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0.1 Introduction

Calculus of Variations

. ' _ ODEs/PDEs
Linear Algebra = Functional Analysis —

Approximation Theory

(1) Functional analysis deals with infinite dimensional spaces, often spaces of functions and certain classes of

mappings between these spaces.
(2) Can be thought of a (nontrivial) generalization of linear algebra (from finite to infinite dimensional).

(3) The development of functional analytic methods and results are important in various areas of math; in partic-
ular they provide a powerful tool for the study of ODEs, PDEs, for example the existence and uniqueness of

solutions and the convergence of approximations, etc.

0.2 Linear Algebra

We first draw an analogy between functional analysis and linear algebra, starting from familiar concepts. Let A be

a n x n matrix.

(p1) Given a vector b € R”, find x € R” such that Az = b.
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(p2) Analogy: consider a bounded, open set ) c R™ and a linear partial differential operator

Lu=- i (ai’j(f)ux,;)mj + ibl(x)ux +c(x)u.

i,5=1

Given a function f : Q) - R, find a function u vanishing on the boundary of ) so that Lu = f.

Fundamental differences between (p1) and (p2)

The matrix A is a continuous (or equivalently bounded) linear transformation on the finite dimensional space R",

whereas the differential operator L is considered an unbounded (and equivalently not continuous) operator on

infinite dimensional spaces L?(2). In particular, the domain of L is not L?(2), but only a suitable subspace (e.g.

1/2
H}(Q), the space of functions vanishing on the boundary of Q with |l 2 o) = (/;2|u|2 dz + /;Z|Vu|2 dg:) < 00).

Structural Similarities

(1)

(2

(Positivity) If A is strictly positive definite, i.e., there exists 3 > 0 such that (Axz,z) > B|z|? for all z € R", then

A is invertible as its kernel is trivial. If so, (p1) has a unique solution for all b € R™.

Analogy in elliptic PDEs: if L is strictly positive definite, i.e.,

n L. n X
(Lu,u) ;2 = [QLu-u de = /Q S ah (@) ug g, + Y 0 () ug,u + c(z)u® da > BHUH?J?(Q)
, st

i,5=1

for some 3 > 0 and for all u € H}(Q), then (p2) has a unique solution u € H}(2) for every f € L?(2). In

particular, at each z € , the n x n matrix {a*’(z)} should be strictly positive definite.

(Fredholm Alternative) In linear algebra, (p1) has a unique solution if and only if Az = 0 has one solution
2 = 0. In other words, uniqueness comes if and only if the kernel is trivial. In general this is false; if X is
infinite dimensional, one can construct a bounded linear operator A : X — X that is injective but not surjective

(or vice versa).

However, there is a remedy: if A is of a specific form given by A = I — K where [ is the identity and K a
compact operator, then A is injective if and only if it’s surjective. Consequently, (p2) has a unique solution

ue HY(Q) for all f e L? if and only if the homogeneous equation Lu = 0 only has a trivial solution.

Beginning of Aug.25, 2021

0.3 Evolution Equations

Consider an ODE

a(t) = Az(t)
2(0)=b

where A is a matrix and b € R™. Linear ODE theory gives z(t) = /b where

(e tkAk:
tA
e = .

3
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Also, {¢*4 | t e R} has the group property

0A _ I etAesA _ e(t+s)A.

and

If A is symmetric, there exists an orthonormal basis of eigenvectors {v1, ..., v, } with eigenvalues Ay, ..., A,, such that
n
eb = > e (b, vg) vy,
k=1
Now we use linear semigroup theory and extend the above notion to linear operators in infinite dimensional spaces.

Consider q
au(t) = —Lu(t)

uw(0) =g for g e L?(Q)
u=0 on 0f.

(For example, consider u; = Au the heat equation.) When a7/ (z) = a?!(z) and b°(z) = 0, then the elliptic operator
L is symmetric (like how A is a symmetric matrix above), and the solution can be decomposed along orthogonal
basis {1, p2, ...} of L?(Q):

u(t) =), e (g, o) 12 1 = Stg t>0.
k=1

Note that L is unbounded (as A\ - oo as k — o0). However, S; are bounded for ¢ > 0, and moreover the family of

linear operators {S; | t > 0} is a linear semigroup, since
So=1 S; 0S8, =8, forall s,t>0.

Roughly speaking, S; = e"* (roughly because L is unbounded and the exponential formula is not necessarily valid).
We need some different approximation method, for example
e = lim (I - EA)
n—o00 n
or

et = lim e Ay= A -X1A)L

A—00

0.4 Function Spaces

A key idea is to view functions f : R™ — R as points in an abstract vector space.

The information about a function can be encoded in a simple but useful number || f|, which we call the norm of f.
This notion, along with the structure of this vector space, leads to many important results.

For example, in applications to ODEs, PDEs, or integral equations, we naturally consider C*(R") (the space of

functions with bounded, continuous partial derivatives up to order k) with
[/lex = max j;ﬁg' 05 05 .07 f () |

These spaces are not always practical since real interesting solutions may be discontinuous. This motivates the
Lebesgue spaces LP(R™), p > 1 or Sobolev spaces, W**(R"), where we weaken our requirement on continuity and

obtain much more flexibility. The norm in W**(R") are given by

Wiwes = X ([ 0500 o ar)
P = wll... w: T i
Wk Y agk VYR
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0.5 Compactness

When we solve an equation where the explicit formula is unavailable, one standard method that we employ is the

following:

(1) Approximate the problem; construct a sequence of approximate solutions {u,, }.

(2) Extract a convergent subsequence (or at least a canditate) {u,, } converging to some .

(3) Show that w is a solution.

In step 2, there is a striking difference between R™ and abstract function spaces. In the former, Heine-Borel states
(compact < closed and bounded), whereas in general function space the < direction may well be false.
Resolution

(1) We can introduce a weaker notion of convergence and show that every bounded sequence has a subsequence

that converges in a weak sense. (The Banach-Alaoglu Theorem)

(2) We can consider two distinct norms ||« weak < ||¢[strong. If the strong norms are bounded, then there exists a

subsequence converging in the weak norm.

End of Introduction
—_—>0 D 0<

Beginning of Aug.27, 2021



Chapter 1

Normed Spaces and Banach Spaces

1.1 Basic Definitions

[ Definition 1.1.1: Normed Linear Space

(X, ]I]) is a normed linear space (NLS) over a field K (usually R or C) if X is a vector space and |-| : X - R

satisfies

(1) (non-degeneracy) || > 0 for all z € X with equality if and only if = 0;
(2) (absolute homogeneity) |\z| = |\||z| for all z € X, \ € K; and

(3) (triangle inequality) |z + y| < |z| + |y| for all z,y € X.

Note that the mapping z ~ ||z is continuous.

Lemma 1.1.2

Let (X, | -|) be a NLS. Then the distance function d(z,y) := |« — y| defines a metric on X. Moreover:
(1) distranslation invariant: d(z,y) = d(x + z,y + z) for all z,y, z € X;
(2) dis positively homogeneous: d(\x, \y) = |A\|d(z,y) for all z,y € X, A € K; and

(3) every open ball B(zg,r) := {x € X | d(z,z9) < r} is a convex set. This defines a topology on X. We
therefore have a concept of open sets, closed sets, convergent sequences, continuous mappings, and so on.

We use B(zg,r) to denote the closed ball, the closure of B(xg,7).

Proof of (3). By translation invariance, it suffices to assume that the center of the ball is origin, i.e., ¢ = 0. Let

x,y € B(0,r) and 0 < 6 < 1 be given. Then we want show that 6z + (1 - 0)y € B(0,r). Indeed:

[0z + (1~ 0)y]| < 0] + (1~ 0)y] = 0]e] + (1~ O)y] < Or + (1~ O)r = .
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[ Definition 1.1.3: Convergence of Sequences and Series

A sequence {x,} in a NLS is convergent if there exists x € X such that nll_I}Elo |z, — | = 0. We write z,, > x
and say z is the limit of {z,,}. l
For series:
oa n
(1) The series Z yx converges to z if the series of partial sums S,, := Z yx converges to x. If so, we write
k=1 k=1

> yr =z and {y;} is called summable.
k=1

(2) If Y |ywl < oo, we say {y;} is absolutely summable.
=1

[ Definition 1.1.4: Completeness & Banach Space

A sequence {x,,} is Cauchy if for all € > 0, there exists a sufficiently large NV € N such that
[Zm — zn| < € whenever m,n > N.

A normed space X is complete if every Cauchy sequence converges. A complete normed space is called a

Banach space.

Theorem 1.1.5

A normed space X is complete if and only if every absolute summable sequence is summable. Proof left as

exercise; see Ozanski’s 3.18.

Examples of Banach Spaces
We now present some basic examples of Banach spaces:
(1) R”" equipped with the euclidean norm |z||s := \/2% + ... + 22 is a Banach space over R.

(2) R" equipped with p-norm and/or co-norm are also Banach spaces, where

n 1/p
= |P < = .
Iz, (i§=1|xz| ) forl<p<oo and [ 2] o {2%);|x1|

oo o 1/p
(3) €7 spaces defined by {z = {z;};2; | Y. |zx[P < oo} is Banach with |z, := (Z|xk|p) .
k=1 k=1

(4) ¢ defined by ¢*° := {x = {z) };2, | sup|zi| < oo} is a Banach space with |z« := sup|zg|.
k>1 k21

(5) C°a,b]:={f:[a,b] > R| f is continuous} is a Banach space with norm | | co := nEa%]|f(x)|.

6) LP(Q):={f:Q->R]|fis Lebesgue measurable and fQ|f(x)|” dz < oo} is a Banach space with

= ([ ar) ™

7
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(7) Similarly, L* (), the set of essentially bounded measurable functions on (2, is a Banach space with

|.f ]| := esssupl| f(z)].
zef)

Example 1.1.6. Consider X, the set of all continuous functions on € such that || f| .» < co. This space is not

complete. However, its completion is exactly LP(Q)!

Example 1.1.7. Let X be the space of all polynomials on [0, 1]. Consider the two norms
1
Iflens= max|f@)]  and  |f|= [ 1f(@)]|da.

We consider a sequence of functions defined by f,,(x) = z". It is clear that | f,,| co = 1 for all n, but

1 1
1 foll 1 :f 2" do = -0
0 n+1

as n — oo. In other words, f,, - 0 in the L' norm but {f,} is not even Cauchy with respect to C° (take the

difference between z™ — ™).

Example 1.1.8. We know every norm on a metric space induces a norm. How about the converse?

False! See here for examples.

1.2 Linear Operators

Unless otherwise specified, we will let X,Y be NLS over the same scalar field K.

[ Definition 1.2.1: Linear Operator

A linear operator is a mapping A : D(A) - Y such that
A(clzcl + CQZL’Q) = ClA(SL'l) + CQA(SEQ)

for all 1,29 € D(A) and ¢1, ¢ € K.
Here D(A) stands for the domain of A, a subset of X. Analogously, we define R(A) = {Az |z € D(A)} to be
the range. Finally, we define the kernel of A to be

ker(A) :={z e X | Az =0}.

It is easy to check that A is injective if and only if ker(A) = {0} (or 0 for shorthand notation).

[ Definition 1.2.2: Bounded Linear Operator

Let A: X — Y be a linear operator. We say A is bounded if

[A] = sup |Az] < oo.

<1


https://math.stackexchange.com/questions/166380/not-every-metric-is-induced-from-a-norm
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(Note that |z| < 1 refers to the norm in X, |Ax| refers to the norm in Y, and |A| refers to the operator

norm. We drop the subscripts to avoid cumbersome notations.)

Theorem 1.2.3: Bounded < Continuous

A linear operator A : X — Y is bounded if and only if it is continuous.

Proof For <, if A is continuous, it is continuous at the origin in particular. Thus, there exists § > 0 such that
|z| <6 = |Az| < 1 (note that A(0) = 0). By linearity, if |z| <1 then |Az| < 1/§ < oo.

For =, suppose x; # x5. Then

1 — X
[Azy - Ao = Az - 22)] = HA(I - )H o = w2 < [A] 21 - o]
|z =@ JT — =
~— a scalar
norm=1
so A is Lipschitz with constant |A|. In particular it is continuous. O

[ Definition 1.2.4: B(X;Y")

Let B(X;Y) denote the space of bounded linear operators from X to Y. Then B(X;Y') is a normed space

with the operator norm as its norm. In particular, if Y is a Banach space, then B(X;Y") is a Banach space.

Beginning of Aug.30, 2021
Proof. First recall that if A;, A are linear operators, then by definition
(c1A1 + o)z = c; Ay + oA + .
We now show that A — ||A| indeed defines a norm:

(1) Al >0 forall A eB(X;Y) is clearly trivial; also, if A =0 then Az =0 for all z € X, so |A| = 0 (otherwise

we can easily derive a contradiction).
(2) Absolute homogeneity follows from that of | - |y: if «, then

laA] = sup [aAz| = sup (jof|Az]) = |af sup |Az] =|af[A].

<1 <1 [=l<1
(3) Triangle inequality again follows from that of | - |y: let |z| < 1. Then
[(Ar+ Az)a| = [Arz + Apz]| < [ Az + Aoz
<AL + A2

Taking the supremum over all = eighth |z| < 1 we obtain the desired inequality.

Now let Y be Banach; we will show that B(X;Y") is Banach. Let {A,,} be a Cauchy sequence of bounded linear

operators. For any € X, we have |A,z — A,z| < |An - A || z]- By assumption,

im A (2) = A (2) | <limsup [An = Ay, || 2] =0,



YQL - MATH 580 Notes 1.2 - Linear Operators Current file: 8-30.tex

so {A,x} is a Cauchy sequence in Y and hence converges to some limit, which we call Az. For all z € X we
define the corresponding Ax as such.
It remains to show that A € B(X;Y). Its linearity is trivial. For boundedness: we can choose a sufficiently large

N (this class uses the notation N >> 1, and I will use it from now on) such that
[An, —An] <1 foralln > N.
Thus, for any z € X, |z| <1,

[Az] = lim [A, X[ = lim [(Ax +An = An)z|

< Anz| +limsup A, - An||z] < oo.
n—o0

Example 1.2.5.

(1) Letl<p<oo. Consider X = (P with
oo 1/11
21, = (Zw) for finite p and |]u. = supfe| (for p = oo).
k=1 k21

Let (A1, A2, ...) be an arbitrary sequence of real numbers. Define

A: 0P > P by (331,332, ) = (/\1331,/\2.132, )

If we set e; = (1,0,...), e2 := (0,1,...), and so on, then the span of them will NOT be ¢? but rather a

dense subset of (P for p < co(in fact, cgg). £*° is NOT separable.

If we view A as the infinite matrix diag(\y, A, ...), and if {\;} is bounded, then the operator is bounded

with ||A| = sup|Ag|- If {\x} is not bounded, then A is not bounded.
k>1

(2) LetI=(0,m)andlet X = BC(I) be the space of bounded, continuous, real-valued functions on I with

171 = Sw |f (@)

<z<lm

Consider the linear operator A defined by Af = f’. Accordingly, define the domain
D(A):={f:I— R| f is differentiable and has a bounded continuous derivative}.

Then A : D(A) — X is clearly a linear operator. However, A is not bounded: for example consider the

oscillating functions fy := sin(kz), where | f| = 1 for all £ but |Af| =k — oo as k — oo.

(3) The shift operators on LP(R) for 1 <p < co: fix a € R. For any f € L?(R), we define

(Aaf) () = f(z - a).

Then clearly |Aq fllz» = || f|zr SO Ag : LP — LP has operator norm 1. Also, notice that A, is a bijection!

10
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(4) The shift operators on ¢P(R) for 1 < p < co: define the right and left shift operators by
A+ 1P fP by (l‘l,l‘Q, ) — (0,331,.’132, )

and
A_: P > P by (.731, xo, ) = (.’132,.’133, )
The both still are bounded linear operators with norms 1, yet A, is injective but not surjective, and A _

is surjective but not injective.

(5) The multiplication operator: let {2 c R” be bounded and open and ¢ : Q - R bounded and measur-
able. Define
M, = LP(2) > LP(2) by f o g.

Then M, is a bounded operator with |Mg| = sup | gf]p = 9] -
171

(6) The integral operator: let X = C°([a,b]). Let
Af@)= [ 1) dy.
Then A : X - X is a bounded linear operator:

IAf(m)|=’ [ i@ < [T dy< max | 7@)I(b-a).

Beginning of Sept.1, 2021

1.3 Finite-Dimensional Spaces

[ Definition 1.3.1: Equivalent/Comparable Norms

We say two norms | - |1, | + |2 are equivalent (or comparable) if there exists a constant ¢ > 1 such that
1
“lzli<lelz<clz]y foralla.

Note that equivalent norms lead to the same Cauchy sequences.

Remark. In general, infinite-dimensional spaces can have many non-equivalent norms, but the case is

much nicer if we look at finite-dimensional spaces —

Theorem 1.3.2: Norms on Finite-Dimensional Spaces

Let X be a finite-dimensional normed space over K. Let B = {uy, ..., u,, } be a basis of X. Then:

(1) X is a Banach space.

11
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(2) Foreach a e K", let

Ao = oqug + ... + apu, € X.

Then A : K" - K is bijective and bounded. Moreover, A~! is also bounded. (In general the inverse of a

bounded operator need not to be inverse.)

Proof. Note that A is clearly both injective and surjective, and its inverse is well-defined. All of these directly

follow from properties of basis. Note that

|Aa =

n
Z ;UG
i=1

n n n
<Y o] € maxag| D Jug] < o] Y Jur],
k=1 Isisnt i3 k=1

so A is indeed a bounded linear operator.
Now we show A~! is bounded. Suppose not, then there exists a sequence {z,,} where |z,| < 1 but |[A 'z, |

tends to infinity. Let

n

A,

o AT €
such that |8,[ =1 and AB, = z,/|A 2,] - 0 as n — oo.
Since {3, } is a bounded sequence in K", it is compact and admits a convergent subsequence {3, } converging
to some [ € K. But then

18] = lim {5, ] =1
whereas

A = lim Apy, =0,

so A has a nontrivial kernel, contradicting its injectivity. Hence A~! is bounded.

