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0.1 Introduction

Linear Algebra Ô⇒ Functional Analysis Ô⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Calculus of Variations

ODEs/PDEs

Approximation Theory

...

(1) Functional analysis deals with infinite dimensional spaces, often spaces of functions and certain classes of

mappings between these spaces.

(2) Can be thought of a (nontrivial) generalization of linear algebra (from finite to infinite dimensional).

(3) The development of functional analytic methods and results are important in various areas of math; in partic-

ular they provide a powerful tool for the study of ODEs, PDEs, for example the existence and uniqueness of

solutions and the convergence of approximations, etc.

0.2 Linear Algebra

We first draw an analogy between functional analysis and linear algebra, starting from familiar concepts. Let A be

a n × n matrix.

(p1) Given a vector b ∈ Rn, find x ∈ Rn such that Ax = b.

2
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(p2) Analogy: consider a bounded, open set Ω ⊂ Rn and a linear partial differential operator

Lu = −
n

∑
i,j=1
(ai,j(x)uxi)xj +

n

∑
i=1
bi(x)uxi + c(x)u.

Given a function f ∶ Ω→ R, find a function u vanishing on the boundary of Ω so that Lu = f .

Fundamental differences between (p1) and (p2)

The matrix A is a continuous (or equivalently bounded) linear transformation on the finite dimensional space Rn,

whereas the differential operator L is considered an unbounded (and equivalently not continuous) operator on

infinite dimensional spaces L2(Ω). In particular, the domain of L is not L2(Ω), but only a suitable subspace (e.g.

H1
0(Ω), the space of functions vanishing on the boundary of Ω with ∥u∥H1

0 (Ω) = (∫Ω
∣u∣2 dx + ∫

Ω
∣∇u∣2 dx)

1/2
<∞).

Structural Similarities

(1) (Positivity) If A is strictly positive definite, i.e., there exists β > 0 such that ⟨Ax,x⟩ ⩾ β∥x∥2 for all x ∈ Rn, then

A is invertible as its kernel is trivial. If so, (p1) has a unique solution for all b ∈ Rn.

Analogy in elliptic PDEs: if L is strictly positive definite, i.e.,

⟨Lu,u⟩L2 ∶= ∫
Ω
Lu ⋅ u dx = ∫

Ω

n

∑
i,j=1

ai,j(x)uxiuxj +
n

∑
j=1

bj(x)uxju + c(x)u2 dx ⩾ β∥u∥2H0
1 (Ω)

for some β > 0 and for all u ∈ H1
0(Ω), then (p2) has a unique solution u ∈ H1

0(Ω) for every f ∈ L2(Ω). In

particular, at each x ∈ Ω, the n × n matrix {ai,j(x)} should be strictly positive definite.

(2) (Fredholm Alternative) In linear algebra, (p1) has a unique solution if and only if Ax = 0 has one solution

x = 0. In other words, uniqueness comes if and only if the kernel is trivial. In general this is false; if X is

infinite dimensional, one can construct a bounded linear operator Λ ∶X →X that is injective but not surjective

(or vice versa).

However, there is a remedy: if Λ is of a specific form given by Λ = I −K where I is the identity and K a

compact operator, then Λ is injective if and only if it’s surjective. Consequently, (p2) has a unique solution

u ∈H0
1(Ω) for all f ∈ L2 if and only if the homogeneous equation Lu = 0 only has a trivial solution.

Beginning of Aug.25, 2021

0.3 Evolution Equations

Consider an ODE ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)

x(0) = b

where A is a matrix and b ∈ Rn. Linear ODE theory gives x(t) = etAb where

etA ∶=
∞
∑
k=0

tkAk

k!
.
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Also, {etA ∣ t ∈ R} has the group property

e0A = I and etAesA = e(t+s)A.

If A is symmetric, there exists an orthonormal basis of eigenvectors {v1, ..., vn} with eigenvalues λ1, ..., λn such that

etAb =
n

∑
k=1

etλk ⟨b, vk⟩ vk.

Now we use linear semigroup theory and extend the above notion to linear operators in infinite dimensional spaces.

Consider
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
u(t) = −Lu(t)

u(0) = g for g ∈ L2(Ω)

u = 0 on ∂Ω.

(For example, consider ut = ∆u the heat equation.) When ai,j(x) = aj,i(x) and bi(x) = 0, then the elliptic operator

L is symmetric (like how A is a symmetric matrix above), and the solution can be decomposed along orthogonal

basis {φ1, φ2, ...} of L2(Ω):

u(t) =
∞
∑
k=1

e−tλk ⟨g,φk⟩L2 φk ∶= Stg t ⩾ 0.

Note that L is unbounded (as λk → ∞ as k → ∞). However, St are bounded for t ⩾ 0, and moreover the family of

linear operators {St ∣ t ⩾ 0} is a linear semigroup, since

S0 = I St ○ Ss = St+s for all s, t ⩾ 0.

Roughly speaking, St = e−Lt (roughly because L is unbounded and the exponential formula is not necessarily valid).

We need some different approximation method, for example

etA = lim
n→∞

(I − t
n
A)
−n

or

etA = lim
λ→∞

etAλ Aλ ∶= A(I − λ−1A)−1.

0.4 Function Spaces

A key idea is to view functions f ∶ Rn → R as points in an abstract vector space.

The information about a function can be encoded in a simple but useful number ∥f∥, which we call the norm of f .

This notion, along with the structure of this vector space, leads to many important results.

For example, in applications to ODEs, PDEs, or integral equations, we naturally consider Ck(Rn) (the space of

functions with bounded, continuous partial derivatives up to order k) with

∥f∥Ck ∶= max
∑α⩽k

sup
x∈Rn

∣ ∂α1
x1
∂α2
x2
....∂αn

xn
f(x) ∣

These spaces are not always practical since real interesting solutions may be discontinuous. This motivates the

Lebesgue spaces Lp(Rn), p ⩾ 1 or Sobolev spaces, W k,p(Rn), where we weaken our requirement on continuity and

obtain much more flexibility. The norm in W k,p(Rn) are given by

∥f∥Wk,p ∶= ∑
∑α⩽k

(∫
Rn
∣ ∂α1
x1
...∂αn

xn
f(x)∣p dx)

1/p
.
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0.5 Compactness

When we solve an equation where the explicit formula is unavailable, one standard method that we employ is the

following:

(1) Approximate the problem; construct a sequence of approximate solutions {un}.

(2) Extract a convergent subsequence (or at least a canditate) {unk
} converging to some u.

(3) Show that u is a solution.

In step 2, there is a striking difference between Rn and abstract function spaces. In the former, Heine-Borel states

(compact⇔ closed and bounded), whereas in general function space the⇐ direction may well be false.

Resolution

(1) We can introduce a weaker notion of convergence and show that every bounded sequence has a subsequence

that converges in a weak sense. (The Banach-Alaoglu Theorem)

(2) We can consider two distinct norms ∥u∥weak ⩽ ∥u∥strong. If the strong norms are bounded, then there exists a

subsequence converging in the weak norm.

End of Introduction

Beginning of Aug.27, 2021
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Chapter 1

Normed Spaces and Banach Spaces

1.1 Basic Definitions

Definition 1.1.1: Normed Linear Space

(X, ∥⋅∥) is a normed linear space (NLS) over a field K (usually R or C) ifX is a vector space and ∥⋅∥ ∶X → R

satisfies

(1) (non-degeneracy) ∥x∥ ⩾ 0 for all x ∈X with equality if and only if x = 0;

(2) (absolute homogeneity) ∥λx∥ = ∣λ∣∥x∥ for all x ∈X, λ ∈ K; and

(3) (triangle inequality) ∥x + y∥ ⩽ ∥x∥ + ∥y∥ for all x, y ∈X.

Note that the mapping x↦ ∥x∥ is continuous.

Lemma 1.1.2

Let (X, ∥ ⋅ ∥) be a NLS. Then the distance function d(x, y) ∶= ∥x − y∥ defines a metric on X. Moreover:

(1) d is translation invariant: d(x, y) = d(x + z, y + z) for all x, y, z ∈X;

(2) d is positively homogeneous: d(λx,λy) = ∣λ∣d(x, y) for all x, y ∈X, λ ∈ K; and

(3) every open ball B(x0, r) ∶= {x ∈ X ∣ d(x,x0) < r} is a convex set. This defines a topology on X. We

therefore have a concept of open sets, closed sets, convergent sequences, continuous mappings, and so on.

We use B(x0, r) to denote the closed ball, the closure of B(x0, r).

Proof of (3). By translation invariance, it suffices to assume that the center of the ball is origin, i.e., x0 = 0. Let

x, y ∈ B(0, r) and 0 ⩽ θ ⩽ 1 be given. Then we want show that θx + (1 − θ)y ∈ B(0, r). Indeed:

∥θx + (1 − θ)y∥ ⩽ ∥θx∥ + ∥(1 − θ)y∥ = θ∥x∥ + (1 − θ)∥y∥ < θr + (1 − θ)r = r.

6



YQL - MATH 580 Notes 1.1 - Basic Definitions Current file: 8-27.tex

Definition 1.1.3: Convergence of Sequences and Series

A sequence {xn} in a NLS is convergent if there exists x ∈ X such that lim
n→∞

∥xn − x∥ = 0. We write xn → x

and say x is the limit of {xn}.
For series:

(1) The series
∞
∑
k=1

yk converges to x if the series of partial sums Sn ∶=
n

∑
k=1

yk converges to x. If so, we write

∞
∑
k=1

yk = x and {yk} is called summable.

(2) If
∞
∑
k=1
∥yk∥ <∞, we say {yk} is absolutely summable.

Definition 1.1.4: Completeness & Banach Space

A sequence {xn} is Cauchy if for all ϵ > 0, there exists a sufficiently large N ∈ N such that

∥xm − xn∥ < ϵ whenever m,n ⩾ N.

A normed space X is complete if every Cauchy sequence converges. A complete normed space is called a

Banach space.

Theorem 1.1.5

A normed space X is complete if and only if every absolute summable sequence is summable. Proof left as

exercise; see Ozanski’s 3.18.

Examples of Banach Spaces

We now present some basic examples of Banach spaces:

(1) Rn equipped with the euclidean norm ∥x∥2 ∶=
√
x21 + ... + x2n is a Banach space over R.

(2) Rn equipped with p-norm and/or∞-norm are also Banach spaces, where

∥x∥p ∶= (
n

∑
i=1
∣xi∣p)

1/p

for 1 ⩽ p <∞ and ∥x∥∞ ∶= max
1⩽i⩽n

∣xi∣.

(3) ℓp spaces defined by {x = {xk}∞k=1 ∣
∞
∑
k=1
∣xk ∣p <∞} is Banach with ∥x∥p ∶= (

∞
∑
k=1
∣xk ∣p)

1/p

.

(4) ℓ∞ defined by ℓ∞ ∶= {x = {xk}∞k=1 ∣ sup
k⩾1
∣xk ∣ <∞} is a Banach space with ∥x∥∞ ∶= sup

k⩾1
∣xk ∣.

(5) C0[a, b] ∶= {f ∶ [a, b]→ R ∣ f is continuous} is a Banach space with norm ∥f∥C0 ∶= max
x∈[a,b]

∣f(x)∣.

(6) Lp(Ω) ∶= {f ∶ Ω→ R ∣ f is Lebesgue measurable and ∫
Ω
∣f(x)∣p dx <∞} is a Banach space with

∥f∥Lp ∶= (∫
Ω
∣f(x)∣p dx)

1/p
.
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(7) Similarly, L∞(Ω), the set of essentially bounded measurable functions on Ω, is a Banach space with

∥f∥L∞ ∶= ess sup
x∈Ω

∣f(x)∣.

Example 1.1.6. Consider X, the set of all continuous functions on Ω such that ∥f∥Lp <∞. This space is not

complete. However, its completion is exactly Lp(Ω)!

Example 1.1.7. Let X be the space of all polynomials on [0,1]. Consider the two norms

∥f∥C0 ∶= max
x∈[0,1]

∣f(x)∣ and ∥f∥L1 ∶= ∫
1

0
∣f(x)∣ dx.

We consider a sequence of functions defined by fn(x) = xn. It is clear that ∥fn∥C0 = 1 for all n, but

∥fn∥L1 = ∫
1

0
xn dx = 1

n + 1
→ 0

as n →∞. In other words, fn → 0 in the L1 norm but {fn} is not even Cauchy with respect to C0 (take the

difference between xn − xm).

Example 1.1.8. We know every norm on a metric space induces a norm. How about the converse?

False! See here for examples.

1.2 Linear Operators

Unless otherwise specified, we will let X,Y be NLS over the same scalar field K.

Definition 1.2.1: Linear Operator

A linear operator is a mapping Λ ∶D(Λ)→ Y such that

Λ(c1x1 + c2x2) = c1Λ(x1) + c2Λ(x2)

for all x1, x2 ∈D(Λ) and c1, c2 ∈ K.

Here D(Λ) stands for the domain of Λ, a subset of X. Analogously, we define R(Λ) = {Λx ∣ x ∈D(A)} to be

the range. Finally, we define the kernel of Λ to be

ker(Λ) ∶= {x ∈X ∣ Λx = 0}.

It is easy to check that Λ is injective if and only if ker(Λ) = {0} (or 0 for shorthand notation).

Definition 1.2.2: Bounded Linear Operator

Let Λ ∶X → Y be a linear operator. We say Λ is bounded if

∥Λ∥ ∶= sup
∥x∥⩽1

∥Λx∥ <∞.

8
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(Note that ∥x∥ ⩽ 1 refers to the norm in X, ∥Λx∥ refers to the norm in Y , and ∥Λ∥ refers to the operator

norm. We drop the subscripts to avoid cumbersome notations.)

Theorem 1.2.3: Bounded⇔ Continuous

A linear operator Λ ∶X → Y is bounded if and only if it is continuous.

Proof. For ⇐, if Λ is continuous, it is continuous at the origin in particular. Thus, there exists δ > 0 such that

∥x∥ ⩽ δ⇒ ∥Λx∥ ⩽ 1 (note that Λ(0) = 0). By linearity, if ∥x∥ ⩽ 1 then ∥Λx∥ ⩽ 1/δ <∞.

For⇒, suppose x1 ≠ x2. Then

∥Λx1 −Λx2∥ = ∥Λ(x1 − x2)∥ = ∥Λ(
x1 − x2
∥x1 − x2∥

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
norm=1

∥ ⋅ ∥x1 − x2∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a scalar

⩽ ∥Λ∥∥x1 − x2∥

so Λ is Lipschitz with constant ∥Λ∥. In particular it is continuous.

Definition 1.2.4: B(X;Y )

Let B(X;Y ) denote the space of bounded linear operators from X to Y . Then B(X;Y ) is a normed space

with the operator norm as its norm. In particular, if Y is a Banach space, then B(X;Y ) is a Banach space.

Beginning of Aug.30, 2021

Proof. First recall that if Λ1,Λ2 are linear operators, then by definition

(c1Λ1 + c2Λ2)x ∶= c1Λ1x + c2Λ2 + x.

We now show that Λ↦ ∥Λ∥ indeed defines a norm:

(1) ∥Λ∥ ⩾ 0 for all Λ ∈ B(X;Y ) is clearly trivial; also, if Λ = 0 then Λx = 0 for all x ∈ X, so ∥Λ∥ = 0 (otherwise

we can easily derive a contradiction).

(2) Absolute homogeneity follows from that of ∥ ⋅ ∥Y : if α, then

∥αΛ∥ = sup
∥x∥⩽1

∥αΛx∥ = sup
∥x∥⩽1
(∣α∣∥Λx∥) = ∣α∣ sup

∥x∥⩽1
∥Λx∥ = ∣α∣∥Λ∥.

(3) Triangle inequality again follows from that of ∥ ⋅ ∥Y : let ∥x∥ ⩽ 1. Then

∥(Λ1 +Λ2)x∥ = ∥Λ1x +Λ2x∥ ⩽ ∥Λ1x∥ + ∥Λ2x∥

⩽ ∥Λ1∥ + ∥Λ2∥.

Taking the supremum over all x eighth ∥x∥ ⩽ 1 we obtain the desired inequality.

Now let Y be Banach; we will show that B(X;Y ) is Banach. Let {Λn} be a Cauchy sequence of bounded linear

operators. For any ∈X, we have ∥Λnx −Λmx∥ ⩽ ∥Λn −Λm∥∥x∥. By assumption,

lim
m,n→∞

∥Λn(x) −Λm(x)∥ ⩽ lim sup
m,n→∞

∥Λn −Λm∥∥x∥ = 0,

9
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so {Λnx} is a Cauchy sequence in Y and hence converges to some limit, which we call Λx. For all x ∈ X we

define the corresponding Λx as such.

