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Beginning of Aug.23, 2021

0.1 Introduction

A primary goal of this course is to study integration in a general context. However, our current methods are not

good enough. For example, we can have a sequence of continuous functions {fn} in L2
c([0,1]) which converges

(meaning that d2(fn, f)→ 0 for some f) whereas the limit is not in L2
c([0,1]).
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Riemann integration is also not good enough — the rational indicator function χQ∩[0,1] is not Riemann integrable

as the upper sum is always 1 and the lower sum always 0.

Instead of partitioning the domain of the function, we instead consider partitioning the range of the function.

Instead we obtain a partition {y1, ..., yk} of the range of the function and sets

Ai = {t ∶ yi−1 < f(t) ⩽ yi}.

However, how do we define the “total length” µ(Ai) of Ai where Ai can look really weird? Some possibilities:

(1) µ(A) can stand for the probability of A for some random procedure.

(2) In physics, µ(A) can be the mass or charge in A (for charge, we may want to allow negative µ(A)).

Basic Definitions and Intuitions

Now we will review some basic concepts from set theory.

(1) A relation on a set X is a set R of ordered paris (meaning a subset of X ×X), for example ⩽ on R.

(2) A partial order is a relation ≺ such that

(i) (transitivity) if x ≺ y and y ≺ z then x ≺ z,

(ii) (symmetry) if x ≺ y and y ≺ x then x = y, and

(iii) (reflexivity) x ≺ x for all x.

An example of partial order can be defined on R2 by u = (u1, u2) ≺ v = (v1, v2) if u1 ⩽ v1 and u2 ⩽ v2. Note

that points like (1,2) and (2,1) are not comparable. Partial orders need only be defined on a subset of X ×X.

(3) A linear (total) order is a partial order also satisfying

(iv) any two elements are comparable, i.e., for all x, y ∈X, either x ≺ y or y ≺ x.

For example we can consider N with the order 2,4,6, ...,1,3,5, .... In this example there is no “last number

before 1”.

(4) A maximal element is an element x0 such that x0 ≺ y only if y = x0. A minimal element is defined similarly.

There can be multiple maximal elements.
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(5) A set X is well-ordered by a relation ≺ if X is linearly ordered and every nonempty subset E ⊂X has a unique

minimal element. For example, N = {1,2, ...} is well-ordered, but R is not, as (0,1) does not have a smallest

element. N written as {2,4,6, ...,1,3,5, ...} is well-ordered but {...,6,4,2, ...,5,3,1} is not.

(6) A Cartesian product of 2 sets A1,A2 is defined by

A1 ×A2 ∶= {(x1, x2) ∶ xi ∈ Ai}

or equivalently

{all functions f on {1,2} with f(i) ∈ Ai}.

(7) A general Cartesian product of {Aα, α ∈ I} (a collection of sets over the index set I) is

∏
α∈I

Aα{all functions f on I with f(α) ∈ Aα for all α ∈ I}.

(8) The Axiom of Choice says that for every nonempty collection {Aα, α ∈ I}, ∏
α∈I

Aα is nonempty. This says that

we can always “select one element from each Aα”.

(9) From the Axiom of Choice we can prove the Hausdorff Maximal Principle:

Every partially ordered set has a maximal linearly ordered subset.

(10) Zorn’s Lemma (which is equivalent to the Hausdorff Maximal Principle):

LetX be a poset (partially ordered set) such that every linearly ordered E ⊂X
has an upper bound (maybe not in E). Then X has a maximal subset.

Beginning of Aug.25, 2021

Hausdorff ⇒ Zorn’s. let X be as in Zorn’s lemma (i.e., every lienarly ordered subset has an upper bound). By

Hausdorff, X has a maixmal linearly ordered E (which cannot be enlarged). Zorn’s assumption says that E has

an upper bound. Call it e. We claim that e is maximal.

Suppose for contradiction that e is not maximal, so there existss y such that y ⩾ e. But then the set E ∪ {y} is

linearly ordered and bigger than E, contradicting the Hausdorff assumption. Therefore no such y exists, i.e., e

is maximal.

For the converse, see p.5 of text.

Example 0.1.1: Application of Zorn’s Lemma. Let V be an infinite dimensional vector space, W a sub-

space, and f ∶W → R a linear functional. Can we always extend f to all of V (still linear)? Note that if V is

finite dimensional this is obvious.

Solution. Yes; first notice that we can always extend by one dimension. Take some x ∉W and choose any value

f(x) = b. For every y ∈ span{W ∪ {x}} has form y = w + cx with w ∈W . Then we can extend f by

f(y) = f(w + cx) ∶= f(w) + cb.
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It is easy to verify that f has been extended and is still linear.

Now we generalize. A definition first. If W1,W2 are subspace of V and gi ∶ Wi → R, we say (W2, g2) is an

extension of (W1, g1) if

W2 ⊃W1 and g2 = g1 on W1.

(We write (W2, g2) ⩾ (W1, g1).) This is a partial order on

W ∶= {all linear functionals on subspaces of V }.

Now we check conditions for Zorn’s lemma. Does every linearly ordered subset of V has an upper bound?

Suppose E = {(Wα, gα) ∶ α ∈ A} is a linearly ordered subset, meaning that any two Wα,Wβ , one always contains

the other. We consider

Wup ∶= ⋃
α∈A

Wα and gup ∶= gα on Wα.

Then (Wup, gup) is an upper bound for all for E . Thus the assumption of Zorn’s lemma is satisfied.

Therefore by Zorn’s lemmaW contains a maximal (Wmax, gmax). But Wmax must be all of W , otherwise we could

extend it by one dimension as mentioned above. This proves the claim!

Theorem 0.1.2: The Well-Ordering Principle

Every nonempty set X can be well ordered.

Proof. Let W be the set of all subsets W ⊂ E × E ⊂ X ×X where E some subset of X and W is an ordering

on E. (In other words we are considering an ordering of orderings here, and soon we will attempt to find a

“maxiamal” ordering that hopefully applies to all of X, thereby making it a well-ordered set.) We can order W
(partially) via W1 ⩽W2 if W1 well-orders some Ei (i = 1,2) and W2 extends the ordering “upward”:

(1) E1 ⊂ E2 and the 2 orders agree on E1 (meaning W1 ⊂W2 as sets), and

(2) In the ordering W2, all elements of e1 are ⩽ all elements in E2 −E1.

We want to apply Zorn’s lemma. Check hypothesis: suppose that some collection W∗ = {Wα ∶ α ∈ A} ⊂ W is

linearly ordered. Namely, any two orderings in W∗ satisfy (1) and (2). Then the union of all these sets, ⋃
α

Eα,

is our candidate for upper bound. Pick x, y ∈ ⋃
α

Eα. Is x ⩽ y? Pick x ∈ Eα and y ∈ Eβ . One of Eα,Eβ is bigger,

say the latter. Then both x, y ∈ Eβ and the ordering of Eβ will determine either x ⩽ y or y ⩽ x.

A similar argument shows that it is well-ordered. Hence the ordering on ⋃
α∈A

Eα is an upper bound for the subset

W∗ ofW. Therefore, by Zorn’s lemma,W∗ has a maximal element (maximal well-ordered subset of X). Call it

W , an well-ordering of some E ⊂ X. Clearly E = X. Otherwise, we can enlarge the ordering by setting some

y ∉ E at the top (x ⩽ y for all x ∈ E), contradicting the maximality.

Beginning of Aug.27, 2021
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Corollary 0.1.3: Well-Ordering Principle ⇒ AC

Proof : We well-order ⋃
α∈A

Xα and let f(α) denote the mimimal element in Xα. Then f ∈ ∏
α∈A

Xα.

Cardinality

Definition 0.1.4: Cardinality

Let E,F be sets. We say card(E) ⩽ card(F ) if there exists an injection f ∶ E → F or, equivalently, there exists

a surjection g ∶ F → E. (This equivalence requires AC.)

Remark. Any two sets E,F are comparable in this way. Let d be the set of all injections to F defined on

subsets of E. We can order these injections (one being an extension of the other) and use Zorn’s lemma to

deduce that there exists a maximal injection f ∶ Emax → F (with largest possible domain). Now consider any

two points x, y such that

x ∈ E −Emax and y ∈ F − f(Emax).

Since f corresponds to the “maximal” injection, either x or y does not exist (or we can find a “larger”

injection). If x does not exist, i.e., Emax is all of E, then f ∶ E → F is injective. Otherwise, if f(Emax) is all of

F , then f ∶ Emax → F is surjective.

If we have injections both ways, is there necessarily a bijection between the sets?

Theorem 0.1.5: Schröder-Bernstein Theorem

If card(X) ⩽ card(Y ) and card(Y ) ⩽ card(X), then card(X) = card(Y ) (bijection exists!).

Proof. Let f ∶X → Y and g ∶ Y →X be the injections.

We start from some x0 ∈ X. If x0 ∈ g(Y ), we can apply g−1 to get −1(x0) = x1 ∈ Y . If x0 ∉ g(Y ) then we simply

stop.

We then repeat: if x1 ∈ f(X), we apply f−1 to get −1(x1) = x2 ∈ X. If x1 ∉ f(X), the process simply stops from

x1.

We continue doing this as long as we can. Now we define

XX = {x0 ∈X ∶ process eventually stops in X}

XY = {x0 ∈X ∶ process eventually stops in Y }

X∞ = {x0 ∈X ∶ process never stops}.

(Similarly we could define YX , YY , and Y∞.)

For example, along the trajectory x0
g−1→ x1

f−1→ x2
g−1→ x3, all 4 points (x0, x1, x2, and x3) will end up at x3. Further

notice that each element can only appear in exactly one sequence.

Thus, g maps YY bijectively to XY (e.g. (x1) = x0, g(x3) = x2), and similarly f maps XX bijectively to YX . Also,
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f maps X∞ bijectively to Y∞. Therefore, we can combine them and obtain a bijection h ∶X → Y :

h(x0) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g−1(x0) if x0 ∈XY

f(x0) if x0 ∈XX

f(x0) if x0 ∈X∞.

Definition 0.1.6: Countability, etc.

(1) We say X is countable if card(X) ⩽ card(N).

(2) We say X has the cardinality of the continuum, denoted c, if card(X) = card(R).

(3) The following sets all have cardinality c:

R P(Z) [0,1] {0,1}N [0,1]N.

Theorem 0.1.7: R is Uncountable

Proof. The famous Cantor diagonalization. Omitted.

Theorem 0.1.8: Continuum Hypothesis

c is the smallest cardinality > card(N).
This has been proven to be undecidable using standard set theory. There is no answer as of now.

6



Chapter 1

Measures

We want to assign sizes µ(E) to sets E. The most intuitive, special case is by defining µ(E) as the volume of E

in Rn. We want to also extend it to other sets. A natural question arises – what criterion should we choose when

defining such notion?

(1) µ(Q) = 1 for the unit cube Q. µ(E) ⩾ 0 for all E.

(2) µ could be translation-invariant. If F can be obtained by translation E then µ(F ) should be equal to µ(E).

(3) µ should be countably additive. If {En} is a finite or countable collection of sets, then µ of their union should

be sun of µ(En).

Some other properties which are consequences from above:

(4) If A ⊂ B then µ(A) ⩽ µ(B). Indeed, we can write B as (B −A) ⊔A.

(5) µ of a singleton is 0. Indeed, [0,1] contains infinitely many points, so by (3),

µ([0,1]) = ∑
x∈[0,1]

µ({x}).

Example 1.0.1. µ([1/5,25)) = 1/5 because

1 = µ([0,1]) = µ([0,1)) = µ([0,1/5)) + ... + µ([4/5,1)).

Similarly, µ([0.23,0.43)) = 1/5.

Beginning of Aug.30, 2021

However, in fact we can find nonmeasurable sets where no µ works satisfying all the axioms above.

Suppose we can find some subset A ⊂ [0,1) such that there are infinitely many disjoint translates A1,A2, ... whose

union in [0,1). Then

1 = µ([0,1)) =
∞
∑
i=1
µ(Ai)

which is impossible!!

7
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Example of Non-Measurable Sets. We define an equivalence relation on [0,1) by a ∼ b if a − b ∈ Q. There are

uncountably many such equivalence classes, where class is countable (since Q is). Using AC, we may pick one

point from each equivalence class and form a set A. (There is no formula that describes what A looks like, but

we know we can.)

Then

(1) the difference between any two elements in A is irrational (since they below to different equivalence

classes), and

(2) each x ∈ [0,1) can only be in exactly one equivalence class.

Therefore (1) implies that the translate A + r for some r ∈ Q forms a new set that is disjoint from A, and (2)

implies that the countable union of sets of form A + r, r ∈ Q is the entire [0,1).
It follows that A cannot be in the domain of µ.

Domain of Measure

The question arises — if not the entire power set, what should the domain of a measure be, then?

Clearly, given X, the domain of a measure µ on X needs to be a collection F ⊂ P(X). Using a weakened version

(compared to above), we tentatively require the following:

(i) F contains X and ∅.

(ii) F is closed under complementation.

(iii) F is closed under finite / countable unions. (Their intersection counterparts follow from De Morgan’s law and

(ii).)

Definition 1.0.2: σ-Algebra

We say F is an algebra (or field) if (iii) holds for finite unions. We say it’s a σ-algebra (or σ-field) if (iii)

holds for countable unions.

Proposition 1.0.3

The intersection of two σ-algebras is still a σ-algebra. One can simply verify this via the axioms.

More generally, let E be a collection of subsets of X, and let

σ(E) = intersection of all σ-algebras containing E .

Then:

(1) σ(E) is a σ-algebra, and

(2) σ(E) is the smallest σ-algebra containing E: that is, for all σ-algebra F ⊃ E , we have F ⊃ σ(E).

We say σ(E) is the σ-algebra generated by E .

8
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Definition 1.0.4: Borel σ-Algebra

A connection to topology — let X be a topological space, i.e., it has a family J of open sets (closed under

arbitrary union and finite intersections). The Borel σ-algebra is the σ-algebra generated by J (by all open

sets). We write BX = σ(J).
Note that open sets are NOT closed under arbitrary intersections, but BX is, so (nearly in all cases) BX is bigger.

Open sets do not constitute a σ-algebra in general.

Definition 1.0.5: Gδ and Fσ Sets

A Gδ set is a countable intersection of open sets. An Fσ set is a countable union of closed sets. Similarly, a

Gδσ set is a countable union of Gδ sets, and so on...

Product Spaces

Recall that X = ∏
α∈A

Xα is a Cartesian product, and πα ∶ X → Xα is the projection onto the αth coordinate. For

Eα ⊂Xα, the inverse image π−1α (Eα) is almost the same product ∏
α∈A

Xα, except Xα is now replaced by Eα (all other

Xi’s remain the same; they do not bring changes to our projection).

Definition 1.0.6: Unrestricted Coordiante

An unrestricted coordinate in A is an α such that if xβ = xβ for all β ≠ α, then xβ ∈ A if and only if yβ ∈ A.

(Changing α’s coordinate never changes the membership in A.) For example consider a vertical cylinder in R3.

The z-coordinate is unrestricted.

Definition 1.0.7: Product Algebra

Suppose each Xa corresponds to a σ-algebra Mα. We define the product σ-algebra in X = ∏
α∈A

Xα by

⊗
α∈A

Mα = the σ-alpha generated by{π−1α (Eα) ∶ α ∈ A,Eα ∈Mα}.

In other weeds, ⊗
α∈A

Mα is generated by all the preimages of all elements in Mα’s.

Note that this product σ-algebra is closed under intersection, so it also contains sets of form

∞
⋂
i=1
π−1αi
(Eαi) with Eαi ∈Mαi .

There is another σ-algebra in X =∏
α

Xα:

F ∶= the σ-algebra generated by {all abstract rectangles ∏
α∈A

Eα with Eα ∈Mα}.

The first way is to get a collection of abstract rectangles with restriction on one coordinate, and the second starts

with completely unrestricted rectangles. Then we generate two σ-algebras from these two.

Notice that ⊗
α∈A

Mα ⊂ F: indeed, the latter has a larger generator.

9
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Proposition 1.0.8

If F,G are σ-algebras and F contains all generators of G, then F ⊃ G.

Indeed, G is the smallest σ-algebra containing its generators, so F, another σ-algebra, cannot be smaller.

Proposition 1.0.9

If A is countable, then the aformentioned ⊗
α∈A

Mα = F.

Proof. It suffices to prove the ⊃ direction.

When A is countable, every abstract rectangle is simply the countable intersection of rectangles in which we each

impose one restriction, so by σ-algebra’s closure under countable intersection, each

∏
α∈A

Eα = ⋂
α∈A

π−1α (Eα)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈⊗α∈A Mα

∈ ⊗
α∈A

Mα.

Remark: (General Principle). Suppose that

(1) Y is a collection of sets each having some property P .

(2) P, the collection of all sets with such property, is a σ-algebra.

Then every set in σ(Y ) has this property.

Proof: since P is a σ-algebra and P ⊃ Y , we have P ⊃ σ(Y ).
Upshot: to show that a σ-algebra has some property, we only need to verify its “generators”.

Beginning of Sept.1, 2021

Proposition 1.0.10

If A is uncountable (and Mα is assumed to be nontrivial, i.e., not just containing Aα and ∅), then

⊗
α∈A

Mα ≠ F.

Proof. Consider the property P of a set B defined by “B has only countably many restricted coordinates.” For

example, the generators π−1α (Eα) all have one restricted coordinates so they each have P . It follows that P is

closed under complements and countable unions[!] so it is a σ-algebra. Therefore, the general principle says that

every set in ⊗
α∈A

Mα has this property. However, in F we have sets with uncountably many restricted coordiantes.

Therefore F is strictly bigger.

10
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Proposition 1.0.11

If each Mα is generated by some collection Eα, then

{π−1α (Eα) ∶ Eα ∈ Eα, α ∈ A}

generates ∏
α∈A

Mα.

Example 1.0.12. Let BR be the Borel sets in R, generated by the colleciton of open sets who are in turn

generated by the open intervals. By definition BR × BR is generated by

E = {all sets G ×R or R ×G with G open},

but this example states that it is also generated by

D = {all sets I ×R or R × I with I open}.

Proof. Every set in E is a countable union of sets in D so one direction E ⊂ σ(D) is trivial. Also, D ⊂ E , so

σ(D) ⊂ σ(E), and the two sets are indeed equal.

Example 1.0.13: Special Example: Metric Spaces. Let X1, ...,Xn be metric spaces with metrics di in Xi.

Then there are two ways to make a σ-algebra in
n

∏
j=1

Xi:

(1) Get a σ-algebra in Xi first, for example BXi . Then take
n

⊗
i=1
BXi .

(2) Define the product metric d(x, y) =max
i⩽n

di(xi, yi) on
n

∏
i=1
Xi. This creates open sets in the product space

and generates Borel sets BX from them.

Are these two the same? It relates to separability.

Proposition 1.0.14

Suppose X1, ...,Xn are metric spaces and X =
n

∏
i=1
Xi with the product metric. Then

n

⊗
i=1
BXi ⊂ BX . If in

addition each Xi is separable, the two are equal.

Proof. Note that Ei ∶= {open sets in Xi} generates BXi , so

{π−1i (ui) ∣ ui ∈ Ei}

generates
n

⊗
i=1
BXi

. All of these π−1i (ui)’s are open so

n

⊗
i=1
BXi ⊂ σ(all open sets in X) = BX .

11
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Now for the separable case: each Xi contains a countable dense subset Yi. Define

Ei ∶= {all “special” balls in Xi with centers in Yi with rational radius}

which is countable. Then, if G ⊂ Xi is open and p ∈ G, there exists a ball B(r, q) ∈ Ej with p ∈ B(r, q) ⊂ G.

Therefore, every p ∈ G is in such a ball, and G is a countable union of special balls from Ei.
Now we generalize this into the product space. If U ⊂ X is open and x ∈ U , then each coordinate of x is

contained in a “special open ball”. Analogously, U is a union of products of special balls. In particular, since Ei’s
are countable, U is a countable union of such balls. Therefore, the product σ-algebra contains all open sets and

therefore the Borel algebra, i.e.,

BX = σ(all of U) ⊂
n

⊗
i=1
BXi .

Example 1.0.15: What goes wrong in the non-separable case?. For the countable case, for example

R × R, we can let E = {open intervals in R with rational endpoints}. Then E is countable and every open

interval is a union of sets in E. Then, given U ⊂ R × R open, for all p ∈ U , there exists I1, I2 ∈ E with

p ∈ I1 × I2 ⊂ U . The set

⋃{I1 × I2 ∣ I1, I2 ∈ E , I1 × I2 ⊂ U}

is all of U , so U is a countable union of sets I1 × I2.

However, for a non-separable metric space X, there exists uncountably many disjoint open sets, say {Gα, α ∈
A}. Then

U = ⋃
α∈A

Gα ×Gα

is open in X ×X. We can show that this is not in the product σ-algebra Bα × Bα, but it’s open and therefore

in BX×X . In this case BX×X ≠ Bα × Bα.

Definition 1.0.16: Elementary Family

An elementary family is an E ⊂ P(X) such that

(1) ∅ ∈ E ,

(2) E is closed under finite intersection, and

(3) for all E ∈ E ,Ec is a finite disjoint unions of members of E .

For example, the collection of all abstract rectangles (product of two intervals, possibly infinite and possibly

degenerate) in R2 consist of an elementary family. (1) is clear. (3) is clear for “basic” rectangles: R2− [a, b]×
[c, d] is the disjoint union of 8 “infinite” rectangles. (Indeed, x = c, x = d, y = a, and y = b divide R2 into 9

disjoint “rectangles” and we took away one of them.) It follows that finite intersections also preserve this

property, and hence (2) holds.

Beginning of Sept.3, 2021
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1.1 Measures

Definition 1.1.1: Measures, etc.

Let X be a set with a σ-algebra M, the collection of measurable sets. We call (X,M) a measure space.

We say a function µ ∶M→ [0,∞] is a measure if

(1) µ(∅) = 0 and

(2) µ is countably additive: if {Ei} are disjoint in M then

µ(
oo

∑
i=1
Ei) =

∞
∑
i=1
µ(Ei).