Finally, we show that X is Banach. Let {z,,} be a Cauchy sequence in X. Then by boundedness {A™'z,} is a
Cauchy sequence in K™ and hence converges to some 3 € K™. Since A is continuous, it preserves sequential

limits, and thus
z, = AA T (2,))

converges to A5 e X. O

[ Corollary 1.3.3: Norms are Equivalent on Finite-Dimensional Spaces

In a finite-dimensional space, all norms are equivalent.
Proof. Let |- ||1,| - |2 be any two norms on X. Let B = {u1, ..., u, } be a basis of X. Also, let A : K™ - X be defined
as in the previous theorem. Then we know A, A~! are bounded linear operators. Therefore
-1 -1
a[ A7z < zfy <o AT ]
for all x and some ¢y, co > 0. Similarly, there exist c3,c4 > 0 such that

cs A7 ] < Jzl2 < ca]AT 2]

12
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The claim then follows by combining the inequalities above. O

Theorem 1.3.4: Characterization of Finite-Dimensional Spaces

(Riesz) Let X be a normed space. Then the following are equivalent:

(1) X is finite-dimensional.

(2) The closed unit ball By := B(0,1) is compact.

Proof. For =, let X have dimensional N. Then by the previous theorems there exists a linear homeomorphism
A : K" - X with bounded inverse. Therefore we can map the unit ball in X to K = A~!(B;) c K", a closed and
bounded subset of K". By Heine-Borel K is compact! Then B; = A(K) is the continuous image of a compact set

and is therefore compact.

For <, assume B; is compact. Then, using the definition of covering compactness, By can be covered by a finite
number of balls with radius 1/2, i.e., By ¢ ) B(p;, 1/2) for some n. Then, let
i=1

V :=span{pi,...,pn}

is a closed subspace in X (because every finite-dimensional normed space is complete, as stated previously).
We claim that V' = X. Suppose V is a proper subspace of X. Then there exists x € X — V such that the distance

p=d(z,V) = in‘g v —x| >0 (because V is closed). By definition of infimum, there exists u € V such that
Ve

N W

p< e —ul < Sp.

Normalizing = — u, we define z := (x —u)/|z - u| and obtain an element in B;. By our covering assumption, there
exists p; € B; such that ||z - p;| < 1/2. However, this cannot happen as
r=u+(x-u)=u+z|z-u
=u+ |z —ulpi + [z - ul(z-p:)

=u+ |z —ulpi+|z - u|(z - pi)-
————
9%
Since u + |z — u|p; € V, taking infimum on |z — ul|(z — p;) gives

|z = ullllz = pil <p,

s0 |z — u| > 2p, contradicting our assumption that |z — u| < 3p/2. Hence X = V. O

13
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Beginning of Sept.3, 2021

1.4 Uniformly Convex Banach Spaces

[ Definition 1.4.1: Strictly Subadditive Norm

A norm is called strictly subadditive if the triangle inequality holds strictly, i.e., |« +y|| < |z| + |y| whenever
z and y are not scalar multiples of each other.

For example, (¢7,| - |,) and (LP(S2), | +|,) for 1 < p < oo are strictly subadditive, but ¢, L* are not.

[ Definition 1.4.2 |

A NLS X whose norm satisfies
T+y
2

<l-e(fz-yl)

for all |z, |ly| <1 and e(r) > 0, lin% e(r) = 0 is called uniformly convex.

Theorem 1.4.3

Let X be a uniformly convex Banach space. Let K c X be closed and convex. Let z € X. Then there exists a

unique point y € K closest to z, and |y - z| = in}f( Ik - 2.
CE

Proof. If z € K the claim is trivial. Now we assume z ¢ K. By translation we may assume z =0 and 0 ¢ K. Let

:= inf
pi= inf Jyl,

and we see that p > 0 by closedness of K. It remains to show that the infimum can be obtained.
Let {yx } be a minimizing sequence such that y, € K and py, := |yx|| - p. Next we normalize and let z,, := y,,/p, SO

|z,| = 1. We consider norms of form ||(z,, + z,,)/2|. Since

Tp+Tm 1 1
9 = ﬁyn + 2p7ym
_ i 1 1/(2pn) 1/(2pm)
) (2Pn ' QPm) [1/(2Pn) w1/ @pm) " 1/2p0) + 1/ (20m) m] '

Therefore everything in [] is a convex combination of y,,, y,, and is therefore an element in K. Hence by infimum

[(zn + 2m) /2]l 2 (1/(2pn) + 1/(2pm))p. On the other hand, since X is uniformly convex,

Ty +Tm

2

(300 300
i 2pn 2pm P

Since by assumption p,,, p,, — p, the RHS converges to 1. Therefore |z, — x,,| — 0 and hence |y,, — ym| — 0.

L=e(|zn —zml]) >

Thus {y,, } is Cauchy. Since X is complete and K closed, {y, } — y € K, and this completes the proof. O

14
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Remark. The point y above is the existence of the minimum when the set over which one wants to minimize

is not compact. (A Banach space has many closed bounded sets that are not compact.)

Remark. The above theorem fails without the assumption on uniform convexity.

For example, let X = C'([-1,1]) with || f| := Iflalxl]‘ f(2)|.- (Note that this norm is not strictly additive.) Let
ze[—

0 1
K::{kzeX|f kdx:[ kdz = 0).
-1 0

It is easy to check that K is a convex, closed subset of X. Now we take any f ¢ X with

[ffdle and /Olfdx:—l.

Then the “average condition” implies that, for any k € K,

[ff—kdle and [ff—kdas:—l.

Then
max [f(z)-k(z)] 21 and min [ f(x) - k(x)] < -1,

-1<z<0 0<z<1
Note that > is = if and only if f -k = 1 on [-1,0] and similarly < is = if and only if f - k£ = -1 on [0,1].
However, both equalities cannot hold simultaneously as f - & is a continuous as 0 € [-1,0] and 0 € [0, 1]!!

Therefore we have at least one strict inequality. Either way,
max () —k(z)[> 1

for all k ¢ K. However, one may choose k € K appropriately such that | f — k| is arbitrarily close to (but >)

1. This disproves the theorem without the uniform convexity assumption.

1.5 Seminorms

Let us first consider X = C'((0,1)). Since we are excluding the endpoints here, we can have functions that blow up,
so the sup norm p(f) := sup|f|will not give us a norm in this situation.

On the other hand, if we consider some closed [a,b] c (0,1), one can introduce a seminom
"' (f) = max /()]

which is well-defined on [, b], although this may not be a norm on (0, 1) (for example we can construct f € C'((0,1))

with p»?(f) = 0 but f # 0). This gives rise to the name seminorm, a “weakened version” of norms.

[ Definition 1.5.1 |

Let X be a vector space over K. A real-valued map z — p(z) is called a seminorm on X if

(1) (positive semidefiniteness) p(z) > 0 for all z € X,

15
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(2) (absolute homogeneity) p(Az) = |A|p(z) for all z € X and A € K, and
(3) (triangle inequality) p(z +y) < p(z) + p(y) for all z,y € X.

Note that p(z) = 0 for  # 0 is allowed, and if p is a seminorm, then d(z,y) := p(x,y) is not a distance

function in general.

Beginning of Sept.8, 2021

[ Definition 1.5.2: Separating Sequence of Seminorms

A sequence {pi}r>1 of seminorms on X is separating if, for all nonzero x € X, there exists at least one k

such that pg(x) > 0.

Lemma 1.5.3
Let {px} be a separating sequence of seminorms on X. Then

ok p(z-y)
d(z,y) .—};2 k71+pk(x—y)

defines a distance on X.

[ Definition 1.5.4: Fréchet Space

If X with d defined as in the lemma above is complete, then we say X is a Fréchet space.

Example 1.5.5. Let Q c R™ be open with boundary 9. Consider C(2), the collection of continuous

functions f: Q — R. Then C () does not have a natural norm, but it is possible to give it the structure of a

Fréchet space.

Proof. For each k > 1, we define a compact subset
Ay ={zeQ||z| <k and B(z,1/k) c Q}
(in other words, each x € Ay, is contained in 2 and slightly away from its boundary). We define the seminorms

pe(f) = gelgflf(ar)l-

Since Ay is compact, the maximum is obtained. It’s easy to verify that {p;} is a separating sequence of semi-

norms. Now we define

gk Pe(f-9)
W)= 2 e F-a)

We now show that (C(2), d) is a complete metric space and therefore a Fréchet space. Let { f,,} be Cauchy (w.r.t.

d). Then
limsuppk(fm - fn) =0= limsupsup|fn(x) - fm(x)| =0.

m,n—00 m,n—oo Ay

16
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Now since any z € 2 is contained in one of Ay, the sequence {f,(x)} is Cauchy, and by completeness of R
it converges to some value which we call f(z). In addition, every compact K c  is contained in one of Ay.
Therefore, the convergence f,, — f is uniform on any compact subset. The uniform convergence implies the

continuity of f. To show that lim d(f,, f) =0, since f,, - f uniformly on A,, for any m,

At = Sok P =0) v gk (=)
(f7f) ’;2 1-*'pk(f"_f)-"_k:’rzn:+12 1+pk(fn_f)

Let n - oo. The first term — 0 and the second is bounded by )’ 27F. Letting m — oo, we complete the
k=m+1

proof. O

Example 1.5.6. An open set €' is said to be compactly contained in € if {’ is a compact subset of 2. We

write Q' cc Q if this is the case. Then we define

LP

loc

() ={f:Q->R| feLP(Q) forall Q' cc Q}.

(This is a space larger than L,(£).) This space does not have a natural norm, but we may define seminorms

n(h = ([ 157ds) " = 1l

The corresponding separating sequence { f;. } along with the d defined above makes L () a Fréchet space.

1.6 Extension Theorems

[ Definition 1.6.1 |

Let X be a vector space over K. A linear map f : X — K is called a linear functional on X. A Minkowski

functional on X is a map p: X — R such that
(1) (subadditivity) p(z +y) < p(x) +p(y) and
(2) (positive homogeneity) p(Az) = Ap(z), for all z,y € X and \ > 0.

(In particular notice that every seminorm is a Minkowski functional.)

Theorem 1.6.2: Hahn-Banach Extension Theorem

Let X be a vector space over R (there’s a similar version for X over C) and p : X — R a Minkowski functional.

Let V c X be a subapce of X and let f : V — R a linear functional such that
f(z) <p(x) forall z e V.
Then there exists a linear function F': X — R such that

F(x)=f(z)forallz eV and -p(-x) < F(z) <p(z) forall x € X.

17
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Proof. If V = X then we are done: f(z)=-f(-z) > —p(-z).
If V # X, for any zo € X - V, we consider the larger subspace Vj := {z + tzg | x € V,t € R}. For 2,y € V, we have
f(@)+ f(y) = f(z+y) <p(z+y) =p(x - 20 + 20 +Yy) <p(x —20) + p(T0 +Y)-
Rearranging gives
f(@) =p(z-20) <p(y+z0) - f(y) forallz,yeV.

Now we define 3 := sup{f(z) - p(z — zo)}. Then f(z) - p(x —x0) < B8 < p(y + z0) — f(y). Now we define an
zeV
extension of f on Vj by

flx+txg) == f(x) + St

We claim that f(x +tzg) < p(z + tag). If t = 0 we are done; if ¢ > 0, we let z, y be 2/t and obtain

t(f (@/t) = p(aft —x0)) <tB <t(p(x/t +x0) + f(2/t)).

By linearity and positive homogeneity of p, we obtain f(x) — p(xz — z¢) < t8 < p(z + zot) — f(x) and recover the

original inequality. Finally, the claim follows from Zorn’s lemma. O
Beginning of Sept.10, 2021

Theorem 1.6.3: Extension for Bounded Linear Functionals

Let (X, | -|) be a normed space over K. Let f : V — K be a bounded linear functional defined on a subspace

V c X. Then f can be extended to a linear function F': X — K such that

|E] = sup [F(x)] = sup |f ()] = [ f].

xre Te
[[=]<1 Il <1

[ Corollary 1.6.4

Let X be a Banach space. For any distinct z,y € X, there exists a bounded linear function ¢ : X - R such

that o(z) = ¢(y).-

[ Corollary 1.6.5

Let X be a Banach space. For all x € X, there exists a bounded linear functional ¢ : X — K such that

p(x) =] and o] =1.

18



YQL - MATH 580 Notes 1.6 - Extension Theorems Current file: 9-10.tex

Application of Hahn-Banach

Theorem 1.6.6
Let X be a normed space over C and V c X a subspace. For any x € X, define its distance to V' by
m(z) = inf [z - ol
Then for every x € X, m(z) = M (x) where
M (z) := max|o(z)]

subject to o € X*, |¢|+ <1,and p=0on V.

Proof. We first show that M (z) < m(z). Since ¢ vanishes on V and |¢|. =1, for all € X,v € V we have

lp(2)] = |p(x) = p(v)| = [p(x - v)| < |z - v].

Taking infimum over x € V' and then taking supremum over ¢ gives M (z) < m(z).
Now we try to find a ¢ that upgrades < to =. Keep z fixed. Consider a vector space Vy = {v+ Az | v e V,\ e C}.

We define a map g : Vp — C by v + Az = Am(x). Clearly, ¢ is linear and vanishes on V. Moreover, for A + 0,
(v + Az)| = [Alm(z)
= |\ inf |z - 7|
veV
<Az = v/ = o+ Az
so indeed |¢|. < 1. Thus, by the extension theorems, we can extend g to all of X; there exists ¢ € X* with

lele<1 and  @ly=0.

Setting v = 0, A = 1, we see that ¢(z) = ¢o(«) = m(z). This completes the proof. O

[ Definition 1.6.7

The closed linear span of a subset {y;} of a NLS is the smallest closed linear space containing all of y;’s, i.e.,
the intersection of all closed linear spaces containing all of y;’s. (If finite-dimensional then this is merely the
span.)

If {y;} is infinite, then the closed linear span is the closure of the linear span Y consisting of all finite linear

combinations of y;’s.

Theorem 1.6.8: Spanning Criterion

A point z of a NLS X belongs to the closed linear span Y of {y;} if and only if every bounded linear function

that vanishes on the subset vanishes at z, i.e., ¢(y;) = 0 for all ¢ implies ¢(z) = 0.
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Proof. For =, since ¢ is linear, all finite linear combinations ¢( Y  X;y;) = 0. Also, since ¢ is continuous, ¢
finite

vanishes on all limit points of Z Ay, which includes z.

For <, suppose that z does not belong to the closed linear span Y of {y;}. Now we consider
d:=inf |z -
inf |2~y

which, by assumption, is strictly positive. We define a subspace Z := {y + Az | y € Y, A € K} and define the

functional ¢y : Z - Kby y + Az = A. Clearly ¢y is linear, and assuming X # 0, we have
ly+ Azl =[AIClz+y/AD) > Al inf |2 - y] =[Ald

and hence |yl < 1/d. Therefore, by Hahn-Banach, ¢ can be extended to ¢ on X. Like ¢, our new ¢ vanishes
on all finite combinations of y;, but setting y = 0 and A = 1, we see that ¢(z) = 1. We have therefore proven the

claim by taking its contrapositive. O

1.7 Duality

[ Definition 1.7.1: Dual Space

Let X be a Banach space over K. Then the collection of all bounded linear functionals is called the dual
space of X, denoted X*.

Note that since K is Banach, X* is also Banach, equipped with the operator norm

[l = sup Jp(x)].

Il <1

Beginning of Sept.13, 2021

[ Definition 1.7.2: Weak Convergence

A sequence {z,} c X is called weakly convergent if there exists « € X such that
limp(z,) = p(x) forall p e X*.
In this case, z is called the weak limit of {z, } and we write z,, — z.

Remark. It is clear that strong convergence implies weak convergence, as any ¢ is bounded and therefore

preserves sequential limits.

| Corollary 1.7.3

Weak limits are unique.

Proof. Suppose z,, — = and x,, —~ y with  # y. Then by the extension theorems, there exists a continuous linear

function ¢ € X* such that p(x) # ¢(y), but then this contradicts the uniqueness of limits in R. O
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Example 1.7.4: Weak Convergence # Strong Convergence. Consider X = C([0,1]) and

nt 0<t<1/n
fa(t) =12-nt 1/n<t<2/n for n > 2.

0 2/n<t<l

(The graph consists of line segments connecting (0,0), (1/n,1), (2/n,0), and (1,0).)
It is clear that f,, do not converge with respect to | - |sup-
We now show that the weak limit of f,, is 0, that is, lim ¢(f,) = 0 for all ¢ € X*. Suppose this is not true so
that there exists a subsequence {f,, }, some ¢ € X*, and some ¢ > 0, such that |p(f,, )| > J > 0. In particular,
we can delete more terms and ensure that ny,; > ng. Then for all ¢ € [0,1], the sequence of functions {gx}
defined by

k

gk = Z fm(t)
i=1
k

is always bounded by 4. Then ¢(gx) = >_ ¢(fn,) > kd, contradiction as we can make k arbitrarily large.
=1

Remark. Note that each fixed x € X determines a linear functional on X* by ¢ — p(z) for all ¢ € X*. Then
by Hahn-Banach’s corollary, the norm of the functional
sup [o(z)] = |-
leoll«<1
We can define a “double star” norm |z| .. as above. Then we have a canonical embedding

i: X = X* by xw~i(x), the map ¢ — ¢(z).

This embedding preserves the norm and is called isometric.

[ Definition 1.7.5

If i(X) = X**, then X is called reflexive.

Example 1.7.6. All finite-dimensional spaces as well as LP(Q2) and ¢? for 1 < p < oo are reflexive.

In general, X** is larger, for example L!(€2), L= (), ¢, £°.

Example 1.7.7. X = C([-1,1]) with | + | max is not reflexive.

Proof. Suppose for contradiction that X is reflexive so X = X**. Thus for each ¢ € X*, there exists f € X** = X
such that (cf. HW1.5)
lel =1e(f)l and | f] =1.

Now we define

oo = [ oy ae- [y arext,
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It follows that |¢(g)| < 2||g|max (strict because of continuity), but for € > 0, we can choose g satisfying

le(a)l > (2-€)lgl,

so |g| = 2. But then this contradicts the assumption | f|| = 1 for g = f. O
Theorem 1.7.8: Duality of L?

The dual of L? is L? where (p, ¢) are a conjugate pair.

Proof. For any u € L7, we can define a functional ¢ € (LP)* by

Wﬂ:%w=ﬁﬂﬂmmmy

By Holder’s inequality, for f € LP,

()l = fg\f(x)U(w)\ dm < || flplglq

with equality obtained by |¢| = |u|,. Thus L? isometrically embedded in (L?)*. We claim L? = (LP)*.
If not, then there exists z € (LP)* — L9. Since L1 is closed, by the spanning criterion, there exists ¢ € (L?)** such
that

@(u) =0 for all we LY but ¢ # 0.
Since LP is reflexive [!], v € L, so (yp,u) =0 for all uw € L9 and so ¢ = 0. O
Beginning of Sept.13, 2021

The embedding i : X — X** can be used to introduce a weak topology on X *:

[ Definition 1.7.9: Weak*-Convergence

We say {p,} ¢ X* weak-star converges to ¢ € X* if
Tim g, (2) = p(a)
for all z € X. If so we write ¢, — .