It remains to show that Λ ∈B(X;Y ). Its linearity is trivial. For boundedness: we can choose a sufficiently large

N (this class uses the notation N ≫ 1, and I will use it from now on) such that

∥Λn −ΛN∥ ⩽ 1 for all n ⩾ N.

Thus, for any x ∈X, ∥x∥ ⩽ 1,

∥Λx∥ = lim
n→∞

∥ΛnX∥ = lim
n→∞

∥(ΛN +Λn −ΛN)x∥

⩽ ∥ΛNx∥ + lim sup
n→∞

∥Λn −ΛN∥∥x∥ <∞.

Example 1.2.5.

(1) Let 1 ⩽ p ⩽∞. Consider X = ℓp with

∥x∥p ∶= (
∞
∑
k=1
∣xk ∣p)

1/p

for finite p and ∥x∥∞ ∶= sup
k⩾1
∣xk ∣ (for p =∞).

Let (λ1, λ2, ...) be an arbitrary sequence of real numbers. Define

Λ ∶ ℓp → ℓp by (x1, x2, ...)↦ (λ1x1, λ2x2, ...).

If we set e1 ∶= (1,0, ...), e2 ∶= (0,1, ...), and so on, then the span of them will NOT be ℓp but rather a

dense subset of ℓp for p <∞(in fact, c00). ℓ∞ is NOT separable.

If we view Λ as the infinite matrix diag(λ1, λ, ...), and if {λk} is bounded, then the operator is bounded

with ∥Λ∥ = sup
k⩾1
∣λk ∣. If {λk} is not bounded, then Λ is not bounded.

(2) Let I = (0, π) and let X = BC(I) be the space of bounded, continuous, real-valued functions on I with

∥f∥ = sup
0<x<lπ

∣f(x)∣.

Consider the linear operator Λ defined by Λf = f ′. Accordingly, define the domain

D(Λ) ∶= {f ∶ I → R ∣ f is differentiable and has a bounded continuous derivative}.

Then Λ ∶ D(Λ) → X is clearly a linear operator. However, Λ is not bounded: for example consider the

oscillating functions fk ∶= sin(kx), where ∥fk∥ = 1 for all k but ∥Λf∥ = k →∞ as k →∞.

(3) The shift operators on Lp(R) for 1 ⩽ p ⩽∞: fix a ∈ R. For any f ∈ Lp(R), we define

(Λaf)(x) ∶= f(x − a).

Then clearly ∥Λaf∥Lp = ∥f∥Lp so Λa ∶ Lp → Lp has operator norm 1. Also, notice that Λa is a bijection!

10
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(4) The shift operators on ℓp(R) for 1 ⩽ p ⩽∞: define the right and left shift operators by

Λ+ ∶ ℓp → ℓp by (x1, x2, ...)↦ (0, x1, x2, ...)

and

Λ− ∶ ℓp → ℓp by (x1, x2, ...)↦ (x2, x3, ...).

The both still are bounded linear operators with norms 1, yet Λ+ is injective but not surjective, and Λ−

is surjective but not injective.

(5) The multiplication operator: let Ω ⊂ Rn be bounded and open and g ∶ Ω → R bounded and measur-

able. Define

Mg ∶= Lp(Ω)→ Lp(Ω) by f ↦ gf.

Then Mg is a bounded operator with ∥Mg∥ = sup
∥f∥p
∥gf∥p = ∥g∥∞.

(6) The integral operator: let X = C0([a, b]). Let

Λf(x) ∶= ∫
x

a
f(y) dy.

Then Λ ∶X →X is a bounded linear operator:

∣Λf(x)∣ = ∣∫
x

a
f(y) dy∣ ⩽ ∫

x

a
∣f(y)∣ dy ⩽ max

y∈[a,b]
∣f(y)∣(b − a).

Beginning of Sept.1, 2021

1.3 Finite-Dimensional Spaces

Definition 1.3.1: Equivalent/Comparable Norms

We say two norms ∥ ⋅ ∥1, ∥ ⋅ ∥2 are equivalent (or comparable) if there exists a constant c ⩾ 1 such that

1

c
∥x∥1 ⩽ ∥x∥2 ⩽ c∥x∥1 for all x.

Note that equivalent norms lead to the same Cauchy sequences.

Remark. In general, infinite-dimensional spaces can have many non-equivalent norms, but the case is

much nicer if we look at finite-dimensional spaces —

Theorem 1.3.2: Norms on Finite-Dimensional Spaces

Let X be a finite-dimensional normed space over K. Let B = {u1, ..., un} be a basis of X. Then:

(1) X is a Banach space.

11
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(2) For each α ∈ Kn, let

Λα ∶= α1u1 + ... + αnun ∈X.

Then Λ ∶ Kn → K is bijective and bounded. Moreover, Λ−1 is also bounded. (In general the inverse of a

bounded operator need not to be inverse.)

Proof. Note that Λ is clearly both injective and surjective, and its inverse is well-defined. All of these directly

follow from properties of basis. Note that

∥Λα∥ =
XXXXXXXXXXX

n

∑
i=1
αiui

XXXXXXXXXXX
⩽

n

∑
k=1
∥αiui∥ ⩽ max

1⩽i⩽n
∣αi∣

n

∑
i=1
∥ui∥ ⩽ ∥α∥

n

∑
k=1
∥uk∥,

so Λ is indeed a bounded linear operator.

Now we show Λ−1 is bounded. Suppose not, then there exists a sequence {xn} where ∥xn∥ ⩽ 1 but ∥Λ−1xn∥
tends to infinity. Let

βn ∶=
Λ−1xn
∥Λ−1xn∥

∈ Kn

such that ∥βn∥ = 1 and Λβn = xn/∥Λ−1xn∥→ 0 as n→∞.

Since {βn} is a bounded sequence in Kn, it is compact and admits a convergent subsequence {βnk
} converging

to some β ∈ Kn. But then

∥β∥ = lim
k→∞
∥βnk
∥ = 1

whereas

Λβ = lim
k→∞

Λβnk
= 0,

so Λ has a nontrivial kernel, contradicting its injectivity. Hence Λ−1 is bounded.

Finally, we show that X is Banach. Let {xn} be a Cauchy sequence in X. Then by boundedness {Λ−1xn} is a

Cauchy sequence in Kn and hence converges to some β ∈ Kn. Since Λ is continuous, it preserves sequential

limits, and thus

xn = Λ(Λ−1(xn))

converges to Λβ ∈X.

Corollary 1.3.3: Norms are Equivalent on Finite-Dimensional Spaces

In a finite-dimensional space, all norms are equivalent.

Proof. Let ∥ ⋅∥1, ∥ ⋅∥2 be any two norms on X. Let B = {u1, ..., un} be a basis of X. Also, let Λ ∶ Kn →X be defined

as in the previous theorem. Then we know Λ,Λ−1 are bounded linear operators. Therefore

c1∥Λ−1x∥ ⩽ ∥x∥1 ⩽ c2∥Λ−1x∥

for all x and some c1, c2 > 0. Similarly, there exist c3, c4 > 0 such that

c3∥Λ−1x∥ ⩽ ∥x∥2 ⩽ c4∥Λ−1x∥.

12
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The claim then follows by combining the inequalities above.

Theorem 1.3.4: Characterization of Finite-Dimensional Spaces

(Riesz) Let X be a normed space. Then the following are equivalent:

(1) X is finite-dimensional.

(2) The closed unit ball B1 ∶= B(0,1) is compact.

Proof. For ⇒, let X have dimensional N . Then by the previous theorems there exists a linear homeomorphism

Λ ∶ Kn → X with bounded inverse. Therefore we can map the unit ball in X to K = Λ−1(B1) ⊂ Kn, a closed and

bounded subset of Kn. By Heine-Borel K is compact! Then B1 = Λ(K) is the continuous image of a compact set

and is therefore compact.

For⇐, assume B1 is compact. Then, using the definition of covering compactness, B1 can be covered by a finite

number of balls with radius 1/2, i.e., B1 ⊂
n

∑
i=1
B(pi,1/2) for some n. Then, let

V ∶= span{p1, ..., pn}

is a closed subspace in X (because every finite-dimensional normed space is complete, as stated previously).

We claim that V = X. Suppose V is a proper subspace of X. Then there exists x ∈ X − V such that the distance

ρ ∶= d(x,V ) = inf
v∈V
∥v − x∥ > 0 (because V is closed). By definition of infimum, there exists u ∈ V such that

ρ ⩽ ∥x − u∥ ⩽ 3

2
ρ.

Normalizing x−u, we define z ∶= (x−u)/∥x−u∥ and obtain an element in B1. By our covering assumption, there

exists pi ∈ B1 such that ∥z − pi∥ < 1/2. However, this cannot happen as

x = u + (x − u) = u + z∥x − u∥

= u + ∥x − u∥pi + ∥x − u∥(z − pi)

= u + ∥x − u∥pi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈V

+∥x − u∥(z − pi).

Since u + ∥x − u∥pi ∈ V, taking infimum on ∥x − u∥(z − pi) gives

∥x − u∥∥z − pi∥ ⩽ ρ,

so ∥x − u∥ ⩾ 2ρ, contradicting our assumption that ∥x − u∥ ⩽ 3ρ/2. Hence X = V .

13
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1.4 Uniformly Convex Banach Spaces

Definition 1.4.1: Strictly Subadditive Norm

A norm is called strictly subadditive if the triangle inequality holds strictly, i.e., ∥x+y∥ < ∥x∥+∥y∥ whenever

x and y are not scalar multiples of each other.

For example, (ℓp, ∥ ⋅ ∥p) and (Lp(Ω), ∥ ⋅ ∥p) for 1 < p <∞ are strictly subadditive, but ℓ∞, L∞ are not.

Definition 1.4.2

A NLS X whose norm satisfies XXXXXXXXXXX

x + y
2

XXXXXXXXXXX
⩽ 1 − ϵ(∥x − y∥)

for all ∥x∥, ∥y∥ ⩽ 1 and ϵ(r) > 0, lim
r→0

ϵ(r) = 0 is called uniformly convex.

Theorem 1.4.3

Let X be a uniformly convex Banach space. Let K ⊂ X be closed and convex. Let z ∈ X. Then there exists a

unique point y ∈K closest to z, and ∥y − z∥ = inf
k∈K
∥k − z∥.

Proof. If z ∈K the claim is trivial. Now we assume z ∉K. By translation we may assume z = 0 and 0 ∉K. Let

ρ ∶= inf
y∈K
∥y∥,

and we see that ρ > 0 by closedness of K. It remains to show that the infimum can be obtained.

Let {yk} be a minimizing sequence such that yk ∈K and ρk ∶= ∥yk∥→ ρ. Next we normalize and let xn ∶= yn/ρn so

∥xn∥ = 1. We consider norms of form ∥(xn + xm)/2∥. Since

xn + xm
2

= 1

2ρn
yn +

1

2ρm
ym

= ( 1

2ρn
+ 1

2ρm
)[ 1/(2ρn)

1/(2ρn) + 1/(2ρm)
yn +

1/(2ρm)
1/(2ρn) + 1/(2ρm)

ym] .

Therefore everything in [] is a convex combination of yn, ym and is therefore an element inK. Hence by infimum

∥(xn + xm)/2∥ ⩾ (1/(2ρn) + 1/(2ρm))ρ. On the other hand, since X is uniformly convex,

1 − ϵ(∥xn − xm∥) ⩾
XXXXXXXXXXX

xn + xm
2

XXXXXXXXXXX
⩾ ( 1

2ρn
+ 1

2ρm
)ρ.

Since by assumption ρn, ρm → ρ, the RHS converges to 1. Therefore ∥xn − xm∥ → 0 and hence ∥yn − ym∥ → 0.

Thus {yn} is Cauchy. Since X is complete and K closed, {yn}→ y ∈K, and this completes the proof.

14
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Remark. The point y above is the existence of the minimum when the set over which one wants to minimize

is not compact. (A Banach space has many closed bounded sets that are not compact.)

Remark. The above theorem fails without the assumption on uniform convexity.

For example, let X = C([−1,1]) with ∥f∥ ∶= max
x∈[−1,1]

∣f(x)∣. (Note that this norm is not strictly additive.) Let

K ∶= {k ∈X ∣ ∫
0

−1
k dx = ∫

1

0
k dx = 0}.

It is easy to check that K is a convex, closed subset of X. Now we take any f ∈X with

∫
0

−1
f dx = 1 and ∫

1

0
f dx = −1.

Then the “average condition” implies that, for any k ∈K,

∫
0

−1
f − k dx = 1 and ∫

0

−1
f − k dx = −1.

Then

max
−1⩽x⩽0

[f(x) − k(x)] ⩾ 1 and min
0⩽x⩽1

[f(x) − k(x)] ⩽ −1,

Note that ⩾ is = if and only if f − k ≡ 1 on [−1,0] and similarly ⩽ is = if and only if f − k ≡ −1 on [0,1].
However, both equalities cannot hold simultaneously as f − k is a continuous as 0 ∈ [−1,0] and 0 ∈ [0,1]!!
Therefore we have at least one strict inequality. Either way,

max
−1⩽x⩽1

∣f(x) − k(x)∣ > 1

for all k ∈ K. However, one may choose k ∈ K appropriately such that ∥f − k∥ is arbitrarily close to (but >)
1. This disproves the theorem without the uniform convexity assumption.

1.5 Seminorms

Let us first consider X = C((0,1)). Since we are excluding the endpoints here, we can have functions that blow up,

so the sup norm p(f) ∶= sup∣f ∣will not give us a norm in this situation.

On the other hand, if we consider some closed [a, b] ⊂ (0,1), one can introduce a seminom

pa,b(f) ∶= max
x∈[a,b]

∣f(x)∣

which is well-defined on [a, b], although this may not be a norm on (0,1) (for example we can construct f ∈ C((0,1))
with pa,b(f) = 0 but f ≢ 0). This gives rise to the name seminorm, a “weakened version” of norms.

Definition 1.5.1

Let X be a vector space over K. A real-valued map x↦ p(x) is called a seminorm on X if

(1) (positive semidefiniteness) p(x) ⩾ 0 for all x ∈X,
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(2) (absolute homogeneity) p(λx) = ∣λ∣p(x) for all x ∈X and λ ∈ K, and

(3) (triangle inequality) p(x + y) ⩽ p(x) + p(y) for all x, y ∈X.

Note that p(x) = 0 for x ≠ 0 is allowed, and if p is a seminorm, then d(x, y) ∶= p(x, y) is not a distance

function in general.

Beginning of Sept.8, 2021

Definition 1.5.2: Separating Sequence of Seminorms

A sequence {pk}k⩾1 of seminorms on X is separating if, for all nonzero x ∈ X, there exists at least one k

such that pk(x) > 0.

Lemma 1.5.3

Let {pk} be a separating sequence of seminorms on X. Then

d(x, y) ∶=
∞
∑
k=1

2−k
pk(x − y)

1 + pk(x − y)

defines a distance on X.

Definition 1.5.4: Fréchet Space

If X with d defined as in the lemma above is complete, then we say X is a Fréchet space.

Example 1.5.5. Let Ω ⊂ Rn be open with boundary ∂Ω. Consider C(Ω), the collection of continuous

functions f ∶ Ω → R. Then C(Ω) does not have a natural norm, but it is possible to give it the structure of a

Fréchet space.

Proof. For each k ⩾ 1, we define a compact subset

Ak ∶= {x ∈ Ω ∣ ∥x∥ ⩽ k and B(x,1/k) ⊂ Ω}

(in other words, each x ∈ Ak is contained in Ω and slightly away from its boundary). We define the seminorms

pk(f) ∶=max
x∈Ak

∣f(x)∣.

Since Ak is compact, the maximum is obtained. It’s easy to verify that {pk} is a separating sequence of semi-

norms. Now we define

d(f, g) ∶=
∞
∑
k=1

2−k
pk(f − g)

1 + pk(f − g)
.

We now show that (C(Ω), d) is a complete metric space and therefore a Fréchet space. Let {fn} be Cauchy (w.r.t.

d). Then

lim sup
m,n→∞

pk(fm − fn) = 0 = lim sup
m,n→∞

sup
Ak

∣fn(x) − fm(x)∣ = 0.
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Now since any x ∈ Ω is contained in one of Ak, the sequence {fn(x)} is Cauchy, and by completeness of R

it converges to some value which we call f(x). In addition, every compact K ⊂ Ω is contained in one of Ak.

Therefore, the convergence fn → f is uniform on any compact subset. The uniform convergence implies the

continuity of f . To show that lim
n→∞

d(fn, f) = 0, since fn → f uniformly on Am for any m,

d(fn, f) =
m

∑
k=1

2−k
pk(fn − f)

1 + pk(fn − f)
+

∞
∑

k=m+1
2−k

pk(fn − f)
1 + pk(fn − f)

.

