof. Since f = f* - f~, we may assume y is positive and f > 0.
The claim holds for indicator functions. If g, 1t ¢ then g,f 1 gf, so by MCT, the claim holds for measurable

functions g > 0. The general case follows by decomposing g into ¢g* and ¢~. O
dv  dvdp
Remark. Chain rule? Does T qn v where p, A (denominators) are positive measures?

[ Proposition 3.3.2

Let u, A be o-finite positive measures and v a o-finite signed measure. If v « p and pu <« A then p «< A\ and

the chain rule holds. (We need o-finite for everything because of LRN.)

. . . . dv .
Proof. We may assume v > 0 (otherwise decompose it). Applying the previous lemma to g = x Ed—y gives
"

dv dv du
E :f d :f—d f dA.
WE)= | xedv= | 4 & dpdX

d
Remark. If [v|(E) =0 then v*(F)=v"(F)=0sov(E)=0. Thatis, v «< |v|. LRN says ﬁl/' is well-defined.
v
What does it look like?
Again we decompose X = PUN. On P, [v|=vsoforall Ec P, v(E) = |v|(E) so — d| | =1 on P. Similarly we
can show that d|| =-lon N.
dlv

Beginning of Nov.5, 2021
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Application of R-N in Probability

Let (X,9, ) be a measure space and let 9 c 91 be another o-algebra. Suppose f > 0 is 9Ji-measurable but not

J-measurable. Define

v(E);= f fdp

.o d
a measure on 9 with d—y = f.
m

. . dv . .
Key point: when v is a measure on some c-algebra F, then 1, must be F-measurable. Hence if we restrict yu, v to
"

dv,,

91 and call then p,, and v, then 3
fin

is not f. it must be some other 91-measurable function g satisfying

V(E):[Efdu:ngdu for all E € 0.

Example 3.3.3. Let X =[0,1], m the Lebesgue measure, and let A, A5, A3 be a partition of X. Let 9t be
the Borel sets and 91 := 0 (A4, A3, A3).
First observation: 91-measurable functions need to be constant on each A;.

Now we ask — what 91-measurable g has the same integral as f over each A;? That is,
1
g(x) = average of fon 4, = —— [ fdm forall z € A;,i¢€{1,2,3}.
m(AZ) A;

Then such a piecewise constant function g is 91-measurable and has the same integral as f over any union
of A;’s.
Connection to probability: if we only have partial information about a random z € X (we know whether

x € E only for sets in F € 0, not for all F € 9; in this case we only know if z lies in A;, As, or As, but

not exactly where on X), then g is expected value of f given this information. Hence the Radon-Nikodym
dv,

dpn

derivative g = defines the conditional expectation of f given 1.

3.4 Complex Measure

For a complex measure, we require v(F) € C for all F (so it cannot attain o) and we require absolute continuity

for disjoint sets, i.e.,

V(U Ej) = Z V(Ej).

j>1 j>1

The measure should also be able to be expressed as v = v,. + iv; with v,., v; being (real-valued) signed measures.

Lemma

For v a complex measure, there exists a function 6 and a unique positive measure |v| such that

v(dz) = e?@|y|(dz).
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Proof. If v has a density f(z) = r(z)e’?(®) then this claim is trivial.

.. . . d .
More generally, we choose p positive with v << p, say i = |v,.| + |4 (this indeed works) and let f = d—y We write
m

f(z) as r(x)e’?®) so r(z) = |f(x)| and define |v| by d|v| = rdu. Then
eldy| = rep = du.

Uniqueness omitted. O

3.5 Differentiation (not the usual kind) on R”
For a continuous function on R and z € R, we know that

mo [ fw) du= ().

1
r—02r Jz—r
In measure terms, letting I, := (z — r,x + ) and dv = fdm, we have

v(l)
m(1)

- [1 fdm/m(l,) — f(z)  asr—0.

What happens in general (in R") if f is measurable but not necessarily continuous? What if v has a singular point?

Consider a measurable f and dv = fdm. Let B(r,x) be the ball of radius r centered at x and S(r, z) the correspond-

ing sphere. We say f is locally integrable if
/ fdm<oo for all compact K
K
and we write L;, . = { all locally integrable functions}. For example, f(z) := 2? € L{. (m). Define the average
1
A, f(x):= average of f on B(r,x) = ——— dm.