Note that this convergence is weaker than ||y, — || - 0: here we simply require “pointwise convergence” whereas

ln — ¢| requires some kind of uniform boundedness.

Recall that the closed unit ball in an infinite dimensional space is not compact. Hence if X* is infinite dimensional
then there exists a sequence {¢,,} ¢ B(0,1) c¢ X* that does not admit any convergence subsequence (w.r.t. the

operator norm). However, if we only require weak-star convergence, then B(0,1) becomes compact!

Theorem 1.7.10: Banach-Alaoglu Theorem

Let X be a separable Banach space. Then every bounded sequence of linear functionals {¢, } ¢ X* admits a

weak-star convergent subsequence.
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Proof. Let {¢,} c X* with |¢,| < C be given. Since X is separable, there exists a dense countable set
S = {1’1,1’2,...} c X.

We first show that there exists a subsequence {¢,, } that converges pointwise on S. This is done by a diagonal
argument: since {p,(z1)} is a bounded subset of R, by Bolzano-Weierstraf3 it has a convergent subsequence;
then iterate the process and obtain a set of nested sequences, eventually getting a {(,, } that converges at all
xy € S. Call this limit function ¢.
Now it remains to show that ¢ is a bounded linear functional, i.e., ¢ € X *, with Lipschitz constant C. Indeed, for
T,k €5, [p(xn) —p(zr)| = jliry@nj(wn)—wnj (x| € h?isogp lon, [+ ]zn — 21| < C|lzn -2, SO @, which is Lipschitz
on S, can be uniquely extended by continuity to the closure of S (which is X) by a density argument.
Finally, we will verify that ¢,,, X 4. Let z € X and € > 0 be given. Since S is dense in X, there exists z;, € S with
|z — 2| < e. Then we have convergence of xy!

liggilplwnj (z) = e()] < li?iilpmj () = n, (zn)| + 1il;¥ii:}pls0nj (zk) + @n,; (2)| + lirjgilplwnj () = ¢(2)]

<Clzg -z +0+C|zy — x| < 2Ce.

Since C is arbitrary, we are done. O

Remark. The theorem holds for any NLS; see Rudin 3.14.
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Chapter 2

Bounded Linear Operators

2.1 The Uniform Boundedness Principle

Theorem 2.1.1: Banach-Steinhaus Theorem

Let H c B(X,Y) be any family of bounded linear operators. Then either A is uniformly bounded such that

sup A < oo
AeH

or there exists a dense set S ¢ X such that

sup [|Az| = oo forall z € S.
AeH

Proof. Consider the open sets
S, :={xeX:|Az|>1/n for some A e H}.

If one of these sets, say Sk, is not dense in X, then there exists zy € X and ro > 0 such that B(zg,79) ¢ X — Sk.
This means

|Az| <k for all A € H and = € B(xzo,70).

Now if ||| < r, for all A € H,
HA(L’H = HA((L'() + {E) - Al’()“ <2k

soforall AeH,

1 2k
|Al = sup [Az] =~ sup [Az] < —=.

lzl<1 lzl<r
Therefore the family H of operators is uniformly bounded.

[ee]
On the other hand, if all S,,’n are dense in X, by Baire’s Category theorem, their untersection S := (") S,, is dense
n=1
in X, so for each z and n > 1, there exists A € H with |Ax|| > n, which gives sup |A| = . O
AeH
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Remark. This theorem shows that such a family of operators is either uniformly bounded or not bounded

at all! There is no such things as “pointwise bounded only” in this scenario.

Beginning of Sept.17, 2021

[ Corollary 2.1.2

Let {A,,} be a sequence of bounded linear operators X — Y. Assume that the pointwise limits exist and
define

Az = lim A,z for all .

n—o00

Then A is a bounded linear operator.

Proof. For every x € X, {A,x} is bounded. Therefore by PUB, {A,,} is uniformly bounded. Since

[Al'= sup [Az| = sup lim [Anz] <sup|An] < oo

] <1 =] <1 n>1

we see that A is indeed bounded. O

2.2 Open Mapping Theorem

[ Definition 2.2.1: Open Mapping

If X,Y are metric spaces, we say f : X - Y is an open mapping if for all U c X open, the image f(U) is
openinY.

Example 2.2.2: Examples and non-examples of open mappings.

(1) The projection 7, : R* - R¥ (for k < n) defined by (z1,...,2,) = (x1, ..., ;) is obviously open.

(2) The inclusion map R¥ < R™ by (x4, ...,21) = (21, ..., 21,0, ...,0) is not an open map — we cannot draw

a ball in R™ where some of its coordinates can only take the value 0.

(3) sin:R — R is not open.
Theorem 2.2.3: Open Mapping Theorem, OMT

Let X,Y be Banach spaces. Let A : X - Y be a bounded surjective linear operator. Then A is open.

Proof. By linearity, for any open ball B(x,r) we have

A((B(x,r)) = Az + A(B(0,r))
= Az +rA((B(0,1)),

so it is sufficient to show that A((B(0,1)) contains an open ball centered at the origin of Y. For shorthand

notation, write B; as the open unit ball in X and B, := B(0,r) in Y.
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We first show that there exists B, that is contained the closure A(B;). Since A is surjective, Y = | J A(B,). By

n=1

Baire category theorem, at least one of A(B,) c Y has a nonempty interior. Since A(B) = 1/n-A(B,), we see

that A(B;) also has a nonempty interior. Therefore there exists yo € Y and r > 0 such that
B(yo,r) ¢ A(By).

Notice that A(B;) is convex and symmetric (since B; is). Therefore B(yo,r) c A(B;) as well. Now we consider
the convex combination

1 1
53(190,7") + 53(—190,7“) c A(By).

Notice that this is exactly B(0,7), so B(0,r) c A(B1), as claimed. Furthermore, by linearity again,

B(0,27"r) c A(Ba-») for all n. (A)

Now we show that B(0,r/2) is in fact contained in A(B;) (so we can drop the closure). To this end, pick any
y € B(0,7/2). We want to find = € By such that Az = y. By (A), y € A(By-1). By definition of closure, there exists
1 € By-1 such that

ly — Az < 272

Now since y — Az is in B(0,27%r), by (A), y — Az € B(0,27%r) ¢ A(By-2). Thus there exists another x5 € By
such that
ly = Azy — Azo| < 2737
Inductively, for each n,
n-1

Y- Z A.Tj € B(0,2_n7") (o A(Bgn),
7=1

and by closure, there exists x,, € Bo-» satisfying

n
Hy - > Az < 27"y,
j=1
oo oo n
Letting n — oo, we see that y is the limit ) Axz;. Define z := )" z,,. It remains to notice that Az = lim ) Az; =y
=1 s=1 R
and that
lel < 5 lwsl < 35277 =1,
j=1 j=1
so indeed y € A(B1), as claimed. O

[ Corollary 2.2.4

If X,Y are Banach spaces and A : X — Y a bijective bounded linear operator, then A~ : ¥ — X is also

bounded. Indeed, bijection guarantees the existence of an inverse and OMT guarantees its boundedness.
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[ Corollary 2.2.5

Let |- |1, ||+ |2 be norms on a vector space X such that (X, |-|1), (X, |-|2) are complete. Then if |- |2 < ¢+ |1

for come ¢ > 0, we have ||+ |; < d] - |2 for some d > 0.

This is just an application of OMT and the previous corollary on A: (X, |- |1) = (X, |+ |2) by z ~ .

Beginning of Sept.20, 2021

2.3 Closed Graph Theorem

Remark. Every continuous linear operator A : X — Y is closed.
Theorem 2.3.1: Closed Graph Theorem

Let X,Y be Banach spaces, and let A : X — Y be a closed linear operator defined on the entire X. Then A is

continuous. (From the remark above we can rewrite this as an “iff” statement.)

Proof. For convenience write I" as the graph of A. By assumption I" is a closed subspace of X xY and is therefore
Banach. Define 71, 7 as the projection of I" onto X, Y defined by

m(z,Az) = and mo(z, Ax) := Ax.

Note that 7 is a linear, bounded (since |m(x,Az)| = |z| < |z| + [[Az] = |[(z,Az)|xxy), and bijective (by
defining 77! (z) := (x, Ax)). Therefore, by the Open Mapping Theorem, 77! is continuous, so A = my o 7~ is also
continuous! O

Remark. The theorem also holds if we assume that A : D(A) — Y is closed and that D(A) is closed.
Example 2.3.2: Closed but not bounded operator. Let X := C°(R) be the space of all bounded continuous
functions equipped with the sup norm. Define A by Af = f" and set its domain to be

D(A) := {f is continuously differentiable},
ie., feClor fleX.

(1) A is not bounded: we can have functions with higher oscillations, e.g., sin(nz) which have sup norm

1. However, as n — oo, [Af] — oo.

(2) A has a closed graph. Consider a sequence {f,} € D(A) such that || f, — f|co — 0 for some f € C° and
I = g|co — 0 for some g € C°. Then

fOxQ(S) ds = folffl(s) ds+/(;$g(s)—f7’l(s) ds.
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Letting n — oo, by convergence as n — oo the second term tends to 0:

[ a()ds=tim [ fi(@) ds = f(2) - £(0)
so f is continuously differentiable with f’ = g.

Note that this does not contradict our CGT because D(A) = C! is neither all of X or closed in X.

2.4 Adjoint Operators
Let X be a Banach space over K. Recall the definition of X* and the canonical embedding
i: X > X" defined by (z € X) » (2" » 2" (x) € K).

We shall denote z*(z) by («*, z) from now on.

[ Definition 2.4.1: Adjoint Operator

Let A: X - Y be a bounded linear operator. For any y* : Y — K, we define a bounded linear functional on
X by

z*(x) = y* (Az).

(Originally we have X Ly A K; now we want z* : X — K.) Then the map
A* iy e A%y =yt o A
is a bounded linear operator from Y* to X* so that
(A*y*,z) = (v, Azx) forall z € X.

(In other words, A*y*(x) = y*(Ax).) We say A* is the adjoint of A.

[ Definition 2.4.2: Orthogonal Complement

For V c X, define the orthogonal complement V* by
Vi={z*e X" |(z* ) foralz e V}.

When in a Hilbert space which we will cover later; this definition can be replaced by a condition on inner product,
which is much more intuitive.
Similarly, for W c X*, define

Wh={zeX|(z*,x)=0forall z* e W}.
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Theorem 2.4.3

Let A: X - Y be a bounded linear operator and let X* : Y* - X* be its adjoint. Then
(1) |A*| = |A] (both being their operator norms, respectively), and

(2) ker A =Range(X*)* and ker X* = Range(A)*.

Beginning of Sept.22, 2021

[ Proposition 2.4.4

(1) IfA;,A2eB(X,Y), then (A1 +A2)* = AT + AS, (aM1)* = A,
(2) IfAeB(X,Y)and As e (Y, Z) then (AgoAy)* = AT o AJ.

(3) IfAeB(X,Y)and A™! exists and A~ € B(Y, X), then (A*)~! exists and (A*)™' e B(Y*, X*).

Proof.

(1) By Hahn-Banach (HW1 #5)

[A = sup [[Az]

ll<1

=sup{[{y", Az) - [y"| <1, 2| <1]}
=sup{[(A"y", @)« 7| <1, ] < 1]}

=sup{[A"y"[ = [y ] <1} = A7

(2) Note that x € ker A is equivalent to Az = 0. This is further equivalent to (y*, Az) = 0 for all y* € Y*. (The

forward direction is obvious; if the converse is false, then Hahn-Banach ensures a nonzero mapping.) Then
(y*,Az)=0forally* e Y* & (A*y*,z)=0forall y* e Y*
< € Range(A™)*.
Also,

y*eker(A*) < A*y* =0
< (A*y*,z)=0forallz e X
< (y*,Az)=0forallz e X

< y* e Range(A)*.
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2.5 Applications of Banach-Steinhaus

Theorem 2.5.1: Weakly convergent sequences are bounded

Let X be Banach. Then any {z,} c X that converges weakly to some x € X is bounded.

Proof. By definition we need (z*,z,) - (z*,z) for all * ¢ X*. Viewing the LHS as a linear functional ¥,, (z*)
from X* to K, we have

sup|¥,, (z*)| < o0 forall z* € X™.

Then by the PUB we see that {¥,,} is uniformly bounded for n > 1. Since (by Hahn-Banach)

[Wnl = sup [W,(z7)] = [zn]

== <1
we see that ||z, | needs to be bounded. O
Example 2.5.2: Space of polynomials. Let X be the space of all polynomials over R with norm
Jo] = maxia,|

(the maximum of coefficients).
We will use PUB to show that X is incomplete by constructing a sequence that is pointwise but not uniformly
bounded (this would contradict PUB’s assumption that X is complete).
We write z(t) = i a;t! where a; = 0 for j > deg(z). Now define A,, : X — R by
=0

Ap(0)=0,A (z) =ap+a1 + ... + Qp1.
Clearly A, is linear and bounded:
[Anz] < (deg() + 1) maxjay| = Cs
for fixed x. On the other hand, letting x(¢) := 1 +¢* + ... + t" gives
[z] =1 but [Anx| =n+1.

Letting n — oo, we see that {A,,} is not uniformly bounded.

Example 2.5.3: Fourier Series. Consider a 27-periodic function x(t) = (¢t + 2k7). Then

|~

x(t) =

ap + Y, [am cos(mt) + by, sin(mt)]
m=1

where

1 2 1 27
U = — f z(t)cos(mt)dt  and by, =— f x(t) sin(mt) dt.
T Jo m™JO

Claim: even for continuous functions, this series can diverge, i.e., there exist real-valued functions whose

Fourier series diverge at a given point ;.
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Beginning of Sept.24, 2021

Proof. Let X be the space of 27-periodic continuous functions equipped with the sup (max) norm. Note that X

is Banach. WLOG let ¢, = 0. Define A,, : X — R by the n™ Fourier partial sum evaluated at 0:

An(2) = fr(x) where fo(x) = % + Zn: A = %Azﬂm(t) [; + mi:l cos(mt)] dt

e
Since
2sin(t/2) mi:l cos(mt) = mi:l [sin((m + 1/2)t) - sin((m — 1/2)t)]
= sin((n + 1/2)t) - sin(t/2),
we have

1+2 zn_:l cos(mt) = w

(and it holds as ¢ — 0 too). The RHS is called the Dirichlet kernel. Thus
1 2 sin((n +1/2)t)
(x) = — )y T2 g
fn(2) 27 [0 x(t) sin(t/2) d

For convenience denote the Dirichlet kernel by ¢,(¢t). We will show that (1) f, is bounded with |f,| =
1 2

Py f lgn (t)| dt and (2) | f.]| = oo as n — oo. This would complete the proof since Banach-Steinhaus says
7w Jo

pointwise convergence implies uniform convergence.

>0z 0<—

(1) To bound f,(z),

1 27 1 2
@) <maxle®l = [ lan (@l dtlol o= [ laa(®)] b

so < holds. To show =, write |, (¢)| = sgn(g.(t))¢.(¢). Though sgn is not continuous, it can be approxi-

mated arbitrarily well by a continuous function x of norm 1:

<€

Fe ACCROROR

SO

Fu@) = o0 [ lano)

<E.

2m
Therefore taking sup implies | f,,| = QL / lgn(t)| dt, as claimed.
7 Jo

(2) See Ozanski HW3 p5.
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Approximation of the § Function by Continuous Functions

[ Definition 2.5.4 |

A sequence {,,} of continuous functions on [-1, 1] tends to the § function if

T}ggo[jx(t)%(t) dt=2(0)  forallzeC([-1,1]). )

Theorem 2.5.5: (Toeplitz)

The sequence {p, } of continuous functions on [-1,1] tends to the § function as (1) describes if and only if
the following are satisfied:
1
1  lim pn(t)dt =1,
-1

n—oo

(i) For all y € C* whose support does not contain 0,

1
tim [ y(Dea(t) de =0,
n—oo _1

1
(iii) There exists a constant C' > 0 such that [ lon (t)| dt < C for all n.
-1

Proof. For =, we suppose that ¢,, tends to the § function. Taking = = 1 gives (i). Taking any smooth function

with z(0) = 0 gives (ii). For (iii), we define

on(e)i= [ a(een(e) .

Note that ¢, € (C[-1,1])*. In this perspective, (1) says ¢, — ¢ and |p,(z)| < |z| pointwise. Therefore by
Banach-Steinhaus,

1
lnl = [ lea(®) dt < oo.

For <, suppose z(0) = 0. Let y € C* and |z - y| < e with y(0) = 2(0). Then

[t - yeentty at| < [ la(o]a

[(iii)] < Ce.

1 1
By (ii), [1 yon dt = 0, so limsup [1 TP dt‘ < e. Therefore (1) holds for any = with z(0) = 0.

n— oo

For a general z, since z(t) = (0) + ((¢) — 2(0)), using (i) we see that the claim also holds. O

Revisiting the Fourier Example

Recall that we said there exists a periodic continuous function whose Fourier series diverges at (any prescribed) ¢g.

Recall that we defined

fa@) = 5 [ aan = - [T et @
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where
sin((n +1/2)t) .

sin(t/2)

Note that the convergence of the Fourier series is equivalent to ¢, approximating the § function! By the previous

qn(t) =

theorem, this is further equivalent to satisfying the three criteria. Since the Dirichlet kernel fails (iii), we claim that

the Fourier series of f does not converge at 0.

Beginning of Sept.27, 2021

Approximate Quadrature Formula
Take n points {¢;}", c [-1,1] (nodes) and N numbers {wi}f.':1 (weights), we define
nl1) = 3 wif ()
We can view g, as an element of C'([-1,1])*.
Theorem 2.5.6
Let ¢, be a sequence of functionals as defined above satisfying
(1) Forall ke {0,1,2,..}, lim gu(t") = fll t* at,
N .
(2) forall N, Z|wj(l)| <C.
=1

Then
1
Tim g, (/) = [1 F(1) dt for all f € C([-1,1]). *)

The converse is true (i.e., (*) implies (1) and (2).)

Proof. For =, (1) implies that (*) holds for all polynomials. But then since the polynomials are dense in

C([-1,1]), the claim follows. The rest of the proof is omitted. O

1
Remark. If we define ¢(f) := / f(t) dt for all f € C([-1,1]), the above theorem simply states g, — ¢
-1

(weak* convergence).
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Chapter 3

Compact Operators

3.1 Arzela-Ascoli Theorem

In finite-dimensional spaces, Bolzano-Weierstral$ says that every bounded sequence has a convergent subsequence.
However, this compactness property fails in infinite dimensional spaces (e.g., f.(z) := 2™ in C([0,1]) does not
have a uniformly convergent subsequence in C'([0,1])). What additional assumption is needed to guarantee the

existence of a uniformly convergent subsequence?