Note that if we let the tail of {Ei} to be ∅, we obtain finite additivity of µ as well.

Proposition 1.1.2: Monotonicity of Measure

If E,F ∈M and E ⊂ F , then µ(E) ⩽ µ(F ).
Proof: write F = E ⊔ (F −E).

Definition 1.1.3: Finite, σ-finite, & Semifinite Measures

If µ(X) <∞ then µ(E) <∞ for all E ∈M. If so we call µ a finite measure.

We say µ is σ-finite if X can be written as a countable union of sets, each of which has finite measure.

We say µ is semifinite if every E with µ(E) =∞ has a subset F ⊂ E with finite measure.

Example 1.1.4: Lebesgue Measure (later). The Lebesgue measure m is defined on (R,BR) such that µ(I)
is the length of I for all interval I. Then µ(R) =∞ but R is the countable union of [n − 1, n) so m is σ-finite

but not finite.

Example 1.1.5. If we let X = R, M = P(R) and define

µ(E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 E countable

∞ E uncountable,

then µ is neither σ-finite nor semifinite.

Example 1.1.6: Point Mass. Let A ⊂M and define µ(A) = 1 if x ∈ A and 0 otherwise.

Theorem 1.1.7: More Properties of Measures

µ is subadditive: if Ei ∈M then

µ(⋃
i⩾1
Ei) ⩽∑

i⩾1
µ(Ei).

13
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Proof. We define Fi ∶= Ei−(⋃
i<j
Ei). Then the Fi’s are disjoint and the claim follows from the additivity of disjoint

sets and monotonicity.

Proposition 1.1.8: Continuity from Below

(1) Suppose E1 ⊂ E2 ⊂ ... in M. Then

µ(⋃
i⩾1
Ei) = lim

i→∞
µ(Ei).

(2) Suppose E1 ⊃ E2 ⊃ ... in M and some En has finite measure. Then

µ(⋂
i⩾1
Ei) = lim

i→∞
µ(Ei).

Proof.

(1) Let E0 = ∅. Then

µ(⋃
i⩾1
Ei) = µ(⋃

i⩾1
(Ei −Ei−1)) =

∞
∑
i=1
µ(Ei −Ei−1) = lim

n→∞

n

∑
i=1
µ(Ei −Ei−1) = lim

n→∞
µ(En).

(2) Analogous — if {Ei} is decreasing, then {Eci } is increasing, and we can apply (1).

More formally, fix n and let Fi = En −Ei for i ⩾ n. It follows that Fn+1 ⊂ Fn+2 ⊂ ..., and

En = (⋃
i⩾n

Fi) ∪ (⋂
i⩾1
Ei).

Therefore,

µ(En) − µ(⋂
i⩾1
Ei) = µ(⋃

i⩾n
Fi) = lim

i→∞
µ(Fi) = lim

i→∞
(µ(En) − µ(Ei)),

and since µ(En) <∞, subtracting makes sense and we are done.

Note that µ(E1) < ∞ is important: if we let En ∶= [n,∞) then the infinite intersection is ∅ whereas the

limit of µ(En) =∞.

Definition 1.1.9: Null Set

A null set is a set E with µ(E) = 0. (What’s null depends on µ.)

We say “something is true almost everywhere (a.e)” if something is true on all x ∉ E where E is a null set.

Remark. If u(E) = 0, there might be “bad” sets F ⊂ E with F ∉M. But we want to assign a measure 0 to

them as well. However, we cannot add one set to M as M ∪ {F} is not a σ-algebra anymore. This leads to

the following notion called completion.

14



YQL - MATH 525a Notes 1.1 - Measures Current file: 9-8.tex

Definition 1.1.10

A measure µ is called complete if for all F ⊂ E where E ∈M with u(E) = 0, we have µ(F ) = 0.

Example 1.1.11. Let µ be the Lebesgue number on [0,1] and let C be the standard middle-thirds Cantor

set. It turns out that C is a null set.

C is “isomorphic to [0,1]” in the sense that there exists a monotone bijection φ ∶ [0,1]→ C by

binary to “ternary (left or right)” ∶ (0.00101...)↦ (LLRLR...)

for example. One can show that if A is non-Borel in [0,1] then φ(A) is a non-Borel set in C.

Theorem 1.1.12: Completion

Let (X,M, µ) be a measure space, and define

N ∶= {all null sets of µ in M}

and

M ∶= {E ∪ F ∣ E ∈M and F ⊂ N for some N ∈N}.

Then M is a σ-algebra and there is a unique way to extend µ to µ which is a complete measure on M.

Proof. First we show that M is a σ-algebra. Complementation is given by

(E ∪ F )c = (E ∪N)c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈M

∪ (N −E ∪ F )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊂N

∈M.

For a countable collection of {Ei ∪ Fi} ∈M,

⋃
n⩾1
(En ∪ Fn) = (⋃

n⩾1
En)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈M

∪ (⋃
n⩾1

Fn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µ=0

∈M.

We define µ on M by µ(E ∪ F ) = µ(E). To check that this is well-defined, if E1 ∪ F1 = E2 ∪ F2, by definition

F2 ⊂ N2 for some null set N2. Then

E1 ⊂ E2 ∪ F2 ⊂ E2 ∪N2

and so

µ(E1) ⩽ µ(E2) = µ(N2) = µ(E2)

and likewise u(E2) ⩽ µ(E1).
The rest of the problem is left as a homework problem...

Beginning of Sept.8, 2021
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1.2 Outer Measure

For example, consider A the set of finite unions of rectangles in R2. This an algebra but not a σ-algebra. We can

define µ on A by assigning the area to it. It follows that µ is finitely additive. On the other hand we may sometimes

want to extend µ to µ on a σ-algebra, say σ(A). Core idea: define an outer measure µ∗, an “upper bound” for our

measure, and then show that the restriction of µ∗ to σ(A) is indeed a measure.

Definition 1.2.1: Outer Measure

A function µ∗ ∶ P(X)→ [0,∞] (containing∞) is an outer measure if

(1) µ∗(∅) = 0,

(2) µ∗ is monotonous: A ⊂ B implies µ∗(A) ⩽ µ∗(B), and

(3) µ∗ is countably subadditive:

µ∗(
∞
⋃
i=1
Ai) ⩽

∞
∑
i=1
µ∗(Ai).

If we are able to define such outer measure, then for all countable collection {Ai} that covers E, we have

µ(E) ⩽ µ(
∞
⋃
i=1
(Ai) ⩽

∞
∑
i=1
µ(Ai).

More formally,

µ∗(E) ∶= inf{
∞
∑
i=1
µ(Ai) ∶ Ai ∈ A,E ⊂

n

⋃
i=1
Ai}.

However, it is not immediately clear whether µ∗ is additive, in particular finitely additive. Our goal’s to show that

in general

(1) µ∗ is an outer measure, and

(2) µ∗ ∣σ(A) is a measure, and µ∗ = µ on A.

Proposition 1.2.2

Let E ⊂ P(X) and ρ ∶ E → [0,∞] satisfying ρ,X ∈ E and ρ(∅) = 0. For all A ⊂X, we define

µ∗(A) ∶= inf{
∞
∑
i=1
ρ(Ei) ∶ Ei ∈ E,A ⊂ ⋃

i=1
Ei}

is an outer measure. Note that we require no additional assumptions on E and ρ besides the very basic ones.

Example 1.2.3. Let X = R2, E be the set of rectangles, and ρ the area. The propositions tates that we can

extend ρ to σ(E), which is a σ-algebra rather than simply an algebra.

Proof. Notice that µ∗ is well-defined (worse case sceneraio: X covers A so there’s always a cover). Also,

µ∗(∅) = 0 can be obtained by letting Ei = ∅. Monotonicity is clear. For subadditivity, suppose A = ⋃∞i=1Ai. Let

ϵ > 0 be given; it suffices to show that

µ∗(A) ⩽
∞
∑
i=1
µ∗(Ai) + ϵ.

16
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Indeed, we can choose a “near-optimal” cover where

{Eki , k ⩾ 1} with
∞
∑
k

ρ(Eki ) ⩽ µ∗(Ai) +
ϵ

2i
.

Therefore the errors add up to ⩽ ϵ:
∞
⋃
i=1

∞
∑
k=1

µ(Eki ) ⩽
∞
∑
i=1
µ∗(Ai) + ϵ,

and it is clear that {Eki } covers A.

There are 3 “types” of outer measures:

(1) General — any function satisfying the axioms;

(2) Derived from sums over covers (taken infimum as above); and

(3) Derived from sums over covers of a premeasure (something we want to extend to an algebra) on an algebra.

What is a “nice” set? Any A splits X into A and Ac. The outer measure should add for “nice” A in the sense that

cutting A into pieces and adding the outer measure of each part should result in the same as µ∗(A), namely

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) for all E ⊂X.

If so, we call A a µ∗-measurable set. If µ(E) =∞ the equation is clear. If µ(E) <∞, it is obvious from subadditivity

that the LHS ⩽ the RHS, so to have a “nice” A, it suffices to show

µ∗(E) ⩾ µ∗(E ∩A) + µ∗(E ∩Ac).

Theorem 1.2.4: Carathéodory’s Theorem

Let µ∗ be an outer measure on P(X) and

M ∶= {all µ∗-measurable subsets of X}.

Then M is a σ-algebra and µ∗ ∣M is a complete measure.

Proof.

(1) It is clear that M is closed under complements: the statement is symmetric.

(2) M is closed under finite unions: if A,B ∈M then we want to show that A∪B ∈M. This can be done quite

easily:

µ∗(E) = µ∗(A ∩E) + µ∗(Ac ∩E)

= µ∗(A ∩E ∩B) + µ∗(A ∩E ∩Bc) + µ∗(Ac ∩E ∩B) + µ∗(Ac ∩E ∩Bc)

⩾ µ∗((A ∪B) ∩E) + µ∗((A ∪B)∗ ∩E)

where ⩾ is by subadditivity.

(3) M is closed under differences A −B because A −B = (Ac ∪B)c.

(4) M is closed under countable union. Let {Ai} be a countable collection of sets and WLOG assume they are

17
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disjoint. Since for all En and all n,

µ∗(E ∩ (
n

⋃
i=1
Ai)) =

n

∑
i=1
µ∗(E ∩Ai),

we have

µ∗(E) = µ∗(E ∩ (
n

⋃
i=1
Ai)) + µ∗(E ∩ (

n

⋃
i=1
Ai)c)

⩾
n

∑
i=1
µ∗(E ∩Ai) + µ∗(E ∩ (

∞
⋃
i=1
Ai)c).

Since this holds for all n, letting n→∞ we have

µ∗(E) ⩾
∞
∑
i=1
µ∗(E ∩Ai) + µ∗(E ∩ (

∞
⋃
i=1
Ai)c)

⩾ µ∗(E ∩ (
∞
⋃
i=1
Ai)) + µ∗(E ∩ (

∞
⋃
i=1
Ai)c)

so again the infinite union shows
∞
⋃
i=1
Ai ∈M, and so M is closed under countable unions.

(5) µ∗ is countably additive on M: in the above inequality, replacing E by E ∩ (
∞
⋃
i=1
Ai) gives

µ(E ∩ (
∞
⋃
i=1
Ai)) =

∞
∑
i=1
µ∗(E ∩Ai).

Taking E =X gives countable additivity.

(6) µ∗∣
M

is complete. If µ∗(A) = 0 and E ⊂X then

µ∗(E) ⩽ µ∗(E ∩A) + µ∗(E ∩Ac) ⩽ µ∗(E)

so all ⩽ are =, so µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac), so A ∈M.

Premeasure

Now we try to extend µ on an algebra A to µ on σ(A). We have previously talked about generalizing “length” or

“volume” to “Lebesgue measure” on all Borel sets. In general, questions include

(1) What µ can be extended?

(2) Do the notions of length or area work?

(3) How to extend?

Definition 1.2.5: Premeasure

Given A ⊂ P(X) an algebra, µ ∶ A→ [0,∞] is a premeasure if

(1) µ(∅) = 0, and
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(2) for {Ai} a countable disjoint union in A with union also in A, µ(
∞
⋃
i=1
Ai) =

∞
∑
i=1
µ(Ai). (For example, a

countable union of rectangles may be a rectangle, but they may as well form a weird shape, in which

case (2) does not follow.)

A premeasure µ produces an outer measure µ∗ via “sums over covers”:

µ∗(E) = inf{
∞

∑
i=1
µ(Ai) ∣ Ai ∈ A,E ⊂

∞
⋃
i=1
Ai}.

It follows that µ∗ is a measure on all µ∗-measurable sets, but is this the extension we want?

(1) Are all sets in A µ∗-measurable?

(2) Do µ∗ and µ agree on A?

Theorem 1.2.6

Let µ be a premeasure on an algebra A and let µ∗ be the corresponding “sums over squares” outer measure.

Then indeed µ∗∣A = µ and all sets in A are µ∗-measurable.

Proof. We first show that µ ⩽ µ∗. Let E ∈ A and let {Ai} be a cover of E (by sets in A). We can make them

disjoint by defining

Bn ∶= (An − ⋃
i<n

Ai) ∩E.

Then
∞
⋃
n=1

Bn = E ∈ A so

µ(E) =
∞
∑
n=1

µ(Bn) ⩽
∞
∑
n=1

µ(An).

Since the above inequality holds for any cover of E, taking infimum gives µ(E) ⩽ µ∗(E).

Now we show that µ∗ ⩽ µ: since E,∅,∅, ... is a cover of E by sets in A, we have

µ∗(E) ⩽ µ(E) + 0 + ... = µ(E).

Hence µ∗ = µ on A.

Now we show that all sets in σ(A) is µ∗-measurable. Indeed, let E ⊂ X,A ∈ A, and ϵ > 0 be given. By definition

of infimum there exists a cover {Bi} ⊂ A that is < ϵ-optimal:

E ⊂
∞
⋃
i=1
Bi and

∞
∑
i=1
µ(Bi) ⩽ µ∗(E) + ϵ.

Since each Bi can be split into Bi ∩A and Bi ∩Ac, we obtain

µ∗(E) + ϵ ⩾
∞
∑
i=1
µ(Bi)

=
∞
∑
i=1
µ(Bi ∩A) +

∞
∑
i=1
µ(Bi ∩Bc).

Note that the first term is a cover of E ∩A and the second of E ∩Ac. Hence

µ∗(E) ⩾ µ∗(E ∩A) + µ∗(E ∩Ac).
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Since ϵ is arbitrary, we are done — any set in A is µ∗-measurable.

Theorem 1.2.7

Let A be an algebra and µ0 a premeasure on A. Let µ∗ be the outer measure obtained from µ0. Then:

(1) The restriction µ ∶= µ∗∣
σ(A) is a measure on σ(A) which extends µ0 ∶= µ∣A.

(2) µ is the “largest” extension: if v is any other extension of µ0 to σ(A) then

(i) v ⩽ µ on σ(A),

(ii) v(E) = µ(E) if µ(E) <∞, and

(iii) v = µ on σ(A) if µ0 is σ-finite.

Note that the second statement says that u and v differ only when (1) v(E) <∞ and µ(E) =∞ for some

E and (2) µ0 is not σ-finite.

Beginning of Sept.13, 2021

Proof of “uniqueness”. If v is an extension of µ0 to a measure on any σ-algebra M containing A, then for all

E ∈M there exists a cover {Ai} of E by sets in A.

v(E) =⩽
∞
∑
i=1
v(Ai) =

∞
∑
i=1
µ0(Ai).

Taking infimum over covers implies µ(E) ⩽ µ∗(E) (and on σ-algebra µ∗ = µ).

On the other hand, suppose µ(E) <∞ for some E ∈ σ(A). We want to show that µ(E) ⩽ v(E) + ϵ for any ϵ > 0.

Indeed, choose a cover {Ai} that is “optimal within ϵ”:

µ(E) + ϵ = µ∗(E) ⩾
∞
∑
i=1
µ0(Ai) =

∞
∑
i=1
µ(Ai) ⩾ µ(

∞
⋃
i=1
Ai)

so µ((
∞
⋃
i=1
Ai) −E) ⩽ ϵ. Therefore

µ(E) ⩽ µ(⋃
i=1
Ai) = lim

n→∞
µ(
∞
⋃
i=1
Ai) = lim

n→∞
µ(

n

⋃
i=1
Ai)

= v(
∞
⋃
i=1
Ai) = v(E) + v((

∞
⋃
i=1
Ai) −E)

⩽ v(E) + µ((
∞
⋃
i=1
Ai) −E) ⩽ v(E) + ϵ.

Proof of ν and µ. Suppose µ0 is σ-finite. There exists B1 ⊂ B2 ⊂ A µ(Bi) <∞ such that
∞
⋃
i=1
Bi = X. Then for all

E ∈ σ(A), we can write E as a limit:

µ(E) = lim
i→∞

µ(E ∩Bi)

by continuity from below. Each µ(E ∩Bi) are finite, so µ and ν agree on each one of them by the previous part.
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Thus

µ(E) = lim
i→∞

µ(E ∩Bi) = lim
i→∞

ν(E ∩Bi) = ν(E).

1.3 Borel Measures on R

Here we consider the h-intervals of form (a, b] where −∞ ⩽ a < b ⩽ ∞. Note that the collection of these intervals

form an elementary family, so the collection of finite unions of them form an algebra (not σ-algebra). Define

A ∶= {all finite unions of h-intervals}.

We take a measure µ on (R,BR) that is finite on bounded sets. Define its distribution function

F (x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−µ((x,0]) x < 0

0 x = 0

µ((0, x]) x > 0.

Proposition 1.3.1: Properties of F

Clearly F is nondecreasing. It is right-continuous: for all x > 0 and yn ↓ x,

F (x+) = lim
yn↓x

F (yn) = lim
yn↓x

µ((0, yn]) = µ(
∞
⋂
n=1
(0, yn]) = µ((0, x]) = F (x),

and a similar argument proves the case for x ⩽ 0 and yn ↓ x using continuity from below.

Also, µ((a, b]) = F (b) − F (a) for a < b. For 0 < a < b, this is proven by

F (b) − F (a) = µ((0, b]) − µ((0, a]) = µ((a, b]).

Conversely, if we have a nondecreasing, right continuous function F , then we can obtain a measure µ described by

µ((a, b]) = F (b) − F (a).

Proposition 1.3.2

If F ∶ R→ R is nondecreasing and right-continuous, define µ onA ∶= {finite union of h-intervals} by µ(∅) = 0
and

µ(
n

⋃
i=1
(ai, bi]) ∶=

n

∑
i=1
(F (bi) − F (ai))

for disjoint h-intervals (ai, bi]. Then µ is a premeasure on A (i.e., from finite additivity we can deduce

countable additivity).

Proof. We first note that µ is well-defined (for finite unions, even if there are more than one ways to represent a

union, all middle terms cancel each other out).

Now we show that µ is countably additive “within A”, i.e., countably additive for h-intervals whose countable

union is still an h-interval. To put formally, if I = (a, b] is a countable disjoint unions Ij ∶= (aj , bj], then we need
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to show that µ(I) =
∞
∑
j=1

µ(Ij).

The ⩾ direction is easy: it suffices to show µ(I) ⩾
n

∑
j=1

µ(Ij) and take limits in n. Note that I −⋃nj=1 Ij ∈ A, so finite

additivity of µ implies

µ(
n

⋃
i=1

9j) =
n

∑
j=1

µ(Ij) = µ(I) − µ(I −
n

⋃
j=1

Ij) ⩽ µ(I).

The ⩽ direction is harder. First suppose that (a, b] is bounded. Let ϵ > 0 be given.

Idea: we want to modify {Ii} to open covers that cover a compact set. To this end, we shrink (a, b] to [a + δ, b] and

(ai, bi + δi) and therefore obtain a finite subcover satisfying µ(I) ⩽
n

∑
i=1
µ(Ii) + ϵ for arbitrary ϵ > 0. For detailed

construction, refer to Folland’s book.

Beginning of Sept.15, 2021

Remark. A follow up on the previous F : for a > 0 and any an ↑ a, we have

µ((0, a)) = µ(⋃
n⩾1
(0, an]) = lim

n→∞
µ((0, an]) = lim

n→∞
F (an)

so µ((0, a)) = F (a−). (A similar argument holds for a < 0). Hence F (a) − F (a−) is the jump in F at a, and

µ({a}) = µ((0, a]) − µ((0, a)).

Remark. Back to the latest proposition — since µ is σ-finite, it can be uniquely extended to a measure on

the Borel sets!

Theorem 1.3.3: Correspondence Between Measures and Distribution Functions

Given F ∶ R→ R that is increasing and right-continuous, there is a unique measure, which we call µF , on BR
with the property stated in the previous proposition:

µ((a, b]) = F (b) − F (a) for all a < b.

In addition, observe that µF = µG if and only if F −G ≡ a constant.

Conversely, given µ on BR finite on bounded sets, there is an increasing right-continuous F with µ = µF .

Definition 1.3.4: Lebesgue-Stieltjes Measure & Lebesgue Measure (on R)

Recall we can completed the above µF to a unique complete measure (also called µF ). This measure is

called the Lebesgue-Stieltjes measure associated to F . Its domain is

{D ∪E ∶D Borel,E ⊂ some null Borel set}.

(What is a null set depends on F .)

If F (x) = x, we obtain the Lebesgue measure on R.
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Example 1.3.5. Define

F (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x if x < 2

x + 3 if x ⩾ 2.

Let m be the Lebesgue measure. Then µF =m on (−∞,2) ∪ (2,∞), and µF (E) =m(E) + 3 if 2 ∈ E.

In general, if µ(R) <∞, we can write F (a) = µ((−∞, a]). Then lim
a→−∞

F (a) = 0 and lim
a→∞

F (a) = µ(R).

Lemma 1.3.6

Let µ be a σ-finite premeasure on an algebra A, µ∗ the outer measure (obtained by infimum covering), and

M∗ = {all µ∗-measurable sets},M = {D ∪E ∶D ∈ σ(A),E ⊂ null}

(i.e., M is the domain of completion). Then M∗ =M, and µ∗∣
M∗ is the completion of µ.