We know that the above converges to 0 for continuous f. What about general f ¢ L'(m)? First, by density of

continuous functions in L', there exists a continuous g with
f |f —gldm <e.
Then,
[Arf () = f (@) <|Arf(2) = Arg ()] + [Arg () — g(2)[ + |g(x) - f(2)].
The second term — 0 because g is continuous. By construction,

flf—gldm

is small, so |g(«) — f(z)| is small “for most z”. Does this imply |4, (f - g)(z)| is small “for most z?

We define the Hardy-Littlewood Maximal Function
(HF)(x) := sup A,|f|(x) = largest average of | f| on a ball.
>0
If f is continuous then clearly | f| is bounded above by HF.
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Theorem 3.5.1: Maximal Theorem

For all n, there exists ¢ > 0 such that for all f € L'(m) on R™ and for all a > 0, we have

m({z :HF(z) > a}) < f\f\ dm.

(To be proven later.)

Applying this to f |f = g| dm which can be made arbitrarily small, then
{z:HF(f - g)(2) > a}

can be made arbitrarily small, so
{z: A (f-9)(x) > a}
can also be made arbitrarily small.

The following lemma will be used to prove the maximal theorem:

Lemma

Let C be a collection of open balls in R" and U := | J B. Then for all ¢ < m(U), there exist disjoint balls
BeC
By, ..., By € C with
k

Y m(Bj) >3 "

j=1

Example 3.5.2. If d = 2, we can make disjoint balls that cover almost 1/9 = 372 of U. In d = 3 this becomes
1/27.

Beginning of Nov.8, 2021

Proof.
Idea: if we triple the radius of each By, then we can cover almost all of U.
Since m is regular, there exists a compact K with ¢ < m(K) < m(U). By compactness there exists a finite
subcover of K, say K c U;<; B; with B; € C.
We remove balls from the subcover one at a time. First we remove the largest one, and then we remove the
largest whole ball remaining, and so on, until there is no whole ball remaining. Relabel the removed ones to be
By, ..., Bg. Let the centers be z1, ..., 2. We claim that these removed B;’s cover K.
Suppose for contradiction that x € K is not covered by ij B;. We know z ¢ B for some B ¢ C, and B must
intersect some B; (take B; largest if B intersects multlple B ’s). Then by construction B must be smaller than
Bj, and

d(z, z;) < radius(B;) + diam(B;) < 3 -radius(B;).
Thus the balls centered at z; with thrice the radii cover K. That is,

3"m(|J B;) > m(K) > c.
j<k
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Proof of Maximal Theorem. Define E,, := {z : Hf(z) > a}. If x € E,, then there exists a ball B(r,,z) where the
average of | f| exceeds . From the lemma above, there exist disjoint balls B; := B(r,,, ;) covering almost a 37"

fraction of E,. That is, given € > 0, there exist finitely many B,’s such that

1

mm(Ea) <m(UB;)-

Hence, the average of |f| > a on B; implies

am(L}JBj) < LB'j|f| dm.

Therefore,
1 n
m(Eq) < ﬂfm dm.
«Q

Setting ¢ := (1 + €)3" gives our claim. O
Application of Maximal Theorem

Theorem 3.5.3

If f e Li.(m) on R™, then A,(f)xz — f(z) asr - 0 for a.e. z.

Proof. It is sufficient to show that the claim holds for a.e. = with |z| < N for all N. We may assume f € L'. Let

€ >0 and « > 0. By density there exists a continuous g with

f|f—g|dm<e.

Using triangle inequality, it suffices to show that
m({a  imsuplA,(/ - 9)| > a/2))

m({x: 1ir£lj(l)lplA7-g(af) -g(z)|>0})
m({z:[g(z) - f(z)| > a/2})

are all small. The first one, by the maximal theorem, is bounded by 2C¢/« for some C. The second term = 0 by

continuity of g. The third one, by Markov’s inequality, is bounded by

2 2€
= [lg- flam<=.
« «

Hence
2C 2
m({z : limsup|A, f(x) - f(z)| > a}) < 0+
r—0 « (0%
Since ¢ is arbitrary, the claim holds for any « > 0. Hence the claim holds. O

Remark. We can replace the ball B(r,z) (for average) by any set F,. occupying some minimal fraction of
the ball. For example, as r — 0, as long as all E,. occupy 1/10 of B(r,x), i.e.,

m(E,)

m>ﬁ>0 for all 7.
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If so, we say E, shrinks nicely to x, and the original claim still holds. J

Theorem 3.5.4: Lebesgue Differentiation Theorem

For f € L{ , then for a.e. z, for all {E,} which shrinks nicely to z, the averages

1
m(E;)

[ 15 = @) may) 0.