[ Definition 3.1.1: Equicontinuity

Let E be a metric space. We say a family £ of continuous functions is called equicontinuous if, given z ¢ £

and ¢ > 0, there exists § > 0 such that

d(z,y) <d = |f(z)- f(y)| <e forall fe&.

[ Corollary 3.1.2

Let FE be compact and £ c C(FE) be equicontinuous. By compactness, we can upgrade equicontinuity to
uniform equicontinuity: given e > 0, there exists 6 > 0 such that the claim above does not depend on z, i.e.,

given € > 0 and ¢ > 0 such that

d(z,y) <d = |f(z) - f(y)|<e forall z,y € E and f € £.

Theorem 3.1.3

If E is compact, then C'(E) is Banach. By completeness, for a subset £ c C'(E), the following are equivlent:
(1) € is relatively compact, i.e., € is compact, and

(2) €& is precompact (or totally bounded), i.e., given € > 0, it can be covered by finitely many balls with

radius ¢, and

(3) Given any sequence of continuous functions {f,} c £, one can extract a subsequence converging to
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some function f uniformly on E.

Theorem 3.1.4: Arzela-Ascoli Theorem
Let F be a compact metric space and let F ¢ C(E) be an equicontinuous family of functions with

sup|f(z)| < oo forallz e E.
feF

Then F is a relatively compact subset of C'(E), i.e., it has as uniformly convergent subsequence.

Proof. We will prove that F is precompact. Let ¢ > 0 be given. By equicontinuity, choose § such that
d(z,y)<d = |f(z) - f(y)|<eforall z,y ¢ E and f € F.
Since F is compact, there exist x1, ..., z,, such that
Ec Lnle(J;i, d).
i

Since F is bounded, define M := max sup|f(z;)| < oo and choose finitely many numbers «;, ..., o, such that
<ISn feF

Cs

[-M,M]c

_ (i — €, +€).

K3

Il
[u

Consider the set © of all maps 6 : {z1,...,z,} — {aq, ..., }. (Note that 0 is discrete and O is finite.) For each

0 € ©, define the family of continuous functions
Fo:={feF:f(x;)eB(0(x;),¢) forall 1 <i<n}.

Then F = (| F.
0e©

Claim: | f - g|cr) = Iilfgdf(w) - g(x)| <4eif f,g € Fo.
Indeed, for each « € E, we choose an index ¢ such that = € B(z;,0). Then we have

[f (@) —g(@)| <|f () = f(x)l+1f (2:) = 0(x:)| + 10(2:) - g(wi)| +|g(2:) - 9(2)]-

Equicontinuity implies the first and last terms are < ¢; by definition of Fy, the second and third terms are also
< €. Hence for all € > 0, each set Fy has diameter < 4e, so this set F can be covered by finitely many sets having

diameters < 4e. Since ¢ 1s arbitrary we arg%ﬁg} ng of Sept.29, 2021 O
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3.2 Compact Operators

[ Definition 3.2.1: Compact Operator

Let X,Y be Banach. A € B(X,Y) is compact if for every bounded sequence {xz, } c X, the corresponding
{Az,} c Y admits a convergent subsequence {Az,, }.
It follows that TFAE:

(1) A is compact,
(2) For every bounded set U c X, the image A(U) c Y has compact closure,

(3) The unit ball B; c X has image A(B;) c Y whose closure is compact.

Theorem 3.2.2

(1) If the range of A is finite-dimensional then A is automatically compact.

(2) Let A, : X — Y be compact for all n. Further assume that lim ||A, — A| = 0 for some A. Then A is

compact.

Proof.

(1) Obvious by Riesz’s lemma as A(B) is a closed and bounded in a finite-dimensional space.

(2) Since Y is complete, we want to show that A(B;) is compact or equivalently A(Bj) is precompact.

Let € > 0; we want to show that A(B;) can be covered by finitely many e-balls. We begin by choosing &
such that |A - Ax| < ¢/2 (and for all late terms). Since Ay is compact, there exist {y1, ..., y, } ¢ Y such that
Ak(B1) c U B(yi,€/2). For any z, if |z| <1 then | Az — Agz| < /2. In particular, for this z, there exists y;

=1
such that |Agz — y;| < €/2, so
[Az =yl < [Az - Agpz]| + [Apz - yill < e

Since z is arbitrary, we conclude that A(B;) c | B(y;, €), completing the proof.
i=1

Example 3.2.3. Let A : /2 - ¢2 be defined by
T = (Tp)nz1 = Y= Az = (yn/n)iz1.
Then A is clearly linear and bounded. We will show that A is compact.
Proof. Define A,, := /2 - (% by
(X1, ooy Ty Tpg1y o) = (211, oy 20 /1,0, .0).
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It is clear that each A, is linear and bounded. The range of each A, is finite-dimensional so they are compact!
It remains to show that A,, - A in operator norm; if so, the (2) in the previous theorem shows A is compact.
Indeed,

oo 2
o S il
asn — o0 80 |A, - Al <1/(n+1). It follows that A is compact. O

Theorem 3.2.4: Compact Operator on Weakly Convergence Sequence

Let X,Y be normed and let A : X - Y a compact operator. If {z,} c X converges weakly to z, then

{Az,} c Y is strongly convergent with limit Az.

Proof. We write y,, := Az, and y = Ax for convenience.

We first show that y,, — y. To this end, let ¢ € Y* be given. Define the adjoint (A*y) € X*. Since z,, — x, we

have
(M) (zn) = (M) (),
that is, (directly by definition)
p(Azn) > p(Ax)
or equivalently p(y,) = ¢(y), as claimed. Therefore y,, — y.

We now show that y,, - y (strongly). Suppose for contradiction that there exists a subsequence {y,, } with
|yn, —yll > ¢ for some § > 0. Since {z,,} converges weakly, it is bounded, so in particular {z,, } is bounded. Since
A is compact, in particular {A(z,, )} has a (strongly) convergent subsequence, say {A(mnkj )}. Let the limit be g.
Notice that the first part shows {A(z,, K )} converges weakly whereas we’ve just shown that it converges strongly

to some other limit, contradiction (recall weak limit is ungiue). Therefore y,, — x strongly, as claimed. O

Beginning of Oct.1, 2021

Theorem 3.2.5: Adjoint of a Compact Operator

Let X,Y be Banach and let A € B(X,Y"). Then A is compact if and only if A* : Y* - X* is compact.

Proof. We will only prove the forward direction. Let {y}} be a sequence in Y* with |y*|| < 1. We need to show
that {A*y} has a convergent subsequence.

Let By := {z € X : |x| < 1}. By assumption AB; has a compact closure £ := AB; c Y.

Let f, := y;;| 5 (i.e., functions from F to K). Then

[fn () = SO < lynlly =o' < ly =3/l
This implies f,’s are uniformly Lipschitz (and in particular equicontinuous). Further note that sup|ly| =
yeE

sup [Az|, so |fn(y)| € |y;|lly| where both terms are bounded. Hence all f,’s are uniformly bounded by |A[.
Il <1

Now we can apply Arzela-Ascoli and extract a subsequence {f,,, } that converges to a function f uniformly on
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E = AB;. Now note that
* * * * A * * * *
Ay, = Ny | = sup [(Ayy - Ay, )
[=]<1

= sup |(y;,, -, Ax)|

=] <1

= sup |fn, (Ax) = frn,(Ax)| > 0 as i,j > oo.

[z<1]

Therefore {A*y;: } is Cauchy and converges to a limit 2* € X*. Hence A* is compact. O

3.3 Integral Operators

Theorem 3.3.1: Integral Operator

Let K : [a,b] x [a,b] = R be continous. Then the integral operator A defined by

AN = [ K@) ) dy

is a compact operator from C([a,b]) to C([a,b]).

Proof. Consider a bounded sequence of continuous functions { f,,} ¢ C([a,b]). We need to show that A f,, admits
a uniformly convergent subsequence.

By Arzela-Ascoli, it suffices to show that A f,, are uniformly bounded and equicontinuous.

Note that there exists k > 0 such that |K (z,y)| < k for all (z,y) € [a,b]? since K is continuous on a compact set.
Also, for € > 0, there exists elta > 0 such that |« — Z| < 6 then |K (z,y) - K(Z-y)| < € for all 2, Z, y € [a, b] (uniform
continuity).

By assumption, there exists M > 0 such that || f,,| < M (by assumption). Then

b
Afn(iv)|=’ [ K@) fa) dy < kMG -a)

so A f, are uniformly bounded.
For equicontnuity, let ¢ > 0 be given. Choose ¢ > 0 such that the (“z-Z-y” uniform continuity) property above
holds. Then if |x - Z| < 4,

b
8- AL = | [ R K1) 0

<[ K (,y) - K@ )| ()] dy
<eM(b-a),

so A f, are equicontinuous too. The claim then follows from Arzela-Ascoli. O
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Example 3.3.2. For any f € C([-1,1]), consider the boundary value problem

u’(z)+ f(z)=0
u(-1) =u(1) =0.

)

Let A be the solution u to (*) for a given f : u = Af. (We claim that there does exist A satisfying this
relation. Note that u is unique — if u;,us are both solutions to (*) then w = u; — uo satisfies w”(x) = 0 and
w(-1)=w(1) =0, i.e., us = uz.)

In fact, v”(z) = — f(x) so by FTC

W) =a'W) - [T i dy=u' (D= [ fw)d.

Integrating further gives

u(@) =w' W@+ - [ [T 1) dyaz (3.1
~@-1- [ [ 1)y (3.2)
(@)= [ [ )y (3.3)
:u'(—1)(x—1)—f1m[ff(y) dy dz. (3.4)
Equating (1) and (2) gives
, _ 1 x z 3 xr z 7

=3[ [ rwaydz [T [ fw)dyas] ®)

and equating (3) and (4) gives
U'(—l)=%[[f[:f(y)dydz—ff[ff(y)dydz:~ (6)

Adding (1), (2), (3), and (4) gives
du(x) =2z [u' (1) +u'(-1)] - [[f flzf(y) dy dz + '/1% ﬁzf(y) dy dz + ]
= ...(substitute (5) and (6))
2+ 1) [ -V dy-2-1) [+ D) dy.
Therefore u(z) is an integral equation where
(A-y)(1+x) “1<z<1
K(z,y)=1

my)gﬁ y<xr<l

Hence K is continuous and A : f » u = Af is compact.
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Hilbert Spaces

Beginning of Oct.4, 2021

The Euclidean space R™ is equipped with a natural inner product (-,-) which induces the Euclidean norm |z| :=
\/{z,z). This also defines “perpendicular spaces” and “perpendicular projections”, which allow us to construct
bases of mutually orthogonal vectors via Gram-Schmidt.

Why are Hilbert spaces interesting?

(1) Every linear function ¢ : R” — R can be represented as an inner product: ¢(z) = (w, z) for some w € R™.

(2) with an inner product, we can define a class of symmetric operators (i.e., A:R"™ - R" with (Az,y) = (x, Ay)

for all x, y € R™) with many useful properties.

(3) We can also define a class of positive operators (i.e., A : R” — R" strictly positive definite: Az > 0 for all

2 # 0). In this case the map = — (Az, z) is a positive definite quadratic form.

We wish to show how the definition and properties of the Euclidean space can be extended to infinite-dimensional

spaces.

4.1 Spaces with an Inner Product

[ Definition 4.1.1: Inner Product |

Let H be a vector space over K (either R or C). An inner product on H is a map (-,-) : H? - K satisfying
(1) (skew symmetry) (z,y) = (y,z),
(2) (bilinearity and sesquilinearity) (x +y,z) = (z,2) + (y, z) and (\x, z) = A (x, z) (for A € K)

(3) (non-degeneracy) {x,x) > 0 with = if and only if = = 0.

Note that these imply (z,y + 2) = (2,%) + (z, 2) and (x, \y) = X (z, y).
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| Definition 4.1.2 |

Define |z := \/{x, x).

Theorem 4.1.3

Let H be a vector space with inner product (:,-). Then
(1)  (Cauchy-Schwarz) [(z,y)| < [=]|y|.

(2) (triangle inequality / Minkowski inequality) |z + y| < |z] + ||ly]-

Proof.
(1) If y =0 the claim is trivial. Otherwise consider inner products of form (x + Ay, z + Ay) for A e K:
(@ + Ay, 2+ Ay) = (z,2) + 20 (2,9) + A2 (y,y) = [2]* + 21 (2, y) + A2y

which by non-degeneracy of norm, nonnegative. Hence the RHS, viewed as a quadratic of A, has a non-

positive discriminant, that is,
2
(2(z,9))” = 4z*|y|> <0 = (z,9)" <[’ |y|* = [z, 9)] < []]y].
(2) By (1), Re(a,y) < [(z,y)| < |z|[y], so

lo+yl? = (z +y,2 +y) = |2+ 2%e (2,9) + [y]* < (J=] + |y ])*.

[ Definition 4.1.4: Hilbert Space

A vector space H with inner product (-,-}, which is complete with respect to the induced norm, is called a
Hilbert space.

Example 4.1.5.

n
(1) R"™with (z,y) := Z x;y; is Hilbert over R.
i=1

(2) (2 defined by {z = {z;} : (£:2]a:[?)"/” < 0o} is Hilbert over C with (z,) = 3" ;7.
i=1
(3) Let 2 cR" be open. Let L?(Q;R) be the collection of square summable maps. Then it is Hilbert with

(f,9)= fo(:c)g(:c) dz.
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4.2 Orthogonal Projections

[ Definition 4.2.1: Span

Given a subset S c H, define

span(S) :={> ciz;:neN,c; e R,z; € S}

i-1
(note we are taking combinations of finitely many elements). In general, span(.S) is a subspace of H but it is
not necessarily closed. To this end, the closure V := span(.5) is called the space generated by S.

The set S is called “ total” if it generates H.

[ Definition 4.2.2: Orthogonality

We say x,y € H are orthogonal if (xz,y) = 0. Given S c H, its orthogonal subspace is defined as
St:={yeH:(y,z)=0forall zeS}.
Theorem 4.2.3: Orthogonal Projections

Let H be Hilbert and let V c H be a closed subspace.
(1) H =V e V"' in the sense that each x € H can be uniquely written as ¢ =y + 2 where y ¢ V and z € V*.

(2) y:=Py(x)inV having the minimal distance to x and z := Py.(z) is the unique point in V* having the

minimal distance from z.

(3) The perpendicular projection x — y and = — z are linear, continuous, and bounded with norm < 1.

Beginning of Oct.6, 2021

Proof. We first show that given = € H, there exists a unique y € V with minimal distance from z. That is, if
a=d(z,V):=inf |z -y
yeV

then the infimum is attained. From definition, there exists a sequence {y, } with lim |z - y,| = . Since V is
n—>o00

Banach, it suffices to show {y,,} is Cauchy. Recall the parallelogram law
Ju+ 0 + Ju =] = 2fu]® + 2]v].
Letting u := x - y,,, and v := x — y,, we see that

[y = yml1? = 20 =y + 22 = yu)* = 122 = ym — ya]®

=2z ~yp|* + 22—y |* ~ 4z ~ (Y +y0) /2
[ —
eV

<2z =y |* + 2]z - ya|* + .

Taking lim sup gives

Hmsup ||[Ym — yn|* < 2limsup ||z -y |* + 2limsup |z -y, |* - 402 = 0.
m—>00 n—oo

m,n—>o00

42



YQL - MATH 580 Notes 4.2 - Orthogonal Projections Current file: 10-6.tex

Since V is complete, {y, } converges to a unique limit y with |z - y|| = d(«, V).

For uniqueness, suppose |z - 3’| = d(x, V). By the same argument

ly=9'1? =2z ~y[* + 2]z - y/'|* - 4|22 -y -/ |* < 20” + 20° - da” = 0.

Now that the map = — Py (z) is well-defined, we show X =V @ V*. That is, Py () is the unique point y € V
such that x —y € V*. Let v € V be given; for \ € R, consider f: A~ |z - (y + \v)|?:

FO) =z = (y+ M) [* =z ~y[* + AP0 + 2Re (@~ y, Xo).
By our first part, f attains its unique global minimum at A = 0. Thus f’(0) = 0. Differentiating implies
Re(z-y,v) =0 forallveV.
If H is over R then we are done; if it is over C, simply repeat the above process with v replaced by —iv so
Jm(x - y,v) = Re(x -y, —iv) = 0.
For uniqueness of the orthogonality statement, suppose y’ € V also has z — 3’ € V*. Then

ly-y'I>=(y-y . (y-z)+(x-y))
=(y-vy,x-y)+{y-y,y-2)=0+0=0.

Finally, we show that P, : H — V is a bounded linear operator. Put y = Py(z),y" = Py(z') where z,z’ are

arbitrary elements of H. For «, o’ € K, we know ay + o'y’ € V. Since for any v e V

<ar+adr -ay+adyv>=alr-y,v)+a (2 -y v)=0
—_— —
eH A%
by the second part the map («, + o’z’) = ay + o'y’ must be the projection operator Py,. Hence
Py(ax+d'z)=ay+a'y = aPy(x)+a' Py(z')
and similarly I — Py = Py. is also linear. Finally, since Py (z), Py.(x) = 2 — Py (z),

|Pv (@) = |z]* = |z - Py (2)|* < |2

we see Py has operator norm < 1. For x € V, the norm 1 is indeed attained. O
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4.3 Linear Functionals on a Hilbert Space

Theorem 4.3.1: Riesz Representation Theorem

Let H be Hilbert.
(1) For each z € H, the map y — (y, x) is a continuous linear functional on H;

(2) Lety~ Ay be a continuous linear functional. Then for each y, Ay = (h,y) for some unique h € H.

Proof.

(1) Let x be given. The map ¢” : ¢”(y) = (y, ) is linear, and

|1 = sup [{y, z)| < sup [y[|z] = |=[.
lvli<1 lyli<s

(2) If Ay =0 for all y € H then it corresponds to the zero map and the claim holds with & = 0. For A # 0, there
exists zo # 0 such that zp € N(A)*. Let
v=(Ay)z0 — (Azo)y.
Forany y e H,
Av = (Ay)Azy — (Azp)Ay =0

so v € N(A). Therefore (v, zp) = 0 and so

((Ay)zo0 = (Az0)y; 20) = Ay(20, 20) = (A20) (Y, 20)

and
_ (A20) (v, 20)
(20, 20)

Therefore we have found h € H satisfying the condition. For uniqueness, if Ay = (y, h1) = (y, ho) for all

Ay = {y, 20 - Az0/ (20, 20)) -

y € H, we have (y,h — hy) =0 for all y € H. Choosing y = hy — hy gives (hy — ha, h1hs) = 0, done.