Proof. Carathéodory’s theorem implies that µ∗∣
M∗ is complete, so the domain must include D ∪E and we must

have µ∗(D ∪E) = µ∗(D). Hene M ⊂M∗. The other inclusion is a Folland exercise.

For the special case µ = µF on (R,BR), µF extends to M =M∗, with

µF (E) = µ∗F (E) = inf{
∞
∑
i=1
µF ((ai, bi]) ∶ E ⊂

∞
⋃
i=1
(ai, bi]}.

Sometimes we want to cover with open sets rather than h-intervals. Does it work if we replace (ai, bi] by (ai, bi)?

On one hand, every open interval can be expressed as a countable union of h-intervals, so clearly

inf{
∞
∑
i=1
µF ((ai, bi]) ∶ E ⊂

∞
⋃
i=1
(ai, bi]} ⩽ inf{

∞
∑
i=1
µF ((ai, bi)) ∶ E ⊂

∞
⋃
i=1
(ai, bi)}.

The converse is also true. Given E ⊂
∞
⋃
i=1
(ai, bi], since F is right-continuous, for each i there exists a δi such that

F (b + δi) − F (bi) < ϵ2−i. Then we can always find “ϵ-optimal” covers {(ai, bi + δi)}, from which the other direction

of inequality follows.

Remark. From the derivation above, given E ⊂ R and ϵ > 0, we can approximate E by an open G ⊃ E
where µ(G −E) < ϵ. Hence we can approximate general Borel sets by open sets.

Beginning of Sept.17, 2021
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1.4 Measure-Topology Connections

Lemma 1.4.1

In Rk, let µ be a finite measure on BRk . Let E be closed and G open. Then

µ(E) = inf{µ(U) ∶ U ⊃ E and U open}, (1)

and

µ(G) = sup{µ(K) ∶K ⊂ E and K compact}. (2)

If a Borel measure satisfies the equalities above, it is called regular.

Proof. Clearly ⩽ in (1) and ⩾ in (2) hold. To prove = in (1), we consider the “ 1/n neighborhoods”

Un ∶= {x ∶ d(x, y) < 1/n for some y ∈ E}.

Taking the intersection of all Un’s we obtain equality. Since U1 ⊃ U2 ⊃ ... and µ is finite,
∞
⋂
n=1

Un = E as E is closed,

so limµ(Un) = µ(E).
To prove = in (2), let x0 ∈ G and Kn ∶= {x ∶ d(x, y) ⩾ 1/n for all y ∈ Gc} ∩ B(x0, n) (i.e., a bonded set whose

distance at least 1/n from the complement). Then the union of these Kn’s is the original G: Since K1 ⊂K2 ⊂ ...,
we have

∞
⋃
n=1

Kn = G, so limµ(Kn) = µ(G).

Theorem 1.4.2

If µ is a finite measure on BRk completed to M ∶ {all µ∗ −measurable sets}, then for all E ∈M,

(1) µ(E) = inf{µ(U) ∶ U ⊃ E,U open}, and

(2) µ(E) = sup{µ(K) ∶K ⊂ E,K compact}.

Proof. Let E be the collection of Borel sets that satisfy (1) and (2). The lemma implies open sets satisfy (2),

whereas for (1) we simply take U = E. Thus open sets meet both criteria. By the General Principle we want to

show that E is a σ-algebra.

Let E1,E2, ... ∈ E . We want to show that their union is in E . Indeed, let ϵ > 0. Since En ∈ E , there exists

Un,Kn ⊂ E (open and compact, respectively) with µ(Un) ⩽ µ(En) + ϵ/2n and µ(Kn) ⩾ µ(En) − ϵ/2n.

(Note that the union of finitely many compact sets is compact, but this does not hold for countable unions in general.)

Note that

µ(
N

⋃
n=1

Kn) ⩾ µ(
N

⋃
n=1

En) −
N

∑
n=1

ϵ

2n
.

Using continuity from below, we can choose N sufficiently large such that µ(
∞
⋃
n=1

En) − µ(
N

⋃
n=1

En) < ϵ. Then the

LHS above is ⩽ 2ϵ away from
∞
⋃
n=1

En, so (2) holds for this set. For (1),

aµ(
∞
⋃
n=1

Un) ⩽ µ(
∞
⋃
n=1

En) + µ(
∞
⋃
n=1

Un −En) ⩽ µ(
∞
⋃
n=1

En) + ϵ.
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Therefore E is closed under countable unions. To check that it is closed under complementation, since µ is finite,

µ(Ec) = µ(Rk) − µ(E) = µ(Rk) − inf{µ(U) ∶ U ⊃ E,U open}

= sup{µ(Rk) − µ(U) ∶ U ⊂ E,U open}

= sup{µ(F ) ∶ F ⊂ Ec, F closed}.

Finally, to upgrade from closed sets to compact sets, we need to intersect with “large closed balls”, which would

give us compact K ⊂ Ec with measure close to µ(Ec). Showing Ec has (1) is much easier as the complement of

a compact set is an open set – no nuisance. So E is indeed a σ-algebra.

Since E is a σ-algebra and it contains all open sets, it contains all Borels. Let

M = {E ∪ F ∶ E Borel, F ⊂ null Borel}.

Let ϵ > 0 and F ⊂ N null. We know that E,N ∈ E , so there exists K compact and U open such that

K ⊂ E ⊂ E ∪ F ⊂ E ∪N ⊂ U

with

µ(K) > µ(E) − ϵ µ(U) < µ(E ∪N) + ϵ.

But then

µ(K) > µ(E) − ϵ = µ(E ∪ F ) − ϵ µ(U) < µ(E ∪N) + ϵ = µ(E ∪ F ) + ϵ,

which shows that M ⊂ E .

Remark. If there exist {Kn} (compact) and {Un} (open) that approximate E by 1/n, then

µ(
∞
⋃
n=1

Kn) = µ(E) = µ(
∞
⋂
n=1

Un)

where the countable union is a Fσ set and the intersection a Gδ set. This shows that if µ, ν are regular and

µ = ν on open sets, then µ = ν on Borels.

1.5 Lebesgue Measure

Definition 1.5.1: Lebesgue Measure

Lebesgue measure m on R is the complete measure associated to the distribution function F (x) = x. Its

domain L is the completion of BR for µF .

Example 1.5.2. Recall that the Cantor set C is the set of all x ∈ [0,1] with ternary expansion consisting of

only 0’s and 2’s. The Cantor-Lebesgue function is a bijection F ∶ C → [0,1] by replacing 2’s by 1’s in binary.
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We can extend the domain of F to [0,1]: for example

F ′(.0220120021...) ∶= F (02200222...).

This gives the Devil’s staircase; F ′ is constant on removed intervals in C.

Beginning of Sept.20, 2021

Note that F is bijective except for conutably many points, for example F (1/3) = F (2/3) = 1/2. We can also construct

a “pseudo-inverse” F ∶ [0,1]→ C by

F −1(y) ∶= inf{x ∶ F (x) = y},

so for example F −1(1/2) = 1/3, not anything in (1/3,2/3]. It follows that

F −1(y) = x ⇐⇒ y ⩽ F (x). (*)

Since F is nondecreasing and has no jump discontinuity, F is continuous. Furthermore, F is differentiable (with

derivative 0) except on a null set C (i.e., F ′(x) = 0 almost everywhere). However, F is not continuous: F (0) = 0
and F (1) = 1. Then µF ([0,1] − C) = 0, µF ([0,1]) = 1, and so µF (C) = 1. We say µF “lives on” C.
Let (X,M, µ) be a measure space and (Y,G) be another measurable space (with or without a measure). Then

f ∶X → Y gives a measure ν on (Y,G) by

ν(E) = ν({x ∈X ∶ f(x) ∈ E}) = ν(f−1(E)).

(Note we require f−1(E) ∈M for all E ∈ G.)

Example 1.5.3. Let F ∶ C → [0,1] and F −1 ∶ [0,1]→ C be defined as above. Consider ([0,1],B,m) where m

is the Lebesgue number be the domain of F −1 and ([0,1],B) be the range. Now we analyze the push-forward

of m by F −1: for x ∈ C, we define

m({y ∶ F −1(y) ∈ (0, x]}) =m({y ∶ y ⩽ F (x)}) =m([0, F (x)]) = F (x).

Thus the push-forward for x ∈ C is just µF . Since F is constant on [0,1] − C so µF (Cc) = 0, this is also true

for x ∈ [0,1] − C.
In this sense, µF is the “uniform measure” on C.
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Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1.1: Measurable Function

Let (X,M) and (Y,N) be measurable spaces. A function f ∶X → Y is said to be (M,N)-measurable if

f−1(E) ∈M for all E ∈N.

Recall that inverse images commute with set operations:

f−1(E ∪ F ) = f−1(E) ∪ f−1(F ),

and

f−1(E ∩ F ) = f−1(E) ∩ f−1(F ).

The unions and intersections can be finite, countable, or uncountable. Therefore,

{E ∈ Y ∶ f−1(E) ∈M}

is a σ-algebra. In particular, if the set contains some collection E then it contains σ(E).

Proposition 2.1.2

If E generates N and f−1(E) ∈ m for every E ∈ E , then f is (M,N)-measurable.

Example 2.1.3. If (Y,N) = (R,BR), E ∶= {(−∞, t] ∶ t ∈ R}, (X,M) is another space, then f ∶ X → R is

(M,BR)-measurable if and only if

{x ∶ f(x) ⩽ t} ∈M for all t ∈ R.

(Since we can also take E ∶= {(−∞, t) ∶ t ∈ R}, we can replace ⩽ in the above inequality by <; ⩾ and > would

also work.)
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Example 2.1.4. Let (Y,BY ) be generated by E ∶= open sets in Y }. Then f ∶ X → Y (where X = (X,BX))
is continuous if and only if f−1(U) is open for U ⊂ E . If so, since f−1(U) is Borel for all U ∈ E , we see that f

is Borel measurable.

Beginning of Sept.22, 2021

We chose inverse images because forward images are not so “well-behaved”. For example, consider F ∶ C → [0,1]
(the Cantor function discussed earlier) and the Vitali (nonmeasurable) set A discussed in the beginning of this

course. Consider F −1(A). The Lebesgue measure of C is 0, and since it is complete, we see that F −1(A) should be

Lebesgue measurable and null. This shows that the image of a measurable set may become nonmeasurable.

If f, g are measurable, what about f ○ g, f + g, fg, etc.? What about fn → f?

Example 2.1.5: Composition of measurable function is measurable. Let g ∶ (X,M) → (Y,N) and f ∶
(Y,N)→ (Z,Q) be measurable functions. Immediately we see by definition that if E ∈Q then

(f ○ q)−1(E) = g−1(f−1(E)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈N

) ∈M,

which means f ○ g is measurable.

Example 2.1.6: Product of measurable functions. Consider f ∶ X → ∏
α∈A

Yα where Yα = (Yα,Nα) are

measurable spaces, and let fα ∶= πα ○ f , the αth coordinate function.

Claim: f is measurable into ⊗
α∈A

Nα if and only if fα is measurable into Nα for each α.

Proof. Recall that ⊗
α∈A

Nα is generated by {π−1α (E),E ∈ Nα, α ∈ A}, so each πα inverse images of the generators

and are hence measurable.

Therefore, if f is continuous, fα, a composition of measurable functions, is measurable.

Conversely, suppose each fα is measurable. To show f is measurable, it suffices to show that f−1(π−1α (E)) is

measurable for all generator π−1α (E)’s. However, this is nothing but f−1α (E) so it is indeed measurable.

Proposition 2.1.7

If f, g ∶X → R (or C) are measurable, then so are f + g and fg.

Proof. Write x ↦ f(x)g(x) as x ↦ (f(x), g(x)) ↦ f(x) = g(x). Since uv ↦ u + v is continuous and x ↦
(f(x), g(x)) is measurale, by definition we obtain measurability of f + g. Likewise for fg.
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2.2 Taking Limits

For R, we allow finite values as well as ±∞, i.e., we use the extended real line system R. Recall that for a sequence

{xn} ⊂ R, we have

lim sup
n→∞

xn = lim
n→∞
(sup
k⩾n

xk) = inf
n→∞
(sup
k⩾n

xk)

and

lim sup
n→∞

xn = lim
n→∞
(sup
k⩾n

xk) = sup
n→∞
(sup
k⩾n

xk).

From this we have

lim sup
n→∞

xn < x if and only if sup
k⩾n

xk < t for some n.

Also recall that

lim sup
n→∞

xn = largest subsequential limit

(and parallel for lim inf).

For a sequence of functions {fn}, we define lim sup fn to take the pointwise limit superior, i.e.,

f ∶= lim sup
n→∞

fn by f(x) ∶= lim sup
n→∞

fn(x).

Finally, two equations that will be helpful later on:

{x ∶ sup
n
fn(x) > t} =

∞
⋃
n=1
{x ∶ fn(x) > t} (1)

(note the strict inequality), and

{x ∶ inf
n
fn(x) < t} =

∞
⋃
n=1
{x ∶ fn(x) < t}. (2)

Proposition 2.2.1

Suppose {fn} are measurable (extended) real-valued functions. Then

sup
n
fn inf

n
fn lim sup

n
fn lim inf

n
fn

are all measurable.

Proof. Sup follows from (1), inf from (2). Using the definition lim sup = inf sup, the third claim follows from

first using (1) and then using (2), and likewise the last one follows from using (2) and then (1).

Corollary 2.2.2

If {fn} is a sequence of measurable C-valued functions and fn → f pointwise, then f is measurable. (Check

real and complex parts separately.)
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2.3 Integration

We begin by examining integration of nonnegative functions. To this end, we decompose f into nonnegative

functions

f+(x) ∶=max{f(x),0} and f−(x) ∶= −min{f(x),0} =max{−f(x),0}.

It follows immediately that f = f+ = f−.

Definition 2.3.1: Simple Functions

A simple function is a (complex valued) function that takes only finitely any values. In particular, we can

write a simple function as a linear combination of indicator functions:

f =
n

∑
i=1
ciχEi .

Beginning of Sept.24, 2021

Remark. A standard representation means that the Ei’s are pairwise disjoint, so Ei = f−1(ci).

Theorem 2.3.2: Approximation by Simple Functions

(1) If f ∶ X → [0,∞] is measurable, then there exist measurable functions 0 ⩽ φn ↑ f uniformly on any set

where f is bounded.

(2) If f ∶X → C, a similar claim holds with value replaced by magnitude.

Proof. For φn, we divide the y-axis into small intervals of length 1/2n, and we define a “2−n floor function” by

φn(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

k/2n if k/2n < f(x) ⩽ (k + 1)/2n and f(x) ⩽ 2n

2n if f(x) > 2n

0 if f(x) = 0.

Intuitively, as n gets large, the error in approximation is < 1/2n which tends to 0. It is also clear that {φn} is an

increasing sequence.

For the complex case, apply the real case to Ref and Imf separately.

Example 2.3.3. If fn is measurable and fn → f pointwise, then f is measurable. However, almost every-

where convergence does not preserve this property: let C be the Cantor set and let E ⊂ C be non-Borel.

Let fn ≡ 1 for all n and let f(x)χEc (so it is 1 almost everywhere). Then fn → f a.e. but f is not Borel-

measurable. (It is Lebesgue measurable, though, as the Lebesgue measure is complete.)

Proposition 2.3.4

Suppose µ is complete, all fn’are measurable (R- or C-valued), and fn → f a.e. (µ), then f is measurable.
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Proof. Define E ∶= {x ∶ fn(x) → f(x)}. By assumption Ec is contained is a null set (if µ is incomplete, it is

contained in a null set). We instead consider the functions f̃n, f̃ where f̃n ≡ fn, f̃ ≡ f on E and 0 on Ec, that is,

f̃n = f̃nχE f̃ = fχE .

Then f̃n → f̃ pointwise[!] so f̃ is measurable. Since f̃ = f a.e., we have f measurable too.

Lebesgue Integeration

Consider (X,M, µ). We define L+ ∶= {all measurable f ∶ X → [0,∞]}. For a simple function φ with standard

representation, we simply define

∫ φ dµ ∶=
n

∑
i=1
aiµ(Ei).

(This is basically the same as Riemann integration: sum of value times size.)

Q: does this integral depend on the representation of φ?

A: if Ej ’s are disjoint, in each representation, we can group together disjoint pieces with the same φ value (hence

the horizontal “slicing”). Hence the answer is no.

If A ⊂X and φ =
n

∑
i=1
aiχEi simple, then we define

∫
A
φ dµ ∶= ∫

X
φχA dµ =

n

∑
i=1
aiµ(Ei ∩A).

(so we “force” φ to be 0 outside A).

Proposition 2.3.5: Properties of the Lebesgue Integral

(1) Integrals can take infinite value (as we are only dealing with addition of integral of positive simple

functions).

(2) (Linearity) ∫ cφ dµ = c∫ φ dµ for c ⩾ 0,

(3) (Linearity) ∫ (φ + ψ) dµ = ∫ φ dµ + ∫ ψ dµ.

(4) (Monotonicity) If φ ⩽ ψ then ∫ φ dµ ⩽ ∫ ψ dµ.

(5) The mapping A↦ ∫
A
φ dµ defines a measure on A.

For (2), (3), (4), simply “divide” the corresponding {Ei},{Fi} into a collection of smaller sets.

Beginning of Sept.27, 2021

Proof. For (5), the only nontrivial claim is countable additivity. If A1,A2, ... are disjoint then

∫
⋃An

k

∑
j=1

ajχEj dµ =
k

∑
j=1

ajµ(Ej ∩ (
∞
⋃
n=1

An))

=
k

∑
j=1

aj
∞
∑
n=1

µ(Ej ∩An)

=
∞
∑
n=1

k

∑
j=1

ajµ(Ej ∩An) =
∞
∑
n=1
∫
An

φ dµ.
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Remark. Since A ↦ ∫
A
φ dµ defines a measure, continuity from below states that, if A1 ⊂ A2 ⊂ ... and

A =
∞
⋃
n=1

An, then

∫
An

φ dµ→ ∫
A
φ dµ.

Defining Lebesgue Integral on General (Nonnegative) Functions

For f ⩾ 0, we are tempted to define ∫ f dµ by choosing a sequence φn ↑ f and let ∫ f dµ = lim
n→∞∫ φn dµ.

However, this might depend on a particular sequence of φn. A better definition uses

∫ f dµ = sup{∫ φ dµ ∶ 0 ⩽ φ ⩽ f,φ simple}.

(Note that this is well-defined for simple functions too.)

Basic question. If fn → f a.e., does the integral converge?

Answer. No. Let fn ∶= n2χ[0,1/n]. They converge (almost) everywhere on (0,1] whereas the integral → ∞. Alter-

natively, consider fn ∶= 1/n on R: pointwise converging to 0 but integral is always ∞. We’ve given an example of

“large values on small sets” and an example of “small values on large sets”. Without balance, issues like this arise.

This question, however, has a positive answer for monoetone sequences of functions.

We define L+ ∶= {all measurable functions f ⩾ 0}.

Theorem 2.3.6: Monotone Convergence Theorem (MCT)

Suppose f1 ⩽ f2 ⩽ ... with fn ∈ L+ and f is the pointwise limit of fn. Then

∫ f = lim
n→∞∫ fn.

Proof. The ⩾ direction is clear as ∫ f ⩾ ∫ fn for all n. For ⩽, let ϵ > 0 be given and we want to show that

lim
n→∞∫ fn ⩾ (1− ϵ)∫ f . For this, we show that lim

n→∞∫ fn ⩾ ∫ (1− ϵ)φ for every simple φ ⩽ f . (Idea: for large n

we have fn ⩾ (1 − ϵ)φ, but we can’t just say this because the convergence is not uniform.)

Let φ ⩽ f be given. Let En ∶= {x ∈ X ∶ fn(x) ⩾ (1 − ϵ)φ(x)}. By pointwise convergence, for each n, there exist nx

such that

n ⩾ nx Ô⇒ fn(x) ⩾ (1 − ϵ)φ(x) Ô⇒ x ∈ En.

Hence E1 ⊂ E2 ⊂ ... and
∞
⋃
n=1

En =X. Also,

∫ fn ⩾ ∫
En

fn ⩾ ∫
En

(1 − ϵ)φ,

so taking the limit of En (recall that En ↦ ∫
En

φ defines a measure!) gives

lim
n→∞∫ fn ⩾ lim

n→∞∫En

(1 − ϵ)φ = ∫ (1 − ϵ)φ for all simple φ ⩽ f.

Letting ϵ→ 0, we obtain our claim.
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Definition 2.3.7

For a general real-valued f (not f ⩾ 0), recall that f = f+ − f−. We define

∫ f dµ ∶= ∫ f+ dµ − ∫ f− dµ

(the integral is not defined if the above subtraction takes form ∞−∞). If both are finite (so ∫ f is finite),

we say f is integrable. Note that since ∣f ∣ = f+ + f−, being integrable is equivalent to ∫ ∣f ∣ dµ <∞.

If f is C-valued, when both exist, we define

∫ f dµ ∶= ∫ Ref dµ + i∫ Imf dµ.

Also note that saying this is finite is equivalent to saying ∫ ∣f ∣ dµ <∞. To this end, we define

L1 ∶= {all C − valued integral functions f on (X,M, µ)}.

Proposition 2.3.8

For f ∈ L1, ∣∫ fdµ∣ ⩽ ∫ ∣f ∣dµ.

Proof. For R-valued f ,

∣∫ f ∣ = ∣∫ f+ − ∫ f+∣ ⩽ ∫ f+ + ∫ f− = ∫ ∣f ∣.

For a C-valued function, we “rotate” f to make it R-valued: choose θ such that

∫ f = e−iθ∣∫ f ∣

so ∫ eiθf is real. Therefore,

∣∫ f ∣ = ∣∫ eiθf ∣ = ∣∫ (eiθf)∣
∗
⩽ ∫ ∣Re(eiθf)∣ ⩽ ∫ ∣eiθf ∣ = ∫ ∣f ∣,

where (∗) is by the first part of this proof.