We replaced (average of f converging to f) by (average of |f — f(x)| converging to 0).

Beginning of Nov.10, 2021
Recall that a regular measure satisfies
w(E) =sup{u(K): K c E compact } = inf{u(U):U > E open}.
In R™, for Borel sets, the above is equivalent to

p(K) < oo for all compact K p(E) =inf{u(U) :U > K open}.

Theorem 3.5.5

Let v be a regular signed or complex measure on R"” with Lebesgue-Radon-Nikodym representation dv =
dA + fdm where the first part 1 m and the second « m. Then for m-a.e. x € R", for all {E,.} that shrinks

nicely to z,
v(E:)

=0 m(E,)

= f(z)
(as if d)\ weren’t there).

Proof. Since v is finite on compact sets, so is fdm, so fdm is regular and f € L{. . Thus the fdm part gives the

limit f(«), and it remians to show
ME,)

m(Er)

By definition of “shrinking nicely”, there fists 8 > 0 such that m(E,.) > fm(B(r,x)), so
‘)‘(Er) ACE:) (B(rx))
m(Ey) | Bm(B(r,z)) = fm(B(r,z))

Hence it suffices to prove the limit claim for balls only. Since A\ 1 m, A lives on a m-null set A° (so m lives on A).

-0 fora.e.z, {E,}.

We will show that

F={reA: limsupM > 1/k}

r—0 m(B(r,z))
has measure m(F}) = 0 for all k. We enlarge A to an open set U c A with A(U) < A(A) +e=e.
By definition, for all = € F}, there exists a ball B, centered at 2 and contained in U such that \(B,)/m(B;) > 1/k,
ie., m(B,) < kA(B,). Fixkand let V = | J B,. Then V c U covers F},. By the previous covering lemma, there

xeFy
exist disjoint balls B,, , ..., B,, covering almost 1/3" fraction of V. Since

m(Fy) <m(V)<2-3"m(|J Bs;) <2-3"kA(J Bz;) <€(U) =¢,

i<J i<J
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and since e is arbitrary, we must have m(F}) = 0. O

Example 3.5.6. Let H(x) be the distribution function of the “uniform measure” on the Cantor set C. Define

F(x) = H(x)+z, so up = pg+m. By L-R-N this is the unique decomposition of pr, as m << m and pgy L m.The
previous theorem says

lim wr((x,z+7r]) - lim F(x+r)-F(x) _

1
=0 m((z,z+7r]) r—0 r

1
for m-a.e. x. This says the F is differential m-a.e. with derivative 1 whereas F'(1)-F(0) =2 # f F'(z) da.
0

So far we have the following decompositions and properties:

v<E<m,v1Lm
dv =dA+ fdm
v=vt-v-.

For Lebesgue-Stieltjes measures pr on R, how do we see these in F'?

Theorem 3.5.7

Let F': R — R be nondecreasing and define G(z) := the right limit of F'(x), written F'(z*) = li}n F(y). Then
ylx
9]

{z : F is discontinuous} is at most countable, so F, G differ at most at countable points,
(2) F, G are differentiable a.e. with F’ = G’ a.e., and

(3) @ is non-decreasing and right-continuous.

Beginning of Nov.12, 2021
Proof.

(1) Trivial since each jump must contain some rational.

(3) For right continuity, fix  and let x,, | x. Let D be the discontinuity set and assume x,, ¢ D. Then

F(xy) = F(z}) = G(z,), whereas the first term converges to F(z*) and the third to G(z*). Hence
G(z) = F(z*) = G(z*) and G is right-continuous.

(2) Let g be the density of the absolute continuous part of yg, so

pa((z, 2 +hl)

G(z+h)-G(x) _ m((z,z +h]) h>0
h ﬂG((z+h7‘r])
(@) <0

which converges to g(z) for m-a.e. x, as h — 0, by a previous theorem. Hence G'(z) = g(z) a.e.