Beginning of Oct.8, 2021

Remark.
(1) If H is Hilbert over R, then x — ¢” is an isometric isomorphism between H and H*.

(2) If A: H— H is linear, then its adjoint A* : H* — H* can be identified with A : H - H via

(z,A%y) = (Az,y).

4.4 Gram-Schmidt Orthogonalization & Orthonormal Sets

Quick recap:
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(1) =z € H is called normalized if |z| = 1.

(2) Asubset E c H is orthonormal if for |e;| = 1 and (e;,e;) = 0; ; for all e;, e; € H, where ¢; ; is the Kronecker

delta.

(3) IfS:={vy,...,0,} c H, the span is defined by span(S) = Z 0,v;, where 0, ¢ K (can be 0).
i=1

4) Ifz=) Oyvy, wenote (z,v;) = ¥ O (vk,v;) = 0. This gives z = ) (x,v;) vi. If we weaken the assumption
k=1 k=1 i1

and let {vy, ...,v, } only be orthogonal (not necessarily normalized) then z = " ({z,vi) /| vk )vs.
k=1

Theorem 4.4.1: Gram-Schmidt Orthogonalization

Let {v1,...,v, } be a collection of linearly independent vectors. Define inductively

n—1 o
—_— Uy 1= Uy — Z (vn,er) ek, and e, = ——.
ol i1 19]

U1

€1 =
Then {ey, ...,e, } is orthonormal with span{ey, ...,e;} = span{vy, ..., vy} forall 1 <k < n.

Question. In an infinite dimensional space, how do the notions of basis and linear span work? It is important to

understand when ) (z,e) e, converges and when it does not.
k=1

[ Proposition 4.4.2

Let H be Hilbert. For any S ¢ H, the orthogonal space S* is closed in H. Moreovet,

span(S) is dense in H < S* = {0}.

Proof. For =», let x € S*. Since span(S) is dense in H, there exists a sequence {z,} of linear combinations of

basis of S such that z,, — z. We write

N"L
Ty = Z en,kan,k - 0.
k=1

Then,

n—oo

N,
(z,z) = lim (z,2,) = ZTxank = lim > =0.

Hence, = = 0 and thus S* = {0}.
For <, let V = span(S). Suppose for contradiction that V' # H so that there exists y ¢ H — V. Consider the
orthogonal projection Py (y). Since y ¢ V, w := y — Py (y) # 0. On the other hand, since w € V*, w € S*, so by

assumption w = 0. Contradiction! O

45



YQL - MATH 580 Notes 4.4 - Gram-Schmidt Orthogonalization & Orthonormal Sets Current file: 10-11.tex

Theorem 4.4.3: Bessel’s Inequality

Let S = {e1,eq,...} be a finite or countable orthonormal set in a Hilbert space H. Let V := span(S) and let

Py : H > V be the orthogonal projection. Then for every x € H,

> Wz en) = [Py (2)]* < =]
k>1

Moreover, Y (z,e;) e = Py (). In particular, if V = H, ) (z,e;) = Py(z) =z forallz eV = H.
k>1 k>1

Proof. Let V,, := span{ey, ...,e, }. We know Py, (z) = >_ (z,ex) ek, O

k=1
n n n
[Py, (@) ={ Y- {z,e5) e 3 zoen)en) = 3 (w,e5) (2 ex) (ejex)
j=1 k=1 7,k=1 ———— ——
R =04k
n n
= Z (z,ex) Z z, e

k=1

Since || Py, (x)|? < |z|? for all n, taking limit proves Bessel’s inequality.

For the second claim, suppose S is countably infinite. By convergence,
n
Z €T €k

is in particular Cauchy. Thus, for m < n,

n
|y —zml®= 3 lw,ex)* ~0
k=m+1

as m,n — oo. Since H is complete, we get x,, — % for some Z € H. It remains to show that & = Py (z).

Since x,, € V for all n and z,, — % and since V is closed, 7 € V and so

(r-Z,er) = lim (T —xp,ex) =0 for all &

n—oo

Therefore x — & is orthogonal to all e;’s and therefore all v € V. Therefore & € V and = — & € V*. This implies
I € P\/(CU) O

Beginning of Oct.11, 2021

[ Definition 4.4.4: Orthonormal Basis |

An orthonormal set S = {ej, e, ...} ¢ H is an orthonormal basis (total orthonormal set) if span(.S) is dense

in H, i.e., span(S) = H.

Remark. Bessel’s inequality becomes identity: if we let V := span(.S) then

Yz ex)’ = |Py(x)|* = |z|>  and Yo (x,en)er=x
k>1 k>1
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This is known as the Parseval identity. J

Fourier Series
Let H = L*([-7, n]; C) with the natural inner product

(o= [ F(2)g(@) da.

Then the set S of functions
1

inx

n(x) = e nez
on() Nor
is orthonormal:
1 ™ . e 1 LU
(on (), om(x)) = — / e"Meinz dp = — f etm=—m)z qo. - Om.n-
27T - 27T - ’

We claim that S is an orthonormal basis of H. To show that span(S) is dense, let f € L?([~n,7]). For all € > 0, there

exists a continuous function f. : [-7, 7] — C such that

[fe=Ffle<e  fe(=m) = fe(m).

Also, by Stone-Weierstral3, we can find a complex trigonometric polynomial of form

N
p(.’E): Z akezkm
k=-N

such that
I£. = pleo = max{f,(2) ~p(o)] <
Then o
If.=plee = [ V@) - p(@)? o) <V

Therefore f. can be approximated by trig polynomials also with respect to the L?-norm. Therefore using p to

approximate f. and using f. to approximate f, we conclude that
span(S) = L*([-m, 7]).

Now we consider the complex trig series
ikx
&

k;;oo o \/ﬁ

where
e—ikx

V2r

aci=(foon) = [ 1) = da.

By the previous theorem, the series converges to f € L?, i.e.,

n
Tim |f = 37 arprfz2 =0.
k=-n

In other words, for f € L?([-7,x]; C), by letting ¢y, := 2i fﬂ f(y)e ™ dy,
™ J-

lim / If(z) = > exe™ P dz=0.

k=—n

This gives the convergence of Fourier series in the L? sense.
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4.5 Separable Hilbert Spaces
Theorem 4.5.1
Let H be Hilbert.

(1) If H is separable, then every or tho normal set in H is countable.
(2) If H contains an orthonormal sequence which is total in H, then H is separable.
Proof of (1). Let H be separable and let B be any countable dense set in H. For any orthonormal set S and

z,yelS, |r-y|?=(x-y,x-y)=|z|*+|y|* = 2. Hence, letting B, := B(x,1/4), for each distinct pair of z,y € S,

B, n B, = @. By density, every ball contains some element in B. Hence S is at most countable. O

[ Definition 4.5.2: isomorphism

Let H and H be Hilbert over K. An (isometric) isomorphism between H and H is a bijection linear map
A: H - H such that

(Am7Ay> = <$,y) .

If such an isomorphism exists, then H and H are called isomorphic Hilbert spaces.
Theorem 4.5.3

Any two separable infinite-dimensional Hilbert spaces are isomorphic.

Proof Let S = {ej,es,...} and S = {é;, &, ...} be countable total orthonormal sets in H and H, respectively. We

write xz € H as

x = Z (z,ex)ek.

k>1

We define A : H - H by
€= Z (Ivek)ekH Z(I’,@k)ék =:x.

k=1 k=1

By Bessel’s inequality, the sum on the RHS is finite. Finally, note that

k>1 j>1 k>1

|2]% = |Az|? = (Z(aek)ék,erj ) S|, en)? = 2] 2.

This shows A is injective and it preserves norms. Using the polarization identity

1 1. . .
{@,y) = (= +yl? =z —yl*) + zl(l\xﬂy\ﬁ ~ |z —iy[?)
we see (Ax, Ay) = (x,y). Hence the isometry.

Finally, for surjectivity, let & € H be given. We write & = > aé, where )’ | |* < co0. Then
k>1 k>1

> ager
k>1
converges to some € H with «y, = (x,e;). Therefore & = Ax. This shows A is surjective. O
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Remark. Any separable infinite-dimensional Hilbert space is isomorphic to L?([-m,7]) or £2.

Other Total Orthonormal Sets

Legendre Polynomials

Consider a Hilbert space H = L*([-1,1];R) with

(f.9)= [11 f(t)g(t) dt.

We start with fo(t) = 1, f1(t) = t, f2(t) = t2,..., so fn(t) = t". Note that f,’s are linearly independent. Applying

Gram-Schmidt gives us an orthonormal sequence {e, },s0. Then {e,} is total in L2.
Beginning of Oct.13, 2021

The explicit formula is given by
en(t) =/ (2n+1)/2-p,(t)

where

L

2 - 1)".
2np) dt”( )

pn(t) =

(py, is called the Legendre polynomial of order n.)

[n/2] _ — 94} _
Claim 1. p,(¢t) = ) (-1)' = (2n , 2))! —¢""%_ This claim can be obtained by expanding (> - 1) using the
§=0 2n5!(n - j){(n - 25)!

binomial theorem and differentiating the term n times.

Claim 2. |p,|? = 2/(2n + 1). This justifies the scaling constant appearing in e,,. This is obtained by iterative IBP on

1 4r dr

2"n!)?2 ﬂ:f — (-1 — (2 -1 dt
(2"n)|pn | B dtn( ) dtn( )
1dn—1 dn+1
=— t2-1)" 2 -1 dt
[1 dtn—l( )dtn+1( )

(—1)"(271)!/:11(152—1)” dt=(—1)"(271)!-(—1)"~2f01(1—t2)" at
22n+1(n!)2

/2
= 2(2 !f 2410 df =
(n) 0 €08 () 2n+1

Claim 3. {p,} is orthogonal in L?([-1,1]). To see this, it suffices to show that (p,,,p,) = 0 when 0 < m < n. Since

pr, is a polynomial, it suffices to fix n and show (¢, p,,) = 0 for all m < n:

1 dr
2"l (t™, :[ tm—(¢? = 1) dt.
nl(em pn) = [ @)
. d” . . .
We can increase the order of v and reduce that on ¢ using IBP. Since m < n, t"* eventually becomes 0, resulting
in the integral being 0.
——>0CZ00<

In fact, the Legendre polynomials are solutions of the Legendre differential equations
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(1=tHp! —2tp! +n(n+1)p, = 0.
Remark. The Sturm-Liouville problem
(=) +xy=0  -1<t<1

has a bounded solution exactly when A = n(n + 1), resulting in a Legendre polynomial. These A = n(n + 1)

are eigenvalues of Ay = —((1-t)y’)".

Example 4.5.4. Recall the spherical coordinates (p, 6, ») and Cartesian (z,y, z) are related by
x = pcosfsinp y = psinfsinp Z = pCcosp.

Then

82 82 62

a2 o2 " 922

has spherical coordinate expression

0?2 20 1 02 1 0? +cot<p8

e+ ——
0p2 pOp p?sin?@ 002 p2 0% p? Oy

for p>0,0 e R, p € (0,2m).
Problem. Find bounded solutions u = u(p, 8, ¢) of the Laplace equation Au = 0 in the ball.
Intuitively we try to reduce PDEs to ODEs, so we try to look for separable equations wu(p,0,p) =
R(p)©(0)®(p). Then
5 RII Rl 6// (I)” COt (,D(b,
P 20—+ +—+ =
R R sinp0 @ o

It follows that, for some constant )\ := the sum of first two terms, we have

0.

P*R" +2pR — AR =0

0"(6) | 2(p) , cotp®(p) _
sin? O(h)  P(y) () .

We can further define -« := ©”(0)/0(0) and split the second equation into

0" (6) +aO(8) =0

@"(¢>+W¢'(w>+(x— o )w):o.
S @ sin” @

For a special case, we set « = 0 and so ©(6) = 1. Then u = u(p, p) and

p?R" +2pR’' — AR =

cos
() + @‘DI(S@) +A®(p) = 0.

The first equation is given by

Ri(p)=p"  Ra(p)=p™
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where p;, p, are roots to p? + p — A = 0. For the second equation, let ¢ := cos pso —1 < t < 1. Let p(t) = ®(¢)

where ¢ = cos™' t. Then

dt
'(p)=p - — =-V1-t?p,
de
and

/

() =p"(sin’ ) —p'cosp = (1 - ¢*)p" ~ tp".
The second equation therefore becomes
(L=8)p" —tp' —tp" + Ap = (1= *)p" = 2tp" + Xp,

the Legendre differential equation. Therefore, when X\ = n(n + 1), the solution will be given by the Legendre

polynomials!
D () = pn(cos ).

For A =n(n+1),p> +p— X =0hasn or —(n+1). We choose p = n to get a bounded solution. If u(p, ) =
R(p)®() is a bounded solution of the Laplace equation inside the sphere, then there exists n € N such that

u(p, p) = Cp"pp(cosp)

for some constant C.

More generally, we have solutions of Au = 0 of the form
p" cos(mB)p;" (cos @) m<n

where
dm
() = (1-2)™2—p, (¢
Pt = (L= 2" p (1)

is called the associated Legendre polynomials of degree n and order m. These polynomials solve

m2
(1—t2)p"—2tp'+(/\— 1_t2)p:0.

The functions Y,,, ,,(6, ¢) = p' (cos ) cos(mf) are called the spherical harmonics.

n

Beginning of Oct.18, 2021

4.6 Positive Definite Operators

[ Definition 4.6.1 |

Let H be Hilbert over R. A linear operator A : H — H is strictly positive definite such that there exists 5 > 0
satisfying (Au,u) > 8] u|? for all u € H.
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Theorem 4.6.2: Inverse of a PD Operator

Let A: H — H be a bounded linear operator which is strictly PD. Ten for any f € H, there exists a unique

element u := A~ f in H such that Au = f. Moreover, the inverse A~! satisfies
|A™ ) <1/8

where 3 is the corresponding bound in the definition of PD-ness.

Proof. We need to show that A is bijective.
For injectivity, it suffices to show that ker A = {0}. Indeed,

Blul? < (Au,u) < | Auf u]

so if |ul| >0, B|lu| < |Au|. Therefore if Au =0, |ul =0, i.e., ker A = {0}.
Now we show that R(A) is closed (surjectivity later). Let {v,} ¢ R(A) be such that v,, > v for some v ¢ H. We

can write {v, } as {Au, } for some {u,} ¢ H. Then, using 3| u| < |Au| from the previous part for nonzero w,

1 1
It = un ] < B”Aum = Aup| = < |vm = val.

B

Hence,

1
lim sup |, — up | < limsup Bva —v,| = 0.

Hence {u,} is Cauchy. By completeness, u,, - u for some u € H. Since A is bounded, it preserves limits, so
Au =wv.
Finally, we show that R(A) is all of H. Suppose not, then there exists a nonzero w € R(A)*. Then

Blw]* < (Aw, w) =0

as w € R(A)* but Aw € R(A). Thus w = 0, contradiction. This finishes the proof showing A is bijective. Hence
Au = f has a unique solution v := A™! f and A~ is continuous by the Open Mapping Theorem.

Finally, since
1 1 1
AN = u) < S| Aul = < AATN | = = £,
f=1ul BH I ﬂ\l fl Bl\fl\

we have A7 < 1/8. O

Theorem 4.6.3: Lax-Milgram

Let H be Hilbert over R. Let B : H x H — R be a continuous bilinear functional, i.e., bilinear and
|B[u,v]| < Clluf|lv]
for some C' > 0. Further, assume that B is strictly PD, i.e., for some 3 > 0 we have

Blu,u] > B|u|? for all u € H.
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Then for all f € H, there exists a unique u € H such that
Blu,v] = (f,v) forallve H.

Moreover, |ul <1/8-|f]-

Proof. For each fixed u € H, the map v - B[u,v] is a continuous linear functional on H. By the Riesz Represen-

tation Theroem, there exists a unique element, which we call Au, such that
Blu,v] = (Au,v)

for all v € H. We claim that v — Au is bounded, linear, and PD. Linearity follows from bilinearity of B. For

boundedness, notice that

| Aul = ”81”1p (Au,v) = ”sTp |B[u, v]| < C|ul.
v|=1 v|=1

To see that A is strictly PD:
{Au,u) = Blu,u] > Bllul?.

Therefore, by the previous theorem, Au = f has a unique solution u := A™'f satisfying |u| < |f|/B8. This

completes the proof. O
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Chapter 5

Compact Operators on a Hilbert Space

Recall that for a linear operator A : R" — R",
(1) Aisinjective if and only if A is surjective;
(2) dimker(A4) =dim(R(A)*);

(3) If A is symmetric, its eigenvalues are real, and the space R™ admits an orthonormal basis consisting of the

eigenvectors.

The goal is to generalize these results to A : H — H where H is an infinite-dimensional Hilbert space.

We will show that
(1) remains valid with the assumption that A = [ - K where K is compact; and

(2) can be extended to any compact, self-adjoint operator A : H - H.

Beginning of Oct.20, 2021

5.1 Fredholm Theory

Unless otherwise specified, let H be a Hilbert space.

Recall that K : H — H is compact if, for all bounded sequence of points {u,,} ¢ H, there exists a subsequence {u,, }

such that Ku,; converges in H.

Theorem 5.1.1: (Fredholm)
Let H be over R. Let K : H — H be a compact linear operator. Then
(1) ker(I - K) is finite dimensional.
(2) Range(I - K) is closed.

(3) Range(I - K) =ker(I - K*)* where K* is the adjoint operator.
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(4) ker(I - K)={0} if and only if Range(I - K') = H.

(5) ker(I - K) and ker(I - K*) have the same dimension.

Proof.

€Y)

(2)

Suppose for contradiction that ker(I — K) is infinite dimensional. Then there exists an orthonormal se-
quence {e, }n>1 € ker(I — K) such that Ke,, = ¢, for all n (since (I — K)e,, = 0). In particular, for m # n,
lem —en| = V2, 50 | Kep —Keyn|| = |em—en| = /2. This contradicts the compactness of K, as { Ke,,} admits

no convergent subsequence.
Claim 1. There exists a constant 8 > 0 such that

|(I - K)u| = |u-Ku| > 8u|  forall ueker(l - K)*.