Beginning of Sept.27, 2021

Remark: MCT on downward convergence. What if fn ↓ f? If g ⩾ f then we write g − fn ↑ g − f . If g is

integrable (i.e., the following does not take the form∞−∞) then the MCT gives

∫ (g − fn)→ ∫ (g − f) Ô⇒ ∫ g − ∫ fn → ∫ g − ∫ f Ô⇒ ∫ fn → ∫ f.

However, if g is not integrable, this claim fails: consider fn(x) ∶= 1/n on R.
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Corollary 2.3.9

If fn ⩾ 0 then
k

∑
i=1
fn ↑

∞
∑
n=1

fn. If each fn ∈ L+ and f ∶=
∞
∑
n=1

fn, then ∫ f =
∞
∑
n=1
∫ fn.

Proof. First we verify finite additivity: for f1, f2 we have sequences of nonnegative simple functions φn ↑ f1 and

ψn ↑ f2. By linearity of integral for simple functions,

∫ (φn + ψn) = ∫ φn + ∫ ψn.

Letting n→∞ we see ∫ (f1 + f2) = ∫ f1 + ∫ f2. The rest of the claim follows from MC on
k

∑
n=1

fn.

Proposition 2.3.10

For f ∈ L+, the integral ∫ f = 0 if and only if f = 0 almost everywhere.

Proof. For ⇐, notice that for simple functions φ =
n

∑
i=1
aiχEi = 0 a.e. We have m(Ei) = 0 for all i so ∫ φ = 0. For

general f with f = 0 a.e., since any simple function below it has integral 0, ∫ f = 0 as well.

For ⇒, notice that (f = 0 almost everywhere) ⇔ (µ({x ∶ f(x) > 1/n}) = 0 for all n). Let En be the set

corresponding to 1/n. Since f ⩾ 1/n ⋅χEn , ∫ f ⩾ µ(En)/n. Therefore µ(En) = 0 for all n, which shows that f = 0
almost everywhere.

Remark. By the same token, in general if f ⩾ 0 and ∫ f <∞, then µ(En) <∞ for all n.

Corollary 2.3.11

If ∫
E
f = ∫

E
g for all E (and f, g are integrable), then f = g a.e.

Proof. Consider {x ∶ f(x) > g(x)} = (f − g)−1((0,∞)), a measurable set. Let it be E. If f = g a.e. then f − g = 0
a.e., so ∫

E
(f − g) = 0 for all E, and so ∫E f = ∫E g a.e.

Theorem 2.3.12: Fatou’s Lemma

For {fn} ⊂ L+,

∫ lim inf
n→∞

fn ⩽ lim inf
n→∞ ∫ fn.

Proof. Notice that inf
n⩾k

fn monotonically increases as k increases and its limit is lim inf
n→∞

fn(x). By MCT

∫ lim inf
n→∞

fn = lim
k→∞∫ inf

n⩾k
fn = lim inf

k→∞ ∫ inf
n→k

fn ⩽ lim inf
k→∞ ∫ fk.
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Proposition 2.3.13

(a) For f ∈ L1, {x ∶ f(x) ≠ 0} is σ-finite.

(b) For f, g ∈ L1,

∫
E
f = ∫

E
g for all E ∈M⇔ ∫ ∣f − g∣ = 0⇔ f = g a.e.

Proof.

(a) We showed that {x ∶ f(x) ≠ 0} =
∞
⋃
n=1
{x ∶ ∣f(x)∣ > 1/n} where each “1/n” set (call it En) satisfies

1

n
µ(En) ⩽ ∫ ∣f ∣ <∞.

(b) We’ve shown ∫ ∣f − g∣ = 0 if and only if ∣f − g∣ = 0 a.e., i.e., f = g a.e. For the first⇔, the⇐ is given by

∣∫
E
f − ∫

E
g∣ = ∣∫ (f − g)χE∣ ⩽ ∫ ∣f − g∣χE ⩽ ∫ ∣f − g∣.

Conversely, suppose ∫
E
f = ∫

E
g for all E ∈M. For real-valued functions take E ∶= {x ∶ f(x) > g(x)}. Then

0 = ∫
E
f − ∫

E
g = ∫ (f − g)χE

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⩾0

,

so (f − g)χE = 0 almost everywhere. A similar argument follows for {x ∶ f(x) < g(x)}. The claim follows.

For C-valued functions, we apply the same argument to Re(f − g) and Im(f − g).

Definition 2.3.14: L1 Norm

Note that ∫ f makes sense for f even if f is undefined on a null set. Define

ρ(f, g) ∶= ∫ ∣f − g∣ for f, g ∈ L1

the “L1 distance”. (Note that this is a pseudometric since ρ(f, g) = 0 only implies f = g a.e.) To this end, we

define an equivalence relation f ∼ g if f = g a.e. Then ρ is a metric on these equivalence classes.

Note that for indicators, ∣χE − χF ∣ = χE∆F , so

µ(E∆F ) = ∫ ∣χE − χF ∣ = ρ(χE , χF )

also gives a (pseudo)metric on sets. This verifies one of the HW2 problems.

Beginning of Oct.1, 2021
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Example 2.3.15: Fatou for limsup. Fatou’s lemma states that lim inf ∫ fn ⩾ ∫ lim inf fn. For the limsup

argument, if there exists g integrable with g ⩾ fn for all n,

g(x) − lim sup
n→∞

fn(x) = lim inf
n→∞

(g(x) − f(x))

so in this case

∫ lim inf(g(x) − f(x)) ⩽ lim inf ∫ (fn − gn)

and thus ∫ lim sup fn ⩾ lim sup∫ fn.

Example 2.3.16. If fn ∶= χEn then

lim sup
n→∞

χEn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x ∈ En for infinitely many n

0 if not.

Hence lim sup
n→∞

En = {x ∶ x ∈ En for infinitely many En’s}. The limsup variation of Fatou implies

µ(lim sup
n→∞

En) ⩾ lim sup
n→∞

µ(En).

(Integrating χ gives measure of set.) For example if finitely many En’s have measure ⩾ 1/3, then

µ({x ∶ x ∈ En for infinitely many n}) ⩾ 1

3
.

Example 2.3.17: Counting Measure. Let µ(E) ∶= ∣E∣ the cardinality (either finite or infinite). On N, we

can write µ ∶=
∞
∑
n=1

δn. We can take M ∶= P(N). We can think of a function f on N as a sequence {an}n⩾1.

We claim that ∫ fdµ = ∫ f d(
∞
∑
i=1
δn) =

∞
∑
n=1
∫ f dδn =

∞
∑
n=1

an.

To see this, we first show that the claim holds for φ (simple functions): if φ ∶=
k

∑
j=1

cjχEj , then

∫ φ dµ =
k

∑
j=1

cj ∣Ej ∣

where ∣Ej ∣ is the number of times cj appears in the sequence.

Now for general g ⩾ 0: we know

∫ f dµ = sup{∫ φ dµ ∶ 0 ⩽ φ ⩽ f,φ simple}.

In particular consider the truncated sequence {an}kn=1; the supremum evaluates to
∞
∑
n=1

f(n).

For general f , taking f = f+ − f−, the claim holds provided
∞
∑
n=1

f(n) converges absolutely.
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Example 2.3.18: Nonnegative double arrays. How to compare
∞
∑
k=1

∞
∑
n=1

ak,n and
∞
∑
n=1

∞
∑
k=1

ak,n?

Solution. We can denote ak,n by fk(n) and let µ be the counting measure. Then the LHS is
∞
∑
k=1
∫ fk dµ

and the RHS is ∫
∞
∑
k=1

fk dµ. If ak,n ⩾ 0 then the MCT gives =. The general case is shown later.

Example 2.3.19: Do integrals define measures?. Suppose µ, ν are finite Borel measures on [0,1] and

∫ f dµ = ∫ f dν for all continuous f . Does µ = ν?

Solution. It is enough to examine indicators χ[0,t] for t ∈ [0,1] (as µ, ν are both generated by distribution

functions).

For a given t, there exist continuous functions fn ↓ f ∶= χ[0,t]. Consider MCT on 1 − fn:

1 − ∫ f dµ = ∫ (1 − f) dµ = lim
n→∞∫ (1 − fn) dµ = lim

n→∞∫ (1 − fn) dν.

Therefore Fµ = Fν and so µ = ν.

Theorem 2.3.20: Lebesgue’s Dominated Convergence Theorem (DCT)

Let fn ∈ L1 with fn → f a.e. and suppose that there exists g ∈ L1 with ∣fn∣ ⩽ g for all n. Then f ∈ L1 and

∫ fn → ∫ f.

Example 2.3.21. Let µ be a finite Borel measure on R. Define the Fourier transform

F (t) ∶= ∫ eitx µ(dx) t ∈ R.

Question: does F ′(t) = ∫ ixeitx µ(dx)?

Solution. Notice that
F (t + h) − F (t)

h
= ∫

eix(t+h) − eitx

h
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ψn(x)

µ(dx).

Take h = hn and let hn → 0. Then lim
n→∞

ψn(x) = ixeitx =∶ ψ(x). Thus we have ψn → ψ and we wonder if

∫ ψn → ∫ ψ. Indeed:

∣ψn(x)∣ = ∣eitx∣∣
eixhn − 1
hn

∣ = ∣e
ixhn − 1
hn

∣,

and the numerator is

eixhn − 1 = ∫
hnx

0
i−1 ( d

du
eiu) du = ∫

hnx

0
eiu du

where ∣ieiu∣ ⩽ 1. Hence

∣eixhn − 1∣ ⩽ ∫
∣hnx∣

0
1 dµ = ∣hnx∣.
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This means ∣ψn(x)∣ ⩽ ∣x∣. Thus if ∫ ∣x∣ dµ <∞, the claim holds according to DCT.

Beginning of Oct.4, 2021

More generally, given a function G(t, x), does
d

dt
∫ G(t, x)µ(dx) = ∫

∂

∂t
G(t, x)µ(dx)?

By the same token, we take hn → 0 and ψn(x) ∶=
G(t + hn, x) −G(t, x)

hn
and ψ(x) = ∂

∂t
G(t, x).

It is sufficient that all ∣ψn∣ is bounded by some integrable g. MVT states

∣ψn(x)∣ ⩽ sup
t
∣∂G
∂t
(t, x)∣

so it is sufficient if we can find g ∈ L1 with sup
t
∣ ∂
∂t
G(t, x)∣ ⩽ g(x).

Proof of the Lebesgue DCT. First change fn, f to 0 on a null set where pointwise convergence fails. Then fn → f

everywhere. Then ∣fn∣ ⩽ g means ∣f ∣ ⩽ g and so f ∈ L1.

WLOG assume f is real-valued (complex-valued proof is analogous by considering Refn,Imfn separately). It

suffices to show that lim inf ∫ fn ⩾ ∫ f ⩾ lim sup∫ fn.

Since fn ⩾ −g, fn + g ⩾ 0, so Fatou’s lemma gives

lim inf ∫ fn + ∫ g = lim inf ∫ (fn + g) ⩾ ∫ lim inf(fn + g) = ∫ (f + g).

Since g is integrable, subtracting gives lim inf ∫ fn ⩾ inf f . Similarly, for −fn we have

− lim sup∫ fn = lim inf ∫ −fn ⩾ ∫ (−f)

so taking “−” gives the claim.

Example 2.3.22: DCT on series. If (fn ∈ L1 and)
∞
∑
n=1
∫ ∣fn∣ < ∞, then

∞
∑
n=1

fn ∈ L1 with ∫
∞
∑
n=1

fn =
∞
∑
n=1
∫ fn.

Sometimes showing ∫X fn → infX f requires different methods on different parts of X, e.g., MCT on A and DCT on

Ac. Consider the fowling example.

Example 2.3.23. Let f ∈ L1, f > 0. Note that
d

dt
ut∣

t=0 = logu. Consider the equality

lim
ϵ→0

1

ϵ
∫
X
(f ϵ − 1) = ∫

X
log f.

To prove this, let ϵn be a sequence converging to 0.

To use DCT, we need

∣f(x)
ϵ − 1
ϵ

∣ ⩽ g(x) ∈ L1 for small ϵ.
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In other words, do we have ∣(tϵ − 1)/ϵ∣ ⩽ Ct for some C, all t, and small ϵ? The answer is not for small t,

because this tends to ∣log t∣ as ϵ→ 0 and ∣log t∣→ −∞ as t→ 0.

However, if we only consider t ⩾ 1, this is equivalent to considering tϵ ⩽ 1 + ϵCt for small ϵ. Define φ(t) ∶= tϵ

and ψ(t) ∶= 1 + ϵCt. Then

φ(0) < ψ(0) and
φ′(t)
ψ′(t)

= t
ϵ−1

C
⩽ 1

C
.

Taking C = 1 then φ′ ⩽ ψ′ so φ ≤ ψ for t ⩾ 1; that is, for ϵ small and t ∈ [1,∞), DCT works on A ∶= {x ∶ f(x) ⩾
1}.
For Ac, f(x) = t < 1, so 0 > (f ϵ − 1)/ϵ; as ϵ ↓ 0, this quotient monotonically decreases to log f . We can then

multiply by −1 and apply MCT on Ac. Thus,

lim
n→∞

1

ϵn
∫ (f ϵn − 1) = lim

n→∞

1

ϵn
∫
A
(f ϵn − 1) + lim

n→∞

1

ϵn
∫
Ac
(f ϵn − 1)

= ∫
A
log f

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
DCT

+∫
Ac

log f

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
MCT

= ∫ log f.

Example 2.3.24: Other limits besides limits. Consider F (t) ∶= ∫ f(t, x)µ(dx) as t → t0. If (⋅, x) is

continuous at t0 for all x, i.e., f(t, x) → f(t0, x) as t → t0 for all x and ∣f(t, x)∣ ⩽ g(x) for all x and t near t0,

then by DCT F (t)→ F (t0).

Example 2.3.25. Find lim
t→0
∫

a

0

sin(tx)
tx

dx. (We define the quotient to be 1 if the division is of form 1/1.)

Indeed (t, x)→ f(0, x) as t→ 0. Also, the function is dominated by 1, and 1 is integrable on [0, a]. Thus

lim
t→0
∫

a

0

sin(tx)
tx

dx = ∫
a

0
1 dx = a.

Beginning of Oct.6, 2021

Approximation in L1

Theorem 2.3.26

Integrable simple functions are dense in L1. (The distance is w.r.t. to d(f, g) = ∫ ∣f − g∣.)

Proof. Let f ∈ L1. Recall that there exists a sequence {φn} of simple functions with ∣φn∣ ↑ ∣f ∣ pointwise, i.e.,

∣φn − f ∣→ 0 pointwise. Since ∣φn − f ∣ is dominated by 2∥f∥ ∈ L1, by DCT ∫ ∣φn − f ∣→ 0.

Definition 2.3.27: Step Function

A step function is a simple function that is constant on intervals.

39



YQL - MATH 525a Notes 2.3 - Integration Current file: 10-8.tex

Theorem 2.3.28

For µ a Lebesgue-Stiltjes measure on R, step functions are dense in L1.

Proof. Let ϵ > 0 and f ∈ L1(µ). From the previous theorem there exists a simple φ =
m

∑
j=1

aiχEj with ∫ ∣f − φ∣ < ϵ.

We may assume aj ≠ 0 and all Ej ’s are bounded (if not, intersect it with [−M,M] for sufficiently large M ,

because µ(Ej ∩ [−n,n])→ µ(Ej) as n→∞).

Fix j. We can approximate Ej by a bounded open U ⊃ E with µ(U −Ej) < ϵ/(m∣aj ∣). Write U as ⋃
k⩾1

Ik a union

of open intervals. Then there exists n such that

µ(U −
n

⋃
k=1

Ik) <
ϵ

m∣aj ∣
.

Defining Fj ∶=
n

⋃
k=1

Ik, we have ∫ ∣χEj − χFj ∣ <
2ϵ

m∣aj ∣
.

If we define ψ ∶=
m

∑
j=1

ajχFj a step function, we obtain the desired approximation:

∫ ∣f − ψ∣ ⩽ ∫ ∣f − φ∣ + ∫ ∣φ − ψ∣ < ϵ +
m

∑
j=1
∣aj ∣ ⋅

2ϵ

m∣aj ∣
⩽ 3ϵ.

Theorem 2.3.29

For µ a Lebesgue-Stieltjes measure on R, continuous functions are dense in L1.

Proof. Let ϵ > 0 and f ∈ L1. There exists a step function ψ =
m

∑
j=1

ajχIj with ∫ ∣f − ψ∣ < ϵ. We take Ij ’s open with

Ij = (aj , bj). Main idea: approximate each χIj by a piecewise linear function (from (aj ,0) to some (aj + 1/n,1)
to (bj − 1/n,1) to (b,0)) so that the L1 between χIj and this function is < ϵ/(m∣aj ∣).

Lebesgue and Riemann Integrals

Beginning of Oct.8, 2021

Let f ∶ [a, b] → R and let Pk = {t0, ..., tk} with a = t0 < ... < tn = b be a partition. Let Mj ,mj be the supremum and

infimum in [tj−1, tj]. In Riemann integration, we defined the upper and lower sums to be GPk
and gPk

such that

GPk
≡Mj gPk

≡mj on [tj−1, tj].

Define the integrals of GPk
, gPk

to UPk
f,LPk

f , respectively. Suppose GPk
↓ G and gPk

↑ g. Also define

H(x) ∶= lim sup
y→x

f(y) and h(x) ∶= lim inf
y→x

f(y).

It follows that G(x) =H(x) if x ∉ ⋃
k⩾1

Pk. To make everything rigorous:
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Theorem 2.3.30

Let f be a bounded R-valued function on [a, b]. Then

(a) f is Riemann integrable⇒ f is Lebesgue integrable and the integrals agree;

(b) f is Riemann integrable⇔ {x ∶ f is discontinuous at x} is a (Lebesgue) null set.

Proof.

(a) Note that ∫ GPk
dm = UPk

f ↓ ∫
b

a
f(x) dx and ∫ gPk

dm = LPk
f ↑ ∫

b

a
f(x) dx. Since f is bounded,

∫ GPk
dm→ ∫ G dm = ∫ H dm

and

∫ gPk
dm→ ∫ g dm = ∫ h dm.

Thus the upper and lower Riemann sums are the same if and only if ∫ (H − h) dm = 0. Since H ⩾ h, this

is equivalent to H = h a.e., i.e., f continuous almost everywhere. Hence

f Riemann integrable⇒H = f = g a.e.⇒ f Lebesgue measurable.

When does ∫ fn ↛ ∫ f even if fn → f a.e. and µ(X) <∞?

Fix a large K. We truncate fn, f at ±K such that

f (k)n (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−K fn < −K

fn(x) fn(x) ∈ [−K,K]

K fn >K.

By assumption fn → f a.e., we see f (k)n (x) → f (k)(x), a.e. Since µ(X) < ∞, all functions are bounded by the

integrable function K, so by Lebesgue DCT

∫ f (k)n → ∫ f (k) for all K.

Therefore, failure of ∫ fn → inf must be caused by large values (positive or negative) of f on small sets, for example

xn ∶= n2χ(0,1/n].

Modes of Convergence

Previously we talked about a.e. convergence, L1 convergence, and uniform convergence. Here we introduce two

more modes of convergence:
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Definition 2.3.31: Convergence in Measure

We say fn → f in measure if for every ϵ > 0,

µ({x ∶ ∣fn(x) − f(x)∣ > ϵ})→ 0 as n→∞.

Definition 2.3.32: Cauchy-ness in Measure

We say {fn} is Cauchy in measure if for every ϵ > 0,

µ({x ∶ ∣fn(x) − fm(x)∣ > ϵ}) Ô⇒ 0 as min(m,n)→∞.

Questions:

(1) Do these two new modes imply each other?

(2) How do they relate to the previous modes?

(3) Does there exist a metric d of functions such hat fn → f in measure⇔ d(fn, f)→ 0?

Example 2.3.33. Some examples with Lebesgue measure on R:

fn f pointwise a.e. uniform in L1 in measure

n−1χ(0,n] f ≡ 0 yes yes yes no yes

nχ(0,1/n] f ≡ 0 yes yes yes no yes

* f ≡ 0 no no no yes yes

The starred one refers to the indicator functions of

[0,1), [0,1/2), [1/2,1), [0,1/3), [1/3,2/3), [2/3,1), [0,1/4), ...

We refers to this as the “scanning interval”.

Proposition 2.3.34: L1 Convergence ⇒ Convergence in Measure

If fn → f in L1 then fn → f in measure.

Heuristically, “violation eventually stops” implies “violation eventually gets small”.

Proof. Fix ϵ. Define

En,ϵ = {x ∶ ∣fn(x) − f(x)∣ > ϵ}.

Then ∣fn − f ∣ ⩾ ϵχEn,ϵ , so ∫ ∣fn − f ∣ ⩾ ϵµ(En,ϵ). Since the LHS → 0 as n → ∞, we must have µ(En,ϵ) → 0 as

n→∞. Since ϵ is arbitrary, this completes the proof.
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Beginning of Oct.18, 2021

Theorem 2.3.35

Let {fn} be measurable functions.

(1) {fn} is Cauchy in measure if and only if they converge in measure.

(2) If {fn} is Cauchy (or converges in measure), then some subsequence {fnk
} converges a.e.

(3) Unique limit in measure: if fn → f and fn → g in measure, then f = g a.e.