Let n → ∞. The first term → 0 and the second is bounded by
∞
∑

k=m+1
2−k. Letting m → ∞, we complete the

proof.

Example 1.5.6. An open set Ω′ is said to be compactly contained in Ω if Ω′ is a compact subset of Ω. We

write Ω′ ⊂⊂ Ω if this is the case. Then we define

Lploc(Ω) = {f ∶ Ω→ R ∣ f ∈ Lp(Ω′) for all Ω′ ⊂⊂ Ω}.

(This is a space larger than Lp(Ω).) This space does not have a natural norm, but we may define seminorms

pk(f) = (∫
Ak

∣f ∣p dx)
1/p
∶= ∥f∥Lp(Ak).

The corresponding separating sequence {fk} along with the d defined above makes Lploc(Ω) a Fréchet space.

1.6 Extension Theorems

Definition 1.6.1

Let X be a vector space over K. A linear map f ∶ X → K is called a linear functional on X. A Minkowski

functional on X is a map p ∶X → R such that

(1) (subadditivity) p(x + y) ⩽ p(x) + p(y) and

(2) (positive homogeneity) p(λx) = λp(x), for all x, y ∈X and λ ⩾ 0.

(In particular notice that every seminorm is a Minkowski functional.)

Theorem 1.6.2: Hahn-Banach Extension Theorem

LetX be a vector space over R (there’s a similar version forX over C) and p ∶X → R a Minkowski functional.

Let V ⊂X be a subapce of X and let f ∶ V → R a linear functional such that

f(x) ⩽ p(x) for all x ∈ V.

Then there exists a linear function F ∶X → R such that

F (x) = f(x) for all x ∈ V and − p(−x) ⩽ F (x) ⩽ p(x) for all x ∈X.
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Proof. If V =X then we are done: f(x) = −f(−x) ⩾ −p(−x).
If V ≠X, for any x0 ∈X − V , we consider the larger subspace V0 ∶= {x + tx0 ∣ x ∈ V, t ∈ R}. For x, y ∈ V , we have

f(x) + f(y) = f(x + y) ⩽ p(x + y) = p(x − x0 + x0 + y) ⩽ p(x − x0) + p(x0 + y).

Rearranging gives

f(x) − p(x − x0) ⩽ p(y + x0) − f(y) for all x, y ∈ V.

Now we define β ∶= sup
x∈V
{f(x) − p(x − x0)}. Then f(x) − p(x − x0) ⩽ β ⩽ p(y + x0) − f(y). Now we define an

extension of f on V0 by

f(x + tx0) ∶= f(x) + βt.

We claim that f(x + tx0) ⩽ p(x + tx0). If t = 0 we are done; if t > 0, we let x, y be x/t and obtain

t(f(x/t) − p(x/t − x0)) ⩽ tβ ⩽ t(p(x/t + x0) + f(x/t)).

By linearity and positive homogeneity of p, we obtain f(x) − p(x − x0) ⩽ tβ ⩽ p(x + x0t) − f(x) and recover the

original inequality. Finally, the claim follows from Zorn’s lemma.
Beginning of Sept.10, 2021

Theorem 1.6.3: Extension for Bounded Linear Functionals

Let (X, ∥ ⋅ ∥) be a normed space over K. Let f ∶ V → K be a bounded linear functional defined on a subspace

V ⊂X. Then f can be extended to a linear function F ∶X → K such that

∥F ∥ = sup
x∈X
∥x∥⩽1

∣F (x)∣ = sup
x∈V
∥x∥⩽1

∣f(x)∣ = ∥f∥.

Corollary 1.6.4

Let X be a Banach space. For any distinct x, y ∈ X, there exists a bounded linear function φ ∶ X → R such

that φ(x) ≠ φ(y).

Corollary 1.6.5

Let X be a Banach space. For all x ∈X, there exists a bounded linear functional φ ∶X → K such that

φ(x) = ∥x∥ and ∥φ∥ = 1.

18



YQL - MATH 580 Notes 1.6 - Extension Theorems Current file: 9-10.tex

Application of Hahn-Banach

Theorem 1.6.6

Let X be a normed space over C and V ⊂X a subspace. For any x ∈X, define its distance to V by

m(x) ∶= inf
v∈V
∥x − v∥.

Then for every x ∈X, m(x) =M(x) where

M(x) ∶=max∣φ(x)∣

subject to φ ∈X∗, ∥φ∥∗ ⩽ 1, and φ ≡ 0 on V .

Proof. We first show that M(x) ⩽m(x). Since φ vanishes on V and ∥φ∥∗ = 1, for all x ∈X,v ∈ V we have

∣φ(x)∣ = ∣φ(x) − φ(v)∣ = ∣φ(x − v)∣ ⩽ ∥x − v∥.

Taking infimum over x ∈ V and then taking supremum over φ gives M(x) ⩽m(x).
Now we try to find a φ that upgrades ⩽ to =. Keep x fixed. Consider a vector space V0 = {v + λx ∣ v ∈ V,λ ∈ C}.
We define a map φ0 ∶ V0 → C by v + λx↦ λm(x). Clearly, φ is linear and vanishes on V . Moreover, for λ ≠ 0,

∣φ(v + λx)∣ = ∣λ∣m(x)

= ∣λ∣ inf
ṽ∈V
∥x − ṽ∥

⩽ ∣λ∣∥x − v/λ∥ = ∥v + λx∥

so indeed ∥φ∥∗ ⩽ 1. Thus, by the extension theorems, we can extend φ0 to all of X; there exists φ ∈X∗ with

∥φ∥∗ ⩽ 1 and φ ∣V = 0.

Setting v = 0, λ = 1, we see that φ(x) = φ0(x) =m(x). This completes the proof.

Definition 1.6.7

The closed linear span of a subset {yi} of a NLS is the smallest closed linear space containing all of yi’s, i.e.,

the intersection of all closed linear spaces containing all of yi’s. (If finite-dimensional then this is merely the

span.)

If {yi} is infinite, then the closed linear span is the closure of the linear span Y consisting of all finite linear

combinations of yi’s.

Theorem 1.6.8: Spanning Criterion

A point z of a NLS X belongs to the closed linear span Y of {yi} if and only if every bounded linear function

that vanishes on the subset vanishes at z, i.e., φ(yi) = 0 for all i implies φ(z) = 0.
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Proof. For ⇒, since φ is linear, all finite linear combinations φ(∑
finite

λiyi) = 0. Also, since φ is continuous, φ

vanishes on all limit points of∑λiyi, which includes z.

For ⇐Ô , suppose that z does not belong to the closed linear span Y of {yi}. Now we consider

d ∶= inf
y∈Y
∥z − y∥

which, by assumption, is strictly positive. We define a subspace Z ∶= {y + λz ∣ y ∈ Y,λ ∈ K} and define the

functional φ0 ∶ Z → K by y + λz ↦ λ. Clearly φ0 is linear, and assuming λ ≠ 0, we have

∥y + λz∥ = ∣λ∣(∥z + y/λ∥) ⩾ ∣λ∣ inf
y∈Y
∥z − y∥ = ∣λ∣d

and hence ∥φ0∥ ⩽ 1/d. Therefore, by Hahn-Banach, φ0 can be extended to φ on X. Like φ0, our new φ vanishes

on all finite combinations of yi, but setting y = 0 and λ = 1, we see that φ(z) = 1. We have therefore proven the

claim by taking its contrapositive.

1.7 Duality

Definition 1.7.1: Dual Space

Let X be a Banach space over K. Then the collection of all bounded linear functionals is called the dual

space of X, denoted X∗.

Note that since K is Banach, X∗ is also Banach, equipped with the operator norm

∥φ∥∗ ∶= sup
∥x∥⩽1
∣φ(x)∣.
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Definition 1.7.2: Weak Convergence

A sequence {xn} ⊂X is called weakly convergent if there exists x ∈X such that

limφ(xn) = φ(x) for all φ ∈X∗.

In this case, x is called the weak limit of {xn} and we write xn ⇀ x.

Remark. It is clear that strong convergence implies weak convergence, as any φ is bounded and therefore

preserves sequential limits.

Corollary 1.7.3

Weak limits are unique.

Proof. Suppose xn ⇀ x and xn ⇀ y with x ≠ y. Then by the extension theorems, there exists a continuous linear

function φ ∈X∗ such that φ(x) ≠ φ(y), but then this contradicts the uniqueness of limits in R.
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Example 1.7.4: Weak Convergence ⇏ Strong Convergence. Consider X = C([0,1]) and

fn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

nt 0 ⩽ t ⩽ 1/n

2 − nt 1/n ⩽ t ⩽ 2/n

0 2/n ⩽ t ⩽ 1

for n ⩾ 2.

(The graph consists of line segments connecting (0,0), (1/n,1), (2/n,0), and (1,0).)
It is clear that fn do not converge with respect to ∥ ⋅ ∥sup.

We now show that the weak limit of fn is 0, that is, lim
n→∞

φ(fn) = 0 for all φ ∈X∗. Suppose this is not true so

that there exists a subsequence {fnk
}, some φ ∈X∗, and some δ > 0, such that ∣φ(fnk

)∣ > δ > 0. In particular,

we can delete more terms and ensure that nk+1 > nk. Then for all t ∈ [0,1], the sequence of functions {gk}
defined by

gk ∶=
k

∑
i=1
fni(t)

is always bounded by 4. Then φ(gk) =
k

∑
i=1
φ(fnk

) > kδ, contradiction as we can make k arbitrarily large.

Remark. Note that each fixed x ∈X determines a linear functional on X∗ by φ↦ φ(x) for all φ ∈X∗. Then

by Hahn-Banach’s corollary, the norm of the functional

sup
∥φ∥∗⩽1

∣φ(x)∣ = ∥x∥.

We can define a “double star” norm ∥x∥∗∗ as above. Then we have a canonical embedding

i ∶X ↦X∗∗ by x↦ i(x), the map φ↦ φ(x).

This embedding preserves the norm and is called isometric.

Definition 1.7.5

If i(X) =X∗∗, then X is called reflexive.

Example 1.7.6. All finite-dimensional spaces as well as Lp(Ω) and ℓp for 1 < p <∞ are reflexive.

In general, X∗∗ is larger, for example L1(Ω), L∞(Ω), ℓ1, ℓ∞.

Example 1.7.7. X = C([−1,1]) with ∥ ⋅ ∥max is not reflexive.

Proof. Suppose for contradiction that X is reflexive so X = X∗∗. Thus for each φ ∈ X∗, there exists f ∈ X∗∗ = X
such that (cf. HW1.5)

∥φ∥ = ∣φ(f)∣ and ∥f∥ = 1.

Now we define

φ(g) ∶= ∫
0

−1
g(t) dt − ∫

1

0
g(t) dt ∈X∗.
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It follows that ∣φ(g)∣ < 2∥g∥max (strict because of continuity), but for ϵ > 0, we can choose g satisfying

∥φ(g)∥ > (2 − ϵ)∥g∥,

so ∥g∥ = 2. But then this contradicts the assumption ∥f∥ = 1 for g = f .

Theorem 1.7.8: Duality of Lp

The dual of Lp is Lq where (p, q) are a conjugate pair.

Proof. For any u ∈ Lq, we can define a functional φ ∈ (Lp)∗ by

φ(f) ∶= ⟨f, u⟩ = ∫
Ω
f(x)u(x) dm.

By Hölder’s inequality, for f ∈ Lp,

∣φ(f)∣ = ∫
Ω
∣f(x)u(x)∣ dm ⩽ ∥f∥p∥g∥q

with equality obtained by ∥φ∥ = ∥u∥q. Thus Lq isometrically embedded in (Lp)∗. We claim Lq = (Lp)∗.
If not, then there exists z ∈ (Lp)∗ −Lq. Since Lq is closed, by the spanning criterion, there exists φ ∈ (Lp)∗∗ such

that

φ(u) = 0 for all u ∈ Lq but φ ≠ 0.

Since Lp is reflexive [!], φ ∈ Lp, so (φ,u) = 0 for all u ∈ Lq and so φ = 0.
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The embedding i ∶X →X∗∗ can be used to introduce a weak topology on X∗:

Definition 1.7.9: Weak∗-Convergence

We say {φn} ⊂X∗ weak-star converges to φ ∈X∗ if

lim
n→∞

φn(x) = φ(x)

for all x ∈X. If so we write φn
∗⇀ φ.

Note that this convergence is weaker than ∥φn − φ∥ → 0: here we simply require “pointwise convergence” whereas

∥φn − φ∥ requires some kind of uniform boundedness.

Recall that the closed unit ball in an infinite dimensional space is not compact. Hence if X∗ is infinite dimensional

then there exists a sequence {φn} ⊂ B(0,1) ⊂ X∗ that does not admit any convergence subsequence (w.r.t. the

operator norm). However, if we only require weak-star convergence, then B(0,1) becomes compact!

Theorem 1.7.10: Banach-Alaoglu Theorem

Let X be a separable Banach space. Then every bounded sequence of linear functionals {φn} ⊂X∗ admits a

weak-star convergent subsequence.
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Proof. Let {φn} ⊂X∗ with ∥φn∥ ⩽ C be given. Since X is separable, there exists a dense countable set

S = {x1, x2, ...} ⊂X.

We first show that there exists a subsequence {φnj} that converges pointwise on S. This is done by a diagonal

argument: since {φn(x1)} is a bounded subset of R, by Bolzano-Weierstraß it has a convergent subsequence;

then iterate the process and obtain a set of nested sequences, eventually getting a {φnj
} that converges at all

xk ∈ S. Call this limit function φ.

Now it remains to show that φ is a bounded linear functional, i.e., φ ∈X∗, with Lipschitz constant C. Indeed, for

xn, xk ∈ S, ∣φ(xn)−φ(xk)∣ = lim
j→∞
∣φnj(xn)−φnj

(xk)∣ ⩽ lim sup
j→∞

∥φnj∥∗∥xn −xk∥ ⩽ C∥xn −xk∥, so φ, which is Lipschitz

on S, can be uniquely extended by continuity to the closure of S (which is X) by a density argument.

Finally, we will verify that φnj

∗⇀ φ. Let x ∈ X and ϵ > 0 be given. Since S is dense in X, there exists xk ∈ S with

∥xk − x∥ < ϵ. Then we have convergence of xk!

lim sup
j→∞

∣φnj(x) − φ(x)∣ ⩽ lim sup
j→∞

∣φnj(x) − φnj(xk)∣ + lim sup
j→∞

∣φnj(xk) + φnj(x)∣ + lim sup
j→∞

∣φnj(x) − φ(x)∣

⩽ C∥xk − x∥ + 0 +C∥xk − x∥ < 2Cϵ.

Since C is arbitrary, we are done.

Remark. The theorem holds for any NLS; see Rudin 3.14.
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Chapter 2

Bounded Linear Operators

2.1 The Uniform Boundedness Principle

Theorem 2.1.1: Banach-Steinhaus Theorem

Let H̃ ⊂ B(X,Y ) be any family of bounded linear operators. Then either H̃ is uniformly bounded such that

sup
Λ∈H̃
∥Λ∥ <∞

or there exists a dense set S ⊂X such that

sup
Λ∈H̃
∥Λx∥ =∞ for all x ∈ S.

Proof. Consider the open sets

Sn ∶= {x ∈X ∶ ∥Λx∥ > 1/n for some Λ ∈ H̃}.

If one of these sets, say Sk, is not dense in X, then there exists x0 ∈ X and r0 > 0 such that B(x0, r0) ⊂ X − Sk.

This means

∥Λx∥ ⩽ k for all Λ ∈ H̃ and x ∈ B(x0, r0).

Now if ∥x∥ ⩽ r, for all Λ ∈ H̃,

∥Λx∥ = ∥Λ(x0 + x) −Λx0∥ ⩽ 2k

so for all Λ ∈ H̃,

∥Λ∥ = sup
∥x∥⩽1

∥Λx∥ = 1

r
sup
∥x∥⩽r

∥Λx∥ ⩽ 2k

r
.

Therefore the family H̃ of operators is uniformly bounded.

On the other hand, if all Sn’n are dense in X, by Baire’s Category theorem, their untersection S ∶=
∞
⋂
n=1

Sn is dense

in X, so for each x and n ⩾ 1, there exists Λ ∈ H̃ with ∥Λx∥ > n, which gives sup
Λ∈H̃
∥Λ∥ =∞.
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Remark. This theorem shows that such a family of operators is either uniformly bounded or not bounded

at all! There is no such things as “pointwise bounded only” in this scenario.
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Corollary 2.1.2

Let {Λn} be a sequence of bounded linear operators X → Y . Assume that the pointwise limits exist and

define

Λx ∶= lim
n→∞

Λnx for all x.