Proof. Suppose the claim does not hold, then there exists a sequence {u,, } c ker(I - K)* such that ||u,| =1

but

Since {u,, } is bounded, there exists a subsequence {u, } converging weakly to some , i.e., u,, - u. Since
K is compact, this implies Ku,; - Ku strongly. Thus
Ju, ~ K] <, ~ Kty | + | K, ~ K

1
< — +||Kuy, - Ku| - 0.
nj

Therefore u,,; converges strongly to Ku. Recall that u,,; also has a weak limit u. By uniqueness we have
u = Ku, i.e., u € ker(I - K) so |uf = 0. However, u = Ku is also the strong limit of |u,, |, a sequence of

elements with norms 1. Contradiction.

Claim 2. Range of I — K is closed.

Proof. Let v, ¢ Range(I - K) and let v,, > v for some v € H. We need to show that v = v — Ku for some w.
By assumption, for each n, there exists u,, € H such that v,, = u, — Ku,.

Let 4, be the perpendicular projection of u,, onto ker(I — K') and let z,, := u,, — @, (so it’s in ker(I - K)*).
Notice that
U= -K)u,=(UI-K)(Un+2,)=UI-K)zy=2,-Kzp.

By claim 1, there exists 5 > 0 such that
lzn = Kzn| 2 B 2n].-

Therefore,
lvm = vnl 2 Blzm = 2l

Since {v, } is Cauchy, this implies {z,} is Cauchy. Therefore there exists u € H such that z,, - u. Thus,
u—Ku=lim (2, - Kz,) = lim v, =v.
n—oo n—oo

This shows v € Range(] - K), as claimed.
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€))

4)

)

Note that by (2), Range(I - K) and ker(I-K*)* are both closed, so it suffices to show that Range(/- K)* =
ker(I - K*).

Indeed,

zeker(I-K*) < z-K'z=0
— (y,(I-K")z)=0forallye H
— ((I-K)y,z)=0forallye H

<= x €Range(] - K)".

For =, assume ker(/ - K) = {0}, i.e., I - K is injective. Suppose I — K is not surjective, so H; := (I-K)(H)
is a strict subspace of H. By (2), H; is closed in H. Since I — K is injective, if we let Hy := (I - K)H},
we have H, ¢ H; again. Inductively we define H,, := (I - K)™H and obtain a strictly nested sequence of

closed subspaces H o H; > Hy > ...

Thus, for each n > 1, we can choose e,, € H, n H},, with |le,|| = 1. Note that for m < n,

Kem _Ken :KenL_em tem _en+en_K€n

=€m t2Zm

where
zn=KKe,, —en+ e, — Ke, —e,
[ ———— ————
Hoppt1 €Hn €Hpy1CHpmyn

SO 2, € Hypi1. Since ey, € HY ., by Pythagorean theorem,

+1>
[ Kem ~ Keal® = lem[? + |2ml* = [Kem - Kenl > Jeml.

Therefore the sequence {Ke,} does not admit any convergent subsequence, contradiction. Hence I - K

must be surjective.

Conversely for <, suppose Range(/ — K) = H. Then by (3) ker(I - K*) = R(I - K)* = H* = {0}. Since K

compact implies K* compact, by the previous direction, Range(I - K*) = H. Now,

ker(I - K) =Range(I - K*)* = {0}.

Beginning of Oct.22, 2021

We first show that dim(ker(I - K')) > dim(Range(/ - K)*).

Suppose this is not true; that is, dim(ker(/ — K)) < dim(Range(I - K)*). We know the LHS is finite
dimensional, so there exists a linear map A : ker({ — K) - Range(I - K)* which is injective but not
surjective. We can also extend A to a linear map defined on all of H, i.e., A: H — Range(/ - K)* by
setting Aw := 0 for all u € ker(I - K')*. Since Range(A) is finite dimensional, A is indeed compact by Riesz’s

lemma. Therefore K + A is compact.
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Claim: ker(I — (K + A)) = {0}. To see this, for any u € H, we can write u = u; + ug where u; € ker(I - K)
and us € ker(I — K)*. Then

(I-(K+A)u=(I-(K+A))(us +ug)
= —Au1 + (I—K)’U,Q,

N—_—— —————
€Range(I-K)* cRange(I-K)

so u € ker(I — (K + A)) if and only if both Au; and (I - K)us = 0, that is, us € ker(I — K), so us is in both
ker(I — K) and ker(I — K)*, i.e., us = 0. Also, by assumpgion u; € ker(I - K), but then Au; = 0 implies
uy =0 since A is injective on ker(/ — K). Hence ker(I - (K + A)) = {0}.

Applying (4) to the compact operator K + A, we have Range(/ - (K + A)) = H.

On the other hand, by construction A is not surjective, so there exists v € Range(I — K)* which is not in
Range(A). In particular,
(I-(K+A)u=u-Ku-Au=v

has no solution: decomposing u = u; + us as above, there is no Au; to account for the result v. Contradic-
tion. Hence dim(ker(I — K)) > dim(Range(I - K)*).

Also, by (3), dim(ker(I - K)) > dim(Range(] - K)*) = dim(ker(7/ - K*)). Changing the roles of K and K*,

we obtain the other direction of the inequality. This completes the proof.

Fredholm Alternative

Consider the linear equation v - Ku = f where K is a compact operator on H.

Notice that u — Ku can be written as (I — K)u, so this equation can be solved exactly when f € Range(I — K).
Recall that ker(I — K) is finite dimensional.

Case 1. ker(I - K) = {0}, so that I - K is injective and moreover surjective by (4) above. Therefore, for each f,
there will be a v satisfying the equation.

Case 2. ker(] — K) is nontrivial but finite dimensional. This means that the homogeneous equation (I - K)u =0
has nontrivial solutions. In this case, by (3), Range(/ — K) is orthogonal to ker(I — K*). That is, the equation has
a solution if and only if f € ker(I — K*)*, i.e., (f,u) =0 for all u € ker({ - K*), i.e., (f,u) = 0 for all u € H such that
u—K*u=0.

5.2 Spectrum of a Compact Operator

Let A: H - H be a bounded linear operator, not necessarily compact.

[ Definition 5.2.1: Resolvent, spectrum, & point spectrum

The resolvent set of A is p(A) : {\ € R: AI — A is bijective}. In this case, by the OMT, the inverse operator

(M - A)~L is continuous.

57



YQL - MATH 580 Notes 5.2 - Spectrum of a Compact Operator Current file: 10-25.tex

The spectrum of A is defined to be o(A) := R — p(A) [here — denotes set-theoretic minus], i.e., if € p(A)
then 2/ — A either fails to be injective or surjective (or both).

The point spectrum of A is defined to be
op(A) == {X e R: A\I — A is not injective},

i.e., if X € 0, (A) then there exist nonzero w € H such that Aw = Aw. In this case ) is called an eigenvalue of
A and w is the associated eigenvector.
The essential spectrum of A is

oe(A) = 0(A) - 0,(A),

i.e., the set of \ € R such that AI — A is injective but not surjective.

Example 5.2.2. Consider H := ¢? and the right shift operatorA : /2 — ¢? defined by
(SL'l, 2,3, ) = (O, T1,T2, )

As shown before, A is bounded with norm 1. Clearly A is injective but not surjective. By our definition,

0-I- A =-Ais injective but not onto, so 0 € (A), 0 € 0. (A), but 0 ¢ o,(A), i.e., 0 is not an eigenvector.

Remark. If A #0, A - K can be re-written as A\(I - A"! K), which connects to Fredholm theory.
Theorem 5.2.3: Spectrum of a compact operator

Let H be infinite dimensional. Let K : H - H be compact. Then:
(1) Oeo(K),
(2) o(K)=0,(K)u{0}, and

(3) Either 0,(K) is finite or countable, with klim Ax = 0 being the only accumulation point.

Beginning of Oct.25, 2021
Proof.

(1) Suppose for contradiction that 0 ¢ o(K). Then K has a continuous inverse K~ ! : H — H. Consider
I=KoK™! Since K™!is continuous and K compact, this tells us I is compact. But this is clearly false, as

in an infinite dimensional space, the closed unit ball is not compact.

(2) Assume A € o(K) and A # 0. We want to show that A € ,,(K). Suppose not, i.e., if ker(AI - K) = {0},
the Fredholm theory implies that Range(\ — K') = H. By the OMT, AI - K is open and therefore admits a

continuous inverse, contradicting the assumption that A € o (K).

(3) Claim. For each u > 0, the space generated by the eigenvectors corresponding to all A, with |\ > p needs
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to be finite dimensional.

Proof. Suppose for contradiction that there are infinitely many distinct eigenvalues A\, with |\z| > u for
some p. Then we can take an orthonormal sequence {ej} corresponding to A\ of distinct eigenvalues, i.e.,
Key = Aey. Since K is compact, there exists a subsequence ey, such that Key, converges. However, for
A2

H)\]fjekj - Ak, €k, H = |)\]€j|2 + |)\k€|2 > 2,u2 > 0.

Contradiction. Hence the claim is proven.

The claim shows that the eigenvalues of K is at most countable with A\, — 0 ass k — oo.

5.3 Self-Adjoint Operators

Let A\: H - H be a bounded linear operator on H.

[ Definition 5.3.1: Symmetric operator

A is called symmetric if (Ax,y) = (z,Ay) forall z,y € H.

Example 5.3.2. Let A be a symmetric matrix. Then A determines a symmetric linear operator R” — R"

defined by a — Az. Also, it gives the quadratic form

n
e (z,Az) = Y a;jzi;.
ij=1

Then

M := rlnlax(x, Azx) m= ‘m‘lrll (z, Ax)
x|=1 x|=

gives the largest and smallest eigenvalues of A.
Lemma: Bounds on the spectrum of a symmetric operator

Let A : H - H be a bounded linear operator on H. Define M := sup (Au,u) and m := inf (Au, u), both taken
over all v € H with |u| = 1. Then

1) o(A)c[m,M],
(2) m,Meo(A), and

(3) A = max{-m, M}.

Proof.

(1) It suffices to show that the resolvent contains (—oco,m) and (M, o). To this end, let > M; we want to

show nI — A is bijective. Then
((nI = Au,u) =1 (u,u) - (Au,u) > (n - M)|u?| for all u e H.
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That is, n — M is a positive operator. By Lax-Milgram 7l — A is bijective. By the OMT, it has a continuous

inverse, so (M, o) c p(A), and a similar argument shows (—oo, m) c p(A).

(2) Claim. M eo(A).
Proof. We choose a sequence {u,} such that (Au,,u,) - M, all with ||u,| = 1. Then (using result from
(3)
| Awn = Mug|? = [Aug | = 2M (Aup,un) + M |uy, |
<2M? = 2M (A, 1) = 0.

Therefore A — M I cannot have a bounded inverse. Similarly we can show m € o(A).

(3) We may assume |m| < M.
Claim. |Au| < M|u| forallue H, i.e., |A| < M.

Proof. The polarization identity gives
4{Au,v) = (A(u+v),u+v)— {(A(u-v),u-v)
<Mu+ol? =mju-v]* < M(Ju+vf* + Ju-v]?)

= 2M (Jlul* + J0]*),

SO
(Au,v) < M(Jlul® + o]?).
Let v := [l Au (assuming u # 0). Then
| Aull
oo (A ) < Ml + ),
SO
[ Aull < Mul?,
ie.,

[Au| € M|u| for all u € H.
On the other hand,

M > ||A| > sup (Au,u) =M
o] =1

by Cauchy-Schwarz, so |A| = M.

Beginning of Oct.27, 2021

Theorem 5.3.3: Hilbert-Schmidt

Let H be a separable Hilbert space, and let K : H — H be a compact symmetric linear operator. Then there

exists a countable orthonormal basis of H consisting of eigenvectors of K.
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Proof. Assume H is finite dimensional. Let Ao = 0 and let {\1, Ao, ...} be the set of eigenvalues of K. Define
Hy :=ker K and H,, := ker(K - \,,I). We know

0 < dim Hy < oo,

and by Fredholm theory, for all k£ > 1,

1 <d1mHk < 00.

Claim 1. For m > n and m,n > 1, H,, and H,, are orthogonal.
To see this, let uw € H,,, and v € H,,. That is, u € ker(K - \,,I) so Ku = A\, u and similarly Kv = \,v. Since K is
symmetric,

Am (U, 0) = (A, v) = (Ku,v) = (u, Kv) = (u, \yv) = Ay (u,v) .

Since )\, # A\, we must have (u,v) = 0. Thus H,,, 1L H,,.

Now we define the linear combination of these spaces
B N
H := {Zakuk:Nz 1, ap € R ug EHk}.
k=1

Claim 2. H* c ker(K) = H,.
To see this, notice that the image K H c H as each K (aguy) is simply (Agax)ug, also a scalar product of uy.

Furthermore, if u € H* and v € H, then Kv € H, so
(Ku,v) = (u, Kv) = 0.

This shows K (H*) c H*.
Now let K := K | 7.+ Then K : H* - H* is a compact symmetric operator. By the previous lemma,
H[E’H = sup = |<I~(12,11)| =M.
e H, |a]=1
We claim that M = 0. Suppose not, then M or —M ¢ o(K). Call it \. Since K is compact, nonzero eigenvalues
is in the point spectrum, so there exists w ¢ H* such that Kw = Kw = \w, so X is also an eigenvalue of K.
This is impossible, as all eigenvectors of K are supposed to be in H by construction. Hence M = 0. Hence

H* cker(K) = Hp.
Now we notice that H} n H* ¢ Ht n Hy = {0}. Hence,
span(Ho U H)

is dense in H. We know each H; admits a finite orthonormal basis. The union over all % still admits a countable
basis. Since H is separable, the closed subspace Hy = ker(K) also admits a countable orthonormal basis. Hence

the union over everything is still countable. O

Remark. Let {w,ws,...} be an orthonormal basis of a real Hilbert space H consisting of eigenvectors of a
linear, compact, symmetric operator K, where A1, Ao, ... be the corresponding eigenvalues. For € H consider

the equation (I- K)u = u— Ku = f. It follows that if 1 is not in o (K') then the equation has a unique solution.

61



YQL - MATH 580 Notes 5.4 - Application (The Dirichlet Problem for A) Current file: 10-29.tex

Furthermore, we can let u = Z crwy and f = Z brwy, for some coefficients {cy }, {bx }. Then
k=1 k=1

¢k = Akck = (u, wi) = (u, Kwg) = (u, wg) = (Ku, wi) = (u - Ku,wi) = (f,wi) = bg.
Then ¢, = b /(1 - \g), and this is well-defined as long as A # 1, which is guaranteed as 1 ¢ o(K'). Therefore,

“:i by w —i(f’wk>w

Pl PV _kzll—)\ak

With extra assumptions, we are able to construct an explicit solution!

5.4 Application (The Dirichlet Problem for A)

Let ©2 ¢ R™ be open, bounded, connected, with 92 smooth. Let g be a smooth function given along 9§2. We try to
find a function u satisfying

Au=0 in n
where Ay := Z -

2
u=g on 0} i=1 0;

We can first consider a smooth extensions of g to Q. Then 7 = v — g will satisfy

Au=-Ag inQ
=0 on 0f.
We are led to study the following Dirichlet problem
-Au=f inQ
)
u=0 on 0f.

Functional analytic techniques will let us prove the existence of weak solutions to (*), and we will be able to show
that any function f ¢ L?(2) will produce a unique (weak) solution u € H}() of (*) (that is, the Paplacian has an
inverse in suitable spaces). We will also show, assuming some extra theorems, that the operator f ~ u from L?(Q)
to L?(2) is compact and therefore we will obtain the spectrum of the Laplacian. That is, we will see the existence

of a discrete set of A solving the eigenvalue problem
Au+Adu=0 1in

u=0 on 0f).

Beginning of Oct.29, 2021

Weak Solutions
Define C§°(£2) to be {f e C* () : suppf c 2 compact}.

We define two different inner products:

(u,v)q = fgu-vdx
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(u,v), ::'[QVu-Vv dx
We can check that C§°(f2) is an inner product space under (-,-), or under (,-),. Define |u[? := (u,u), and |u||} =
(u, u)y.

Lemma: Poincaré’s Inequality

For all u € C° (), |ulo € d|u|1 where d is the diameter of ).

Proof. Since u| o0 = 0, at any point z € 2, we have by FTC
x

u(z) = / Oy u day
JL’b

where 2 € 9Q and all but the first component of 2 agrees with that of z. Then, by Hélder’s inequality,

x 2 x
u?(x) = ([b 1-8m1ud5cl) Sd-(fb |0, ul? di“l).

Integrating over ) gives

2 1 2 1=\ 1. 2 2
fu dxsdf (f |0 1 dx) dzy--da, <d /|Vu| dz.
Q o \Jab Q

[ Definition 5.4.1: H(£2)

We define Hi(2) to be the completion of C°(£2) with respect to | - ||;. This is a Hilbert space.

Lemma
Each u € H}(Q) belongs to L*(£2) and has partial derivatives u; € L?(Q2). Furthermore,

(v,uj), = —(0v/0xj,u), for all v e C5° ().

Moreover,
(u,v), :fQZujvj dx for all v,u € Hy ().

J=1

Proof. Let {u,} be a sequence in C§°(Q2) converging to w in | - |;. Then, du, /Oz; converges in | - |, to a limit

which we call u;. By Poincaré’s inequality, Ju,,/Ox; converges in L? as well, which we identify with the limit

u € H}. For a fixed n,
(v,0un/0z;), = /Qvg% dz
J

[IBP] = - fQ aa—vun dx = (0v/0z;,un), -

T

Taking n — oo, we see that
(Ua uj)o == <8U/6l‘j, u)() .
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Remark. u; is called a weak partial derivative of «. It is in some sense a partial derivative, but sometimes

it is not as nice as a usual partial derivative is. It just needs to satisfy the equalities in the previous lemma.

[ Definition 5.4.2: Weak solution

We call u € H}(Q2) a weak solution to

-Au=f inQ '
™
u=0 on 90N
if
(u,v), = /g;fv dz for all v € Hy(Q).
Theorem 5.4.3

Given f € L?((2), there exists a unique weak solution u € H} (£2) of (*). The weak solution satisfies
2 2 2 2
= dr<d f dz.
ulf = [ 1vafdo<d® [ f*do

Proof. For any f € L?(£2), define a linear function
<p:vr—>/§;fvdx on Hy ().
In other words, ¢(v) := (f,v),. Then Holder’s inequality and Poincaré’s inequality give
()l <[ flolvlo <dlflofvl-

That is, ¢ is a bounded linear functional on Hg(£2). Therefore, by the Riesz RT, the functional ¢(v) = (f,v), can

be represented as an inner product on H}(2). That is, there exists a unique element v € H} () such that
(f,v)g = (u,v), for all v e H}(Q).
Now we choose v = u so that (again by Holder and Poincaré)

ulf = Y [Jus dw= [ fudo<|flolelo < dlfloluls.
aJa Q

This shows
Jul1 <d||flo-

O

Now we have shown that under suitable situations, we have obtained a (linear) map ® : L?(Q) — Hj(Q2) defined

by f + u, where v is informally (-A)~! f. We write u = ®&(f).