Proof of (2). Choose {nj} so that µ({x ∶ ∣fnj(x) − fm(z)∣ ⩾ 3−j} ⩽ 2−j for all m ⩾ nj (the bad sets). Define

correspondingly Ej ∶= {x ∶ ∣fnj(x) − fnj+1(x)∣ ⩾ 3−j}. Let Fk ∶= ⋃
j⩾k

Ej so µ(Fj) ⩽ 2−k+1. Let F = ⋂
k⩾1

Fk (the

collection of x for which violations never stop). It follows that for x ∉ F , the violation stops, so

f(x) = lim
j→∞

fnj(x)

exists. Thus for x ∉ F ,

∣fnj(x) − f(x)∣ ⩽
∞
∑
m=j
∣fnm(x) − fnm+1(x)∣ ⩽

∞
∑
m=j

3−m = 3

2
e−j

so µ({x ∶ ∣fnj(x) − f(x)∣ > 3/2 ⋅ e−j}) ⩽ µ(Fj) ⩽ 2−j+1. Hence given ϵ > 0, for large j we have 3/2 ⋅ 3−j < ϵ and

µ({∣fnj(x) − f(x)∣ > ϵ}) ⩽ 2−j+1 → 0.

This says fnj → f in measure.

Proof of (1). We now want to show that the full sequence fn → f in measure. We compare the subsequence to

the full sequence:

{x ∶ ∣fn(x) − f(x)∣ > ϵ} = {x ∶ ∣fn(x) − fnj(x)∣ > ϵ/2} ∪ {x ∶ ∣fnj(x) − f(x)∣ > ϵ/2}.

Take nj > n. Then n →∞ implies nj →∞. Cauchy in measure says µ of the first set → 0. On the other hand, the

convergence in measure of subsequence implies that µ of the second set also → 0.

The converse is trivial.

Proof of (3). Suppose fn → f and fn → g in measure. Then

µ({x ∶ ∣f(x) − g(x)∣ > ϵ}) ⩽ µ({x ∶ ∣f(x) − fn(x)∣ > ϵ/2}) + µ({x ∶ ∣g(x) − fn(x)∣ > ϵ/2})→ 0

for all ϵ. Note that the original expression does not contain fn’s. Thus f = g a.e.

Remark. There is no metric for pointwise convergence of functions on uncountable X. None for a.e.

convergence either.

Proof of Lebesgue case. We consider [0,1] with Lebesgue. Suppose there were a metric d such that fn → f a.e.

implies d(fn, f) = 0. In a metric space, if yn ↛ y, then there exists ϵ > 0 and {ynk
} such that d(ynk

, y) > ϵ. Hence
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no further subsequence {ynk(ℓ)} can possibly converge to y.

We recall that the scanning interval example fn → 0 in measure but not a.e. But then every subsequence fnk
→ 0

in measure, so does any further subsequence fnk(ℓ) . But this is not possible in a metric space, so there is no

metric for which fn → f a.e. if and only if d(fn, f)→ 0.

Lemma: Riemann-Lebesgue Lemma

Let f ∶ R→ R, f ∈ L1(m). Then

∫
R
e−itxf(x)m(dx)→ 0 as t→∞.

Beginning of Oct.20, 2021

Example 2.3.36. Define hn on [0,1] by

hn(x) =
n

∑
j=1
(−1)jχ((j−n1)/n,j/n](x).

Suppose f is integrable on [0,1]. Then lim
n→∞∫[0,1]

fhn dm = 0.

Proof. We can use a density argument and examine step functions. If φ = χ(a,h], most 1/n-intervals cancel each

other out except up to three 1/n-intervals. Hence

∣∫
[0,1]

χ(a,h]hn dm∣ ⩽ 3

n
→ 0.

For more general integrable f : let ϵ > 0 be given. There exists a step function φ with ∫ ∣f − φ∣ < ϵ. Then

∣∫ hnf ∣ ⩽ ∣∫ hn(f − φ)∣ + ∣∫ hnφ∣ ⩽ ∫ ∣hn∣∣f − φ∣ + ∣∫ hnφ∣.

We’ve shown that the second term → 0. For the first one, since ∣hn∣ ⩽ 1, ∫ ∣hn∣∣f − φ∣ ⩽ ∫ ∣f − φ∣, so

lim sup
n→∞

∣∫ hnf ∣ ⩽ ϵ.

Theorem 2.3.37: Riemann-Lebesgue (Lemma)

Let f ∶ R→ R be integrable. Then

∫
R
e−itxf(x)m(dx)→ 0 as t→∞.
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Definition 2.3.38: Almost Uniform Convergence

We say fn → f almost uniformly if for all ϵ > 0, there exists E ⊂X with µ(E) < ϵ such that fn → f uniformly

on Ec.

Example 2.3.39. Consider fn(x) ∶= 1/(nx) for x ∈ [0,1]. The convergence is obviously not uniform, but if

we take out [0, ϵ] then the convergence on (ϵ,1] is uniform.

Theorem 2.3.40: Egoroff’s Theorem

If µ(X) <∞, then a.e. convergence implies almost uniform convergence.

Proof. We chance fn, f on a null set so that fn → f pointwise. For each fixed x, the violations of bound /k
eventually stops: for big n ⩾ Nk(x),

∣fn(x) − f(x)∣ ⩽ 1/k.

On the other hand, “uniform on Ec” means

n ⩾ Nk(x) Ô⇒ ∣fn(x) − f(x)∣ ⩽
1

k
for all x ∈ Ec. (*)

We want to combine (over k) the “bad sets” where (*) fails, with the combined set still small.

We write the bad sets

{x ∶ ∣fn(x) − f(x)∣ > 1/k for some n ⩾m}.

By pointwise convergence, these sets eventually shrink to ∅ as m→∞. Hence for each k, there exists nk where

µ({x ∶ ∣fn(x) − f(x)∣ > 1/k for some n ⩾ nk} < ϵ2−k.

Then the union E of these sets has measure < ϵ. For x ∈ Ec, the violation eventuallly stops: n ⩾ nk implies

∣fn(x) − f(x)∣ ⩽ 1/k for all x ∈ Ec. This shows almost uniform convergence.

Corollary 2.3.41

If µ(X) <∞, ϵ > 0, fn → f a.e., and fn continuous, there exists a E such that µ(E) < ϵ and fn → f uniformly

on E, so f ∣
Ec is continuous.

Note that “f is continuous at x for all x ∈ Ec” is stronger than “f ∣
Ec is continuous!” For example consider [0,1],

F ∶= irrationals, and f = χF . Then f ∣
F
≡ 1 but clearly f is not continuous at any point.

Summary of Convergence.

(1) We showed (convergence in L1)⇒ (convergence in measure).

(2) For µ(X) <∞:

(i) (convergence a.e.) ⇒ (almost uniform) (Egoroff)
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(ii) (convergence a.e.) ⇒ (convergence in measure)

(3) For countable X, say X = N: we can assume µ({x}) > 0 for all x by throwing out all points at which the

measure is 0. Suppose µ(X) < ∞ so convergence a.e. ⇒ convergence in measure. Suppose fn → f in

measure. Fix x0 ∈ N and ϵ > 0. If ∣fn(x0) − f(x0)∣ > ϵ for infinitely many n, then for these n,

µ({x ∶ ∣fn(x) − f(x)∣ > ϵ}) ⩾ µ({x0}) > 0,

a contradiction. Hence if fn → f in measure, fn → f must happen on all these points with positive measure.

Beginning of Oct.22, 2021

2.4 Product Algebra and the Fubini-Tonelli Theorem

Recall in calculus we have integrals of form∬ f(x, y) dxdy or∬
D
f(x, y) dA.

General picture: we want product measures. More specifically, let (X.M, µ) and (Y,N, ν) be two measure spaces,

and let M ⊗N be the product σ-algebra generated by {A ×B ∶ A ∈M,B ∈ N}, and we want a measure µ × ν such

such that (µ × ν)(A × b) = µ(A)ν(B).

Example 2.4.1. In R ×R, the finite unions of geometric rectangles form an elementary family. We can use

this to get m ×m (where m is the Lebesgue measure).

Example 2.4.2. In probability, let S,T be random quantities defined on (Ω,F,P). We have the “push-

forward distribution”

µ(A) = P(S ∈ A) ν(B) = P(T ∈ B)

where A,B ∈ BR. If S,T are independent then

P(S ∈ A,T ∈ B) = P(S ∈ A)P(T ∈ B),

i.e.,

(µ × ν)(A ×B) ∶= P((S,T ) ∈ A ×B) = µ(A)ν(B).

In general, let

A ∶= {all finite disjoint unions of abstract rectangles}.

Then A is an algebra which generates M⊗N. To construct µ × ν we need a premeasure on A; for

C =
n

⋃
j=1

Aj ×Bj ,

we define

(µ × ν)(C) ∶=
n

∑
j=1

µ(Ai)ν(Bi).
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We need to first check if this notion is well-defined; that is, if the representation is not unique, for example C =
m

⋃
i=1
Ei × Fi, we need the definition to be consistent. Heuristically we can decompose the coordinates in X into smaller

pieces from which we can both assemble Ai and Aj and likewise we can break Y into smaller pieces to assemble Bi and

Bj . The idea is that both original sums will become the same thing under this representation. This shows that µ × ν is

well-defined.

We can again verify µ × ν is a premeasure but the proof is omitted. Therefore µ × ν on A has an extension to a

measure on σ(A) =M⊗N. This extended µ × ν is called the product measure.

A similar definition holds for µ1 × ... × µn on M1 ⊗ ...⊗Mn.

Definition 2.4.3: Sections of a set

Let E ⊂X × Y . Then

Ey ∶= {x ∈X ∶ (x, y) ∈ E}

and

Ex ∶= {y ∈ Y ∶ (x, y) ∈ E}

are called the sections of E in the product space X × Y . (The first one is a horizontal slice and the second a

vertical slice.)

Sections commute with a set of operations: for a fixed x,

(E ∪ F )x = Ex ∪ Fx (E ∩ F )x = Ex ∩ Fx (Ex)c = (Ec)x.

The same holds for a fixed y. Unions and intersections also hold for arbitrary number of sets.

Similarly, we can apply the definitions to functions and define

fx(⋅) ∶= f(x, ⋅) fy(x) ∶= f(⋅, y).

Then

f−1x (B) = (f−1(B))x (fy)−1(A) = (f−1(A))y.

Proposition 2.4.4

(1) If E ⊂M ×N, then all sections Ex,Ey are measurable.

(2) If f is a function on X × Y . If f is measurable with respect to M⊗N, then so are any fx, fy.

Proof.

(1) The claim is true for A ×B ∈M⊗N. Let E ∶= {E ∈M⊗N ∶ all sections are measurable}. We want to show

E is a σ-algebra. Since

(⋃
j

E(j))x =⋃
j

E(j)x

we get E is closed. Similarly E is closed under complementation. Therefore E ⊃M⊗N. Clearly E ⊂M⊗N,

so they are equal.

(2) Recall that f−1x (B) = (f−1(B))x. Since f is measurable, f−1(B) is measurable. Hence f−1x (B) is measur-
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able, and this says fx is measurable. Likewise for fy.

Beginning of Oct.25, 2021

Question. Does it hold in general that

(µ × ν)(E) = ∫ µ(Ey)ν(dy) = ∫ ν(Ex)µ(dx)? (∆)

Last time we show that each slice is indeed measurable, so ν(Ex), µ(Ey) are well-defined. However a new question

arises — is ν(Ex) a measurable function of x, and is µ(Ey) a measurable function of y?

Recall the general principle. We define a property P by saying E has the property if ν(Ex), µ(Ey) are measurable

functions of x, y and (∆) holds for E.

Notice that originally the general principle requires that {sets with property P} to be a σ-algebra, but there’s an

easier alternative:

Definition 2.4.5: Monotone class

A monotone class is a collection C of subsets of X such that C is closed under countable increasing unions

and countable decreasing intersections.

Note that σ-algebras are always monotone classes but not the converse.

Just like σ-algebra, a set E generates a monotone class, which is defined to be the intersection of all monotone

classes containing E. Hence this monotone class is a (possibly non-strict) subset of σ(E).

Lemma

LetA be an algebra and M,C be the σ-algebra and monotone class generated byA, respectively. Then M = C.

Upshot. For an algebra A, the general principle works exactly the same if we show {sets with property P} is a

monotone class.

Proof. By definition C ⊂M so it suffices to show C is a σ-algebra so C ⊃M.

We say (E,F ) forms a good pair if E ∩ F,E − F,F − E are all in C. We will show that all E,F ∈ C make good

pairs.

Clearly, if E,F ∈ A then this works by the definition of an algebra.

More generally, fix E ∈ C. Define C(E) ∶= {F ∈ C ∶ (E,F ) is a good pair}.
Claim. C(E) is a monotone class.

For countable increasing unions, suppose F1 ⊂ F2 ⊂ ..., all in C(E). We show that (E, ⋃
n⩾1

Fn) is a good pair so

the union is in C(E):
E ∩ (⋃

n⩾1
Fn) = ⋃

n⩾1
(E ∩ Fn)

where E ∩ Fn forms an increasing sequence. Since C is a monotone class, the union is in C.

E − (⋃
n⩾1

Fn) = ⋂
n⩾1
(E − Fn)
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where E − Fn forms a decreasing sequence, so the intersection is again in C. Finally,

(⋃
n⩾1

Fn) −E = ⋃
n⩾1
(Fn −E),

again an increasing union, which is therefore in C. Similarly we can show C(E) is closed under decreasing

intersections. Hence C(E) is a monotone class.

Now notice that if E ∈ A then C(E) ⊃ A, so C(E) ⊃ all of C. Hence (E,F ) is a good pair for all E ∈ A and F ∈ C.
Equivalently A ⊂ C(F ) for all F ∈ C. But we showed C(F ) is a monotone class, so A ⊂ C(F ) ensures C ⊂ C(F ).
This says (E,F ) is a good pair for all E,F ∈ C. Hence C is closed under the three “good pair” operations.

Finally, since ∅,X are in A, they are also in C. Also, the “good pair” operations also ensure that C is closed

under complements. And it’s closed under finite intersections and countable increasing unions. Therefore C is

also closed under countable unions, i.e., it is a σ-algebra.

Now we show that ν(Ex) and µ(Ey) are measurable functions of x and y.

Theorem 2.4.6

Let (X,M, ν) and (Y,N, ν) be σ-finite [!!] Then for all E ∈M⊗N,

(1) The functions x↦ ν(Ex) and y ↦ µ(Ey) are measurable, and

(2) (µ × v)(E) = ∫ ν(Ex)µ(dx) = ∫ µ(Ey)ν(dy).

Proof. We first consider finite measures µ and ν. Recall that it is enough to show that

C ∶= {E ∶ (1),(2) holds}

contains A ∶= {all finite unions of abstract rectangles} and is either a σ-algebra or a monotone class. For the

integration part, i.e., (2), the monotone class argument is easier because we can use MCT.

For an abstract rectangle,

ν(Ex) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ν(B) x ∈ A

0 otherwise

which is a function taking two values and therefore measurable. Similarly µ(Ey) is measurable in this case.

Then

∫ ν(Ex)µ(dx) = ∫ ν(B)χAµ(dx) = ν(B)µ(A) = (µ × ν)(E)

and the other one follows analogously. Thus E ∈ C. It is clear that finite unions of abstract rectangles (disjoint)

are also in C.
Now we show that C is closed under increasing unions. Suppose E1 ⊂ E2 ⊂ ..., all in C, and let E be their union.

Define fn(y) ∶= µ((En)y). By continuity from below, fn(y) ↑ µ(Ey). Call this limit f(y). Then f as a limit of

measurable fn’s is measurable, and

∫ µ(Ey)ν(dy) = lim
n→∞∫ µ((En)y)ν(dy) (MCT)

= lim
n→∞
(µ × ν)(En) = (µ × ν)(E).
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By the assumption that µ, ν are finite, we can do the same for decreasing intersections: if F1 ⊃ F2 ⊃ ... and

F ∶= the intersection then F ∈ C (again, requires finite measure to use MCT). Therefore C is a monotone class

generated by A so it contains σ(A) =M⊗N.

Now we move to σ-finite measures µ and ν. This means there are sets of finite measure An ↑ X and Bn ↑ Y .

Therefore for all E, E ∩ (An ×Bn) ↑ E, and (1) (2) are true for each E ∩ (An ×Bn). Using MCT we can take

limits as n→∞ so that E satisfies (1) and (2) too.

This theorem says that under the same assumptions

ν(Ex) = ∫ χEndν = ∫ χE(x, ⋅) dν

for all fixed x. (2) says

∫ χE d(µ × ν) = ∫ [∫ χE(x, y) ν(dy)]µ(dx) = ∫ [∫ χE(x, y) ν(dx)]ν(dy).

Example 2.4.7. Calculus is not good enough! Define

f(x, y) = 0 at origin and
x2 − y2

(x2 + y2)2
at everywhere else.

For fixed x, its antiderivative in y is y/(x2 + y2), so

∫
1

0

x2 − y2

(x2 + y2)2
dy = y

x2 + y2
∣
1

0

= 1

1 + x2
.

Then

∫
1

0
[∫

1

0

x2 − y2

(x2 + y2)2
dy] dx = ∫

1

0

1

1 + x2
dx = π

4
.

However, since x, y appear symmetrically up to a minus sign, if we integrate x first we obtain

∫
1

0
[∫

1

0

x2 − y2

(x2 + y2)2
dx] dy = −π

4
.

Things break down. This is because f has a singularity at (0,0), and the integral involves ∞−∞, resulting

in a non-measurable function.

Beginning of Oct.27, 2021

Example 2.4.8. We provide a discrete analogue which might be easier to understand. Consider the array

(ai,j) ∶=

1 0 0 0 0 ...

−1 1 0 0 0 ...

0 −1 1 0 0 ...

0 0 −1 1 0 ...

0 0 0 −1 1 ...

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

We claim that
∞
∑
i=1

∞
∑
j

ai,j ≠
∞
∑
j=1

∞
∑
i=1
ai,j . Indeed, if we sum over columns first and compute the sum over

columns, we get 0 + 0 + ... = 0, whereas the row sums are 1,0,0, ... so the sum is 0.
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However, if we have absolute convergence, i.e.,
∞
∑
i=1

∞
∑
j=1
∣ai,j ∣ < ∞ then the claim would have held. (We can

find m,n such that the partial sum
m

∑
i=1

n

∑
j=1

is < ϵ away from the sum.)

Remark. Problems arise when the positive and negative contributions to a sum or integral are both infinite

(so we have ∞−∞). In this case, they cancel in different ways depending on the order of summation, so

order matters. The weird counterexample f above has

∬
{(x,y)∶f⩾0}

f(x, y) dydx =∞

and

∬
{(x,y)∶f<0}

f(x, y) dxdy = −∞.

Theorem 2.4.9: Fubini-Tonelli

This theorem generalizes the previous theorem, in which we only focused on indicator functions.

Suppose (X,M, µ) and (Y,N, ν) are σ-finite (like before!).

(1) (Tonelli) If f ∈ L+(µ × ν), the functions defined by integral along slices

x↦ ∫ fx dν y ↦ ∫ fy dµ

are measurable, i.e., the first one ∈ L+(X) and the second L+(Y ), and

∫ f d(µ × ν) = ∫ [∫ f(x, y)ν(dy)]µ(dx) = ∫ [∫ f(x, y)µ(dx)]ν(dy). (*)

(They can all be∞.)

(2) (Fubini) If f ∈ L1(µ × ν), we have

∫
Y
f(x, y)ν(dy) ∫

X
f(x, y)µ(dx)

finite a.e. for x and y, respectively. Also, the a.e. defined functions

x↦ ∫
Y
f(x, y)ν(dy) y ↦ ∫

X
f(x, y)µ(dx)

are in L1(µ) and L1(ν), respectively. Furthermore, (*) holds (with finite value too!).

Remark. Tonelli requires f ⩾ 0 and Fubini requires f to be integrable. Neither allows positive and negative

contributions to both have infinite magnitude.

Proof. For simple functions, this follows from the previous theorem. Since integration is linear, the theorem also

holds for simple functions too. For general f ∈ L+(X ×Y ), let fn be simple functions converging ↑ to f . By MCT,

gn(x) ∶= ∫
Y
fn(x, y)ν(dy) ↑ ∫

Y
f(x, y)ν(dy) =∶ g(x)
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and similarly

hn(y) ∶= ∫
X
fn(x, y)µ(dx) ↑ ∫

X
f(x, y)µ(dx) =∶ h(y).

Since each gn, hn is measurable, g, h are measurable too. Then, using MCT once more,

∫
X
[∫

Y
f(x, y)ν(dy)]µ(dx) = ∫

X
g(x)µ(dx)

= lim
n→∞∫X

gn(x)µ(dx) = lim
n→∞∫X×Y

fn d(µ × ν)

= ∫
X×Y

f d(µ × ν)

where the second last = is because gn is simple. This proves Torelli.

Now for Fubini, we first assume f ⩾ 0 (for general functions, decompose into positive and negative parts; for

complex functions, decompose into real and imaginary parts). If f is integrable, then by above, g <∞ and h <∞
a.e., so fx ∈ L1(ν) for a.e. x and fy ∈ L1(µ) for a.e. y.

Example 2.4.10. Suppose µ is a finite measure and g measurable. Suppose f(x, y) ∶= g(x) − g(y) is

measurable. We claim that g is integrable.

Proof. Fubini says that since f is integrable, then f(x) = g(x) − g(y) is integrable over x for a.e. y. That is,

for a constant g(y), g(x) − g(y) is integrable. Since µ(X) < ∞, subtracting makes sense, and we see that g is

integrable.

Example 2.4.11. (A non-example) Consider the product space of ([0,1],B,m) and ([0,1],B, ν) where ν is

the counting measure. Define

E ∶= {(x,x) ∶ x ∈ [0,1]}

a closed set and therefore a measurable set. Does

∫
[0,1]
[∫
[0,1]

χE dν] dm = ∫
[0,1]
[∫
[0,1]

χE dm] dν?

Solution. For a fixed x,

∫
[0,1]

χE(x, y)ν(dy) = 1

because χE(x, y) = 1 for just one point y = x, and counting measure gives ν({x}) = 1. Hence the LHS in the

example is 1. However, for fixed y, χE(x, y) = 0 for a.e. x, so the inner integral is always 0 and so is the entire

one.

This does not violate Fubini-Tonelli, as ν is not σ-finite!

Example 2.4.12. Here we provide another example in which we prove some property for simple functions,

then nonnegative functions, and finally general functions.