Then Λ is a bounded linear operator.

Proof. For every x ∈X, {Λnx} is bounded. Therefore by PUB, {Λn} is uniformly bounded. Since

∥Λ∥ = sup
∥x∥⩽1

∥Λx∥ = sup
∥x∥⩽1

lim
n→∞

∥Λnx∥ ⩽ sup
n⩾1
∥Λn∥ <∞

we see that Λ is indeed bounded.

2.2 Open Mapping Theorem

Definition 2.2.1: Open Mapping

If X,Y are metric spaces, we say f ∶ X → Y is an open mapping if for all U ⊂ X open, the image f(U) is

open in Y .

Example 2.2.2: Examples and non-examples of open mappings.

(1) The projection πk ∶ Rn → Rk (for k ⩽ n) defined by (x1, ..., xn)↦ (x1, ..., xk) is obviously open.

(2) The inclusion map Rk ↪ Rn by (x1, ..., xk)↦ (x1, ..., xk,0, ...,0) is not an open map — we cannot draw

a ball in Rn where some of its coordinates can only take the value 0.

(3) sin ∶ R→ R is not open.

Theorem 2.2.3: Open Mapping Theorem, OMT

Let X,Y be Banach spaces. Let Λ ∶X → Y be a bounded surjective linear operator. Then Λ is open.

Proof. By linearity, for any open ball B(x, r) we have

Λ((B(x, r)) = Λx +Λ(B(0, r))

= Λx + rΛ((B(0,1)),

so it is sufficient to show that Λ((B(0,1)) contains an open ball centered at the origin of Y . For shorthand

notation, write B1 as the open unit ball in X and Br ∶= B(0, r) in Y .
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We first show that there exists Br that is contained the closure Λ(B1). Since Λ is surjective, Y =
∞
⋃
n=1

Λ(Bn). By

Baire category theorem, at least one of Λ(Bn) ⊂ Y has a nonempty interior. Since Λ(B1) = 1/n ⋅ Λ(Bn), we see

that Λ(B1) also has a nonempty interior. Therefore there exists y0 ∈ Y and r > 0 such that

B(y0, r) ⊂ Λ(B1).

Notice that Λ(B1) is convex and symmetric (since B1 is). Therefore B(y0, r) ⊂ Λ(B1) as well. Now we consider

the convex combination
1

2
B(y0, r) +

1

2
B(−y0, r) ⊂ Λ(B1).

Notice that this is exactly B(0, r), so B(0, r) ⊂ Λ(B1), as claimed. Furthermore, by linearity again,

B(0,2−nr) ⊂ Λ(B2−n) for all n. (∆)

Now we show that B(0, r/2) is in fact contained in Λ(B1) (so we can drop the closure). To this end, pick any

y ∈ B(0, r/2). We want to find x ∈ B1 such that Λx = y. By (∆), y ∈ Λ(B2−1). By definition of closure, there exists

x1 ∈ B2−1 such that

∥y −Λx1∥ < 2−2r.

Now since y − Λx1 is in B(0,2−2r), by (∆), y − Λx1 ∈ B(0,2−2r) ⊂ Λ(B2−2). Thus there exists another x2 ∈ B22

such that

∥y −Λx1 −Λx2∥ < 2−3r.

Inductively, for each n,

y −
n−1
∑
j=1

Λxj ∈ B(0,2−nr) ⊂ Λ(B2n),

and by closure, there exists xn ∈ B2−n satisfying

∥y −
n

∑
j=1

Λxj∥ < 2−n−1r.

Letting n→∞, we see that y is the limit
∞
∑
j=1

Λxj . Define x ∶=
∞
∑
j=1

xn. It remains to notice that Λx = lim
n→∞

n

∑
j=1

Λxj = y

and that

∥x∥ ⩽
∞
∑
j=1
∥xj∥ <

∞
∑
j=1

2−j = 1,

so indeed y ∈ Λ(B1), as claimed.

Corollary 2.2.4

If X,Y are Banach spaces and Λ ∶ X → Y a bijective bounded linear operator, then Λ−1 ∶ Y → X is also

bounded. Indeed, bijection guarantees the existence of an inverse and OMT guarantees its boundedness.
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Corollary 2.2.5

Let ∥ ⋅∥1, ∥ ⋅∥2 be norms on a vector space X such that (X, ∥ ⋅∥1), (X, ∥ ⋅∥2) are complete. Then if ∥ ⋅∥2 ⩽ c∥ ⋅∥1
for come c > 0, we have ∥ ⋅ ∥1 ⩽ d∥ ⋅ ∥2 for some d > 0.

This is just an application of OMT and the previous corollary on Λ ∶ (X, ∥ ⋅ ∥1)→ (X, ∥ ⋅ ∥2) by x↦ x.
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2.3 Closed Graph Theorem

Remark. Every continuous linear operator Λ ∶X → Y is closed.

Theorem 2.3.1: Closed Graph Theorem

Let X,Y be Banach spaces, and let Λ ∶X → Y be a closed linear operator defined on the entire X. Then Λ is

continuous. (From the remark above we can rewrite this as an “iff” statement.)

Proof. For convenience write Γ as the graph of Λ. By assumption Γ is a closed subspace of X ×Y and is therefore

Banach. Define π1, π2 as the projection of Γ onto X,Y defined by

π1(x,Λx) ∶= x and π2(x,Λx) ∶= Λx.

Note that π1 is a linear, bounded (since ∥π1(x,Λx)∥ = ∥x∥ ⩽ ∥x∥ + ∥Λx∥ = ∥(x,Λx)∥X×Y ), and bijective (by

defining π−11 (x) ∶= (x,Λx)). Therefore, by the Open Mapping Theorem, π−11 is continuous, so Λ = π2 ○ π−1 is also

continuous!

Remark. The theorem also holds if we assume that Λ ∶D(Λ)→ Y is closed and that D(Λ) is closed.

Example 2.3.2: Closed but not bounded operator. LetX ∶= C0(R) be the space of all bounded continuous

functions equipped with the sup norm. Define Λ by Λf = f ′ and set its domain to be

D(Λ) ∶= {f is continuously differentiable},

i.e., f ∈ C1 or f ′ ∈X.

(1) Λ is not bounded: we can have functions with higher oscillations, e.g., sin(nx) which have sup norm

1. However, as n→∞, ∥Λf∥→∞.

(2) Λ has a closed graph. Consider a sequence {fn} ∈ D(Λ) such that ∥fn − f∥C0 → 0 for some f ∈ C0 and

∥f ′n − g∥C0 → 0 for some g ∈ C0. Then

∫
x

0
g(s) ds = ∫

x

0
f ′n(s) ds + ∫

x

0
g(s) − f ′n(s) ds.
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Letting n→∞, by convergence as n→∞ the second term tends to 0:

∫
x

0
g(s) ds = lim

n→∞∫
x

0
f ′n(x) ds = f(x) − f(0)

so f is continuously differentiable with f ′ = g.

Note that this does not contradict our CGT because D(Λ) = C1 is neither all of X or closed in X.

2.4 Adjoint Operators

Let X be a Banach space over K. Recall the definition of X∗ and the canonical embedding

i ∶X →X∗∗ defined by (x ∈X)↦ (x∗ ↦ x∗(x) ∈ K).

We shall denote x∗(x) by ⟨x∗, x⟩ from now on.

Definition 2.4.1: Adjoint Operator

Let Λ ∶ X → Y be a bounded linear operator. For any y∗ ∶ Y → K, we define a bounded linear functional on

X by

x∗(x) = y∗(Λx).

(Originally we have X
Λ→ Y

y∗→ K; now we want x∗ ∶X → K.) Then the map

Λ∗ ∶ y∗ ↦ Λ∗y∗ ∶= y∗ ○Λ

is a bounded linear operator from Y ∗ to X∗ so that

⟨Λ∗y∗, x⟩ = ⟨y∗,Λx⟩ for all x ∈X.

(In other words, Λ∗y∗(x) = y∗(Λx).) We say Λ∗ is the adjoint of Λ.

Definition 2.4.2: Orthogonal Complement

For V ⊂X, define the orthogonal complement V ⊥ by

V ⊥ = {x∗ ∈X∗ ∣ ⟨x∗, x⟩ for al x ∈ V }.

When in a Hilbert space which we will cover later, this definition can be replaced by a condition on inner product,

which is much more intuitive.

Similarly, for W ⊂X∗, define

W ⊥ = {x ∈X ∣ ⟨x∗, x⟩ = 0 for all x∗ ∈W}.
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Theorem 2.4.3

Let Λ ∶X → Y be a bounded linear operator and let X∗ ∶ Y ∗ →X∗ be its adjoint. Then

(1) ∥Λ∗∥ = ∥Λ∥ (both being their operator norms, respectively), and

(2) kerΛ = Range(X∗)⊥ and kerX∗ = Range(Λ)⊥.
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Proposition 2.4.4

(1) If Λ1,Λ2 ∈ B(X,Y ), then (Λ1 +Λ2)∗ = Λ∗1 +Λ∗2, (αΛ1)∗ = αΛ∗1,

(2) If Λ1 ∈ B(X,Y ) and Λ2 ∈ (Y,Z) then (Λ2 ○Λ1)∗ = Λ∗1 ○Λ∗2.

(3) If Λ ∈ B(X,Y ) and Λ−1 exists and Λ−1 ∈ B(Y,X), then (Λ∗)−1 exists and (Λ∗)−1 ∈ B(Y ∗,X∗).

Proof.

(1) By Hahn-Banach (HW1 #5)

∥Λ∥ = sup
∥x∥⩽1

∥Λx∥

= sup{∣⟨y∗,Λx⟩ ∶ ∥y∗∥ ⩽ 1, ∥x∥ ⩽ 1∣}

= sup{∣⟨Λ∗y∗, x⟩ ∶ ∥y∗∥ ⩽ 1, ∥x∥ ⩽ 1∣}

= sup{∥Λ∗y∗∥ ∶ ∥y∗∥ ⩽ 1} = ∥Λ∗∥.

(2) Note that x ∈ kerΛ is equivalent to Λx = 0. This is further equivalent to ⟨y∗,Λx⟩ = 0 for all y∗ ∈ Y ∗. (The

forward direction is obvious; if the converse is false, then Hahn-Banach ensures a nonzero mapping.) Then

⟨y∗,Λx⟩ = 0 for all y∗ ∈ Y ∗⇔ ⟨Λ∗y∗, x⟩ = 0 for all y∗ ∈ Y ∗

⇔ x ∈ Range(Λ∗)⊥.

Also,

y∗ ∈ ker(Λ∗)⇔ Λ∗y∗ = 0

⇔ ⟨Λ∗y∗, x⟩ = 0 for all x ∈X

⇔ ⟨y∗,Λx⟩ = 0 for all x ∈X

⇔ y∗ ∈ Range(Λ)⊥.
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2.5 Applications of Banach-Steinhaus

Theorem 2.5.1: Weakly convergent sequences are bounded

Let X be Banach. Then any {xn} ⊂X that converges weakly to some x ∈X is bounded.

Proof. By definition we need ⟨x∗, xn⟩ → ⟨x∗, x⟩ for all x∗ ∈ X∗. Viewing the LHS as a linear functional Ψn(x∗)
from X∗ to K, we have

sup
n
∣Ψn(x∗)∣ <∞ for all x∗ ∈X∗.

Then by the PUB we see that {Ψn} is uniformly bounded for n ⩾ 1. Since (by Hahn-Banach)

∥Ψn∥ = sup
∥x∗∥⩽1

∣Ψn(x∗)∣ = ∥xn∥

we see that ∥xn∥ needs to be bounded.

Example 2.5.2: Space of polynomials. Let X be the space of all polynomials over R with norm

∥x∥ ∶=max
j
∣αj ∣

(the maximum of coefficients).

We will use PUB to show that X is incomplete by constructing a sequence that is pointwise but not uniformly

bounded (this would contradict PUB’s assumption that X is complete).

We write x(t) =
∞
∑
j=0

αjt
j where αj = 0 for j > deg(x). Now define Λn ∶X → R by

Λn(0) = 0,Λn(x) = α0 + α1 + ... + αn−1.

Clearly Λn is linear and bounded:

∥Λnx∥ ⩽ (deg(x) + 1)max
j
∣αj ∣ = Cx

for fixed x. On the other hand, letting x(t) ∶= 1 + t2 + ... + tn gives

∥x∥ = 1 but ∥Λnx∥ = n + 1.

Letting n→∞, we see that {Λn} is not uniformly bounded.

Example 2.5.3: Fourier Series. Consider a 2π-periodic function x(t) = x(t + 2kπ). Then

x(t) = 1

2
a0 +

∞
∑
m=1
[am cos(mt) + bm sin(mt)]

where

am =
1

π
∫

2π

0
x(t) cos(mt) dt and bm =

1

π
∫

2π

0
x(t) sin(mt) dt.

Claim: even for continuous functions, this series can diverge, i.e., there exist real-valued functions whose

Fourier series diverge at a given point t0.
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Proof. Let X be the space of 2π-periodic continuous functions equipped with the sup (max) norm. Note that X

is Banach. WLOG let t0 = 0. Define Λn ∶X → R by the nth Fourier partial sum evaluated at 0:

Λn(x) = fn(x) where fn(x) =
a0
2
+

n

∑
m=1

am =
1

π
∫

2π

0
x(t) [1

2
+

n

∑
m=1

cos(mt)] dt

Since

2 sin(t/2)
n

∑
m=1

cos(mt) =
n

∑
m=1
[sin((m + 1/2)t) − sin((m − 1/2)t)]

= sin((n + 1/2)t) − sin(t/2),

we have

1 + 2
n

∑
m=1

cos(mt) = sin((n + 1/2)t)
sin(t/2)

(and it holds as t→ 0 too). The RHS is called the Dirichlet kernel. Thus

fn(x) =
1

2π
∫

2π

0
x(t) sin((n + 1/2)t)

sin(t/2)
dt.

For convenience denote the Dirichlet kernel by qn(t). We will show that (1) fn is bounded with ∥fn∥ =
1

2π
∫

2π

0
∣qn(t)∣ dt and (2) ∥fn∥ → ∞ as n → ∞. This would complete the proof since Banach-Steinhaus says

pointwise convergence implies uniform convergence.

(1) To bound fn(x),

∣fn(x)∣ ⩽max∣x(t)∣ 1
2π
∫

2π

0
∣qn(t)∣ dt∥x∥

1

2π
∫

2π

0
∣qn(t)∣ dt

so ⩽ holds. To show =, write ∣qn(t)∣ = sgn(qn(t))qn(t). Though sgn is not continuous, it can be approxi-

mated arbitrarily well by a continuous function x of norm 1:

∣ 1
2π
∫

2π

0
(x(t) − y(t)qn(t) dt∣ < ϵ

so

∣fn(x) −
1

2π
∫

2π

0
∣qn(t)∣ dt∣ < ϵ.

Therefore taking sup implies ∥fn∥ =
1

2π
∫

2π

0
∣qn(t)∣ dt, as claimed.

(2) See Ozanski HW3 p5.
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Approximation of the δ Function by Continuous Functions

Definition 2.5.4

A sequence {φn} of continuous functions on [−1,1] tends to the δ function if

lim
n→∞∫

∞

−1
x(t)φn(t) dt = x(0) for all x ∈ C([−1,1]). (1)

Theorem 2.5.5: (Toeplitz)

The sequence {φn} of continuous functions on [−1,1] tends to the δ function as (1) describes if and only if

the following are satisfied:

(i) lim
n→∞∫

1

−1
φn(t) dt = 1,

(ii) For all y ∈ C∞ whose support does not contain 0,

lim
n→∞∫

1

−1
y(t)φn(t) dt = 0,

(iii) There exists a constant C > 0 such that ∫
1

−1
∣φn(t)∣ dt ⩽ C for all n.

Proof. For ⇒, we suppose that φn tends to the δ function. Taking x ≡ 1 gives (i). Taking any smooth function

with x(0) = 0 gives (ii). For (iii), we define

φn(x) ∶= ∫
1

−1
x(t)φn(t) dt.

Note that φn ∈ (C[−1,1])∗. In this perspective, (1) says φn ⇀ δ and ∣φn(x)∣ ⩽ ∥x∥ pointwise. Therefore by

Banach-Steinhaus,

∥φn∥ = ∫
1

−1
∣φn(t)∣ dt <∞.