Notice that H}(Q) c L2(), so there exists an embedding map i: H2(Q) < L2(Q) so we end up getting & : L2(Q) —
HL(Q) > L2(Q).
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[ Proposition 5.4.4

®: L2(Q) - L*() defined above is a compact, symmetric, positive operator.

Beginning of Nov.1, 2021

Proof. Note ® is symmetric. If we let ®f = v and ®g = v then

-Au=f inQ -Av=g inQ
and
u=0 on 9N v=0 on .

It follows that

(@1,9) = {w.9) = [ ugde= [ Vuvede=(u,v),

and
(f, ®g)=(f,v)g= f fodx = / Vuvo dz = (u,v), .

Also, ® is positive because (®f, f), = (u, ), = (u,u); > 0.
Finally, to show & : L?(Q) — L?(Q) compact, it suffices to show that the embedding i : H}(Q) = L?(Q2) is
compact. Rellich’s compactness theorem states that if a sequence {u,, } in H} () is satisfies |, Hi(q) < ¢ then there

exists a subsequence {u,, } converging strongly in L*(Q2). O

Remark. The existence theory and the compactness of ® can be extended to all second order elliptic

operators with Dirichlet boundary conditions.

Remark. By the spectral theorem, ® has an orthonormal basis of eigenfunctions e, with positive eigenval-

ues oay:

<I>(ek) = Ok€CL.

Furthermore, since oy, | 0, we have
1
-A(DP(e)) = -Aare, — e = (-A)(er).

In some sense, the e;’s are the eigenfunctions of —A and the corresponding eigenvalues are 1/ay’s.
Furthermore, as a3, | 0,\;, := 1/ay — oo, so there exists a corresponding orthonormal basis {e;,} of L*(Q2)
such that

Ake in Q
Aep - kCk

er =0 on 9.
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More on the Eigenvalues

(D

2

Weyl’s law; in R", for eigenvalues \; of —-A with zero boundary condition,

(2m)"

. n/2
lim A k= —F——
foo K / vol(Q)a(n)

where «(n) is the column of the unit ball in R™.
A1 > 0, called the principle value, is defined by
A1 = min{(u, u), }
subject to u € H} () and |u| 22 () = 1.The minimum is attained for e; > 0 in (2 solving

—Ael = )\161 in Q
e1=0 on 0f2.
Moreover, if u € Hi(2) is any weak solution of
-Au = /\1u in Q
u=0 on 02

then u must be a multiple of e;. Also,

subject to u € H} () and u # 0.
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Chapter 6

Semigroups of Linear Operators

6.1 ODEs in a Banach Space

Let X be Banach and let F': X — X be Lipschitz, i.e., for some L ¢ R and all z,y € X,
|F(z) - F(y)| < L|z - y].

Consider the Cauchy problem
(t) == dx/dt = F(xz(t))
z(0) =xp € X.

Theorem 6.1.1: Existence and Uniqueness of (*)

Let F' be defined as above. Then for every zy € X, the Cauchy problem admits a unique solution ¢ — z(t)
defined for all ¢.

Beginning of Nov.3 2021

Proof. Fix any T > 0. Consider the Banach space C([O,T]; X) defined by the collection of w : [0,7] - X

continuous. Define the norm on this space by

] = max X fu(t)]x. M

Notice that a function z : [0,7'] — X will be a solution to (*) if and only if z is a fixed point of the Picard operator

(1) - 2(0) = fOtF(w(s)) ds

or
[®(w)](t) = 20 + fUtF(w(s)) ds = w(t).

By the contraction mapping theorem, it suffices to show that ® is a strong contraction with respect to the norm
defined in (1). To this end, let u,v € C([0,T]; X) and § = |u — v|. That is,

e u(s) —v(s)|x < Ju-v]| =0 for all s € [0,77],
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SO

lu(s) ~v(s)|x < e**6.

For each fixed ¢t € [0, 7],

¢ 2H | [R(w))(1) - [2(0)) (1) = ¢

< e 2t At |F(u(s)) = F(v(s))| ds

t
[Lipschitz] < ¢ [ Lju(s) = v(s)|x ds

t
<e_2Ltf Le? 55 ds
0

_ o 0
Ze2rt 0205 _ 0

2 2
This shows that ® is a strong contraction with contraction constant < 1/2, i.e.,

I[2()](e) ~ [2()) ()] < L2

fOtF(u(s)) ~ F(u(s)) ds

The claim then follows from the contraction mapping theorem. By revering time, one can construct a unique

solution on any time interval [-T,0] as well.

Two Methods for Constructing Approximate Solutions to (*)

We fix a time step h > 0 and discretize time by defining ¢; := jh for j e N.

The forward Euler approximation is given by
x(tje1) = x(t;) + hF(x(t))),
and the backward Euler approximation is given by

z(tjer) = z(t;) + hE(x(tj41))-

O

In both cases, once the values z(¢;) have been computed on the discrete set {t;}, one can extend the approximate

solution to all real values of ¢ > 0 by letting ¢ — z(¢) be a linear/affine function.

To construct the forward approximation: we let #(¢) to be constant on [¢;,¢,.1] taking value of F(z(t;)),

@(t) = F(x(t;)),  telty,tjn]

To construct the backward approximation: given x(¢;), to find x(¢;.1), one needs to solve the implicit equation

x(th) = iC(tJ) + hF(.’L‘(t]Jrl))

This clearly involves more computational effort, but often times it has a much better outcome in terms of accuracy,

stability, and convergence properties.

Linear Homogeneous ODEs
Let A:R"™ - R" be linear. Then by the theorem above,

T =Ax

2(0) = g
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admits a solution map t — e*4z, where
oo ik Ak
‘A thA
e = .
k;) k!

(Note that this series is absolutely convergent whenever A is bounded so it’s well-defined.) Moreover, the exponen-

tial map satisfies

(1 =1,

(2) e*Aeth = e(st)4 (semigroup property), and

(3) for each zy € X, themap ¢ — ez is continuous.

By (1) and (2), the family {4 : t > 0} is a “group” of linear operators. In general, the theory of linear semigroups

give the correspondence between A and {e*4 : ¢ > 0}:

(1) When A is a bounded linear operator, its exponential map is computed by the series above.

(2) Conversely, given a family of e/, we can recover A as the limit

et

Question. Why do we care about {¢'4}?
Ans. Sometimes e'4 is bounded for all ¢ > 0 whereas A might be unbounded. In these cases, semigroup theory is

useful.
Example 6.1.2.

(1) If A:R"” - R" is diagonal with diagonal entries ), ..., \,, then e*4 = diag(e*,...,e"*"). Then

tA H _ t)\k‘.

| A = max|Ax| and e = max]e

(2) Consider X = ¢! with |z|; = ¥|x.|. Given any sequence of complex numbers {)\;}, consider the linear

operator
Az = { Az}

Then

etA:r _ {et)\j x; }j21~

The norms are given by | A| = sup|A\x| (may be infinite) whereas
tA g |

] = suple

which is bounded!

Beginning of Nov.5, 2021
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6.2 Semigroups of Linear Operators

Again, consider

d
éu(t) = Au(t)

u(0) =upe X

where we want to express the solution as u(t) = e for some family of linear operators {e!“ : ¢ > 0}.

Example 6.2.1. Consider u; — u, = 0. We write % = Au where A can be thought as a differential operator.
Take X := LP(R) for some p € [1, ). Clearly A is unbounded. Its domain is the set of absolutely continuous
functions u € LP(R) with derivative u, € LP(R).

On the other hand, for all ug € LP(R), the solution of

Ut — Uy =0

U(O,iE) = UO(‘L)

can be explicitly computed: u(t,z) = (e'ug)(z) = ug(x + t),t € R. This implies that although A is un-

bounded, the corresponding exponential operator ‘4 (the solution operator) is uniformly bounded.
We are interested in two types of questions:

(1) Given a semigroup of linear operators {S; : t > 0}, find the generator, an operator A such that S; = ¢'4.

(2) Given a linear operator A, examine whether it generates a semigroup {e*4 : ¢ > 0} and establish the properties

of this semigroup.

[ Definition 6.2.2: Semigroup

Let X be Banach. A controngly continuous semigroup of linear operators on X is a family of linear maps

{S; : t > 0} with the following properties:
(1) each S;: X — X is a bounded linear operator;
(2) forallt¢,s >0, the composition satisfies S; o S = Sy, and in particular Sy = I (identity operator);
(3) forall u e X, the map t ~ S;u is continuous from [0, c0) - X.
We say that {S; : t > 0} is a semigroup of type w if it in addition satisfies
IS¢] < e™ for all ¢ > 0.
In particular, when w = 0, a semigroup of type 0 is also called a contractive semigroup (||.S;| < 1 uniformly):

[Stu— Sev| < |u -] for all u,v e X,t> 0.
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[ Definition 6.2.3: Generator

The linear operator (it is an operator)

is called the generator of the semigroup {S; : ¢t > 0}. The domain of A is

{u e X : the limit above exists}.

For a given ug € X, we regard the map ¢ — S;ug as the solution to the linear differential equation

du
(1) = Autt)

u(0) = up € X.

€y

In this way, we are approaching the problem “backwards”, i.e., given the solution u(t) = S;ug, we reconstruct the

evolution equation, finding the operator A.

Theorem 6.2.4
Let {S; : t > 0} be a strongly continuous semigroup with generator A. Assume ug € D(A). Then,
(1) forallt >0, Siug e D(A) and ASyug = Sy Aug;

(2) the map ¢+~ wu(t) := Siuo is continuous differentiable and it gives a solution to (1) above.

Proof.

(1) Since ug € D(A), the limit of (Syu—u)/t ast | 0 exists (and equals Aug). Then,

m SsSpug — Syug 1i Strsto — Siug S Ssug — Siug

li = lim = lim
510 S 510 S sl0 S
iy S50 U] g Ssto—to gy
sl0 S 510 S
Therefore, S;ug € D(A) and AS;ug = Sy Aup.
(2) Let Siug e D(A) and ¢t > 0. By semigroup property,
hm[M _ stAuO] fim [St_h (M) _ stAuO]
hl0 hl0 h
- lim [St_h (M - Auo) + Sy Aug - StAuo] .
hl0 h

Since ug € D(A), the parenthesized term — 0. The other two terms also — 0 by continuity. Hence ¢ — S;ug

has a left continuity. Furthermore,
Stug — St-pug

lim = StAuo.
hl0
Right derivative is easy to compute:
S, -9 S -
fjm Strttto =5t _ gy, Su0) “to g 4
hi0 h hi0

Therefore, for all ¢ > 0, the map ¢ — S;uq is differentiable with derivative

d
aStUO = StAUO = AStUO.
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Since Aug € X, by definition the map ¢ — S; Aug is continuous.

Recall that a linear operator A : X — X is closed if its graph
Graph(A) :={(z,y) e X x X :x € D(A),y = Az}
is closed in X x X.

Theorem 6.2.5: Properties of Generators

Let {S; : t > 0} be a strongly continuous semigroup on X and let A be its generator. Then

(1) D(A)isdensein X,
(2) Aisclosed.

Beginning of Nov.8,2021
Proof:

(1) Fix ue X. Consider the approximation

]_ €
Ue 1= — [ Seu ds.
€ Jo

This converges to Syu = u as € | 0 since the map ¢ — S;u is continuous by assumption. It suffices to show

that u. € D(A) for all € > 0. Since D(A) is a subspace, it further suffices to show that eu, (i.e., the integral)

isin D(A). For 0 < h <,

Spue—ue 1T € €
T -Sh ([0 Ssu ds) [0 Ssu ds]
]_ €
=% /0 (She+su— Ssu) ds
[ h+e €
[§:=s+h]= % Ssu ds - Ssu ds]
1 - h+e h
= - Seuds — Ssu ds]
h|Je 0

As h — 0, the above converges to S.u — Spu = Scu — u. Therefore, u. € D(A) for all € > 0.

(2

Vi = Auk, and Ve —> V.
Recall that ¢ — Syuy, is continuously differentiable. Therefore, for each & > 1,
h d h h
Shiys — ug = [ L (Suup)di= [ ASyuy di = f S, Auy dt.
o dt 0 0
Letting k& — oo,

h
Sh—u:/ S,v dt.
0

Therefore,

lim

Spu — 1 rh
nt u—limff Syv dt = v.
hl0 rio h Jo

_—
Therefore u € D(A), with v = Au.
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6.3 Resolvents

Suppose we want to approximate a solution to

du(t)
dt

= Au(t)

u(0) =uge X
by backward Euler approximation. That is, we fix a time step h > 0 and iteratively solve

u(t+h) =u(t) + hAu(t + h).
At each step, given a value u(t) € X, we need to compute
u(t+h) = (I -hA)  u(t).
Define the backward Euler approximation operator Ej, := (I - hA)™L.
For a fixed time 7 > 0, consider the times step h := 7/n. After n steps, the backward approximation
w(r) ~ (Erpn)" (uo) = (I - 7A/n)™" (uo)
For a fixed 7, letting n — oo, we have
u(7) = S (up) := 7}1_{&(] —TA/n)"ug = €™ (ug).

This gives one way to implement the backward Euler approximation.

More abstractly, for a fixed time step h > 0, define A = 1/n. Define A : X - X as Ayu = AE;'u=A(I - hA) u. It

turns out Ay = Ay, is a well-defined bounded linear operator for sufficiently small 4. Then we can consider

(tAy)F

otAN _ z

k=0 k!

and then define

u(t) == Syu = )}im ey,

Example 6.3.1. Consider the scalar ODE
T =ax z(0) =z

which clearly has the solution e'*z. In this case ax = a1, = a/(1 - ha), and indeed

}LI_I)% €ta1/".'170 - ’111_1;% eta/(l—ha)xo - €at$0.
=) e—t/h %) e—t/h,
Note that for 0 < 2 < 1/a, f . dt =1 and (1 - ha) 'z = f . -e'xq dt. The latter suggests that
0 0

the backward approximation operator can be obtained by taking some kind of weighted average.
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[ Definition 6.3.2: Resolvent Operator

Let A be a linear operator on a Banach space X. Recall that the resolvent set of A is the set p(A) of all real
numbers A such that A\J - A : D(A) —» X is bijective. If A € p(A), the resolvent operator R, : X — X is

defined by
Ryu= (M - A) .

Beginning of Nov.10, 2021
Remark. This implies AR\ = Fy;,. In particular, if A is a closed operator, then the CGT implies R) is
continuous. Moreover, ARy u = Ry Au for u e D(A):

v=Ryu=(M-A)"'u = M-Awv=u
— RyAu=Ry\A(M - A)v = Ry(AM - A?)v = Av = ARyu.

Theorem 6.3.3
Let A be a closed linear operator. If A\, i € p(A), then
R,\ - RM = (,u - /\)R,\RM.

Furthermore, R, commutes with R,,.

Proof. Let u € X be given. Let v:= (Ry - R, )u= (A - A) " u - (ul — A)"'u. Then,

(M = A)w=u— (N = pul +pI - A)(pul - A)
=u—u+ (p-N)(ul - A) tu.

Therefore,
v= (=AM = A)(pl - A) u= (- A)RrR,u.
On the other hand,
Ry-R R, - R
RA\R, = P =R,R).
Ay M—)\ )\—M TR

Theorem 6.3.4: Integral Formula for the Resolvent Operator

Let {S; : t > 0} be a semigroup of type w and let A be its generator. Then for every A > w, we have X € p(A).

Moreover,
Ry = / e S dt
0

and |Ry[ <1/(A-w).
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Proof Define another operator Ryu := f e~ S,u dt. Recall || S;|| < e'™. Therefore Ryu is absolutely convergent:
0

Rl < [T sulars [Tt sl ats [ et0 jupar= L
0 0 0 A —w

s0 | Ry| < 1/(\ —w). It remains to show verify that Ry = Ry.
Claim 1: (M - A)Ry = u for all u € X.

To compute Au, we use the definition and consider the difference quotient:

SpRyu-Ryu 1 > _
s [N s

[t t+h]:%[/ et g, dt—f e Spu dt]
0
0

o)

h
1 rh
N — e S dt - fo e MM Gy dt
Ah _ 1 o Ah h
. [f e MSu dt] S8 f e MS,u dt.
h 0 h Jo

ShRXUJ - RAU

Take h | O,

lim = )\R)\u—1~50u=)\]~%>\u—u.
h|0
Therefore, Ryu € D(A) and ARyu = ARyu — u. Rearranging the terms gives the claim.

Now, by claim 1, u — (A — A)u from D(A) — X is surjective. It remains to show that it’s injective. Note that

ARAU:A/ e MSudu = / e MAS —tu dt
- 0

= [oo e S, (Au) dt = Ry Au.
0

Then,
Ry(M - A)yu= (M -A)Ryu  forallue D(A).
If (A\]-A)u= (M- A)v, then
w=Ry(M - A)u = R\(M - A)v = v.
This finishes the proof, as A € p(A) and
Ry=(\ -A)'=R,.

Remark. Integral representation implies that the resolvent operators R, provide the Laplace transform[!]

of the semigroup S;. Taking 0 < h < 1/), the same formula shows that the backward Euler approximation

can be obtained as
Epu=(I-hA) u= f et S dt,
0

which is convergent for sufficiently (< 1/w) h. We will show that the converse is also true in next section.
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6.4 Generation of a Semigroup
Theorem 6.4.1: Existence of the Semigroup Generated by a Linear Operator

Let A be a linear operator on X. TFAE:
(1) A is the generator of a semigroup of linear operators {.S; : t > 0} of type w;

(2) Ais aclosed, densely defined defined operator. Moreover, every real number \ > w is in the resolvent
set p(A). Moreover, (Al - A)7!| <1/(\ - w) for all A > w.

((1) = (2) has been proven already; it remains to show the converse.)

Beginning of Nov.12, 2021

Proof. Since Ry := (A — A)~! is well-defined for A > w, we can consider the bounded linear operator

Ay = -M+ MRy,

A(=I + ARy)

A(=(M = A)Ry + M Ry)
A=A + A+ ARy = MAR,.