Let (X,M, µ) be a measure space and g ∶X → R. Define νg to be the “push-forward” of µ to Borels in R:

νg(A) ∶= µ(g−1(A)) for A ∈ BR.
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For f ∶ R→ R, what is ∫ fdνg?

Solution. First, for an indicator function χE:

∫
R
χE dνg = νg(E) = µ(g−1(E))∫

X
χg−1(E) dµ = ∫

X
χE ○ g dµ.

Linearity shows that if φ ⩾ 0 is simple then

∫
R
φ dνg = ∫

X
φ ○ g dµ.

For general measurable f ⩾ 0, let φn ↑ f be a sequence of simple functions. MCT implies

∫
R
f dνg = lim

n→∞∫R
φn dνg = lim

n→∞∫X
φn ○ g dµ = lim

n→∞∫X
f ○ g dµ.

Finally, for general f , we just need to decompose it into f+, f−, or real and complex parts, if necessary.

2.5 Some Remarks on Lebesgue Measure m on Rn

We know how m works on R. However, we cannot define m on R2 simply by taking the product of two copies of m

on R. In particular, the product of two complete measures is not necessarily complete.

For example, consider D = {(x,x) ∶ x ∈ R}, the diagonal line of R2, a measurable (null) set for m ×m. Let A be a

nonmeasurable subset of R and let AD ∶= {(x,x) ∶ x ∈ ∀}. so that AD ⊂D.

We claim that AD is not L ×L measurable, which means that m ×m is not complete.

Proof. Let f ∶ R→ R2 defined by f(x) ∶= (x,x). We show f is measurable from L to L×L. Indeed, generators of

L ×L are the product of generators of L, i.e.,

{(E ∪ F ) × (G ∪H) ∶ E,G ∈ BR, F,H contained in null Borel}.

Since

f−1((E ∪ F ) × (G ∪H)) = (E ∪ F ) ∩ (G ∪H) ∈ L

we see f is indeed measurable. If AD were L×L measurable then A = f−1(AD) ∈ L, contradiction. Hence m×m
is not complete!!

To this end, we modify the definition of mn on Rn by completion:

Definition 2.5.1: Lebesgue measure mn on Rn

mn on Rn is defined to be the completion of m × ... ×m.

Theorem 2.5.2

mn is translation-invariant.

The proof begins by checking rectangles and finite unions of them. Finite unions form an algebra A. µ(E);=
mn(E +x) defines a premeasure. Since µ,mn are σ-finite, µ can be uniquely txtended to BRn so µ =mn on BRn .
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So do the completion.
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Chapter 3

Signed Measures and Differentiation

3.1 Signed Measures

In physics, for example, when integrating over charges, we sometimes need µ(A) < 0.

For f ∈ L+ we know E ↦ ∫
E
f dµ defines a measure. This should also give us “something like a measure” for

functions that become negative sometimes. We therefore consider general countably additive set functions (functions

taking sets as input that are countably additive for disjoint sets) that are not necessarily ⩾ 0. However, this poses

some difficulties.

Example 3.1.1. Suppose µ is finitely additive on an algebraA (and it might take negative values). Suppose

for some A,B ∈ A we have µ(A) =∞, µ(B) −∞. What can

µ(A −B) µ(A ∩B) µ(B −A)

be? The first two add to∞ whereas the last two add to −∞. This is possible if and only if

µ(A −B) =∞ µ(A ∩B) finite µ(B −A) = −∞.

However,

µ(A∆B) = µ(A −B) + µ(B −A) =∞−∞

which contradicts finite additivity of disjoint sets.

Example 3.1.2. Suppose µ is a countably additive set function and A1,A2, ... are disjoint. Split them into

“positive” and “negative” sets:

J ∶= {j ∶ µ(Aj) ⩾ 0}.

Suppose

∑
j∈J

µ(Aj) =∞ and ∑
j∉J

µ(Aj) = −∞.

Then

µ(⋃
j∈J

Aj) =∞ µ(⋃
j∉J

Aj) = −∞.
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Again we have the problem encountered in the previous example when we try to take µ of the union of all

Aj ’s.

We see that we run into issue unless one between

∑
j∈J

µ(Aj) ∑
j∉J

µ(Aj)

is finite. In particular, if ∑
j⩾1

µ(Aj) <∞, then both above must be finite. Furthermore, in this case the terms

in this series must converge absolutely.

Definition 3.1.3: Signed measure

A signed measure on (X,M) is a function µ ∶M→ [−∞,∞] satisfying

(i) µ(∅) = 0,

(ii) µ assumes at most at most one of the values ±∞ (in other words we cannot have µ(A) = ∞ and

µ(B) = −∞ for some A,B), and

(iii) for E1,E2, ... disjoint, µ(
∞
⋃
j=1

Ej) =
∞
∑
j=1

µ(Ej), with absolute convergence if the sum is finite.

Note that our previous (positive) measures all satisfy these criteria.

Example 3.1.4.

(1) A function f ∶ X → [−∞,∞] is called extended µ-integrable if ∫ f+ dµ,∫ f− dν are not both ∞.

Then

ν(E) ∶= ∫
E
f dµ

defines a signed measure. f is called the density of ν with respect to µ.

(2) µ = µ1 − µ2 where µ1, µ2 are positive measures and at least one being finite, is a signed measure.

Some important continuity properties of signed measures are inherited from positive measures:

(1) Signed measures are continuous from below.

(2) If µ(X) <∞, then µ is continuous from above.

Example 3.1.5. Let µ have density sinx with respect to the Lebesgue measure on [0,2π].
If we strict the domain to [0, π], the map E ↦ ∫

[0,π]
sin(x) dm is a positive measure. If we restrict it to

[π,2π] then µ is purely negative.

Question: can we always split the space into two parts, one on which the measure is positive, the other one

on which the measure is negative?

Also, another complication: µ(E) = 0 no longer implies E is “small”: consider [π/2,3π/2] for example. What

we get is instead a cancellation. This will give rise to our revised definition of null sets.
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Definition 3.1.6: Positive, negative, & null set

A measurable set E is a positive set for µ if µ(F ) ⩾ 0 for all F ⊂ E. (Similar for negative set.)

It is called a null set if µ(F ) = 0 for all F ⊂ E.

Beginning of Oct.29, 2021

Example 3.1.7. Let A,B,µ be such that µ(A) = µ(B) = 3, µ(A ∩B) = 8, and µ(A −B) = µ(B −A) = −5.

Thus we can have µ(A), µ(B) > 0 but µ(A ∪B) < 0!

Lemma

A countable union of positive sets is positive.

Proof. Suppose E1,E2, ... are positive and B ⊂ ⋃
j⩾1

Ej . We make the sets disjoint by defining Fj ∶= Ej −⋃
i<j
Ei.

Then

ν(B) =∑
j⩾1

ν(B ∩ Fj) ⩾ 0

since ν(B ∩ Fj) ⩾ 0 for each j (it’s a subset of Ej).

Note for the upcoming proof: suppose ν is a signed measure and some set F contains no positive set but does

contain a set of positive measure.

Let E ⊂ F with ν(E) > 0. By assumption E cannot be positive so it contains some H with ν(H) < 0. This means if

we discard it from E (resulting in E −H), the set gets bigger!

ν(E −H) = ν(E) − ν(H) > ν(E).

Thus, for all E ⊂ F with ν(E) > 0, the measure can be increased by discarding some set. This never happens for a

positive measure.

Theorem 3.1.8: Hahn Decomposition Theorem

Let ν be a signed measure on (X,M). Then there exists a positive set P and a negative set N with X = P ∪N
and P ∩N = ∅. The decomposition is unique up to null sets. That is, if X = P ′ ∪N ′ then P∆P ′,N∆N ′ are

both null.

Proof. We may assume that ν is never +∞ (similar if it’s never −∞). Define m by

m ∶= sup{ν(E) ∶ E is positive}.

(We don’t know if it’s achieved yet.) There exists a sequence of positive sets Pi such that ν(Pj) → m. Also, ν

never attains +∞ implies m is finite. By the previous lemma, P ∶= ⋃
j⩾1

Pj is also positive. Since P ⊃ Pj we know

ν(P ) ⩾ ν(Pj). Therefore we must have ν(P ) =m, i.e. the supremum is achieved!

We are half way done with the decomposition. Now it remains to show that N ∶= P c is a negative set.

First, notice that if N has a subset E with ν(E) > 0 then E cannot be positive. Otherwise, P ∪E would also be

positive, contradicting the maximality of P .
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In addition, this implies any E ⊂ N with ν(E) contains a negative measure set C. That is, for B = E −C,

ν(B) = ν(E) − ν(C) > ν(E).

(Discarding C from E increases the measure!)

Now assume for contradiction that N is not a negative set. We can iterate this discarding. Let n1 be the least

integer such that there exists E1 ⊂ N with ν(E1) > 1/n1. (This happens for some n1 because N is not a negative

set so it contains subsets with positive measure.)

Since E1 cannot be positive, we can discard something from E1 to make the measure bigger by our first observa-

tion: we pick n2 to be the least integer such that there exists E2 ⊂ E1 with ν(E2) > ν(E1) + 1/n2. (Note n1 < n2

by construction.)

Done iteratively, the sets Ei are getting smaller but ν(Ei) is increasing. We define

E ∶= ⋂
j⩾1

Ej

the undiscarded part. Continuity from above (recall we said ν cannot take +∞) says ν(Ej) ↑ ν(E), so

∞ > ν(E) = lim
j→∞

ν(Ej) >∑
j⩾1

1

nj
.

The series converges so we must have nj →∞. Also, from the definition of nj (the smallest integer that...), we

have
1

nj − 1
⩾ ν(Ej −Ej−1) = ν(Ej) − ν(Ej−1) >

1

nj
.

So it is impossible to discard any larger set from Ej .

However, we can discard something from E. Since E has positive measure, by our first observation, there exists

ϵ > 0 and D ⊂ E where ν(D) > ν(E) + ϵ (discard the negative set E −D). Since D ⊂ Ej , this means

ϵ < 1

nj − 1
for all j.

This contradicts nj →∞. Hence N must be a negative set. This proves the existence claim.

For uniqueness, suppose P,N,P ′,N ′ satisfy the assumptions. Then P − P ′ ⊂ P so it’s a positive set and P − P ′ =
N ′ −N ∈ N ′ so it’s a negative set. Hence every subset of P − P ′ has measure both ⩾ 0 and ⩽ 0, i.e., they must

have measure 0. This means P − P ′ is null. Similar for N ′ and N .

We say X = P ∪N is the Hahn decomposition of X with respect to the measure µ.

Definition 3.1.9: Variations

LetX = P∪U according to the Hahn decomposiion. We define the positive variation and negative variation

of ν by

ν+(E) ∶= ν(E ∩ P ) ν−(E) = −ν(E ∩N).

This implies ν+, ν− are positive measures and ν(E) = ν+(E) − ν−(E).
We define

∣ν∣(E) ∶= ν+(E) + ν−(E)
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to be the total measure.

Remark. ∣ν∣(E) is not the same as ∣ν(E)∣! For example consider

ν(E) ∶= ∫
E
sinx dx on [0,2π].

Let E = [π/2,3π/2]. Clearly P = [0, π] and N = (π,2π]. Then

ν+(E) = ν([π/2, π]) = 1 = −ν((π,3π/2])ν−(E)

so ∣ν∣(E) = 2. However, ∣ν(E)∣ = 0.

Definition 3.1.10: Mutual singularity

Two measures µ, ν are mutually singular, written µ ⊥ ν, if there exist disjoint A,B with A∪B =X such that

A is null for µ and B is null for ν. That is, µ “lives on” B and ν “lives on” A.

Example 3.1.11. Let ν be a signed measure. Then ν+ lives on P and ν− lives on N . X = P ∪N is disjoint,

so ν+ ⊥ ν−.
This implies Hahn decomposition gives ν = ν+ − ν−, so we can express ν as a difference of two mutually

singular positive measures. Question: is this unique?

Suppose also that ν = µ+ − ν− with µ+, µ− veubg mutually singular positive measures. Suppose µ+ lives on

E and µ− on F = Ec. But then E is a positive set for ν and F a negative set, with X = E ∪ F . By Hahn

decomposition, the decomposition is unique up to null sets, so µ+ = ν∣
E
= ν∣

P
= ν+ (since E∆P is null) and

similarly ν− = ν∣
N
= ν−. Therefore the decomposition is unique!

Theorem 3.1.12: Jordan Decomposition Theorem

Every signed measure ν can be uniquely decomposed as ν = ν+−ν− with ν+, ν− positive and mutually singular.

Example 3.1.13. Let m be the Lebesgue measure on [0,1]. Let µ be the “uniform measure on Canter set

C”. Then µ is supported on C (null for m) and m is supposed on Cc (null for µ), so µ ⊥m.

Example 3.1.14. Consider the sum of point masses. Recall

δx(A) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x ∈ A

0 x ∉ A.

Suppose µ ∶=
∞
∑
i=1
aiδxi . Let B = {x1, x2, ...}. Then µ(A) is the amount of mass in A where there is mass ai at

each xi. Then µ lives on B (µ = 0 on Bc) and m lives on Bc (it is null on a countable set), so µ ⊥m.
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Example 3.1.15. Let µ, ν be finite signed measures. Then ∣µ + ν∣ ⩽ ∣µ∣ + ∣ν∣.

Proof. By decomposition, ρ = ρ+ − ρ− ⩽ ρ+ + ρ− = ∣ρ∣ and similarly −ρ ⩽ ∣ρ∣. Therefore ∣ρ(A)∣ ⩽ ∣ρ∣(A). (The first

one is absolute value; second one is total variation.) Thus, for subsets for P ,

∣µ + ν∣ = µ + ν ⩽ ∣µ∣ + ∣ν∣

and for subsets of N ,

∣µ + ν∣ = −µ − ν ⩽ ∣µ∣ + ∣ν∣.

Together we recover the original claim since any E splits into E ∩ P and E ∩N .

3.2 Absolute Continuity

This is heuristically the opposite of being mutually singular.

Definition 3.2.1: Absolute Continuity

Let µ be a fixed positive measure and let ν be a signed measure on (X,M). We say ν is absolutely continuous

with respect to µ, written ν ≪ µ, if µ(E) = 0 implies ν(E) = 0.

Remark. ν ≪ µ means that if µ lives on E then ν lives on E too.

Remark. This definition is related to having the notion of density: recall that “ν has a density with respect

to µ” if there exists f such that

ν(E) = ∫
e
f dµ for all E ∈M, (1)

that is, ∫
E
f dµ = ∫

E
f dµ or dν = fdµ for shorthand.

Under (1), if µ(E) = 0 then ν(E) = 0, so we obtain absolutely continuous measures from the notion of

density.

Question. Are there other ways to get ν ≪ µ? (The answer is no, at least for the σ-finite case. See

Lebesgue-Radon-Nikodym later.)

Definition 3.2.2: Equivalent measures

We say µ and ν (both positive) are equivalent if µ≪ ν and ν ≪ µ. In particular, they have the same sets: µ

lives on E if and only if ν lives on E.

Example 3.2.3. Let f ∶ R→ R defined by

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x x ∈ [0,∞)

0 x ∈ (−∞,0).
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Let dν = fdm. Then m(E) = 0⇒ ν(E) = 0, so ν ≪m. However,

ν((−∞,0)) = 0 but m((−∞,0)) =∞ ≠ 0,

so m≪̸ ν. m and ν are not equivalent.

Example 3.2.4. Following the previous example, if dν = fdµ and f > 0 µ-a.e., then µ,ν are equivalent.

Example 3.2.5. Consider two random processes evolving in time: Y (t), Z(t), t ∈ [0,1]. That is, Y,Z may

be viewed as mappings from some (X,M,P) to C([0,1]). Consider the induced push-forward measures

µ(A) ∶= P(Y ∈ A) ν(A) = P(Z ∈ A).

Suppose we observe a process over t ∈ [0,1] and we don’t know if it’s produced by Y or Z.

If µ ⊥ ν, then we can (in principle) tell in one observation whether we say Y or Z, as there exists a partition

of C([0,1]) into A ∪ B such that µ lives on A and ν lives on B, except for null sets. Then if our observed

process is in A if and only if the process is Y and likewise for B and Z.

A typical result: if Y,Z ∼ Gaussians, then either µ ⊥ ν or µ, ν are equivalent.

Question. Why the word “continuity” in absolute continuity?

Theorem 3.2.6: ≪ is related to continuity

Let µ be positive and ν a finite signed measure. Then

ν ≪ µ ⇐⇒ for all ϵ > 0, there exists δ > 0 ∶ µ(E) < δ⇒ ∣ν(E)∣ < ϵ.

Proof. It suffices to prove this for ∣ν∣ because we showed previously that ∣ν(E)∣ ⩽ ∣ν∣(E). Hence, we may assume

that ν is a positive measure too.

If the ϵ− δ holds, and if µ(E) = 0, then this trivially implies µ(E) < δ for all δ, and µ(E) < ϵ for all ϵ, so ν(E) = 0,

i.e., ν ≪ µ, as claimed.

For the other direction, suppose the ϵ− δ fails. We want to find E with µ(E) = 0 but ν(E) > 0 (so ν ≪̸ µ). Failure

means that for some ϵ > 0, no δ works. In particular, for all n, there exists En with µ(En) < 2−n but ν(En) ⩾ ϵ.
Define

E ∶= lim sup
n→∞

En ⋂
k⩾1

∶=Fk³¹¹¹¹¹¹¹·¹¹¹¹¹¹µ
⋃
n⩾k

En = {x ∶ x ∈ En infinitely many times}.

It is clear that for all k,

µ(E) ⩽ µ(Fk) ⩽ ∑
n⩾k

µ(En) ⩽ 2−k+1,

so µ(E) = 0. However, continuity from above says (recall ν is finite!)

ν(E) = ν(⋂
k⩾1

Fk) = lim
k→∞

ν(Fk) ⩾ lim sup
k→∞

ν(Ek) ⩾ ϵ.

This provides a contradiction.
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3.3 The Lebesgue-Radon-Nikodym Theorem

Theorem 3.3.1: Lebesgue-Radon-Nikodym

Let µ be a positive measure and let ν be signed, both σ-finite. Then there exists a unique decomposition

ν = λ + ρ with λ ⊥ µ and ρ≪ µ, and ρ has a density: that is, there exists an extended µ-integrable f (that is,

f+ and f− are both both∞ upon integration) such that dρ = fdµ. Also, f is unique µ-a.e.

Remark. µ should be viewed as an “underlying measure”. λ is singular and ρ is absolute continuous, both

relative to µ.

Remark. If ν ≪ µ, then one decomposition is ν = 0 + ν. Uniqueness says this is the only one, and the

theorem says ν has a density, dν = fdµ. This is the Radon-Nikodym Theorem.

Remark. λ is called the singular part of ν and ρ the absolutely continuous part.

Remark. An identity we’ll use in the proof later:

∫
F
χE dµ = ∫ χE∩F dµ = µ(E ∩ F ).

Remark. Let µ be positive and σ-finite on R. The atoms of µ are {x ∶ ν({x}) > 0}. Then σ-finiteness implies

there are at most countably many atoms, say mass ai at each xi. Then∑
i⩾1
αiδxi is the discrete part of ν.

If we decompose ν relative to m: dν = λ + fdm with λ ⊥ m, i.e., λ lives on a m-null set. Subtracting the

discrete part from λ,

γ = λ −∑
i⩾1
αiδxi .

This remaining γ lives on a m-null set (since λ does) but it has no atoms. Such a measure is called continu-

ous singular. Thus we have

du =∑
i⩾1
αiδxi(discrete) + γ(cont. singular)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
singular

+ fdm
±

abs. cont.

.

Remark. Notation: we write f ∨ g ∶=max{f, g}, the pointwise maximum.

The main difficulty in proving the L.-R.-N. Theorem: we have to come up with a function f with certain properties,

when there is no function explicitly mentioned in the hypothesis. Where to get it?

Lemma

Let µ, ν be finite positive measures on (X,M). Then either µ ⊥ ν or there exists ϵ > 0 and E ∈ M with

µ(E) > 0 such that ν ⩾ ϵµ on E. That is, ν(F ) ⩾ ϵµ(F ) for all F ⊂ E, or equivalently ν − ϵµ is a positive
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measure when restricted on E.

Alternatively, we can say dν ⩾ ϵχEdµ on all of X, since

ν(A) ⩾ ν(A ∩E) ⩾ ϵµ(A ∩E) = ∫
A
ϵχE dµ.

To put informally, there is “a little bit of density” inside ν: if ν ⊥̸ µ, then

dν = ϵχE
±
density

dµ + (some positive measure).

Beginning of Nov.3, 2021

Idea of proof of L-R-N. Consider the case ν ≪ µ. If a density f exists, how do we identify it?

If some function g is “too big” (g > f on some set E of positive measure), then

∫
E
g dµ > ν(E).

Equivalently, if for all E, ∫
E
g dµ ⩽ ν(E) then g ⩽ f while ∫

E
f dµ = ν(E). That is, f is the largest function with

∫
E
f dµ ⩽ ν(E) for all E. However, we cannot use this as a definition because we don’t know whether such f exists

or not a priori. (This description still holds even if ν ≪̸ µ.)

Proof of Lemma. For all n, consider ν − µ/n. It’s a signed measure so it admits a Hahn decomposition Pn ∪Nn.

Let P = ⋃
n⩾1

Pn and N = ⋂
n⩾1

Nn. Clearly N is a negaitve set for all ν −µ/n. If E ⊂ N then ν(E) ⩽ µ(E)/n for all n.

Hence ν(E) = 0. Since E is arbitrary, ν(N) = 0.

If µ(P ) = 0 then µ ⊥ ν.

Otherwise, if µ(P ) > 0, then µ(Pn) > 0 for some n. Then Pn is a positive set for ν − µ/n, so in particular

(ν − µ/n)(Pn) ⩾ 0, i.e., ν ⩾ µ/n on Pn.

Proof of L-R-N. We first assume that the measures are positive and finite. For this case, we first try to find a

density f . Define

F ∶= {f ∶X → [0,∞] ∶ ∫
E
f dµ ⩽ ν(E) for all E ∈M}.