For⇐, suppose x(0) = 0. Let y ∈ C∞ and ∥x − y∥ < ϵ with y(0) = x(0). Then

∣∫
1

−1
(x(t) − y(t))φn(t) dt∣ ⩽ ϵ∫

1

−1
∣φn(t)∣ dt

[(iii)] ⩽ Cϵ.

By (ii), ∫
1

−1
yφn dt→ 0, so lim sup

n→∞
∣∫

1

−1
xφn dt∣ ⩽ ϵ. Therefore (1) holds for any x with x(0) = 0.

For a general x, since x(t) = x(0) + (x(t) − x(0)), using (i) we see that the claim also holds.

Revisiting the Fourier Example

Recall that we said there exists a periodic continuous function whose Fourier series diverges at (any prescribed) t0.

Recall that we defined

fn(x) =
1

2π
∫

2π

0
x(t)qn(t) dt =

1

2π
∫
∞

−π
x(t)qn(t) dt
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where

qn(t) ∶=
sin((n + 1/2)t)

sin(t/2)
.

Note that the convergence of the Fourier series is equivalent to qn approximating the δ function! By the previous

theorem, this is further equivalent to satisfying the three criteria. Since the Dirichlet kernel fails (iii), we claim that

the Fourier series of f does not converge at 0.

Beginning of Sept.27, 2021

Approximate Quadrature Formula

Take n points {ti}ni=1 ⊂ [−1,1] (nodes) and N numbers {wi}ji=1 (weights), we define

qn(f) ∶=
n

∑
j=1

wjf(tj).

We can view qn as an element of C([−1,1])∗.

Theorem 2.5.6

Let qn be a sequence of functionals as defined above satisfying

(1) For all k ∈ {0,1,2, ...}, lim
n→∞

qn(tk) = ∫
1

−1
tk dt,

(2) for all N ,
N

∑
i=1
∣w(i)j ∣ ⩽ C.

Then

lim
n→∞

qn(f) = ∫
1

−1
f(t) dt for all f ∈ C([−1,1]). (*)

The converse is true (i.e., (*) implies (1) and (2).)

Proof. For ⇒, (1) implies that (*) holds for all polynomials. But then since the polynomials are dense in

C([−1,1]), the claim follows. The rest of the proof is omitted.

Remark. If we define q(f) ∶= ∫
1

−1
f(t) dt for all f ∈ C([−1,1]), the above theorem simply states qn

∗⇀ q

(weak* convergence).

33



Chapter 3

Compact Operators

3.1 Arzelá-Ascoli Theorem

In finite-dimensional spaces, Bolzano-Weierstraß says that every bounded sequence has a convergent subsequence.

However, this compactness property fails in infinite dimensional spaces (e.g., fn(x) ∶= xn in C([0,1]) does not

have a uniformly convergent subsequence in C([0,1])). What additional assumption is needed to guarantee the

existence of a uniformly convergent subsequence?

Definition 3.1.1: Equicontinuity

Let E be a metric space. We say a family E of continuous functions is called equicontinuous if, given x ∈ E
and ϵ > 0, there exists δ > 0 such that

d(x, y) < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ for all f ∈ E .

Corollary 3.1.2

Let E be compact and E ⊂ C(E) be equicontinuous. By compactness, we can upgrade equicontinuity to

uniform equicontinuity: given ϵ > 0, there exists δ > 0 such that the claim above does not depend on x, i.e.,

given ϵ > 0 and δ > 0 such that

d(x, y) < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ for all x, y ∈ E and f ∈ E .

Theorem 3.1.3

If E is compact, then C(E) is Banach. By completeness, for a subset E ⊂ C(E), the following are equivlent:

(1) E is relatively compact, i.e., E is compact, and

(2) E is precompact (or totally bounded), i.e., given ϵ > 0, it can be covered by finitely many balls with

radius ϵ, and

(3) Given any sequence of continuous functions {fn} ⊂ E , one can extract a subsequence converging to
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some function f uniformly on E.

Theorem 3.1.4: Arzelá-Ascoli Theorem

Let E be a compact metric space and let F ⊂ C(E) be an equicontinuous family of functions with

sup
f∈F
∣f(x)∣ <∞ for all x ∈ E.

Then F is a relatively compact subset of C(E), i.e., it has as uniformly convergent subsequence.

Proof. We will prove that F is precompact. Let ϵ > 0 be given. By equicontinuity, choose δ such that

d(x, y) < δ Ô⇒ ∣f(x) − f(y)∣ < ϵ for all x, y ∈ E and f ∈ F .

Since E is compact, there exist x1, ..., xn such that

E ⊂
n

⋃
i=1
B(xi, δ).

Since F is bounded, define M ∶= max
1⩽i⩽n

sup
f∈F
∣f(xi)∣ <∞ and choose finitely many numbers α1, ..., αm such that

[−M,M] ⊂
m

⋃
i=1
(αi − ϵ, αi + ϵ).

Consider the set Θ of all maps θ ∶ {x1, ..., xn} → {α1, ..., αm}. (Note that θ is discrete and Θ is finite.) For each

θ ∈ Θ, define the family of continuous functions

Fθ ∶= {f ∈ F ∶ f(xi) ∈ B(θ(xi), ϵ) for all 1 ⩽ i ⩽ n}.

Then F = ⋃
θ∈Θ
Fθ.

Claim: ∥f − g∥C(E) =max
x∈E
∣f(x) − g(x)∣ < 4ϵ if f, g ∈ Fθ.

Indeed, for each x ∈ E, we choose an index i such that x ∈ B(xi, δ). Then we have

∣f(x) − g(x)∣ ⩽ ∣f(x) − f(xi)∣ + ∣f(xi) − θ(xi)∣ + ∣θ(xi) − g(xi)∣ + ∣g(xi) − g(x)∣.

Equicontinuity implies the first and last terms are < ϵ; by definition of Fθ, the second and third terms are also

< ϵ. Hence for all ϵ > 0, each set Fθ has diameter ⩽ 4ϵ, so this set F can be covered by finitely many sets having

diameters < 4ϵ. Since ϵ is arbitrary we are done.Beginning of Sept.29, 2021
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3.2 Compact Operators

Definition 3.2.1: Compact Operator

Let X,Y be Banach. Λ ∈ B(X,Y ) is compact if for every bounded sequence {xn} ⊂ X, the corresponding

{Λxn} ⊂ Y admits a convergent subsequence {Λxnk
}.

It follows that TFAE:

(1) Λ is compact,

(2) For every bounded set U ⊂X, the image Λ(U) ⊂ Y has compact closure,

(3) The unit ball B1 ⊂X has image Λ(B1) ⊂ Y whose closure is compact.

Theorem 3.2.2

(1) If the range of Λ is finite-dimensional then Λ is automatically compact.

(2) Let Λn ∶ X → Y be compact for all n. Further assume that lim
n→∞

∥Λn − Λ∥ = 0 for some Λ. Then Λ is

compact.

Proof.

(1) Obvious by Riesz’s lemma as Λ(B1) is a closed and bounded in a finite-dimensional space.

(2) Since Y is complete, we want to show that Λ(B1) is compact or equivalently Λ(B1) is precompact.

Let ϵ > 0; we want to show that Λ(B1) can be covered by finitely many ϵ-balls. We begin by choosing k

such that ∥Λ −Λk∥ < ϵ/2 (and for all late terms). Since Λk is compact, there exist {y1, ..., yn} ⊂ Y such that

Λk(B1) ⊂
n

⋃
i=1
B(yi, ϵ/2). For any x, if ∥x∥ ⩽ 1 then ∥Λx −Λkx∥ < ϵ/2. In particular, for this x, there exists yi

such that ∥Λkx − yi∥ < ϵ/2, so

∥Λx − yi∥ ⩽ ∥Λx −Λkx∥ + ∥Λkx − yi∥ < ϵ.

Since x is arbitrary, we conclude that Λ(B1) ⊂
n

⋃
i=1
B(yi, ϵ), completing the proof.

Example 3.2.3. Let Λ ∶ ℓ2 → ℓ2 be defined by

x ∶= (xn)n⩾1 ↦ y = Λx = (yn/n)i⩾1.

Then Λ is clearly linear and bounded. We will show that Λ is compact.

Proof. Define Λn ∶= ℓ2 → ℓ2 by

(x1, ..., xn, xn+1, ...)↦ (x1/1, ..., xn/n,0, ...).
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It is clear that each Λn is linear and bounded. The range of each Λn is finite-dimensional so they are compact!

It remains to show that Λn → Λ in operator norm; if so, the (2) in the previous theorem shows Λ is compact.

Indeed,

∥(Λn −Λ)(x)∥2 =
∞
∑

j=n+1
(xj/j)2 ⩽

∥x∥2

(n + 1)2
→ 0

as n→∞ so ∥Λn −Λ∥ < 1/(n + 1). It follows that Λ is compact.

Theorem 3.2.4: Compact Operator on Weakly Convergence Sequence

Let X,Y be normed and let Λ ∶ X → Y a compact operator. If {xn} ⊂ X converges weakly to x, then

{Λxn} ⊂ Y is strongly convergent with limit Λx.

Proof. We write yn ∶= Λxn and y = Λx for convenience.

We first show that yn ⇀ y. To this end, let φ ∈ Y ∗ be given. Define the adjoint (Λ∗φ) ∈ X∗. Since xn ⇀ x, we

have

(Λ∗φ)(xn)→ (Λ∗φ)(x),

that is, (directly by definition)

φ(Λxn)→ φ(Λx)

or equivalently φ(yn)→ φ(y), as claimed. Therefore yn ⇀ y.

We now show that yn → y (strongly). Suppose for contradiction that there exists a subsequence {ynk
} with

∥ynk
−y∥ ⩾ δ for some δ > 0. Since {xn} converges weakly, it is bounded, so in particular {xnk

} is bounded. Since

Λ is compact, in particular {Λ(xnk
)} has a (strongly) convergent subsequence, say {Λ(xnkj

)}. Let the limit be ỹ.

Notice that the first part shows {Λ(xnkj
)} converges weakly whereas we’ve just shown that it converges strongly

to some other limit, contradiction (recall weak limit is unqiue). Therefore yn → x strongly, as claimed.

Beginning of Oct.1, 2021

Theorem 3.2.5: Adjoint of a Compact Operator

Let X,Y be Banach and let Λ ∈ B(X,Y ). Then Λ is compact if and only if Λ∗ ∶ Y ∗ →X∗ is compact.

Proof. We will only prove the forward direction. Let {y∗n} be a sequence in Y ∗ with ∥y∗n∥ ⩽ 1. We need to show

that {Λ∗y∗n} has a convergent subsequence.

Let B1 ∶= {x ∈X ∶ ∥x∥ ⩽ 1}. By assumption ΛB1 has a compact closure E ∶= ΛB1 ⊂ Y .

Let fn ∶= y∗n∣E (i.e., functions from E to K). Then

∣fn(y) − fn(y′)∣ ⩽ ∥y∗n∥∥y − y′∥ ⩽ ∥y − y′∥.

This implies fn’s are uniformly Lipschitz (and in particular equicontinuous). Further note that sup
y∈E
∥y∥ =

sup
∥x∥⩽1

∥Λx∥, so ∣fn(y)∣ ⩽ ∥y∗n∥∥y∥ where both terms are bounded. Hence all fn’s are uniformly bounded by ∥Λ∥.

Now we can apply Arzelá-Ascoli and extract a subsequence {fnk
} that converges to a function f uniformly on
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E = ΛB1. Now note that

∥Λ∗y∗nj
−Λ∗y∗ni

∥ ∆= sup
∥x∥⩽1
∣⟨Λ∗y∗nj

−Λ∗y∗ni
, x⟩∣

= sup
∥x∥⩽1
∣⟨y∗nj

− y∗ni
,Λx⟩∣

= sup
∥x⩽1∥
∣fni(Λx) − fni(Λx)∣→ 0 as i, j →∞.

Therefore {Λ∗y∗ni
} is Cauchy and converges to a limit x∗ ∈X∗. Hence Λ∗ is compact.

3.3 Integral Operators

Theorem 3.3.1: Integral Operator

Let K ∶ [a, b] × [a, b]→ R be continous. Then the integral operator Λ defined by

(Λf)(x) ∶= ∫
b

a
K(x, y)f(y) dy

is a compact operator from C([a, b]) to C([a, b]).

Proof. Consider a bounded sequence of continuous functions {fn} ⊂ C([a, b]). We need to show that Λfn admits

a uniformly convergent subsequence.

By Arzelá-Ascoli, it suffices to show that Λfn are uniformly bounded and equicontinuous.

Note that there exists k > 0 such that ∣K(x, y)∣ ⩽ k for all (x, y) ∈ [a, b]2 since K is continuous on a compact set.

Also, for ϵ > 0, there exists elta > 0 such that ∣x− x̃∣ < δ then ∣K(x, y)−K(x̃− y)∣ < ϵ for all x, x̃, y ∈ [a, b] (uniform

continuity).

By assumption, there exists M > 0 such that ∥fn∥ ⩽M (by assumption). Then

∣Λfn(x)∣ = ∣∫
b

a
K(x, y)fn(y) dy∣ ⩽ kM(b − a)

so Λfn are uniformly bounded.

For equicontnuity, let ϵ > 0 be given. Choose δ > 0 such that the (“x-x̃-y” uniform continuity) property above

holds. Then if ∣x − x̃∣ < δ,

∣Λfn(x) −Λfn(x̃)∣ = ∣∫
b

a
(K(x, y) −K(x̃, y)fn(y) dy∣

⩽ ∫
b

a
∣K(x, y) −K(x̃, y)∣∣fn(y)∣ dy

< ϵM(b − a),

so Λfn are equicontinuous too. The claim then follows from Arzelá-Ascoli.
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Example 3.3.2. For any f ∈ C([−1,1]), consider the boundary value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′′(x) + f(x) = 0

u(−1) = u(1) = 0.
(*)

Let Λ be the solution u to (*) for a given f ∶ u = Λf . (We claim that there does exist Λ satisfying this

relation. Note that u is unique — if u1, u2 are both solutions to (*) then w = u1 − u2 satisfies w′′(x) = 0 and

w(−1) = w(1) = 0, i.e., u1 = u2.)

In fact, u′′(x) = −f(x) so by FTC

u′(x) = u′(1) − ∫
x

1
f(y) dy = u′(−1) − ∫

x

−1
f(y) dy.

Integrating further gives

u(x) = u′(1)(x + 1) − ∫
x

−1
∫

z

1
f(y) dy dz (3.1)

= u′(1)(x − 1) − ∫
x

1
∫

x

1
f(y) dy dz (3.2)

= u′(−1)(x + 1) − ∫
x

−1
∫

z

−1
f(y) dy dz (3.3)

= u′(−1)(x − 1) − ∫
x

1
∫

z

−1
f(y) dy dz. (3.4)

Equating (1) and (2) gives

u′(1) = 1

2
[∫

x

−1
∫

z

1
f(y) dy dz − ∫

x

1
∫

z

1
f(y) dy dz] (5)

and equating (3) and (4) gives

u′(−1) = 1

2
[∫

x

−1
∫

z

−1
f(y) dy dz − ∫

x

1
∫

z

−1
f(y) dy dz] . (6)

Adding (1), (2), (3), and (4) gives

4u(x) = 2x [u′(1) + u′(−1)] − [∫
x

−1
∫

z

1
f(y) dy dz + ∫

x

1
∫

z

1
f(y) dy dz + ...]

= ...(substitute (5) and (6))

= 2(x + 1)∫
x

1
(y − 1)f(y) dy − 2(x − 1)∫

x

−1
(y + 1)f(y) dy.

Therefore u(x) is an integral equation where

K(x, y) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1−y)(1+x)
2

−1 ⩽ x ⩽ 1
(1+y)(1−x)

2
y ⩽ x ⩽ 1

Hence K is continuous and Λ ∶ f ↦ u = Λf is compact.

39



Chapter 4

Hilbert Spaces

Beginning of Oct.4, 2021

The Euclidean space Rn is equipped with a natural inner product ⟨⋅, ⋅⟩ which induces the Euclidean norm ∥x∥ ∶=
√
⟨x,x⟩. This also defines “perpendicular spaces” and “perpendicular projections”, which allow us to construct

bases of mutually orthogonal vectors via Gram-Schmidt.

Why are Hilbert spaces interesting?

(1) Every linear function φ ∶ Rn → R can be represented as an inner product: φ(x) = ⟨w,x⟩ for some w ∈ Rn.

(2) with an inner product, we can define a class of symmetric operators (i.e., A ∶ Rn → Rn with ⟨Ax, y⟩ = ⟨x,Ay⟩
for all x, y ∈ Rn) with many useful properties.

(3) We can also define a class of positive operators (i.e., A ∶ Rn → Rn strictly positive definite: Ax > 0 for all

x ≠ 0). In this case the map x↦ ⟨Ax,x⟩ is a positive definite quadratic form.