Setting h = 1/, we have
Ayu=A(I -hA)™ = A(E; u)

Since A, is bounded, we can consider the exponential operator

ol AN i (tAA)k = e MATRN _ i (AQt)lef\.
r =0 k!

If A is unbounded then |Ay| — oo as A — oo but |e*4* | remain uniformly bounded for ¢ > 0:

k

oo 2 k
HetAA” < e—/\t Z ()‘ t) '|R/\” < e—)\tez\Qt/(A—w).

k=0 k!
In particular, for \ > 2w, [e!47|| < et

Now, we claim that Ahm Ajv=Av for all ve D(A) so that A, “tends to” A.
Note that AR u —u = ARyu = Ry Au for all u € D(A). This implies

[ABAu—u| = [RxAul <Ry Au
for u fixed and as A — co. Since A is densely defined, for each v € X and ¢ > 0, there exists v € D(A) with

|u—v| < e. Then

limsup [ AR u — u|| = limsup | AR u — AR)v| + limsup |[ARx\v - v| + [[v — u|
A— o0 A

—00 — 00

<limsup [AR u - AR u| +0 +€

A—00

€+ €= 2e€.

A
<IARA||w = v] + € < lim sup /\

A—00
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Hence 1}%1 Epu=wuforallue X. If ve D(A), then we can take u := Av and
/\hm Ayv = )}im ARy = /\hm ARNAv = }im AR)u =u = Av.

Finally, we verify that ¢4 is our candidate for the generator, i.e., e!“* converges to some linear operator as
A — co. Since R\R, = R, Ry, we have A\A, = A, A,. Then,

o k
AuetAA =Au ) (tij) - e_AAAw
k=0 :

For each u € X, we have

tAN

¢
ety — ety = [ d [e(t_s)A“eSA*u] ds
0

ds
t
= f (=944, - A)e M ds
0

t
= f (=) Aues AN (Ayu - Ayu) ds.
0

tA-X H . ezwt
)

Then, in particular for A\, u > 2w, by the uniform bound ||e shown above,

t
HetA*u—etA“U— H < A 62(t—s)we2stA)\u_A#uH ds

=t | Ayu - Ayul.

For u € D(A), by the previous step, Ay, A, both converge to A, so the norm converges to 0. Therefore

limsup [ e"*u — e u| < te** limsup | Ayu - A ul = 0.

A, u— 00 A, pp—>00

More generally, for u € X, we can approximate it by u € D(A) and go over another triangle inequality argument.
Once this is done, we have shown that {e¢} is convergent.

tAN

Finally, for all ¢ > 0 and u € X, we claim that the limit lim e**u is well-defined:

—00

Syu = lim ety
A—o0

and {S; : ¢ > 0} is a strongly continuous semigroup of type w.

S;Seu = lim et sy
A

— 00

= lim )My = S, .

A—00

For a fixed u € x, the map ¢ —~ Syu is continuous (it is the uniform limit of ¢ ~ e!“*w). For each ¢ > 0 and u € X

with |lul| < 1, we have

|Seu] = lim e uf < lim [ 472 u
A—o00 A—o00

< lim [t € lim ePW/Gmw) - pte,
A— o0 A—o0

Therefore |S;| < €', which shows {S; : ¢ > 0} is indeed of type w.
Last step: we verify that A is indeed the generator of the semigroup. To this end, let B be the generator of

{S; : t > 0}. By previous result, we know B is a linear, closed operator densely defined in X.
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Since A, is the generator of the semigroup {e¢‘4* : ¢ > 0}, for every A > w we have
t
ey —u = f S Ay ds. (D
0

For u € D(A),
HESAAA)\U— SaAuH < ”esA)\ ” |‘A>\u— AUH + HeSAAAu_ ,S’éAuH -0

uniformly as A — oo for s in bounded intervals. Taking A — oo in (1), we have
t
Siu—u= f S Au ds
0
forallt>0and ue D(A). Hence D(B) > D(A):

_ t
Seu—u = lim 1 SsAuds = Au forall ue D(A).
t tl0 t Jo

Bu =lim
hl0

It remains to show D(B) c D(A). Let A > w. We know A - A: D(A) - X,\ - B: D(B) — X are both bijective.
In particular, the restriction of A\] — B to D(A) is exactly A\ — A and thus surjective. By injectivity of AT — B on
D(B) we see that A\I — B cannot be extended outside D(A)! Hence, D(B) = D(A).

O
Beginning of Nov.15, 2021
Theorem: Uniqueness of the Semigroup
Let {S;},{S;} be two strongly continuous semigroups of linear operators having the same generator A. Then
S, =S, forallt>0.
Proof Let u e D(A). Then S,ue D(A) and S;_,S,u € D(A) for all 0 < s < t. By FTC,
N td .
Siu-Su= [ = [Si-iSu] ds.
Note that
d P T St—sfh(Serhu) - St—sgsu
gs [Se=sSou] =l h
. St—s—h(§s+hu_§su) . St—s—hgsu_st—s‘gsu
=lim + lim
{0 h hi0 h
=1lim S;_s_p, lim M
h
=8y _o(ASsu) - AS;_ (Ssu) =0
where the last step is by commutativity. By density S;u — Syu = 0. O

6.5 Parabolic Equations

Let 2 ¢ R” be bounded. Recall the elliptic operator

Lu=— 3 (a9 (@)un, ), + i(bf(x)u)m s o(e)u

i,5=1
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where ™7, b%, c € L*°(2) are functions of 2 and

> at (2)&E; > 0l

ij=1

for all z € 2, £ e R™ and some > 0. (Trivial example: let (a*/) be the identity matrix.)
Now consider
us+ Lu=0 (t,z) € (0,00) x

u(t,x) =0 (t,x) € (0,00) x I
u(0,z) =g(z) xeQ.

We can reformulate the initial boundary value problem as a Cauchy problem (IVP) in a Hilbert space X € L%():

du

A
a
u(0) =g

for a suitable (unbounded) linear operator A : L(Q2) - L?(Q). (Of course A = —L.) Define
D(A):={ueHj(Q): LueL*(Q)}.
Namely, u € D(A) if u is a solution to the elliptic boundary value problem
Lu=f inQ
u=0 on 0N

for some f € L2(Q).
The goal is to construct a solution to the Cauchy equaition using semigroup theory.
Assume there exists 3 > 0 such that

B:H}(Q) x H}(Q) - R

where the bilinear form
n n
Blu,v]:= /Q > a T ug,ug, - Zlbluvxi +cuv dz
j=

ij=1
is strictly positive definite:
Blu,u] 2 B|u] o, for all u € Hy ().

Theorem 6.5.1: Semigroup of Solutions of a Parabolic Equation

Assume L is uniformly elliptic and assume a7 ¢ W' (Q) (i.e., smooth derivative), b*,c € L= (£2). Assume
that the corresponding bilinear form defined above is strictly PD. Then the operator A = —L generate a

contractive semigroup {S; : t > 0} of linear operators on L?(2).

Proof. To prove A generates a semigroup on X = L?(2), by the previous existence theorem, we want to show
D(A) is show that
(1) D(A)is dense in L?(Q),

(2) graph(A) is closed, and
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(3) every A>0=wisin p(A), i.e.,, A\ - A is bijective, with |(A - A)~'| < 1/

Beginning of Nov.17, 2021
Proof.

(1) If p € C?(Q) (compactly supported), then Ly = f € L?(Q2). This means that C2(Q) c D(A). But C%(9) is

dense in L?(Q), so we are done.

(2) We now show that graph of A is closed. To this end, by Lax-Milgram, for f € L?(), there exists a unique
u € H}(Q) such that
Blu,v] = (f,v) 2 for all u € Hy ().

Then, the map f + u = L™'f is a bounded linear operator from L?(Q2) to L?(Q2). Note that (u, f) €
Graph(A) is equivalent to (- f,u) € Graph(L™'). Since L™ is continuous, its graph is closed.

(3) We want to show that for all A > 0, the operator AI — A has a bounded inverse |(A - A)~!| < 1/\. That is,
it suffices to show that for each f ¢ L?(2), the problem

M+ Lu=f xeQ
u=0 x € 0N

has a unique solution satisfying

[FAPE

(AL =A)'flz =) Nulpe <57

By Lax-Milgram, there exists a unique u € Hj () such that
(Au,u) 2 + Blu,v] = (f,v)2 for all v e HJ(Q).

Taking v = u gives
Alufz2 + Blu,u] = (f,u)p> <[ flz2ful 22

Therefore A|u| 2 < | f] 12, and this proves the claim ||[(A - A)7| < 1/

Therefore, by the semigrouop theory, we deduce that the linear operator A generates a contractive semigroup.
O

General Operators

Example 6.5.2. Let A be an m x n matrix. Consider the linear ODE on R"

do(t) B
@ Ax(t).

If A is PD, then — A generates a contractive semigroup. In particular,

dz(t)
dt ’

%|:l:(t)|2 = 2( a:(t)) =2(-Axz(t),z(t)) <0.
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Hence |z(t)[> < |z(0)|? for all ¢ > 0, giving a contractive bound.

Now let A be any matrix. Then we can let -y be sufficiently large such that A+~I is PD. Then the claim above

holds analogously, as —(A + vI) generates a contractive semigroup. If z(t) = e7*42(0) is a solution, then

[2(8)] = [e"2(0)] = [0 T A (0))

_ e,yt|ef(A+»yI)z(0)| < 67t|x(0)|-

Hence — A generates a semigroup of type ~.

Example 6.5.3. Consider a general elliptic operator where the corresponding bilinear form B[u,v] is not

necessarily PD. In this case, one can also find a sufficiently large v > 0 such that
B, [u,v] := Blu,v] + v (u,v) 2

is strictly PD on H;(€2). Define L,u := Lu+vI. Then u; = —Lu can be written as u — t = —L,u + yu. By the
previous theorem, A, := —(L +~I) generates a contractive semigroup of linear oeprators {Stm :t20}. Now

A=-L=~I-L,with D(A) = {u € Hj(2); Lu € L>(92)} generates a semigroup of type v with

{S;:t> 0} where S; = e”tSt(V),t > 0.

What about the solution map ¢ ~ u(t) = S;g?
(1) For all initial data g € L*(Q), t = u(t) = Syg is C' on D(A) and satisfies

%u(t) = Lu(t) forall ¢t > 0.

(2) The map t + u(t) = S;g is continuous from [0, c0) into L?(2) and satisfies u(0) = g. Thus, the initial condition

is satisfied as an identity in L? (because S is).

(3) Ifge D(A), then u(t) = Sig € D(A) for all ¢ > 0. Then the map ¢ — u(t) is continuously differentiable and

&u = Au
for all ¢ > 0.

u(0) =g
Since D(A) c HZ (1), this implies u(t) satisfies the correct boundary condition for all ¢ > 0.

(4) 1If ge L?(Q), then there exists a sequence g,, € D(A) such that ||g — g, | > = 0 as n — co. If the semigroup is of
type v, we have

|Segn = Segllr2 < €™ lgn ~ gl >0

for fixed g. Hence u ~ u(t) = S, f is the limit of of a sequence of C*' solutions ¢ = wu,,t = S;g,,.

Claim. u = u(t,«) provides a solution to the parabolic equation

= Y (" ug,)g, — Y. bUy, — cu
-1

ij=1

81



YQL - MATH 580 Notes 6.5 - Parabolic Equations Current file: 11-19.tex

in the sense of distribution: for all p € C° (2 x (0, 00)),

n L. n .
[[ﬂ wpr+ Y, u(a g, )z, + Y, u(b' @), — cup dadt = 0.
i=1

4,5=1

Consider u,, := Sigm where ||g — gm |2 = 0. t = u,,(t) converges to the continuous trajectory ¢t — u(t) = Sig in
C°([0,t]; L?(£2)). We deduce that v is a solution in the sense of distribution.
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Chapter 7

Detour: Quantum Mechanics & Functional

Analysis

Beginning of Nov.19, 2021
Consider the system at an arbitrary fixed instant by regarding the time as a parameter which we keep fixed.

In classical mechanics, the state is described by specifying position and velocity by a pair of numbers (z,v),

whereas in quantum mechanics, the state of system is described by a function, often times ¢ : R" — C.

If we let ¢ € L*(R) with |42 = 1, then ¢ is related to the probability that will be found in a given subset J c R
where the probability is

lew(q)l2 dg. (*)

(Indeed, we want the particle to always be somewhere on the real line so f l(q)[* dg = 1.)
R

Note that (*) is invariant under multiplication by complex numbers with modulus 1, i.e.,

[,lw<q)\2 dg = []|0ﬂ/)(Q)|2 dg  forall|e|=1,JcR.

Thus, the deterministic description of a state in classical mechanics is replaced by a probabilistic description of a

state in quantum mechanics.

To this end, we define a state of our physical system at some instant to be an element ) € L?(R) with |+[ > = 1,
defined uniquely up to multiplication by «a € C with |a| = 1. As said before, |/(q)* plays a role of a probability

density function on R. It follows that we can define the expected value, variance, and standard deviation by

oy = quIz/)(q)I2 dg, vary = fR(q—uw)thJ(fJ)l2 dg, and  sdy = /vary.
(Intuitively, the mean gives the “central location” and the other two show dispersion, just like in probability.)

Note that p,;, can be expressed as an inner product:

M:quW(q)F dq=/qu/f((ﬁwdqz(qll)(Q)ﬂ/J(Q))L?'

We can therefore define a position operator ) by

(@) = (Q.8) = [ Q)I(a) dg
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where Q : ©(Q) — L*(R) is defined by Qv(q) = qi/(q). (Note that Q is unbounded, self-adjoint and linear, whose

domain for sure includes C2°(R) and is therefore dense in L?(R).)

We can also express the variance as an inner product:

vary (@) = ((Q = o)) = [ (@=puuD)*(0)(a) da.

Question. From ¢, how do we obtain some information about quantities that can be observed experimentally? Any

such quantity is called an observable (e.g., position, momentum, energy).

We have seen that, for “position”, we have an available self-adjoint operator ). This motivates us to define an

“observable” of our physical system at some instant to be a general self-adjoint linear operator
T:®(T) - L*(R) with ©(T) dense in L*(R).
For example, we can define the mean value x,,(7") by
() = (T0,0) = [ To(a) (o) da,
vary (T) = {(T = pypl)*$, ) = [R (T = ppI)*(q)(q) dg.

Following this path, we get another important observable, the momentum, denoted p:

D:®(D) - L*(R) defined by w»%i—w (A)
™ dq

where £ is the Planck’s constant and the domain © (D) c L*(R).

A bit of heuristic derivation of (A) using E = mc?: suppose a photon has speed c and energy E = hv (h Plank constant
and v frequency). Then its momentum is by definition p = mc = (E/c*)c = hv/c = h/A = kh/2m where k = 2w /A and A
is the wavelength 1/v.

Then, by (inverse) Fourier transform,

Y(q) = % [: @(p) exp(pq - 2mi/h) dp

where ¢ is the Fourier transform

o)== [~ via)ep(pg- (-2ni)/h) dg

Physically, this can be interpreted as a representation of v in terms of functions of constant momentum p given by

,(q) = p(p)et* = p(p) exp(pq - 2mi/h) where k = 2mi/h and ¢(p) is the amplitude. By definition,

W (@)? = ¥p(0)¥p(q) = 0(P)e(p) = |o(p).

Since |92 = 1, we have ||| 2 = 1. We finally define the mean value of the momentum by
fip = [oo ple(p)]* dp = [m pe(p)¢(p) dg
= [oo p@(p)ﬁ [m ¢(q) exp(pq - 2wi/h) dg dp

- [ : ¥ (q) [ : ‘P(P)%pexp(pq%m/h) dp dg

I LR

1= ) o dg q—[m Y(q)Dy dg.

Beginning of Nov.22, 2021
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7.1 The Commutator Operator & the Heisenberg Uncertainty Principle

Let S, T be self-adjoint linear operators with domains in the same complex Hilbert space. Then the operator
S:=8T-TS

is called the commutator operator defined on ©(C) := D(ST) nD(TS).

For example, consider

DQU(9) = D(ab(9)) = 5= [1a) + a0/ ()] + 5 - @DY(a)

T

h ) . . . .

so that the commutator DQ - QD = TI defined on its own domain. It is called the Heisenberg commutator
™

between position and momentum.

Claim. This domain ®(DQ - QD) is dense in L?(R).

[ Proposition: Lower bound on the commutator

Let S, T be self-adjoint linear operators with domain and range in L?(R). Then the commutator
C:=5ST-TS
satisfies

|1y (C)] € 28dy (T)sdy (T') for all v e D(C).

Proof. Write 11 = p1,(S) and po = py (T'). Define A := S —p I and 3 :=T - po1 on their respective domains. Then
C =8T-TS = AB - BA where A, B are both self-adjoint. Then

1 (C) = ((AB = BA), 1))
= (AB¢»¢> - (BAi/JJﬁ)
[self-adjoint] = (B, Ap) — (A, By) .

Therefore,
|1 (C) < (BY, Ap)| + [(Adh, B)| < 2| By ||| A
Note that
| BY| = VAT — o), ) = /vary(T) = sdy(T)
and likewise for | Av|. This completes the proof. O

Theorem: Heisenberg Uncertainty Principle

. h
For the position operator () and the momentum operator D, sdy(D)sdy,(Q) > e
T
Physically, this means that we cannot make a simultaneous measurement of position and momentum of a particle
with arbitrary accuracy. More generally, any two observables S and T with nontrivial commutator cannot be

simultaneously measured with unlimited precision.
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h h
Proof. Recall that DQ - QD = TI , 80 |1y (C)] = o and the previous proposition gives
™ 71'

h
2sdy (D)sdy(Q) > 7

7.2 Time-Independent Schrodinger Equation

Consider the three-dimensional wave equation
2
Vi =7 AY

for 42 > 0 constant and Ay := Y ——. For a simple, time periodic case (stationary waves), we may assume

3 62¢
-1 aqiz

7

wt

(a1, a2, 933t) = (a1, g2, q3)€”
Then the wave equation reduces to the Helmholtz equation
A+ k=0
where k = w/v = 27/~ = 2w/ A where v is the frequency and A the wavelength. We choose A = h/mv where v is any

velocity, the Helmholtz equation can be re-written as

8m2m mu?
.

2
OZA'(/)"'kw:Aw‘F h2 T

Let E = mwv? /2 +V (kinetic and potential) so mu? /2 = E —V. We then obtain the following form of Helmholtz:

812m
A+ 2 (E-V)=0
or equivalently
2
- AV =B *)
8m2m

Both forms are called the time-independent Schrodinger equation. From a mathematical viewpoint, possible

energy levels of the system will depend on the spectrum of the operator defined by the LHS of (*).
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