For differentiability of F', define H(x) = G(z) — F(z). We know H(z) = 0 except on a countable set, and

it’s nonzero at jumps, taking the size of the jump, i.e., F(z*) — F(x). Let {x;} be the enumeration of
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discontinuity points and define I, := (F(x;), F'(z})). Clearly I,,’s are disjoint. Then, for each N,

S H(x;) < F(N) - F(-N) < oo.
zje[-N,N]

We can define a discrete measure: let p := Z H(x;)é,;, which by above is finite on bounded intervals, and
J

u L m. Therefore,

p((z—rz+1))

m(E°) =m({z: 5

+0}) =0.
Notice that
H(z+h)-H(x) . H(xz+h)+H(x) < 4u((x—2|h|,x+2|h|))

X

h |7l 4lh|

so this converges to 0 for a.e. x.

Example 3.5.8. Consider discrete measure ;1 = )" a;d,, on R with distribution F.
J

(1) Ateach z;, F' is discontinuous so not differentiable,
(2) Ifno z; € (a,b) then F is constant there, i.e., F' = 0.

We can in fact have F’(z) = ¢ # 0 at some z. For example consider two functions h > g with h, g tangent at
x with nonzero derivative. Consider a “staircase” function that starts off from one point on the graph of g,
bounces vertically and horizontally, all the way till it converges to (x, g(x). Then, for Az > 0,

g(z + Az) - g(x) . F(x+Ax) - F(x) . h(xz + Azx) — h(z)
Az h Az h Az

Since the first and the last term both converge to ¢’(z) = h'(z), the limit for the middle must also converge

to that quantity. Nevertheless, F’(z) = 0 for a.e. x since the absolutely continuous part of y is 0.

3.6 Total Variation Functions

Consider a function F'. We want to define a function T () to be the “total up-down movement” by F'(z). In the
case of a “nice” differentiable function, this can be easily computed by first finding the critical points and add up

the differences. For a more complicated differentiable function, e.g., f(x) := 2%sin(1/z), use the following way.
Tr(z) =sup{ > |F(z;) - F(x;-1)| : n >0, {x;} partitions R}.
j=1
We define this to be the total variation of F'. (Notice that as n increases, the supremum only gets bigger, not

smaller.)

Alternatively, we can fix a only consider partitions containing a. Hence, for a < b,

Tr(b) +Tr(a) + sup{i|F(xj) - F(xj-1)|: {x;}i, partitions [a,b]}.

i=1

We define this to be the total variation of F on [a,b].
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Since T is an increasing, we define T (c0) := lim Tw%(z) (possibly oo). If finite, we say F' is a function of bounded

variation on R. The definition of bounded variation on [a, b] is defined analogously.

Beginning of Nov.15, 2021

Example 3.6.1. Suppose F is differentiable in [a,b] and F”’ is bounded by K (|F'| < K). Then F has BV on
[a,b] by MVT: for any partition {x;}, there exist §; € (x;_1, ;) satisfying the MVT property:

ilumj) - F(ay)| = Z F(&) (5 - 25) < 32 K (25 - 251) = K (b - a).

=1
Example 3.6.2. If F is monotone on [a,b] then F' has BV.

Example 3.6.3. If F' = xg on [a, b] then picking partitions consisting of alternating rationals and irrationals

implies F' does not have BV.

Decomposition of Variation of F'

If F(-oc0) =0 then

F(x) = (total upward in (—oo,x]) - (total downward in (-oo,z]),
the difference of two increasing functions (similar to how a signed measure is decomposed).
Clearly for a “nice” function,

F(x)+Tr(x)
2

Tp(z) - F(=)

5 = downward.

= upward

Lemma

For a real valued F with BV, Tr + F, T — F are nondecreasing.

Proof. Let x < y. We will show that Fr(z)+ F(x) < Tr(y)+ F(y). Consider a partition xg, 1, ..., Tn = T, Tns1 = Y.
Then

Tr(y) + F(y) > YIF () - F(ai)| + [F(y) - F(2)| + F(y)

i=1

so taking supreum gives

Te(y) + F(y) > Tr(x) + [F(y) - F(z)| + F(y) - F(z) +F(x)

20

>Tp(x)+ F(x).

Similar for Tr - F, as Tr(z) = T(_r) () (so it’s equivalent to above with —F). O
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Theorem 3.6.4

For F': R - R, F has BV if and only if F is the difference of two bounded nondecreasing functions.
With this theorem, we can define the Jordan decomposition of F' by

_TF+F TF—F
2 2

F

Proof. For =, F' has BV then T is bounded by definition. Also, we claim that F' is bounded: consider the

partition z = xg < z1 = y, which gives
Tr(y) = Tr(z) =sup... > [F(y) - F(z)].