We wish to show how the definition and properties of the Euclidean space can be extended to infinite-dimensional

spaces.

4.1 Spaces with an Inner Product

Definition 4.1.1: Inner Product

Let H be a vector space over K (either R or C). An inner product on H is a map ⟨⋅, ⋅⟩ ∶H2 → K satisfying

(1) (skew symmetry) ⟨x, y⟩ = ⟨y, x⟩,

(2) (bilinearity and sesquilinearity) ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ and ⟨λx, z⟩ = λ ⟨x, z⟩ (for λ ∈ K)

(3) (non-degeneracy) ⟨x,x⟩ ⩾ 0 with = if and only if x = 0.

Note that these imply ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ and ⟨x,λy⟩ = λ ⟨x, y⟩.
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Definition 4.1.2

Define ∥x∥ ∶=
√
⟨x,x⟩.

Theorem 4.1.3

Let H be a vector space with inner product ⟨⋅, ⋅⟩. Then

(1) (Cauchy-Schwarz) ∣⟨x, y⟩∣ ⩽ ∥x∥∥y∥.

(2) (triangle inequality / Minkowski inequality) ∥x + y∥ ⩽ ∥x∥ + ∥y∥.

Proof.

(1) If y = 0 the claim is trivial. Otherwise consider inner products of form ⟨x + λy, x + λy⟩ for λ ∈ K:

⟨x + λy, x + λy⟩ = ⟨x,x⟩ + 2λ ⟨x, y⟩ + λ2 ⟨y, y⟩ = ∥x∥2 + 2λ ⟨x, y⟩ + λ2∥y∥2

which by non-degeneracy of norm, nonnegative. Hence the RHS, viewed as a quadratic of λ, has a non-

positive discriminant, that is,

(2 ⟨x, y⟩)2 − 4∥x∥2∥y∥2 ⩽ 0 Ô⇒ ⟨x, y⟩2 ⩽ ∥x∥2∥y∥2 Ô⇒ ∣⟨x, y⟩∣ ⩽ ∥x∥∥y∥.

(2) By (1), Re ⟨x, y⟩ ⩽ ∣⟨x, y⟩∣ ⩽ ∥x∥∥y∥, so

∥x + y∥2 = ⟨x + y, x + y⟩ = ∥x∥2 + 2Re ⟨x, y⟩ + ∥y∥2 ⩽ (∥x∥ + ∥y∥)2.

Definition 4.1.4: Hilbert Space

A vector space H with inner product ⟨⋅, ⋅⟩, which is complete with respect to the induced norm, is called a

Hilbert space.

Example 4.1.5.

(1) Rn with ⟨x, y⟩ ∶=
n

∑
i=1
xiyi is Hilbert over R.

(2) ℓ2 defined by {x = {xi} ∶ (∑∞i=1∣xi∣2)
1/2 <∞} is Hilbert over C with ⟨x, y⟩ =

∞
∑
i=1
xiyi.

(3) Let Ω ⊂ Rn be open. Let L2(Ω;R) be the collection of square summable maps. Then it is Hilbert with

⟨f, g⟩ = ∫
Ω
f(x)g(x) dx.
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4.2 Orthogonal Projections

Definition 4.2.1: Span

Given a subset S ⊂H, define

span(S) ∶= {
n

∑
i=1
cixi ∶ n ∈ N, ci ∈ R, xi ∈ S}

(note we are taking combinations of finitely many elements). In general, span(S) is a subspace of H but it is

not necessarily closed. To this end, the closure V ∶= span(S) is called the space generated by S.

The set S is called “ total” if it generates H.

Definition 4.2.2: Orthogonality

We say x, y ∈H are orthogonal if ⟨x, y⟩ = 0. Given S ⊂H, its orthogonal subspace is defined as

S⊥ ∶= {y ∈H ∶ ⟨y, x⟩ = 0 for all x ∈ S}.

Theorem 4.2.3: Orthogonal Projections

Let H be Hilbert and let V ⊂H be a closed subspace.

(1) H = V ⊕ V ⊥ in the sense that each x ∈H can be uniquely written as x = y + z where y ∈ V and z ∈ V ⊥.

(2) y ∶= PV (x) in V having the minimal distance to x and z ∶= PV ⊥(x) is the unique point in V ⊥ having the

minimal distance from x.

(3) The perpendicular projection x↦ y and x↦ z are linear, continuous, and bounded with norm ⩽ 1.

Beginning of Oct.6, 2021

Proof. We first show that given x ∈H, there exists a unique y ∈ V with minimal distance from x. That is, if

α = d(x,V ) ∶= inf
y∈V
∥x − y∥

then the infimum is attained. From definition, there exists a sequence {yn} with lim
n→∞

∥x − yn∥ = α. Since V is

Banach, it suffices to show {yn} is Cauchy. Recall the parallelogram law

∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2.

Letting u ∶= x − ym and v ∶= x − yn we see that

∥yn − ym∥2 = 2∥x − ym∥2 + 2∥x − yn∥2 − ∥2x − ym − yn∥2

= 2∥x − ym∥2 + 2∥x − yn∥2 − 4∥x − (ym + yn)/2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈V

∥2

⩽ 2∥x − ym∥2 + 2∥x − yn∥2 + α2.

Taking lim sup gives

lim sup
m,n→∞

∥ym − yn∥2 ⩽ 2 lim sup
m→∞

∥x − ym∥2 + 2 lim sup
n→∞

∥x − yn∥2 − 4α2 = 0.
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Since V is complete, {yn} converges to a unique limit y with ∥x − y∥ = d(x,V ).

For uniqueness, suppose ∥x − y′∥ = d(x,V ). By the same argument

∥y − y′∥2 = 2∥x − y∥2 + 2∥x − y′∥2 − 4∥2x − y − y′∥2 ⩽ 2α2 + 2α2 − 4α2 = 0.

Now that the map x ↦ PV (x) is well-defined, we show X = V ⊕ V ⊥. That is, PV (x) is the unique point y ∈ V
such that x − y ∈ V ⊥. Let v ∈ V be given; for λ ∈ R, consider f ∶ λ↦ ∥x − (y + λv)∥2:

f(λ) = ∥x − (y + λv)∥2 = ∥x − y∥2 + ∣λ∣2∥v∥2 + 2Re ⟨x − y, λv⟩ .

By our first part, f attains its unique global minimum at λ = 0. Thus f ′(0) = 0. Differentiating implies

Re ⟨x − y, v⟩ = 0 for all v ∈ V.

If H is over R then we are done; if it is over C, simply repeat the above process with v replaced by −iv so

Im(x − y, v) =Re(x − y,−iv) = 0.

For uniqueness of the orthogonality statement, suppose y′ ∈ V also has x − y′ ∈ V ⊥. Then

∥y − y′∥2 = ⟨y − y′, (y − x) + (x − y′)⟩

= ⟨y − y′, x − y′⟩ + ⟨y − y′, y − x⟩ = 0 + 0 = 0.

Finally, we show that PV ∶ H → V is a bounded linear operator. Put y = PV (x), y′ = PV (x′) where x,x′ are

arbitrary elements of H. For α,α′ ∈ K, we know αy + α′y′ ∈ V . Since for any v ∈ V

< αx + α′x′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈H

−αy + α′y′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈V

, v >= α ⟨x − y, v⟩ + α′ ⟨x′ − y′, v⟩ = 0

by the second part the map (αx + α′x′)↦ αy + α′y′ must be the projection operator PV . Hence

PV (αx + α′x′) = αy + α′y′ = αPV (x) + α′PV (x′)

and similarly I − PV = PV ⊥ is also linear. Finally, since PV (x), PV ⊥(x) = x − PV (x),

∥PV (x)∥2 = ∥x∥2 − ∥x − PV (x)∥2 ⩽ ∥x∥2

we see PV has operator norm ⩽ 1. For x ∈ V , the norm 1 is indeed attained.
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4.3 Linear Functionals on a Hilbert Space

Theorem 4.3.1: Riesz Representation Theorem

Let H be Hilbert.

(1) For each x ∈H, the map y ↦ ⟨y, x⟩ is a continuous linear functional on H;

(2) Let y ↦ Ay be a continuous linear functional. Then for each y, Ay = ⟨h, y⟩ for some unique h ∈H.

Proof.

(1) Let x be given. The map φx ∶ φx(y) = ⟨y, x⟩ is linear, and

∥φx∥ = sup
∥y∥⩽1
∣⟨y, x⟩∣ ⩽ sup

∥y∥⩽1
∥y∥∥x∥ = ∥x∥.

(2) If Ay ≡ 0 for all y ∈ H then it corresponds to the zero map and the claim holds with h = 0. For A ≠ 0, there

exists z0 ≠ 0 such that z0 ∈ N(A)⊥. Let

v = (Ay)z0 − (Az0)y.

For any y ∈H,

Av = (Ay)Az0 − (Az0)Ay = 0

so v ∈ N(A). Therefore ⟨v, z0⟩ = 0 and so

⟨(Ay)z0 − (Az0)y, z0⟩ = Ay(z0, z0) − (Az0) ⟨y, z0⟩

and

Ay = (Az0) ⟨y, z0⟩
⟨z0, z0⟩

= ⟨y, z0 ⋅Az0/ ⟨z0, z0⟩⟩ .

Therefore we have found h ∈ H satisfying the condition. For uniqueness, if Ay = ⟨y, h1⟩ = ⟨y, h2⟩ for all

y ∈H, we have ⟨y, h1 − h2⟩ = 0 for all y ∈H. Choosing y = h1 − h2 gives ⟨h1 − h2, h1h2⟩ = 0, done.

Beginning of Oct.8, 2021

Remark.

(1) If H is Hilbert over R, then x↦ φx is an isometric isomorphism between H and H∗.

(2) If Λ ∶H →H is linear, then its adjoint Λ∗ ∶H∗ →H∗ can be identified with Λ ∶H →H via

(x,Λ∗y) = (Λx, y).

4.4 Gram-Schmidt Orthogonalization & Orthonormal Sets

Quick recap:
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(1) x ∈H is called normalized if ∥x∥ = 1.

(2) A subset E ⊂ H is orthonormal if for ∥ei∥ = 1 and ⟨ei, ej⟩ = δi,j for all ei, ej ∈ H, where δi,j is the Kronecker

delta.

(3) If S ∶= {v1, ..., vn} ⊂H, the span is defined by span(S) =
n

∑
i=1
θkvk where θk ∈ K (can be 0).

(4) If x =
n

∑
k=1

θkvk, we note ⟨x, vj⟩ =
n

∑
k=1

θk ⟨vk, vj⟩ = θk. This gives x =
n

∑
k=1
⟨x, vk⟩ vk. If we weaken the assumption

and let {v1, ..., vn} only be orthogonal (not necessarily normalized) then x =
n

∑
k=1
(⟨x, vk⟩ /∥vk∥)vk.

Theorem 4.4.1: Gram-Schmidt Orthogonalization

Let {v1, ..., vn} be a collection of linearly independent vectors. Define inductively

e1 ∶=
v1
∥v1∥

, ṽn ∶= vn −
n−1
∑
k=1
⟨vn, ek⟩ ek, and en ∶=

ṽn
∥ṽ∥n

.

Then {e1, ..., en} is orthonormal with span{e1, ..., ek} = span{v1, ..., vk} for all 1 ⩽ k ⩽ n.

Question. In an infinite dimensional space, how do the notions of basis and linear span work? It is important to

understand when
∞
∑
k=1
⟨x, ek⟩ ek converges and when it does not.

Proposition 4.4.2

Let H be Hilbert. For any S ⊂H, the orthogonal space S⊥ is closed in H. Moreover,

span(S) is dense in H⇔ S⊥ = {0}.

Proof. For ⇒, let x ∈ S⊥. Since span(S) is dense in H, there exists a sequence {xn} of linear combinations of

basis of S such that xn → x. We write

xn ∶=
Nn

∑
k=1

θn,kan,k → 0.

Then,

⟨x,x⟩ = lim
n→∞

⟨x,xn⟩ = lim
n→∞

Nn

∑
k=1

θn,k ⟨x, an,k⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= lim
n→∞

Nn

∑
k=1
= 0.

Hence, x = 0 and thus S⊥ = {0}.
For ⇐Ô , let V = span(S). Suppose for contradiction that V ≠ H so that there exists y ∈ H − V . Consider the

orthogonal projection PV (y). Since y ∉ V , w ∶= y − PV (y) ≠ 0. On the other hand, since w ∈ V ⊥, w ∈ S⊥, so by

assumption w = 0. Contradiction!
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Theorem 4.4.3: Bessel’s Inequality

Let S = {e1, e2, ...} be a finite or countable orthonormal set in a Hilbert space H. Let V ∶= span(S) and let

PV ∶H → V be the orthogonal projection. Then for every x ∈H,

∑
k⩾1
∣⟨x, ek⟩∣2 = ∥PV (x)∥2 ⩽ ∥x∥2.

Moreover, ∑
k⩾1
⟨x, ek⟩ ek = PV (x). In particular, if V =H, ∑

k⩾1
⟨x, ek⟩ = PV (x) = x for all x ∈ V =H.

Proof. Let Vn ∶= span{e1, ..., en}. We know PVn(x) =
n

∑
k=1
⟨x, ek⟩ ek, so

∥PVn(x)∥2 = ⟨
n

∑
j=1
⟨x, ej⟩ ej ,

n

∑
k=1
⟨x, ek⟩ ek⟩ =

n

∑
j,k=1
⟨x, ej⟩ ⟨x, ek⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈R

⟨ej , ek⟩
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=δj,k

=
n

∑
k=1
⟨x, ek⟩ ⟨x, ek⟩ =

n

∑
k=1
∣⟨x, ek⟩∣2.

Since ∥PVn(x)∥2 ⩽ ∥x∥2 for all n, taking limit proves Bessel’s inequality.

For the second claim, suppose S is countably infinite. By convergence,

xn ∶=
n

∑
k=1
⟨x, ek⟩ ek

is in particular Cauchy. Thus, for m < n,

∥xn − xm∥2 =
n

∑
k=m+1

∣⟨x, ek⟩∣2 → 0

as m,n→∞. Since H is complete, we get xn → x̃ for some x̃ ∈H. It remains to show that x̃ = PV (x).
Since xn ∈ V for all n and xn → x̃ and since V is closed, x̃ ∈ V and so

⟨x − x̃, ek⟩ = lim
n→∞

⟨x̃ − xn, ek⟩ = 0 for all k

Therefore x − x̃ is orthogonal to all ek ’s and therefore all v ∈ V . Therefore x̃ ∈ V and x − x̃ ∈ V ⊥. This implies

x̃ ∈ PV (x).

Beginning of Oct.11, 2021

Definition 4.4.4: Orthonormal Basis

An orthonormal set S = {e1, e2, ...} ⊂H is an orthonormal basis (total orthonormal set) if span(S) is dense

in H, i.e., span(S) =H.

Remark. Bessel’s inequality becomes identity: if we let V ∶= span(S) then

∑
k⩾1
∣⟨x, ek⟩∣2 = ∥PV (x)∥2 = ∥x∥2 and ∑

k⩾1
⟨x, ek⟩ ek = x.
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This is known as the Parseval identity.

Fourier Series

Let H = L2([−π,π];C) with the natural inner product

⟨f, g⟩ = ∫
π

−π
f(x)g(x) dx.

Then the set S of functions

φn(x) =
1√
2π
einx n ∈ Z

is orthonormal:

⟨φn(x), φm(x)⟩ =
1

2π
∫

π

−π
eimxeinx dx = 1

2π
∫

π

−π
ei(m−n)x dx = δm,n.

We claim that S is an orthonormal basis of H. To show that span(S) is dense, let f ∈ L2([−π,π]). For all ϵ > 0, there

exists a continuous function fϵ ∶ [−π,π]→ C such that

∥fϵ − f∥L2 < ϵ fϵ(−π) = fϵ(π).

Also, by Stone-Weierstraß, we can find a complex trigonometric polynomial of form

p(x) =
N

∑
k=−N

αke
ikx

such that

∥fϵ − p∥C0 =max∣fϵ(x) − p(x)∣ < ϵ.

Then

∥fϵ − p∥L2 = (∫
π

−π
∣fϵ(x) − p(x)∣2 dx)

1/2
<
√
2πϵ.

Therefore fϵ can be approximated by trig polynomials also with respect to the L2-norm. Therefore using p to

approximate fϵ and using fϵ to approximate f , we conclude that

span(S) = L2([−π,π]).

Now we consider the complex trig series
∞
∑
k=−∞

ak
eikx√
2π

where

ak ∶= ⟨f,φk⟩ = ∫
π

−π
f(x)e

−ikx
√
2π

dx.