Claim: if f, g ∈ F then the pointwise maximum f ∨g ∈ F . (This shows that there cannot be two different maximal

functions.) Indeed, if so, for all E,

∫
E
f ∨ g dµ = ∫

E∩{f⩾g}
f dµ + ∫

E∩{f<g}
g dµ

⩽ ν(E ∩ {f ⩾ g}) + ν(E ∩ {f < g}) = ν(E).

Now we look for the largest f by looking for the f maximizing ∫ f dµ. Define

a ∶= sup{∫ f dµ ∶ f ∈ F}.

By definition there exists a sequence {fn} in F whose integrals converge to a. Define gn ∶= f1 ∨ ... ∨ fn and
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f ∶= sup gn. (This is well-defined because the pointwise limit either exists or is infinite.) Hence gn ↑ f and

gn, f ∈ F .

Now, for all h ∈ F , ∫
X
h dµ ⩽ ν(X), so α ⩽ ν(X) <∞ (we assumed ν to be finite for now). Thus, we have

α ⩾ ∫ gn dµ ⩾ ∫ fn dµ→ a,

which, by MCT,

∫ f dµ = lim
n→∞∫ gn dµ = a.

Since a <∞, we have f <∞ a.e.-µ. This proves the existence of a maximal f .

Now we show that f is the “right density function”. That is, λ given by dλ = dν − fdµ satisfies λ ⊥ µ. Suppose λ

and µ are not singular. By the previous lemma, there exists ϵ > 0 and a set E such that dλ = ϵχEdµ+dτ for some

positive measure τ . That is,

dν = fdµ + ϵχEdµ + dτ

where the term (f + ϵχE)dµ implies that f is not the maximal element in F . Contradiction, so λ ⊥ µ as desired.

For uniqueness: suppose dλ + fdµ = λ′ + f ′dµ with λ,λ′ ⊥ µ, then

(λ − λ′) = (f ′ − f)dµ.

The LHS is something singular and the RHS something absolutely continuous, so both must be zero. Uniqueness

a.e. follows.

For the positive and σ-finite case, we have, by definition, A1 ⊂ A3 ⊂ ... with µ(An) < ∞ and ⋃
n⩾1

An = X and

similarly B1 ⊂ B2 ⊂ with ν(Bn) <∞ and ⋃
n⩾1

Bn =X.

We define

Cn ∶= An − ⋃
m<n

Am Dn = Bn − ⋃
m<n

Bm

so Cn’s are dis disjoint and Dn’s are disjoint, and they both fill up the whole space. Hence

X = ⋃
m,n

(Cn ∩Dm).

Name these sets as E1, ...,En so that µ(En), ν(En) < ∞. For each En, we can apply the previous case, giving

νj = λj + fjdµ with fj = 0 on Ecj . By definition each λj is supported on Ej so λj ⊥ µ.

Now we combine all of them! Define

λ =∑
j⩾1

λj f ∶=∑
j⩾1

fj .

(In particular f ≡ fj on Ej .) Then λ ⊥ µ and ν =∑
j⩾1

νj = λ + fdµ.

Finally, for the more general case, we apply above to ν+ and ν− separately.
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Remark. When ν ≪ µ, L-R-N guarantees the existence of a function f with dν = fdµ. We can write f as
dν

dµ
. Then the very definition becomes

ν(E) = ∫
E

dν

dµ
dµ for all E ∈M.

Remark. Making sense of dν = fdµ — does it mean that ∫ g dµ = ∫ gf dµ? At least the definition implies

that this holds for indicator functions g = χE .

Lemma

Suppose µ is a positive measure and dν = fdµ is a signed measure. Then for all g ∈ L1(ν), we have fg ∈ L1(µ)
and

∫ g dν = ∫ gf dµ.

Note that for signed ν, ∫ g dν means ∫ g dν+ − ∫ g dν− when both are finite.

Proof. Since f = f+ − f−, we may assume µ is positive and f ⩾ 0.

The claim holds for indicator functions. If gn ↑ g then gnf ↑ gf , so by MCT, the claim holds for measurable

functions g ⩾ 0. The general case follows by decomposing g into g+ and g−.

Remark. Chain rule? Does
dν

dλ
= dν

dµ

dµ

dλ
, where µ,λ (denominators) are positive measures?

Proposition 3.3.2

Let µ,λ be σ-finite positive measures and ν a σ-finite signed measure. If ν ≪ µ and µ ≪ λ then µ ≪ λ and

the chain rule holds. (We need σ-finite for everything because of LRN.)

Proof. We may assume ν ⩾ 0 (otherwise decompose it). Applying the previous lemma to g = χE
dν

dµ
gives

ν(E) = ∫ χE dν = ∫
E

dν

dµ
dµ = ∫

E

dν

dµ

dµ

dλ
dλ.

Remark. If ∣ν∣(E) = 0 then ν+(E) = ν−(E) = 0 so ν(E) = 0. That is, ν ≪ ∣ν∣. LRN says
dν

d∣ν∣
is well-defined.

What does it look like?

Again we decompose X = P ∪N . On P , ∣ν∣ = ν so for all E ⊂ P , ν(E) = ∣ν∣(E) so
dν

d∣ν∣
= 1 on P . Similarly we

can show that
dν

d∣ν∣
= −1 on N .

Beginning of Nov.5, 2021
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Application of R-N in Probability

Let (X,M, µ) be a measure space and let N ⊂ M be another σ-algebra. Suppose f ⩾ 0 is M-measurable but not

N-measurable. Define

ν(E);= ∫
e
f dµ

a measure on M with
dν

dµ
= f .

Key point: when ν is a measure on some σ-algebra F , then
dν

dµ
must be F -measurable. Hence if we restrict µ, ν to

N and call then µn and νn, then
dνn
dµn

is not f . it must be some other N-measurable function g satisfying

ν(E) = ∫
E
f dµ = ∫

E
g dµ for all E ∈N.

Example 3.3.3. Let X = [0,1], m the Lebesgue measure, and let A1,A2,A3 be a partition of X. Let M be

the Borel sets and N ∶= σ(A1,A2,A3).
First observation: N-measurable functions need to be constant on each Ai.

Now we ask — what N-measurable g has the same integral as f over each Ai? That is,

g(x) = average of f on Ai =
1

m(Ai) ∫Ai

f dm for all x ∈ Ai, i ∈ {1,2,3}.

Then such a piecewise constant function g is N-measurable and has the same integral as f over any union

of Ai’s.

Connection to probability: if we only have partial information about a random x ∈ X (we know whether

x ∈ E only for sets in E ∈ N, not for all E ∈ M; in this case we only know if x lies in A1,A2, or A3, but

not exactly where on X), then g is expected value of f given this information. Hence the Radon-Nikodym

derivative g = dνn
dµn

defines the conditional expectation of f given N.

3.4 Complex Measure

For a complex measure, we require ν(E) ∈ C for all E (so it cannot attain ∞) and we require absolute continuity

for disjoint sets, i.e.,

ν(⋃
j⩾1

Ej) =∑
j⩾1

ν(Ej).

The measure should also be able to be expressed as ν = νr + iνi with νr, νi being (real-valued) signed measures.

Lemma

For ν a complex measure, there exists a function θ and a unique positive measure ∣ν∣ such that

ν(dx) = eiθ(x)∣ν∣(dx).
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Proof. If ν has a density f(x) = r(x)eiθ(x) then this claim is trivial.

More generally, we choose µ positive with ν ≪ µ, say µ = ∣νr ∣ + ∣νi∣ (this indeed works) and let f = dν

dµ
. We write

f(x) as r(x)eiθ(x) so r(x) = ∣f(x)∣ and define ∣ν∣ by d∣ν∣ = rdµ. Then

eiθd∣ν∣ = reiθµ = dν.

Uniqueness omitted.

3.5 Differentiation (not the usual kind) on Rn

For a continuous function on R and x ∈ R, we know that

lim
r→0

1

2r
∫

x+r

x−r
f(u) du = f(x).

In measure terms, letting Ir ∶= (x − r, x + r) and dν = fdm, we have

ν(Ir)
m(Ir)

= ∫
Ir
f dm/m(Ir)→ f(x) as r → 0.

What happens in general (in Rn) if f is measurable but not necessarily continuous? What if ν has a singular point?

Consider a measurable f and dν = fdm. Let B(r, x) be the ball of radius r centered at x and S(r, x) the correspond-

ing sphere. We say f is locally integrable if

∫
K
f dm <∞ for all compact K

and we write L1
loc = { all locally integrable functions}. For example, f(x) ∶= x2 ∈ L1

loc(m). Define the average

Arf(x) ∶= average of f on B(r, x) = 1

m(B(r, x)) ∫B(r,x)
f dm.

We know that the above converges to 0 for continuous f . What about general f ∈ L1(m)? First, by density of

continuous functions in L1, there exists a continuous g with

∫ ∣f − g∣ dm < ϵ.

Then,

∣Arf(x) − f(x)∣ ⩽ ∣Arf(x) −Arg(x)∣ + ∣Arg(x) − g(x)∣ + ∣g(x) − f(x)∣.

The second term → 0 because g is continuous. By construction,

∫ ∣f − g∣ dm

is small, so ∣g(x) − f(x)∣ is small “for most x”. Does this imply ∣Ar(f − g)(x)∣ is small “for most x”?

We define the Hardy-Littlewood Maximal Function

(HF)(x) ∶= sup
r>0

Ar ∣f ∣(x) = largest average of ∣f ∣ on a ball.

If f is continuous then clearly ∣f ∣ is bounded above by HF.
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Theorem 3.5.1: Maximal Theorem

For all n, there exists c > 0 such that for all f ∈ L1(m) on Rn and for all α > 0, we have

m({x ∶ HF(x) > α}) ⩽ c
α
∫ ∣f ∣ dm.

(To be proven later.)

Applying this to ∫ ∣f − g∣ dm which can be made arbitrarily small, then

{x ∶ HF(f − g)(x) > α}

can be made arbitrarily small, so

{x ∶ Ar(f − g)(x) > α}

can also be made arbitrarily small.

The following lemma will be used to prove the maximal theorem:

Lemma

Let C be a collection of open balls in Rn and U ∶= ⋃
B∈C

B. Then for all c < m(U), there exist disjoint balls

B1, ...,Bk ∈ C with
k

∑
j=1

m(Bj) ⩾ 3−nc.

Example 3.5.2. If d = 2, we can make disjoint balls that cover almost 1/9 = 3−2 of U . In d = 3 this becomes

1/27.

Beginning of Nov.8, 2021

Proof.

Idea: if we triple the radius of each Bk then we can cover almost all of U .

Since m is regular, there exists a compact K with c < m(K) ⩽ m(U). By compactness there exists a finite

subcover of K, say K ⊂ ⋃j⩽J Bj with Bj ∈ C.
We remove balls from the subcover one at a time. First we remove the largest one, and then we remove the

largest whole ball remaining, and so on, until there is no whole ball remaining. Relabel the removed ones to be

B1, ...,Bk. Let the centers be z1, ..., zk. We claim that these removed Bi’s cover K.

Suppose for contradiction that x ∈ K is not covered by
k

⋃
i=1
Bi. We know x ∈ B for some B ∈ C, and B must

intersect some Bj (take Bj largest if B intersects multiple Bj ’s). Then by construction B must be smaller than

Bj , and

d(x, zj) ⩽ radius(Bj) + diam(Bj) ⩽ 3 ⋅ radius(Bj).

Thus the balls centered at zj with thrice the radii cover K. That is,

3nm(⋃
j⩽k

Bj) ⩾m(K) > c.
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Proof of Maximal Theorem. Define Eα ∶= {x ∶ Hf(x) > α}. If x ∈ Eα, then there exists a ball B(rx, x) where the

average of ∣f ∣ exceeds α. From the lemma above, there exist disjoint balls Bj ∶= B(rxj , xj) covering almost a 3−n

fraction of Eα. That is, given ϵ > 0, there exist finitely many Bj ’s such that

1

(1 + ϵ)3n
m(Eα) ⩽m(⋃

j

Bj).

Hence, the average of ∣f ∣ ⩾ α on Bj implies

αm(⋃
j

Bj) ⩽ ∫
⋃Bj

∣f ∣ dm.

Therefore,

m(Eα) ⩽
(1 + ϵ)3n

α
∫ ∣f ∣ dm.

Setting c ∶= (1 + ϵ)3n gives our claim.

Application of Maximal Theorem

Theorem 3.5.3

If f ∈ L1
loc(m) on Rn, then Ar(f)x→ f(x) as r → 0 for a.e. x.

Proof. It is sufficient to show that the claim holds for a.e. x with ∣x∣ ⩽ N for all N . We may assume f ∈ L1. Let

ϵ > 0 and α > 0. By density there exists a continuous g with

∫ ∣f − g∣ dm < ϵ.

Using triangle inequality, it suffices to show that

m({x ∶ lim sup
r→0

∣Ar(f − g)∣ > α/2})

m({x ∶ lim sup
r→0

∣Arg(x) − g(x)∣ > 0})

m({x ∶ ∣g(x) − f(x)∣ > α/2})

are all small. The first one, by the maximal theorem, is bounded by 2Cϵ/α for some C. The second term = 0 by

continuity of g. The third one, by Markov’s inequality, is bounded by

2

α
∫ ∣g − f ∣ dm <

2ϵ

α
.

Hence

m({x ∶ lim sup
r→0

∣Arf(x) − f(x)∣ > α}) ⩽
2Cϵ

α
+ 0 + 2ϵ

α
.

Since ϵ is arbitrary, the claim holds for any α > 0. Hence the claim holds.

Remark. We can replace the ball B(r, x) (for average) by any set Er occupying some minimal fraction of

the ball. For example, as r → 0, as long as all Er occupy 1/10 of B(r, x), i.e.,

m(Er)
m(B(r, x))

> β > 0 for all r.

69



YQL - MATH 525a Notes 3.5 - Differentiation (not the usual kind) on Rn Current file: 11-10.tex

If so, we say Er shrinks nicely to x, and the original claim still holds.

Theorem 3.5.4: Lebesgue Differentiation Theorem

For f ∈ L1
loc, then for a.e. x, for all {Er} which shrinks nicely to x, the averages

1

m(Er) ∫Er

∣f(y) − f(x)∣m(dy)→ 0.

We replaced (average of f converging to f) by (average of ∣f − f(x)∣ converging to 0).

Beginning of Nov.10, 2021

Recall that a regular measure satisfies

µ(E) = sup{µ(K) ∶K ⊂ E compact } = inf{µ(U) ∶ U ⊃ E open}.

In Rn, for Borel sets, the above is equivalent to

µ(K) <∞ for all compact K µ(E) = inf{µ(U) ∶ U ⊃K open}.

Theorem 3.5.5

Let ν be a regular signed or complex measure on Rn with Lebesgue-Radon-Nikodym representation dν =
dλ + fdm where the first part ⊥ m and the second ≪ m. Then for m-a.e. x ∈ Rn, for all {Er} that shrinks

nicely to x,

lim
r→0

v(Er)
m(Er)

= f(x)

(as if dλ weren’t there).

Proof. Since ν is finite on compact sets, so is fdm, so fdm is regular and f ∈ L1
loc. Thus the fdm part gives the

limit f(x), and it remians to show
λ(Er)
m(Er)

→ 0 for a.e.x,{Er}.

By definition of “shrinking nicely”, there fists β > 0 such that m(Er) ⩾ βm(B(r, x)), so

∣ λ(Er)
m(Er)

∣ ⩽ ∣λ∣(Er)
βm(B(r, x))

⩽ ∣λ∣(B(r, x))
βm(B(r, x))

.

Hence it suffices to prove the limit claim for balls only. Since λ ⊥m, λ lives on a m-null set Ac (so m lives on A).

We will show that

Fk ∶= {x ∈ A ∶ lim sup
r→0

∣λ∣(B(r, x))
m(B(r, x))

⩾ 1/k}

has measure m(Fk) = 0 for all k. We enlarge A to an open set U ⊂ A with λ(U) < λ(A) + ϵ = ϵ.
By definition, for all x ∈ Fk, there exists a ballBx centered at x and contained in U such that λ(Bx)/m(Bx) > 1/k,

i.e., m(Bx) < kλ(Bx). Fix k and let V = ⋃
x∈Fk

Bx. Then V ⊂ U covers Fk. By the previous covering lemma, there

exist disjoint balls Bx1 , ...,Bxj covering almost 1/3n fraction of V . Since

m(Fk) ⩽m(V ) ⩽ 2 ⋅ 3nm(⋃
i⩽j
Bxi) < 2 ⋅ 3nkλ(⋃

i⩽j
Bxi) ⩽ ϵ(U) = ϵ,
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and since ϵ is arbitrary, we must have m(Fk) = 0.

Example 3.5.6. Let H(x) be the distribution function of the “uniform measure” on the Cantor set C. Define

F (x) =H(x)+x, so µF = µH+m. By L-R-N this is the unique decomposition of µF , asm≪m and µH ⊥m.The

previous theorem says

lim
r→0

µF ((x,x + r])
m((x,x + r])

= lim
r→0

F (x + r) − F (x)
r

= 1

for m-a.e. x. This says the F is differential m-a.e. with derivative 1 whereas F (1)−F (0) = 2 ≠ ∫
1

0
F ′(x) dx.

So far we have the following decompositions and properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v ≪m,ν ⊥m

dν = dλ + fdm

ν = ν+ − ν − .

For Lebesgue-Stieltjes measures µF on R, how do we see these in F?

Theorem 3.5.7

Let F ∶ R→ R be nondecreasing and define G(x) ∶= the right limit of F (x), written F (x+) = lim
y↓x

F (y). Then

(1) {x ∶ F is discontinuous} is at most countable, so F,G differ at most at countable points,

(2) F,G are differentiable a.e. with F ′ = G′ a.e., and

(3) G is non-decreasing and right-continuous.

Beginning of Nov.12, 2021

Proof.

(1) Trivial since each jump must contain some rational.

(3) For right continuity, fix x and let xn ↓ x. Let D be the discontinuity set and assume xn ∉ D. Then

F (xn) = F (x+n) = G(xn), whereas the first term converges to F (x+) and the third to G(x+). Hence

G(x) = F (x+) = G(x+) and G is right-continuous.

(2) Let g be the density of the absolute continuous part of µG, so

G(x + h) −G(x)
h

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µG((x,x + h])
m((x,x + h])

h > 0

µG((x + h,x])
m((x + h,x])

h < 0

which converges to g(x) for m-a.e. x, as h→ 0, by a previous theorem. Hence G′(x) = g(x) a.e.

For differentiability of F , define H(x) = G(x) − F (x). We know H(x) ≡ 0 except on a countable set, and

it’s nonzero at jumps, taking the size of the jump, i.e., F (x+) − F (x). Let {xi} be the enumeration of
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discontinuity points and define Ixj ∶= (F (xj), F (x+j )). Clearly Ixj ’s are disjoint. Then, for each N ,

∑
xj∈[−N,N]

H(xj) ⩽ F (N) − F (−N) <∞.

We can define a discrete measure: let µ ∶=∑
j

H(xj)δxj , which by above is finite on bounded intervals, and

µ ⊥m. Therefore,

m(Ec) ∶=m({x ∶ µ((x − r, x + r))
2r

↛ 0}) = 0.

Notice that

∣H(x + h) −H(x)
h

∣ ⩽ H(x + h) +H(x)
∣h∣

⩽ 4µ((x − 2∣h∣, x + 2∣h∣))
4∣h∣

so this converges to 0 for a.e. x.

Example 3.5.8. Consider discrete measure µ =∑
j

ajδxj on R with distribution F .

(1) At each xj , F is discontinuous so not differentiable,

(2) If no xj ∈ (a, b) then F is constant there, i.e., F ′ ≡ 0.

We can in fact have F ′(x) = c ≠ 0 at some x. For example consider two functions h ⩾ g with h, g tangent at

x with nonzero derivative. Consider a “staircase” function that starts off from one point on the graph of g,

bounces vertically and horizontally, all the way till it converges to (x, g(x). Then, for ∆x > 0,

g(x +∆x) − g(x)
∆x

⩽ F (x +∆x) − F (x)
∆x

⩽ h(x +∆x) − h(x)
∆x

Since the first and the last term both converge to g′(x) = h′(x), the limit for the middle must also converge

to that quantity. Nevertheless, F ′(x) = 0 for a.e. x since the absolutely continuous part of µ is 0.

3.6 Total Variation Functions

Consider a function F . We want to define a function TF (x) to be the “total up-down movement” by F (x). In the

case of a “nice” differentiable function, this can be easily computed by first finding the critical points and add up

the differences. For a more complicated differentiable function, e.g., f(x) ∶= x2 sin(1/x), use the following way.

TF (x) ∶= sup{
n

∑
j=1
∣F (xj) − F (xj−1)∣ ∶ n ⩾ 0,{xi} partitions R}.

We define this to be the total variation of F . (Notice that as n increases, the supremum only gets bigger, not

smaller.)

Alternatively, we can fix a only consider partitions containing a. Hence, for a < b,

TF (b) + TF (a) + sup{
n

∑
i=1
∣F (xj) − F (xj−1)∣ ∶ {xi}ni=0 partitions [a, b]}.

We define this to be the total variation of F on [a, b].
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Since TF is an increasing, we define TF (∞) ∶= lim
x→∞

TF (x) (possibly∞). If finite, we say F is a function of bounded

variation on R. The definition of bounded variation on [a, b] is defined analogously.

Beginning of Nov.15, 2021

Example 3.6.1. Suppose F is differentiable in [a, b] and F ′ is bounded by K (∣F ′∣ ⩽K). Then F has BV on

[a, b] by MVT: for any partition {xi}, there exist ξi ∈ (xi−1, xi) satisfying the MVT property:

n

∑
j=1
∣F (xj) − F (xj−1)∣ =

n

∑
j=1

F (ξj)(xj − xj−1) ⩽
n

∑
i=1
K(xj − xj−1) =K(b − a).