Since x, y are arbitrary and T» bounded, F' must be bounded too. Therefore = holds by the previous lemma.
Conversely, if F' = F| — F» where F), F» are bounded and nondecreasing, then Fy, F> have BV, so F} — F5 has BV

as well.
O

3.7 Absolutely Continuous Functions

[ Definition: Absolutely Continuous

We say f : R — C is absolutely continuous if for all € > 0, there exists § > 0 such that
{(a;,bj)}i; disjoint and Y |b; —aj| <d = ) |F(b;) - F(a;)| <e. (@)
J=1 j=1
In particular this implies uniform continuity.
Note that if (*) holds then it also holds for | Y (F(b;) — F(a;))|, so if F is a distribution function, then
=1

E =|J(aj,b;) disjoint union with m(E) < § = up(E) <e.
i=1

(Cf. Theorem 3.5 on notes p.169.)

Using MVT, if F is differentiable and F”’ is bounded, then F' is absolutely continuous.

[ Definition: Normalized BV (NBV)

We define NBV to be the collection of right-continuous BV functions with F'(—o0) = 0.

[ Proposition 3.7.1

For F € NBV, F is absolutely continuous if and only if pr << m, if and only if ur has a density F”’, i.e.,

F(z) = f(_w L Fdm o forall s,
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| Corollary 3.7.2

For f e L'(m) on R, F(x) := / f(t) dt is in NBV and absolutely continuous, with F’ = f a.e. Conversely, if

F e NBV is absolutely continuous then F’ € L' (m) (exists a.e.) and

F(z) = f : F'(t)dt  foralla.

Beginning of Nov.17, 2021

Proof.If up <« m, then for € > 0, there exists ¢ > 0 such that (by a previous theorem on absolute continuity) such

that
Z(bj—aj)<6 — ZF(Z)])—F(CL]) <E€.
=1 =1

For absolute continuity, a similar argument needs to hold but the magnitude needs to be inside, i.e., }| - |. We
split the j’s into
{7:F(bj) - F(a;) <0} {j:F(b;) - F(a;) <0}
Then
F(bj) - F(aj)]" <e

M=

(bj—aj)<5 S
j=1

F(bj) - F(a;)]” <e.

2.l
j=1
2.1
j=1
Then ) |F(b;) - F(a - j)| < 2e. Thus F is absolutely continuous.
j=1

Conversely, suppose F' is absolutely continuous and m(E) = 0. We want to show that ur(E) = 0. Let € > 0 so
that there exists a corresponding ¢ satisfying the definition. Then there exists U; > E with m(U;) < . Also, there
exist Uy 2 Us > ... 2 E with up(U;) - pp(E). We may assume Uy 2 Us o ... (otherwise let U; be U; n U). These

are open sets with m(U;) < J. Suppose U, consists of intervals (af, b?)kﬂ. Applying absolute continuity of F to

the first n of these gives
(U (@580 < ZIF () - Flaf) <.
=1 k=1

Letting n — oo, |up(U;)| < € (note that the definition of absolutely continuous function requires finite number
of intervals that add up to length < ¢, not countable; this is why we start with the finite case first). Therefore

|r(F)| < e. Since e is arbitrary, up < m. O
Normalizing a BV Function
Recall the Jordan decomposition

_TF+F TF—F
2 2

Claim. If F(-o0) = 0 then

TF+F
2

() = sup{i(F(a:i) CF(i)) 3 0,00 < 20 < . < 2 = T},
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Proof. Note that
23 (F(x;) = F(zi-1))" = Y |F(2;) = F(@iz1)| + Y (F(x;) = F(wi-1)).
i=1 i=1 i=1
Taking the supremum, given M, we can assume zy < —M. Thus we may let zp - oo as the sum approaches the
supremum. Then the second telescoping sum approaches F'(x) - F(-o0) = F(z). Rearranging gives the original

claim. O

[ Corollary 3.7.3

The conclusions about (the G(z) = F((z*) theorem) hold for F' € BV.
If Fy, Fy are right-continuous nondecreasing functions, then F' = F} — Fy is the distribution function of a

signed measure.

Beginning of Nov.19, 2021

Lemma

If FeBVthen lim Trw(z)=0. If F € BV is right-continuous, then T is also right-continuous.