By the previous theorem, the series converges to f ∈ L2, i.e.,

lim
n→∞

∥f −
n

∑
k=−n

akφk∥L2 = 0.

In other words, for f ∈ L2([−π,π];C), by letting ck ∶=
1

2π
∫

π

−π
f(y)e−iky dy,

lim
n→∞∫

π

−π
∣f(x) −

n

∑
k=−n

cke
ikx∣2 dx = 0.

This gives the convergence of Fourier series in the L2 sense.
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4.5 Separable Hilbert Spaces

Theorem 4.5.1

Let H be Hilbert.

(1) If H is separable, then every or tho normal set in H is countable.

(2) If H contains an orthonormal sequence which is total in H, then H is separable.

Proof of (1). Let H be separable and let B be any countable dense set in H. For any orthonormal set S and

x, y ∈ S, ∥x− y∥2 = ⟨x − y, x − y⟩ = ∥x∥2 + ∥y∥2 = 2. Hence, letting Bx ∶= B(x,1/4), for each distinct pair of x, y ∈ S,

Bx ∩By = ∅. By density, every ball contains some element in B. Hence S is at most countable.

Definition 4.5.2: isomorphism

Let H and H̃ be Hilbert over K. An (isometric) isomorphism between H and H̃ is a bijection linear map

Λ ∶H → H̃ such that

⟨Λx,Λy⟩ = ⟨x, y⟩ .

If such an isomorphism exists, then H and H̃ are called isomorphic Hilbert spaces.

Theorem 4.5.3

Any two separable infinite-dimensional Hilbert spaces are isomorphic.

Proof. Let S = {e1, e2, ...} and S̃ = {ẽ1, ẽ2, ...} be countable total orthonormal sets in H and H̃, respectively. We

write x ∈H as

x = ∑
k⩾1
⟨x, ek⟩ ek.

We define Λ ∶H → H̃ by

x = ∑
k⩾1
⟨x, ek⟩ ek ↦ ∑

k⩾1
⟨x, ek⟩ ẽk =∶ x.

By Bessel’s inequality, the sum on the RHS is finite. Finally, note that

∥x̃∥2 = ∥Λx∥2 =
⎛
⎝∑k⩾1

⟨x, ek⟩ ẽk,∑
j⩾1
⟨x, ej⟩ ẽj

⎞
⎠
= ∑
k⩾1
∣⟨x, ek⟩∣2 = ∥x∥2.

This shows Λ is injective and it preserves norms. Using the polarization identity

⟨x, y⟩ = 1

4
(∥x + y∥2 − ∥x − y∥2) + 1

4
i(∥x + iy∥2 − ∥x − iy∥2)

we see ⟨Λx,Λy⟩ = ⟨x, y⟩. Hence the isometry.

Finally, for surjectivity, let x̃ ∈ H̃ be given. We write x̃ = ∑
k⩾1

αkẽk where ∑
k⩾1
∣αk ∣2 <∞. Then

∑
k⩾1

αkek

converges to some ∈H with αk = ⟨x, ek⟩. Therefore x̃ = Λx. This shows Λ is surjective.
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Remark. Any separable infinite-dimensional Hilbert space is isomorphic to L2([−π,π]) or ℓ2.

Other Total Orthonormal Sets

Legendre Polynomials

Consider a Hilbert space H = L2([−1,1];R) with

⟨f, g⟩ = ∫
1

−1
f(t)g(t) dt.

We start with f0(t) = 1, f1(t) = t, f2(t) = t2, ..., so fn(t) = tn. Note that fn’s are linearly independent. Applying

Gram-Schmidt gives us an orthonormal sequence {en}n⩾0. Then {en} is total in L2.

Beginning of Oct.13, 2021

The explicit formula is given by

en(t) =
√
(2n + 1)/2 ⋅ pn(t)

where

pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n.

(pn is called the Legendre polynomial of order n.)

Claim 1. pn(t) =
[n/2]

∑
j=0
(−1)j (2n − 2j)!

2nj!(n − j)!(n − 2j)!
tn−2j . This claim can be obtained by expanding (t2 − 1)n using the

binomial theorem and differentiating the term n times.

Claim 2. ∥pn∥2 = 2/(2n + 1). This justifies the scaling constant appearing in en. This is obtained by iterative IBP on

(2nn!)2∥pn∥2 = ∫
1

−1

dn

dtn
(t2 − 1)n ⋅ d

n

dtn
(t2 − 1)n dt

= −∫
1

−1

dn−1

dtn−1
(t2 − 1)n dn+1

dtn+1
(t2 − 1)n dt

= ⋯

= (−1)n(2n)!∫
1

−1
(t2 − 1)n dt = (−1)n(2n)! ⋅ (−1)n ⋅ 2∫

1

0
(1 − t2)n dt

= 2(2n)!∫
π/2

0
cos2n+1(θ) dθ = 22n+1(n!)2

2n + 1
.

Claim 3. {pn} is orthogonal in L2([−1,1]). To see this, it suffices to show that ⟨pm, pn⟩ = 0 when 0 ⩽ m < n. Since

pn is a polynomial, it suffices to fix n and show ⟨tm, pn⟩ = 0 for all m < n:

2nn! ⟨tm, pn⟩ = ∫
1

−1
tm

dn

dtn
(t2 − 1)n dt.

We can increase the order of
dn

dtn
and reduce that on tm using IBP. Since m < n, tm eventually becomes 0, resulting

in the integral being 0.

In fact, the Legendre polynomials are solutions of the Legendre differential equations
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(1 − t2)p′′n − 2tp′n + n(n + 1)pn = 0.

Remark. The Sturm-Liouville problem

((1 − t2)y′)′ + λy = 0 − 1 ⩽ t ⩽ 1

has a bounded solution exactly when λ = n(n + 1), resulting in a Legendre polynomial. These λ = n(n + 1)
are eigenvalues of Ay = −((1 − t2)y′)′.

Example 4.5.4. Recall the spherical coordinates (ρ, θ,φ) and Cartesian (x, y, z) are related by

x = ρ cos θ sinφ y = ρ sin θ sinφ z = ρ cosφ.

Then

∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

has spherical coordinate expression

∆ = ∂2

∂ρ2
+ 2

ρ

∂

∂p
+ 1

ρ2 sin2 φ

∂2

∂θ2
+ 1

ρ2
∂2

∂φ2
+ cotφ

ρ2
∂

∂φ

for ρ > 0, θ ∈ R, φ ∈ (0,2π).
Problem. Find bounded solutions u = u(ρ, θ,φ) of the Laplace equation ∆u = 0 in the ball.

Intuitively we try to reduce PDEs to ODEs, so we try to look for separable equations u(ρ, θ,φ) =
R(ρ)Θ(θ)Φ(φ). Then

ρ2
R′′

R
+ 2ρR

′

R
+ Θ′′

sin2 φΘ
+ Φ′′

Φ
+ cotφΦ′

Φ
= 0.

It follows that, for some constant λ ∶= the sum of first two terms, we have

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ2R′′ + 2ρR′ − λR = 0

Θ′′(θ)
sin2 φΘ(θ)

+ Φ′′(φ)
Φ(φ)

+ cotφΦ′(φ)
Φ(φ)

= −λ.

We can further define −α ∶= Θ′′(θ)/Θ(θ) and split the second equation into

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Θ′′(θ) + αΘ(θ) = 0

Φ′′(φ) + cosφ

sinφ
Φ′(φ) + (λ − α

sin2 φ
)Φ(φ) = 0.

For a special case, we set α = 0 and so Θ(θ) = 1. Then u = u(ρ,φ) and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ2R′′ + 2ρR′ − λR =

Φ′′(φ) + cosφ

sinφ
Φ′(φ) + λΦ(φ) = 0.

The first equation is given by

R1(ρ) = ρp1 R2(p) = ρp2
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where p1, p2 are roots to p2 + p − λ = 0. For the second equation, let t ∶= cosφso −1 ⩽ t ⩽ 1. Let p(t) = Φ(φ)
where φ = cos−1 t. Then

Φ′(φ) = p′ ⋅ dt
dφ
= −
√
1 − t2p′,

and

Φ′′(φ) = p′′(sin2 φ) − p′ cosφ = (1 − t2)p′′ − tp′.

The second equation therefore becomes

(1 − t2)p′′ − tp′ − tp′ + λp = (1 − t2)p′′ − 2tp′ + λp,

the Legendre differential equation. Therefore, when λ = n(n+ 1), the solution will be given by the Legendre

polynomials!

Φn(φ) = pn(cosφ).

For λ = n(n + 1), p2 + p − λ = 0 has n or −(n + 1). We choose p = n to get a bounded solution. If u(ρ,φ) =
R(ρ)Φ(φ) is a bounded solution of the Laplace equation inside the sphere, then there exists n ∈ N such that

u(ρ,φ) = Cpnpn(cosφ)

for some constant C.

More generally, we have solutions of ∆u = 0 of the form

pn cos(mθ)pmn (cosφ) m ⩽ n

where

pmn (t) = (1 − t2)m/2
dm

dtm
pn(t)

is called the associated Legendre polynomials of degree n and order m. These polynomials solve

(1 − t2)p′′ − 2tp′ + (λ − m2

1 − t2
)p = 0.

The functions Ym,n(θ,φ) = pmn (cosφ) cos(mθ) are called the spherical harmonics.

Beginning of Oct.18, 2021

4.6 Positive Definite Operators

Definition 4.6.1

Let H be Hilbert over R. A linear operator A ∶H →H is strictly positive definite such that there exists β > 0
satisfying ⟨Au,u⟩ ⩾ β∥u∥2 for all u ∈H.
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Theorem 4.6.2: Inverse of a PD Operator

Let A ∶ H → H be a bounded linear operator which is strictly PD. Ten for any f ∈ H, there exists a unique

element u ∶= A−1f in H such that Au = f . Moreover, the inverse A−1 satisfies

∥A−1∥ ⩽ 1/β

where β is the corresponding bound in the definition of PD-ness.

Proof. We need to show that A is bijective.

For injectivity, it suffices to show that kerA = {0}. Indeed,

β∥u∥2 ⩽ ⟨Au,u⟩ ⩽ ∥Au∥∥u∥

so if ∥u∥ > 0, β∥u∥ ⩽ ∥Au∥. Therefore if Au = 0, ∥u∥ = 0, i.e., kerA = {0}.
Now we show that R(A) is closed (surjectivity later). Let {vn} ⊂ R(A) be such that vn → v for some v ∈ H. We

can write {vn} as {Aun} for some {un} ⊂H. Then, using β∥u∥ ⩽ ∥Au∥ from the previous part for nonzero u,

∥um − un∥ ⩽
1

β
∥Aum −Aun∥ =

1

β
∥vm − vn∥.

Hence,

lim sup
m,n→∞

∥um − un∥ ⩽ lim sup
m,n→∞

1

β
∥vm − vn∥ = 0.

Hence {un} is Cauchy. By completeness, un → u for some u ∈ H. Since A is bounded, it preserves limits, so

Au = v.

Finally, we show that R(A) is all of H. Suppose not, then there exists a nonzero w ∈ R(A)⊥. Then

β∥w∥2 ⩽ ⟨Aw,w⟩ = 0

as w ∈ R(A)⊥ but Aw ∈ R(A). Thus w = 0, contradiction. This finishes the proof showing A is bijective. Hence

Au = f has a unique solution u ∶= A−1f and A−1 is continuous by the Open Mapping Theorem.

Finally, since

A−1f = ∥u∥ ⩽ 1

β
∥Au∥ = 1

β
∥AA−1f∥ = 1

β
∥f∥,

we have ∥A−1∥ ⩽ 1/β.

Theorem 4.6.3: Lax-Milgram

Let H be Hilbert over R. Let B ∶H ×H → R be a continuous bilinear functional, i.e., bilinear and

∣B[u, v]∣ ⩽ C∥u∥∥v∥

for some C > 0. Further, assume that B is strictly PD, i.e., for some β > 0 we have

B[u,u] ⩾ β∥u∥2 for all u ∈H.
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Then for all f ∈H, there exists a unique u ∈H such that

B[u, v] = ⟨f, v⟩ for all v ∈H.

Moreover, ∥u∥ ⩽ 1/β ⋅ ∥f∥.

Proof. For each fixed u ∈ H, the map v ↦ B[u, v] is a continuous linear functional on H. By the Riesz Represen-

tation Theroem, there exists a unique element, which we call Au, such that

B[u, v] = ⟨Au, v⟩

for all v ∈ H. We claim that u ↦ Au is bounded, linear, and PD. Linearity follows from bilinearity of B. For

boundedness, notice that

∥Au∥ = sup
∥v∥=1

⟨Au, v⟩ = sup
∥v∥=1
∣B[u, v]∣ ⩽ C∥u∥.

To see that A is strictly PD:

⟨Au,u⟩ = B[u,u] ⩾ β∥u∥2.

Therefore, by the previous theorem, Au = f has a unique solution u ∶= A−1f satisfying ∥u∥ ⩽ ∥f∥/β. This

completes the proof.
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Chapter 5

Compact Operators on a Hilbert Space

Recall that for a linear operator A ∶ Rn → Rn,

(1) A is injective if and only if A is surjective;

(2) dimker(A) = dim(R(A)⊥);

(3) If A is symmetric, its eigenvalues are real, and the space Rn admits an orthonormal basis consisting of the

eigenvectors.

The goal is to generalize these results to λ ∶H →H where H is an infinite-dimensional Hilbert space.

We will show that

(1) remains valid with the assumption that λ = I −K where K is compact; and

(2) can be extended to any compact, self-adjoint operator λ ∶H →H.

Beginning of Oct.20, 2021

5.1 Fredholm Theory

Unless otherwise specified, let H be a Hilbert space.

Recall that K ∶H →H is compact if, for all bounded sequence of points {un} ⊂H, there exists a subsequence {unj}
such that Kunj converges in H.

Theorem 5.1.1: (Fredholm)

Let H be over R. Let K ∶H →H be a compact linear operator. Then

(1) ker(I −K) is finite dimensional.

(2) Range(I −K) is closed.

(3) Range(I −K) = ker(I −K∗)⊥ where K∗ is the adjoint operator.
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(4) ker(I −K) = {0} if and only if Range(I −K) =H.

(5) ker(I −K) and ker(I −K∗) have the same dimension.

Proof.

(1) Suppose for contradiction that ker(I −K) is infinite dimensional. Then there exists an orthonormal se-

quence {en}n⩾1 ∈ ker(I −K) such that Ken = en for all n (since (I −K)en = 0). In particular, for m ≠ n,

∥em−en∥ =
√
2, so ∥Kem−Ken∥ = ∥em−en∥ =

√
2. This contradicts the compactness of K, as {Ken} admits

no convergent subsequence.

(2) Claim 1. There exists a constant β > 0 such that

∥(I −K)u∥ = ∥u −Ku∥ ⩾ β∥u∥ for all u ∈ ker(I −K)⊥.

Proof. Suppose the claim does not hold, then there exists a sequence {un} ⊂ ker(I −K)⊥ such that ∥un∥ = 1
but

∥un −Kun∥ <
∥u∥
n
.

Since {un} is bounded, there exists a subsequence {unj
} converging weakly to some u, i.e., unj

⇀ u. Since

K is compact, this implies Kunj →Ku strongly. Thus

∥unj −Ku∥ ⩽ ∥unj −Kunj∥ + ∥Kunj −Ku∥

< 1

nj
+ ∥Kunj −Ku∥→ 0.

Therefore unj converges strongly to Ku. Recall that unj also has a weak limit u. By uniqueness we have

u = Ku, i.e., u ∈ ker(I −K) so ∥u∥ = 0. However, u = Ku is also the strong limit of ∥unj∥, a sequence of

elements with norms 1. Contradiction.

Claim 2. Range of I −K is closed.

Proof. Let vn ∈ Range(I −K) and let vn → v for some v ∈H. We need to show that v = u −Ku for some u.

By assumption, for each n, there exists un ∈H such that vn = un −Kun.

Let ũn be the perpendicular projection of un onto ker(I −K) and let zn ∶= un − ũn (so it’s in ker(I −K)⊥).

Notice that

vn = (I −K)un = (I −K)(ũn + zn) = (I −K)zn = zn −Kzn.

By claim 1, there exists β > 0 such that

∥zn −Kzn∥ ⩾ β∥zn∥.

Therefore,

∥vm − vn∥ ⩾ β∥zm − zn∥.

Since {vn} is Cauchy, this implies {zn} is Cauchy. Therefore there exists u ∈H such that zn → u. Thus,

u −Ku = lim
n→∞
(zn −Kzn) = lim

n→∞
vn = v.