Example 3.6.2. If F is monotone on [a, b] then F has BV.

Example 3.6.3. If F = χQ on [a, b] then picking partitions consisting of alternating rationals and irrationals

implies F does not have BV.

Decomposition of Variation of F

If F (−∞) = 0 then

F (x) = (total upward in (−∞, x]) − (total downward in (−∞, x]),

the difference of two increasing functions (similar to how a signed measure is decomposed).

Clearly for a “nice” function,

F (x) + TF (x)
2

= upward
TF (x) − F (x)

2
= downward.

Lemma

For a real valued F with BV, TF + F , TF − F are nondecreasing.

Proof. Let x < y. We will show that FF (x)+F (x) ⩽ TF (y)+F (y). Consider a partition x0, x1, ..., xn = x,xn+1 = y.

Then

TF (y) + F (y) ⩾
n

∑
i=1
∣F (xi) − F (xi−1)∣ + ∣F (y) − F (x)∣ + F (y)

so taking supreum gives

TF (y) + F (y) ⩾ TF (x) + ∣F (y) − F (x)∣ + F (y) − F (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⩾0

+F (x)

⩾ TF (x) + F (x).

Similar for TF − F , as TF (x) = T(−F )(x) (so it’s equivalent to above with −F ).
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Theorem 3.6.4

For F ∶ R→ R, F has BV if and only if F is the difference of two bounded nondecreasing functions.

With this theorem, we can define the Jordan decomposition of F by

F = TF + F
2

− TF − F
2

.

Proof. For ⇒, F has BV then TF is bounded by definition. Also, we claim that F is bounded: consider the

partition x = x0 < x1 = y, which gives

TF (y) − TF (x) = sup ... ⩾ ∣F (y) − F (x)∣.

Since x, y are arbitrary and TF bounded, F must be bounded too. Therefore⇒ holds by the previous lemma.

Conversely, if F = F1 − F2 where F1, F2 are bounded and nondecreasing, then F1, F2 have BV, so F1 − F2 has BV

as well.

3.7 Absolutely Continuous Functions

Definition: Absolutely Continuous

We say f ∶ R→ C is absolutely continuous if for all ϵ > 0, there exists δ > 0 such that

{(aj , bj)}ni=j disjoint and
n

∑
j=1
∣bj − aj ∣ < δ Ô⇒

n

∑
j=1
∣F (bj) − F (aj)∣ < ϵ. (*)

In particular this implies uniform continuity.

Note that if (*) holds then it also holds for ∣
n

∑
i=1
(F (bj) − F (aj))∣, so if F is a distribution function, then

E =
n

⋃
i=1
(aj , bj) disjoint union with m(E) < δ Ô⇒ µF (E) < ϵ.

(Cf. Theorem 3.5 on notes p.169.)

Using MVT, if F is differentiable and F ′ is bounded, then F is absolutely continuous.

Definition: Normalized BV (NBV)

We define NBV to be the collection of right-continuous BV functions with F (−∞) = 0.

Proposition 3.7.1

For F ∈ NBV, F is absolutely continuous if and only if µF ≪m, if and only if µF has a density F ′, i.e.,

F (x) = ∫
(−∞,x]

F ′ dm for all x.
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Corollary 3.7.2

For f ∈ L1(m) on R, F (x) ∶= ∫
x

−∞
f(t) dt is in NBV and absolutely continuous, with F ′ = f a.e. Conversely, if

F ∈ NBV is absolutely continuous then F ′ ∈ L1(m) (exists a.e.) and

F (x) = ∫
x

−∞
F ′(t) dt for all x.

Beginning of Nov.17, 2021

Proof.If µF ≪m, then for ϵ > 0, there exists δ > 0 such that (by a previous theorem on absolute continuity) such

that
n

∑
j=1
(bj − aj) < δ Ô⇒ ∣

n

∑
j=1

F (bj) − F (aj)∣ < ϵ.

For absolute continuity, a similar argument needs to hold but the magnitude needs to be inside, i.e., ∑∣ ⋅ ∣. We

split the j’s into

{j ∶ F (bj) − F (aj) < 0} {j ∶ F (bj) − F (aj) < 0}.

Then

n

∑
j=1
(bj − aj) < δ Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
j=1
[F (bj) − F (aj)]+ < ϵ

n

∑
j=1
[F (bj) − F (aj)]− < ϵ.

Then
n

∑
j=1
∣F (bj) − F (a − j)∣ < 2ϵ. Thus F is absolutely continuous.

Conversely, suppose F is absolutely continuous and m(E) = 0. We want to show that µF (E) = 0. Let ϵ > 0 so

that there exists a corresponding δ satisfying the definition. Then there exists U1 ⊃ E with m(U1) < δ. Also, there

exist U2 ⊃ U3 ⊃ ... ⊃ E with µF (Uj) → µF (E). We may assume U1 ⊃ U2 ⊃ ... (otherwise let Uj be Uj ∩U1). These

are open sets with m(Uj) < δ. Suppose Uj consists of intervals (akj , bkj )k⩾1. Applying absolute continuity of F to

the first n of these gives

∣µF (
n

⋃
k=1
(akj , bkj ))∣ ⩽

n

∑
k=1
∣F (bkj ) − F (akj )∣ < ϵ.

Letting n → ∞, ∣µF (Uj)∣ ⩽ ϵ (note that the definition of absolutely continuous function requires finite number

of intervals that add up to length < δ, not countable; this is why we start with the finite case first). Therefore

∣µF (E)∣ < ϵ. Since ϵ is arbitrary, µF ≪m.

Normalizing a BV Function

Recall the Jordan decomposition

F = TF + F
2

− TF − F
2

.

Claim. If F (−∞) = 0 then

TF + F
2
(x) = sup{

n

∑
i=1
(F (xi) − F (xi−1))+, n ⩾ 0,−∞ < x0 < ... < xn = x}.
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Proof. Note that

2
n

∑
i=1
(F (xi) − F (xi−1))+ =

n

∑
i=1
∣F (xi) − F (xi−1)∣ +

n

∑
i=1
(F (xi) − F (xi−1)).

Taking the supremum, given M , we can assume x0 < −M . Thus we may let x0 →∞ as the sum approaches the

supremum. Then the second telescoping sum approaches F (x) −F (−∞) = F (x). Rearranging gives the original

claim.

Corollary 3.7.3

The conclusions about (the G(x) = F (x+) theorem) hold for F ∈ BV.

If F1, F2 are right-continuous nondecreasing functions, then F = F1 − F2 is the distribution function of a

signed measure.

Beginning of Nov.19, 2021

Lemma

If F ∈ BV then lim
x→−∞

TF (x) = 0. If F ∈ BV is right-continuous, then TF is also right-continuous.

Proof. We first show that TF (x+h)−TF (x)→ 0 as h ↓ 0. Let x = x0 < x1 < ... = xn = x+h. The sum of increments

between x1 and xn satisfies
n

∑
i=2
∣F (xi) − F (xi−1)∣ ⩽ TF (x + h) − TF (x1), and intuitively ∣F (x1) − F (x0)∣ is small if

∣x1 − x∣ is small.

Given ϵ > 0, if h is sufficiently small,

n

∑
i=1
∣F (xi) − F (xi−1)∣ ⩽ TF (x + h) − TF (x1) + ϵ.

Taking sup of the LHS, we can assume x1 ↓ x. Then,

TF (x + h) − TF (x) ⩽ ϵ + TF (x + h) − TF (x+).

In other words,

TF (x) ⩾ TF (x + h) − ϵ.

Since ϵ is arbitrary, we are done.

Now we show that lim
x→−∞

TF (x) = 0. Let −∞ < x0 < ... < xn = x. By definition,

n

∑
i=1
∣F (xi) − F (xi−1)∣ ⩽ TF (x) − TF (x0).

Taking sup, we can assume x0 → −∞. Then we have TF (x) ⩽ TF (x) − TF (x0) so TF (x0)→ 0

Connection to Jordan Decomposition

Consider finite measures (maybe complex). Recall that F ∈ NBV if and only if µF is a measure.

For R-valued measures, we have

(1) Jordan decomposition: µF = µ+F − µ−F
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(2) Total variation: ∣µF ∣ = µ+F + µ−F ,

(3) Jordan decomposition of F : F = (TF + F )/2 − (TF − F )/2

(4) Total variation function for F : TF = (TF + F )/2 + (TF − F )/2.

Question. How do these correspond? How are the properties µF ≪ m,µF ⊥ m reflected in F? We know F ′ is the

density of the continuous part of µF by L-R-N.

Theorem 3.7.4

There is a 1-1 correspondence between the NBV functions and signed measures µ given by F (x) =
µ((−∞, x]). The total variation has an analogous statement: ∣µF ∣ = µTF

.

Proof. For F ∈ NBV, by definition F is right continuous. Hence F is the distribution function of some finite µF .

Conversely, given a finite signed measure µ, its distribution function is right-continuous; continuity from above

with finite total measure implies that F (−∞) = lim
x→−∞

µ((−∞, x]) = 0. The other part is omitted.

We know µF has density F ′ for the absolutely continuous part. What about ∣µF ∣? Guess? ∣F ′∣?

Lemma

Yes. For convenience denote the absolutely continuous and dsingular singular parts of ν by νa, νs, respec-

tively. Claim: for F ∈ NBV, ∣νF ∣a has density ∣F ′∣.

Proof. L-R-N gives µF = (µF )a + (µF )s. Hahn decomposition of (µF )a, (µF )s separately gives us four disjoint

(up to null) sets that partition the space: Pa,Na, Ps,Ns such that (µF )+a − (µF )−a + (µF )+s − (µF )−s = µF . Then

∣µF ∣ is the sum of these parts. Since (µF )+a, (µF )−a are both absolutely continuous to m whereas the other two

⊥ m, and the sum of the first two lives on a set disjoint from that on which the sum of the last two lives. By

uniqueness of decomposition, we must have ∣µF ∣a = (µF )+a + (µF )−a. Then,

(µF )a = (µF )+a − (µF )−a = F ′dm = (F ′)+dm − (F ′)−dm

where (F ′)+ and (F ′)− are disjointly supported. Hence this must also be the Jordan decomposition of F ′.

Therefore,

∣µF ∣+a = (F ′)+dm and ∣µF ∣−a = (F ′)−dm,

and

∣µF ∣a = (F ′)+dm + (F ′)−dm = ∣F ′∣dm.

Beginning of Nov.22, 2021

Previously we’ve shown that TF is the distribution function of ∣µF ∣, so (TF + F )/2 is the distribution function of

(∣µF ∣ + µF )/2 = µ+F and similarly (TF − F )/2 is the distribution function of µ−F .

We also know that

dµF = d(µF )s + F ′dm. (*)
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Proposition: (3.30)

For F ∈ NBV, we have F ′ ∈ L1(m). Also, µF ⊥ m if and only if F ′ = 0 a.e., and µF ≪ m if and only if

F (x) = ∫
(−∞,x]

F ′ dm.

Proof. The “iff” statements follow from (*). To show the first claim,

∫ ∣F ′∣ dm = ∣µF ∣a(R) ⩽ ∣µF ∣(R) = TF (∞) <∞.

Proposition: (3.32)

For F ∈ NBV, F is absolutely continuous if and only if µF ≪m.

Corollary: (3.33)

For f ∈ L1(m) on R, the function

F (x) ∶= ∫
(−∞,x]

f dm

is in NBV, absolutely continuous, and F ′ = f a.e.

Conversely, if F ∈ NBV is absolutely continuous, then F ′ ∈ L1(m) and F (x) = ∫
(−∞,x]

F ′ dm.

In other words, for F ∈ NBV:

F is absolutely continuous ⇐⇒ F is the integral of some f

⇐⇒ F is the integral of F ′.

Proof. If f ∈ L1, then F (x) ∶= ∫
(−∞,x]

f dm is the distribution function of a finite signed measure. By (theorem

3.29), F is in NBV. Then F is absolutely continuous by (proposition 3.32), and by (proposition 3.30), F ′ is also

a density of µF so µF = f a.e.

Conversely, if F ∈ NBV, then µF ≪ m by (proposition 3.32). Then by (proposition 3.30), F (x) = ∫
(−∞,x]

F ′ dm.

Lemma

For BV on an bounded interval, the converse in (corollary 3.33), F ∈ BV is a consequence of F being

absolutely continuous. In other words, if F is absolutely continuous on [a, b], then F ∈ BV([a, b]).

Proof. Use the (ϵ, δ) definition and take ϵ = 1. Then for some δ,

n

∑
j=1
(bj − aj) < δ Ô⇒

n

∑
j=1
∣F (bj) − F (aj)∣ < 1.

Fix k large so that (b− a)/k < δ. Fix the points a = x0, x1 = a+ 1/k, ..., xk = b. Grouping any partition in into these

subintervals shows that the total variation ⩽ k.
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Example 3.7.5. (p.192 notes). Let H(x) be the Cantor-lebesgue function and let F (x) ∶= H(x) + x. Then

F (1) − F (0) = 2 whereas

∫
[0,1]

F ′ dm = ∫
[0,1]

H ′ dm + ∫
[0,1]

1 dm = 1.

Therefore F is continuous but not absolutely continuous.

Example 3.7.6: Integration by parts?. When does the following hold?

f(b)g(b) − f(a)g(a) = ∫
[a,b]

fg′ dm + ∫
[a,b]

f ′g dm?

Clearly, letting f = g both as the Cantor function, the claim fails. However, if f, g are both absolutely

continuous then the claim holds. (A HW8b problem showed that ratio of absolutely continuous functions is

absolutely continuous, and analogously the product also is.) If so, fg is also absolutely continuous, so

f(b)g(b) − f(a)g(a) = ∫
[a,b]
(fg)′ dm = ∫

[a,b]
fg′ + f ′g dm

as (fg)′(x) = lim
h→0
[f(x + h) − f(x)

h
g(x) + f(x + h)g(x + h) − g(x)

h
] = f ′(x)g(x) + f(x)g′(x) for a.e. x.

Example 3.7.7: Term-by-term differentiation?. Suppose Fn ⩾ 0 are increasing right-continuous functions

on [0,1] that are summable a.e. Let F ∶=
∞
∑
n=1

Fn. Does F ′ =
∞
∑
n=1

F ′n a.e.?

The answer is yes. We change it to an equivalent question about measures µFn and µF so µF =
∞
∑
n=1

µFn .

The definition of F implies that F ′ is the density of the absolutely continuous part of µF and we wonder if

summation “messes up” the absolute continuous parts of each element in the summation. We know

µF =
∞
∑
n=1
(µsFn

+ F ′ndm)

=
∞
∑
n=1

µsFn
+
∞
∑
n=1

F ′ndm =∶ λ + ρ.

It suffices to check that λ ⊥ µ and ρ≪m. That is, does ρ = (
∞
∑
n=1

F ′n)dm? Yes; see the notes.
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Chapter 5

A Bit of Functional Analysis

Beginning of Nov.29, 2021

In finite dimensional spaces, linear maps, i.e., multiplication by matrices, is always continuous.

As we shall see, bonudedness and continuity for linear operator are equivalent, so there exists a C > 0 such that

∥Tx∥ ⩽ C∥x∥ for all x.

In general, linear operators need not to be bounded. For example consider the derivative operator D ∶ C1([0,1]) →
C([0,1]) defined by T ∶ f ↦ f ′ where both spaces are equipped with the sup norm. Consider the functions sin(nx)
which are uniformly bounded by 1 but derivatives →∞.

Subspace also need not to be closed in infinite-dimension. For exmaple let X = C([−1,1]) equipped with the

sup norm and let Y be the subspace of differentiable functions. For example consider fn(x) ∶=
√
x2 + 1/n which

converge uniformly to ∣x∣, a non-differentiable function.

Definition 5.0.1: Seminorm

Let X be a vector space over R and C. A seminorm is a function ∥ ⋅∥ ∶X → [0,∞) such that ∥λx∥ = ∣λ∣∥x∥ and

∥x + y∥ ⩽ ∥x∥ + ∥y∥ for all λ ∈ R or C and x, y ∈X. A norm has the additional property with ∥x∥ = 0⇒ x = 0.

Topological Spaces

In a metric space, we say xn → x if for all open set G containing x, the tail of the sequence eventually is enclosed

by G.

Heuristically, in a general topological space, we specify a collection J of subsets of X; we say xn → x means for all

G ∈ J, xn ∈ G eventually.

A topological space is a pair (X,J) with J ⊂ P(X) with ∅,X ∈ J, J closed under all union and finite intersections.

We say sets in J are open sets, and we call complements of open sets closed sets.

The interior of A ⊂X is A○, the union of all open G ⊂ A. A neighborhood of x ∈X is a set A with x ∈ A○.

We say xn converges to x if for every open neighborhood U of x, {xn} is eventually in U .

Given a norm ∥ ⋅ ∥, we obtain an induced metric d(x, y) ∶= ∥x− y∥, which gives open sets, forming a topology called

the norm topology.
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Two norms ∥ ⋅ ∥1, ∥ ⋅ ∥2 are called equivalent (or compatible) if there exist c1, c2 ∈ (0,∞) such that

c1∥x∥1 ⩽ ∥x∥2 ⩽ c2∥x∥1 for all x.

Definition 5.0.2: Banach Space

A Banach space is a normed linear space complete in its norm topology.

Beginning of Dec.1, 2021

Proposition 5.0.3

L1(µ) is complete.

Proof. Recall that if a Cauchy sequence has a convergent subsequence then the entire sequence converges to the

same limit.

Suppose {fn} is Cauchy in L1. Cauchy in L1 implies Cauchy in measure, so we have a.e. convergence of a

subsequence. Now we show that the convergence is in L1 too.

Let ϵ > 0. For a fixed k, for onward terms,

∣fnk
− fnj ∣→ ∣fnk

− f ∣ a.e. as j →∞.

By Fatou,

∫ lim inf
j→∞

∣fnk
− fnj ∣ = ∫ ∣fnk

− f ∣ ⩽ lim inf
j→∞ ∫ ∣fnk

− fnj ∣ < ϵ

for k large. Hence fnk
→ f in L1.

Beginning of Dec.3, 2021

Note that for x ∈ (0,2),
1

x
= 1

1 − (1 − x)
=
∞
∑
n=0
(1 − x)n.

Claim. Similarly, for ∥I − T ∥ < 1,

T −1 =
∞
∑
n=0
(I − T )n,

i.e., for all x, T −1x =
∞
∑
n=0
(I − T )nx = lim

n→∞

n

∑
k=0
(I − T )kx.

In general, a series of operators
∞
∑
n=0

Tn with Banach codomain converges if the norm series
∞
∑
n=0
∥Tn∥ converges: for

large j < k,

∥
k

∑
n=j

Tnx∥ ⩽
k

∑
n=j
∥Tnx∥ ⩽

k

∑
n=j
∥Tn∥∥x∥→ 0.

Proof. Note that ∥(I −T )n∥ ⩽ ∥I −T ∥n → 0 so we do have a convergent series, so the claim is well-defined. Hence

T
∞
∑
n=0
(I − T )n = (I − (I − T ))

∞
∑
n=0
(I − T )n

=
∞
∑
n=o
(I − T )n −

∞
∑
n=1
(I − T )n = I
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and likewise for the other direction.

Baire Category Theorem

When is a set “topologically small”?

Recall we say B ⊂X is dense in X if B =X. Equivalently,

(1) every open neighborhood of every x ∈X intersects B nontrivially, or

(2) every open set intersects B.

On the opposite, a set A ⊂X is nowhere dense if A (closure!) contains no nonempty open set of X:

A is nowhere dense ⇐⇒ no open subset of A

⇐⇒ every open set intersects A
c

⇐⇒ A
c

is dense and open.

If G ⊂ E then E ∩G is dense in G.

Example. Let {qn} be an enumeration of Q and let G ∶=
∞
⋃
n=1
(qn − 2−n, qn + 2−n). Then G is open and dense in R with

measure 2 whereas Gc cannot contain any interval. Hence Gc is nowhere dense.

Theorem 5.0.4: Baire Category Theorem

If X is complete, then

(1) if Un is open and dense in X for all n (so U cn is nowhere dense), then
∞
⋂
n=1

Un is dense; and

(2) X is not a union of countably many nowhere dense sets (follows from (1) to the complements).

We say E ⊂ X is meager if it is the union of countably many nowhere dense sets. In particular X itself is

not meager.

Examples:

(1) If E1,E2, ... ⊂ R and their union is R, then at least one of the En’s must contain an interval.

(2) Let X be complete. To show that “there exists x ∈ X with property P ”, it suffices to show that {x ∈ X ∶
x lacks P} is a countable union of nowhere dense sets (so the union cannot be the whole space).

(3) Consider C([0,1]) and let P be “nowhere differentiable”. Define

An ∶= {f ∈ C([0,1]) ∶ there exists x0 where ∣(f(x) − f(x0))/(x − x0)∣ ⩽ n for all x ≠ x0}.

If f ′ exists at x0 then f is contained in some An. With the BCT, it suffices to show that An is (closed and)

nowhere dense.

Roughly, we want to show that for all f ∈ C([0,1]) and all ϵ > 0, there exists g with ∥g − f∥ < ϵ and g ∉ An.

Heuristically given the ϵ-tube we construct a sawtooth fucntion similar to the Weierstraß monster disobeying

the bound for An. This will show that An is nowhere dense so “at least one point differential” functions are

meager.
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(4) (Open Mapping Theorem.) Let X,Y be Banach and T ∈ L(X,Y ) a bijection. Then T −1 exists but is not

necessarily bounded. (We know T −1 is bounded if and only if T −1 is continuous at 0, so T (U) needs to

contain a ball centered at 0 for every neighborhood U .)

We can assume that U = B(0, ϵ) is itself a ball. By a scaling argument, the choice of ϵ does not matter. Hence

T −1 is bounded if and only if T (B(0, n)) contains a neighborhood of 0 for some (and by scaling, all) n. Then

Y =
∞
⋃
n=1

T (B(0, n))

since T is onto. This means some T (B(0, n)) is somewhere dense. Eventually this implies the inverse of a

bounded bijection is necessarily bounded.
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