Proof. We first show that Tr(z+h) - Tr(x) >0ash | 0. Letx =xg < x1 < ... = x, = 2+ h. The sum of increments
between z; and z,, satisfies Zn:|F(xi) - F(z;_1y| < Tp(x + h) - Tp(21), and intuitively |F'(z1) - F'(zo)| is small if
|z1 — | is small. -

Given € > 0, if h is sufficiently small,

n

Z|F(£EZ) - F(.’Iﬁl_l)| < TF(.I' + h) _TF(-TI) + €.

i=1

Taking sup of the LHS, we can assume z; | x. Then,
TF(Z‘ + h) — TF(Z‘) e+ TF(.T + h) - TF($+)

In other words,
Tp(x) > TF(J) + h) — €.
Since ¢ is arbitrary, we are done.

Now we show that lim Tr(z)=0. Let —00 < x¢ < ... < x,, = x. By definition,

YIF (i) = F(zi1)| < Tr(x) = Tr(xo).
i=1
Taking sup, we can assume xg - —oo. Then we have Tr(z) < Tr(x) — Tr(xz¢) s0 Tr(xo) > 0 O

Connection to Jordan Decomposition

Consider finite measures (maybe complex). Recall that F' € NBV if and only if u is a measure.

For R-valued measures, we have
(1) Jordan decomposition: pup = puj — iz
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(2) Total variation: |up| = uf + uz,
(3) Jordan decomposition of F: F = (Tr+ F)/2-(Tr - F)/2
(4) Total variation function for F: Tp = (Tr + F)/2+ (T - F)/2.

Question. How do these correspond? How are the properties pp << m,ur L m reflected in F? We know F’ is the

density of the continuous part of yr by L-R-N.

Theorem 3.7.4

There is a 1-1 correspondence between the NBV functions and signed measures p given by F(x) =

1((—o0, z]). The total variation has an analogous statement: |up| = 7.

Proof. For F € NBV, by definition F' is right continuous. Hence F is the distribution function of some finite ..
Conversely, given a finite signed measure p, its distribution function is right-continuous; continuity from above

with finite total measure implies that F'(-co) = lim p((-o0,z]) = 0. The other part is omitted. O

We know ur has density F” for the absolutely continuous part. What about |uz|? Guess? |F’|?

Lemma

Yes. For convenience denote the absolutely continuous and dsingular singular parts of v by v,, vs, respec-

tively. Claim: for F' € NBV, |vr|, has density |F”|.

Proof. L-R-N gives ur = (ur)q + (ur)s. Hahn decomposition of (ur)., (1r)s separately gives us four disjoint
(up to null) sets that partition the space: P,, N, Ps, Ns such that (ur)! - (ur), + (ur)f = (ur); = pr. Then
|| is the sum of these parts. Since (ur)?, (ur), are both absolutely continuous to m whereas the other two

L m, and the sum of the first two lives on a set disjoint from that on which the sum of the last two lives. By

uniqueness of decomposition, we must have |ur|, = (ur)f + (ur);. Then,

+_

(1r)a = (1r)g = (1F)g = F'dm = (F')"dm - (F')"dm

where (F')* and (F')” are disjointly supported. Hence this must also be the Jordan decomposition of F”.
Therefore,
luplg = (F)*dm  and  |up|, = (F')"dm,

and
lnrle = (F)*dm + (F')"dm = |F'|dm.

Beginning of Nov.22, 2021

Previously we’ve shown that T is the distribution function of |ur|, so (Tr + F)/2 is the distribution function of
(Jup|+ p1r)/2 = p} and similarly (T - F')/2 is the distribution function of ;7.
We also know that

dpr =d(pup)s + F'dm. )
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[ Proposition: (3.30)

For F' € NBV, we have I’ € L'(m). Also, ur L m if and only if F’ = 0 a.e., and pur < m if and only if
F(z)= f( ]F' dm.

Proof. The “iff” statements follow from (*). To show the first claim,

[ 1F dim = |l (R) € | (R) = Tir(00) < oo,

[ Proposition: (3.32)

For F € NBV, F is absolutely continuous if and only if yr < m.

[ Corollary: (3.33)

For f € L'(m) on R, the function
F(z):= f( ] fdm
is in NBV, absolutely continuous, and F’ = f a.e.
Conversely, if ' € NBV is absolutely continuous, then F’ € L'(m) and F(z) = [( ] F' dm.

In other words, for F' ¢ NBV:

F is absolutely continuous <= F is the integral of some f

<= [ is the integral of F’.

Proof. If f € L', then F(z) := f f dm is the distribution function of a finite signed measure. By (theorem
3.29), F is in NBV. Then F is absolutely continuous by (proposition 3.32), and by (proposition 3.30), F” is also
a density of pup so up = f a.e.

Conversely, if F' € NBV, then pr <« m by (proposition 3.32). Then by (proposition 3.30), F(z) = /( : F' dm.
—00,T

Lemma

For BV on an bounded interval, the converse in (corollary 3.33), F' € BV is a consequence of F' being

absolutely continuous. In other words, if F' is absolutely continuous on [a, b], then F € BV([a, b]).

Proof. Use the (¢,¢) definition and take ¢ = 1. Then for some 4,

n

Z(b —a;)<d = Z|F(b) F(aj)|< 1.

Jj=1 j=1
Fix k large so that (b-a)/k < ¢. Fix the points a = 29,1 = a+ 1/k, ..., = b. Grouping any partition in into these

subintervals shows that the total variation < k. O
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Example 3.7.5. (p.192 notes). Let H(z) be the Cantor-lebesgue function and let F'(x) := H(z) + . Then
F(1) - F(0) = 2 whereas

Fdm = H’dm+f 1dm=1.
[0,1] [0,1] [0,1]

Therefore F is continuous but not absolutely continuous.

Example 3.7.6: Integration by parts?. When does the following hold?

T®)9(b) = f(a)g(a)= [ ' dm+ [ [ dm?

Clearly, letting f = g both as the Cantor function, the claim fails. However, if f,g are both absolutely
continuous then the claim holds. (A HW8b problem showed that ratio of absolutely continuous functions is

absolutely continuous, and analogously the product also is.) If so, fg is also absolutely continuous, so
F®0) ~f@o@)= [ (f) dm= [ 1+ f'gdm

g(x +h) - g(x)

fa+h) - (@)
R o) ;

+f(x+h)

as (fg)'(w) = lim ] = f(2)g(z) + f(z)g' () for a.e. z.

Example 3.7.7: Term-by-term differentiation?. Suppose F,, > 0 are increasing right-continuous functions
on [0, 1] that are summable a.e. Let F:= ) F,. Does F' = ) F, a.e.?

n=1 n=1
The answer is yes. We change it to an equivalent question about measures pp, and pr S0 pp = Y. pp,.
n=1

The definition of F' implies that F”’ is the density of the absolutely continuous part of ur and we wonder if

summation “messes up” the absolute continuous parts of each element in the summation. We know

pr =Y, (i, + Frdm)
n=1

8

M8

pr, + ), Fpdm =X+ p.
1

n

I
—

n

It suffices to check that A Ly and p <« m. That is, does p = () F, )dm? Yes; see the notes.

n=1
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Chapter 5

A Bit of Functional Analysis

Beginning of Nov.29, 2021

In finite dimensional spaces, linear maps, i.e., multiplication by matrices, is always continuous.

As we shall see, bonudedness and continuity for linear operator are equivalent, so there exists a C' > 0 such that
|Tz| < C|z| for all .

In general, linear operators need not to be bounded. For example consider the derivative operator D : C*([0,1]) -
C([0,1]) defined by T': f — f' where both spaces are equipped with the sup norm. Consider the functions sin(nz)
which are uniformly bounded by 1 but derivatives — oo.

Subspace also need not to be closed in infinite-dimension. For exmaple let X = C([-1,1]) equipped with the
sup norm and let Y be the subspace of differentiable functions. For example consider f,(x) := \/m which

converge uniformly to |x|, a non-differentiable function.

[ Definition 5.0.1: Seminorm |

Let X be a vector space over R and C. A seminorm is a function |-|| : X — [0, o) such that | Az| = |A||z| and

lz+y| <|z|+ |yl forall A e R or C and z,y € X. A norm has the additional property with |z| = 0=z = 0.

Topological Spaces

In a metric space, we say z,, — z if for all open set G containing z, the tail of the sequence eventually is enclosed
by G.

Heuristically, in a general topological space, we specify a collection J of subsets of X; we say x,, > = means for all
G €3, x, € G eventually.

A topological space is a pair (X, J) with J c P(X) with @, X € J, J closed under all union and finite intersections.
We say sets in J are open sets, and we call complements of open sets closed sets.

The interior of A c X is A°, the union of all open G c A. A neighborhood of = € X is a set A with x € A°.

We say x,, converges to z if for every open neighborhood U of z, {x,,} is eventually in U.

Given a norm | - ||, we obtain an induced metric d(z,y) := |z - y||, which gives open sets, forming a topology called

the norm topology.
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Two norms | - |1, | - |2 are called equivalent (or compatible) if there exist ¢, c5 € (0, 00) such that

cilzfi <lzf2 < cofz)q for all z.

[ Definition 5.0.2: Banach Space

A Banach space is a normed linear space complete in its norm topology.

Beginning of Dec.1, 2021

[ Proposition 5.0.3

L' (p) is complete.

Proof. Recall that if a Cauchy sequence has a convergent subsequence then the entire sequence converges to the

same limit.

Suppose {f,} is Cauchy in L!'. Cauchy in L' implies Cauchy in measure, so we have a.e. convergence of a

subsequence. Now we show that the convergence is in L! too.

Let € > 0. For a fixed k, for onward terms,

| fr = fr;l = | fry, — fl ae. @s j — oo.

By Fatou,

[ timintlfu = fol = [ 1= fl<Uming [ 15, - f,]<e

for k large. Hence f,, — f in L'.

Beginning of Dec.3, 2021

Note that for x € (0,2),
1 oo
—e— =N (1-2)™
e R CL)
Claim. Similarly, for |I-T| <1,

oo

=Y (I-17)",

n=0

ie., forall z, 7'z = Z(I )"z = lim Z(I T)kz.
n=0

[ee]
In general, a series of operators Z T,, with Banach codomain converges if the norm series »_ |T},| converges: for

n=0
large j < k,

|5 Tt < 3 1Tl < 3 ITallel 0.

Proof. Note that |[(I-T)"| < |[I-T|™ — 0 so we do have a convergent series, so the claim is well-defined. Hence

Ti()(f—T)":a—(f—T)) S (I-T)"

SNCEEALE IO

n=o
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and likewise for the other direction. O
Baire Category Theorem

When is a set “topologically small”?

Recall we say B c X is dense in X if B = X. Equivalently,

(1) every open neighborhood of every x € X intersects B nontrivially, or

(2) every open set intersects B.

On the opposite, a set A c X is nowhere dense if A (closure!) contains no nonempty open set of X:
A is nowhere dense <= no open subset of A

. —C
<= every open set intersects A

..
< A is dense and open.

If G c E then EnG is dense in G.
Example. Let {¢,,} be an enumeration of Q and let G := | J (¢, —27", ¢, +2™"). Then G is open and dense in R with

n=1
measure 2 whereas G¢ cannot contain any interval. Hence G¢ is nowhere dense.

Theorem 5.0.4: Baire Category Theorem

If X is complete, then

(1) if U, is open and dense in X for all n (so U is nowhere dense), then (") U, is dense; and
n=1

(2) X is not a union of countably many nowhere dense sets (follows from (1) to the complements).
We say F c X is meager if it is the union of countably many nowhere dense sets. In particular X itself is
not meager.

Examples:

(1) If Eq, Es,...c R and their union is R, then at least one of the F,,’s must contain an interval.

(2) Let X be complete. To show that “there exists © ¢ X with property P”, it suffices to show that {z € X :

x lacks P} is a countable union of nowhere dense sets (so the union cannot be the whole space).
(3) Consider C([0,1]) and let P be “nowhere differentiable”. Define
A, ={f€C(]0,1]) : there exists g where |(f(z) - f(z0))/(x — z0)| < n forall z # z(}.
If f/ exists at xo then f is contained in some A,,. With the BCT, it suffices to show that A,, is (closed and)

nowhere dense.

Roughly, we want to show that for all f € C([0,1]) and all € > 0, there exists g with |g— f| < e and g ¢ A,.
Heuristically given the e-tube we construct a sawtooth fucntion similar to the Weierstraf$ monster disobeying
the bound for A,,. This will show that A,, is nowhere dense so “at least one point differential” functions are

meager.
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(4)

(Open Mapping Theorem.) Let X,Y be Banach and T ¢ L(X,Y) a bijection. Then 7! exists but is not
necessarily bounded. (We know 7! is bounded if and only if 77! is continuous at 0, so 7'(U) needs to

contain a ball centered at 0 for every neighborhood U.)

We can assume that U = B(0, ¢) is itself a ball. By a scaling argument, the choice of ¢ does not matter. Hence

T~ is bounded if and only if T(B(0,n)) contains a neighborhood of 0 for some (and by scaling, all) n. Then

8

Y = | T(B(0,n))

n

since T is onto. This means some T'(B(0,n)) is somewhere dense. Eventually this implies the inverse of a

bounded bijection is necessarily bounded.
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