This shows v ∈ Range(I −K), as claimed.
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(3) Note that by (2), Range(I−K) and ker(I−K∗)⊥ are both closed, so it suffices to show that Range(I−K)⊥ =
ker(I −K∗).

Indeed,

x ∈ ker(I −K∗) ⇐⇒ x −K∗x = 0

⇐⇒ ⟨y, (I −K∗)x⟩ = 0 for all y ∈H

⇐⇒ ((I −K)y, x) = 0 for all y ∈H

⇐⇒ x ∈ Range(I −K)⊥.

(4) For⇒, assume ker(I −K) = {0}, i.e., I −K is injective. Suppose I −K is not surjective, so H1 ∶= (I −K)(H)
is a strict subspace of H. By (2), H1 is closed in H. Since I −K is injective, if we let H2 ∶= (I −K)H1,

we have H2 ⊊ H1 again. Inductively we define Hn ∶= (I −K)nH and obtain a strictly nested sequence of

closed subspaces H ⊃H1 ⊃H2 ⊃ ....

Thus, for each n ⩾ 1, we can choose en ∈Hn ∩H⊥n+1 with ∥en∥ = 1. Note that for m < n,

Kem −Ken =Kem − em + em − en + en −Ken

= em + zm

where

zn ∶=KKem − em
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hm+1

+ en
∈̄Hn

− Ken − en
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Hn+1⊂Hm+1

so zm ∈Hm+1. Since em ∈H⊥m+1, by Pythagorean theorem,

∥Kem −Ken∥2 = ∥em∥2 + ∥zm∥2 Ô⇒ ∥Kem −Ken∥ ⩾ ∥em∥.

Therefore the sequence {Ken} does not admit any convergent subsequence, contradiction. Hence I −K
must be surjective.

Conversely for⇐, suppose Range(I −K) = H. Then by (3) ker(I −K∗) = R(I −K)⊥ = H⊥ = {0}. Since K

compact implies K∗ compact, by the previous direction, Range(I −K∗) =H. Now,

ker(I −K) = Range(I −K∗)⊥ = {0}.

Beginning of Oct.22, 2021

(5) We first show that dim(ker(I −K)) ⩾ dim(Range(I −K)⊥).

Suppose this is not true; that is, dim(ker(I − K)) < dim(Range(I − K)⊥). We know the LHS is finite

dimensional, so there exists a linear map A ∶ ker(I − K) → Range(I − K)⊥ which is injective but not

surjective. We can also extend A to a linear map defined on all of H, i.e., A ∶ H → Range(I −K)⊥ by

setting Au ∶= 0 for all u ∈ ker(I −K)⊥. Since Range(A) is finite dimensional, A is indeed compact by Riesz’s

lemma. Therefore K +A is compact.
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Claim: ker(I − (K +A)) = {0}. To see this, for any u ∈ H, we can write u = u1 + u2 where u1 ∈ ker(I −K)
and u2 ∈ ker(I −K)⊥. Then

(I − (K +A))u = (I − (K +A))(u1 + u2)

= −Au1
²

∈Range(I−K)⊥

+ (I −K)u2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Range(I−K)

,

so u ∈ ker(I − (K +A)) if and only if both Au1 and (I −K)u2 = 0, that is, u2 ∈ ker(I −K), so u2 is in both

ker(I −K) and ker(I −K)⊥, i.e., u2 = 0. Also, by assumpgion u1 ∈ ker(I −K), but then Au1 = 0 implies

u1 = 0 since A is injective on ker(I −K). Hence ker(I − (K +A)) = {0}.

Applying (4) to the compact operator K +A, we have Range(I − (K +A)) =H.

On the other hand, by construction A is not surjective, so there exists v ∈ Range(I −K)⊥ which is not in

Range(A). In particular,

(I − (K +A))u = u −Ku −Au = v

has no solution: decomposing u = u1 + u2 as above, there is no Au1 to account for the result v. Contradic-

tion. Hence dim(ker(I −K)) ⩾ dim(Range(I −K)⊥).

Also, by (3), dim(ker(I −K)) ⩾ dim(Range(I −K)⊥) = dim(ker(I −K∗)). Changing the roles of K and K∗,

we obtain the other direction of the inequality. This completes the proof.

Fredholm Alternative

Consider the linear equation u −Ku = f where K is a compact operator on H.

Notice that u −Ku can be written as (I −K)u, so this equation can be solved exactly when f ∈ Range(I −K).

Recall that ker(I −K) is finite dimensional.

Case 1. ker(I −K) = {0}, so that I −K is injective and moreover surjective by (4) above. Therefore, for each f ,

there will be a u satisfying the equation.

Case 2. ker(I −K) is nontrivial but finite dimensional. This means that the homogeneous equation (I −K)u = 0
has nontrivial solutions. In this case, by (3), Range(I −K) is orthogonal to ker(I −K∗). That is, the equation has

a solution if and only if f ∈ ker(I −K∗)⊥, i.e., ⟨f, u⟩ = 0 for all u ∈ ker(I −K∗), i.e., ⟨f, u⟩ = 0 for all u ∈ H such that

u −K∗u = 0.

5.2 Spectrum of a Compact Operator

Let Λ ∶H →H be a bounded linear operator, not necessarily compact.

Definition 5.2.1: Resolvent, spectrum, & point spectrum

The resolvent set of Λ is ρ(Λ) ∶ {λ ∈ R ∶ λI − Λ is bijective}. In this case, by the OMT, the inverse operator

(λI −Λ)−1 is continuous.
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The spectrum of Λ is defined to be σ(Λ) ∶= R − ρ(Λ) [here − denotes set-theoretic minus], i.e., if x ∈ ρ(Λ)
then xI −Λ either fails to be injective or surjective (or both).

The point spectrum of Λ is defined to be

σp(Λ) ∶= {λ ∈ R ∶ λI −Λ is not injective},

i.e., if λ ∈ σp(Λ) then there exist nonzero w ∈H such that Λw = λw. In this case λ is called an eigenvalue of

Λ and w is the associated eigenvector.

The essential spectrum of Λ is

σe(Λ) ∶= σ(Λ) − σp(Λ),

i.e., the set of λ ∈ R such that λI −Λ is injective but not surjective.

Example 5.2.2. Consider H ∶= ℓ2 and the right shift operatorΛ ∶ ℓ2 → ℓ2 defined by

(x1, x2, x3, ...)↦ (0, x1, x2, ...).

As shown before, Λ is bounded with norm 1. Clearly Λ is injective but not surjective. By our definition,

0 ⋅ I −Λ = −Λ is injective but not onto, so 0 ∈ σ(Λ), 0 ∈ σe(Λ), but 0 ∉ σp(Λ), i.e., 0 is not an eigenvector.

Remark. If Λ ≠ 0, λI −K can be re-written as λ(I − λ−1K), which connects to Fredholm theory.

Theorem 5.2.3: Spectrum of a compact operator

Let H be infinite dimensional. Let K ∶H →H be compact. Then:

(1) 0 ∈ σ(K),

(2) σ(K) = σp(K) ∪ {0}, and

(3) Either σp(K) is finite or countable, with lim
k→∞

λk = 0 being the only accumulation point.

Beginning of Oct.25, 2021

Proof.

(1) Suppose for contradiction that 0 ∉ σ(K). Then K has a continuous inverse K−1 ∶ H → H. Consider

I =K ○K−1. Since K−1 is continuous and K compact, this tells us I is compact. But this is clearly false, as

in an infinite dimensional space, the closed unit ball is not compact.

(2) Assume λ ∈ σ(K) and λ ≠ 0. We want to show that λ ∈ σp(K). Suppose not, i.e., if ker(λI −K) = {0},
the Fredholm theory implies that Range(λI −K) =H. By the OMT, λI −K is open and therefore admits a

continuous inverse, contradicting the assumption that λ ∈ σ(K).

(3) Claim. For each µ > 0, the space generated by the eigenvectors corresponding to all λk with ∣λk ∣ > µ needs

58



YQL - MATH 580 Notes 5.3 - Self-Adjoint Operators Current file: 10-25.tex

to be finite dimensional.

Proof. Suppose for contradiction that there are infinitely many distinct eigenvalues λk with ∣λk ∣ > µ for

some µ. Then we can take an orthonormal sequence {ek} corresponding to λk of distinct eigenvalues, i.e.,

Kek = λkek. Since K is compact, there exists a subsequence ekj such that Kekj converges. However, for

j ≠ ℓ,
∥λkjekj − λkℓekℓ∥ = ∣λkj ∣

2 + ∣λkℓ ∣
2 > 2µ2 > 0.

Contradiction. Hence the claim is proven.

The claim shows that the eigenvalues of K is at most countable with λk → 0 ass k →∞.

5.3 Self-Adjoint Operators

Let λ ∶H →H be a bounded linear operator on H.

Definition 5.3.1: Symmetric operator

Λ is called symmetric if ⟨Λx, y⟩ = ⟨x,Λy⟩ for all x, y ∈H.

Example 5.3.2. Let A be a symmetric matrix. Then A determines a symmetric linear operator Rn → Rn

defined by a↦ Ax. Also, it gives the quadratic form

x↦ ⟨x,Ax⟩ =
n

∑
i,j=1

ai,jxixj .

Then

M ∶=max
∣x∣=1
⟨x,Ax⟩ m =min

∣x∣=1
⟨x,Ax⟩

gives the largest and smallest eigenvalues of A.

Lemma: Bounds on the spectrum of a symmetric operator

Let Λ ∶ H → H be a bounded linear operator on H. Define M ∶= sup ⟨Λu,u⟩ and m ∶= inf ⟨Λu,u⟩, both taken

over all u ∈H with ∥u∥ = 1. Then

(1) σ(Λ) ⊂ [m,M],

(2) m,M ∈ σ(Λ), and

(3) ∥Λ∥ =max{−m,M}.

Proof.

(1) It suffices to show that the resolvent contains (−∞,m) and (M,∞). To this end, let η > M ; we want to

show ηI −Λ is bijective. Then

⟨(ηI −Λ)u,u⟩ = η ⟨u,u⟩ − ⟨Λu,u⟩ ⩾ (η −M)∥u2∥ for all u ∈H.

59



YQL - MATH 580 Notes 5.3 - Self-Adjoint Operators Current file: 10-27.tex

That is, η −M is a positive operator. By Lax-Milgram ηI − Λ is bijective. By the OMT, it has a continuous

inverse, so (M,∞) ⊂ ρ(Λ), and a similar argument shows (−∞,m) ⊂ ρ(Λ).

(2) Claim. M ∈ σ(Λ).

Proof. We choose a sequence {un} such that ⟨Λun, un⟩ → M , all with ∥un∥ = 1. Then (using result from

(3))

∥Λun −Mun∥2 = ∥Λun∥2 − 2M ⟨Λun, un⟩ +M2∥un∥2

⩽ 2M2 − 2M ⟨Λun, un⟩→ 0.

Therefore Λ −MI cannot have a bounded inverse. Similarly we can show m ∈ σ(A).

(3) We may assume ∣m∣ ⩽M .

Claim. ∥Λu∥ ⩽M∥u∥ for all u ∈H, i.e., ∥Λ∥ ⩽M .

Proof. The polarization identity gives

4 ⟨Λu, v⟩ = ⟨Λ(u + v), u + v⟩ − ⟨Λ(u − v), u − v⟩

⩽M∥u + v∥2 −m∥u − v∥2 ⩽M(∥u + v∥2 + ∥u − v∥2)

= 2M(∥u∥2 + ∥v∥2),

so

⟨Λu, v⟩ ⩽M(∥u∥2 + ∥v∥2).

Let v ∶= ∥u∥
∥Λu∥

Λu (assuming u ≠ 0). Then

2∥u∥
∥Λu∥

⟨Λu,Λu⟩ ⩽M(∥u∥2 + ∥u∥2),

so

∥u∥∥Au∥ ⩽M∥u∥2,

i.e.,

∥Au∥ ⩽M∥u∥ for all u ∈H.

On the other hand,

M ⩾ ∥Λ∥ ⩾ sup
∥u∥=1

⟨Λu,u⟩ =M

by Cauchy-Schwarz, so ∥Λ∥ =M .

Beginning of Oct.27, 2021

Theorem 5.3.3: Hilbert-Schmidt

Let H be a separable Hilbert space, and let K ∶ H → H be a compact symmetric linear operator. Then there

exists a countable orthonormal basis of H consisting of eigenvectors of K.
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Proof. Assume H is finite dimensional. Let λ0 = 0 and let {λ1, λ2, ...} be the set of eigenvalues of K. Define

H0 ∶= kerK and Hn ∶= ker(K − λnI). We know

0 ⩽ dimH0 ⩽∞,

and by Fredholm theory, for all k ⩾ 1,

1 ⩽ dimHk <∞.

Claim 1. For m ⩾ n and m,n ⩾ 1, Hm and Hn are orthogonal.

To see this, let u ∈ Hm and v ∈ Hn. That is, u ∈ ker(K − λmI) so Ku = λmu and similarly Kv = λnv. Since K is

symmetric,

λm ⟨u, v⟩ = ⟨λmu, v⟩ = ⟨Ku, v⟩ = ⟨u,Kv⟩ = ⟨u,λnv⟩ = λn ⟨u, v⟩ .

Since λm ≠ λn we must have ⟨u, v⟩ = 0. Thus Hm ⊥Hn.

Now we define the linear combination of these spaces

H̃ ∶= {
N

∑
k=1

αkuk ∶ N ⩾ 1, αk ∈ R, uk ∈Hk} .

Claim 2. H̃⊥ ⊂ ker(K) =H0.

To see this, notice that the image KH̃ ⊂ H̃ as each K(αkuk) is simply (λkαk)uk, also a scalar product of uk.

Furthermore, if u ∈ H̃⊥ and v ∈ H̃, then Kv ∈ H̃, so

⟨Ku, v⟩ = ⟨u,Kv⟩ = 0.

This shows K(H̃⊥) ⊂ H̃⊥.
Now let K̃ ∶=K ∣

H̃⊥
. Then K̃ ∶ H̃⊥ → H̃⊥ is a compact symmetric operator. By the previous lemma,

∥K̃∥ = sup
ũ∈H̃,∥ũ∥=1

= ∣⟨K̃ũ, ũ⟩∣ ∶=M.

We claim that M = 0. Suppose not, then M or −M ∈ σ(K̃). Call it λ. Since K̃ is compact, nonzero eigenvalues

is in the point spectrum, so there exists w ∈ H̃⊥ such that Kw = K̃w = λw, so λ is also an eigenvalue of K.

This is impossible, as all eigenvectors of K are supposed to be in H̃ by construction. Hence M = 0. Hence

H̃⊥ ⊂ ker(K) =H0.

Now we notice that H⊥0 ∩ H̃⊥ ⊂H⊥0 ∩H0 = {0}. Hence,

span(H0 ∪ H̃)

is dense in H. We know each Hk admits a finite orthonormal basis. The union over all k still admits a countable

basis. Since H is separable, the closed subspace H0 = ker(K) also admits a countable orthonormal basis. Hence

the union over everything is still countable.

Remark. Let {w1,w2, ...} be an orthonormal basis of a real Hilbert space H consisting of eigenvectors of a

linear, compact, symmetric operator K, where λ1, λ2, ... be the corresponding eigenvalues. For ∈ H consider

the equation (I−K)u = u−Ku = f . It follows that if 1 is not in σ(K) then the equation has a unique solution.
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Furthermore, we can let u =
∞
∑
k=1

ckwk and f =
∞
∑
k=1

bkwk for some coefficients {ck},{bk}. Then

ck − λkck = ⟨u,wk⟩ − ⟨u,Kwk⟩ = ⟨u,wk⟩ − ⟨Ku,wk⟩ = ⟨u −Ku,wk⟩ = ⟨f,wk⟩ = bk.

Then ck = bk/(1−λk), and this is well-defined as long as λk ≠ 1, which is guaranteed as 1 ∉ σ(K). Therefore,

u =
∞
∑
k=1

bk
1 − λk

wk =
∞
∑
k=1

⟨f,wk⟩
1 − λak

wk.

With extra assumptions, we are able to construct an explicit solution!

5.4 Application (The Dirichlet Problem for ∆)

Let Ω ⊂ Rn be open, bounded, connected, with ∂Ω smooth. Let g be a smooth function given along ∂Ω. We try to

find a function u satisfying
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆u = 0 in Ω

u = g on ∂Ω
where ∆u ∶=

n

∑
i=1

∂2u

∂x2i
.

We can first consider a smooth extensions of g to Ω. Then ũ = u − g will satisfy

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆ũ = −∆g̃ in Ω

ũ = 0 on ∂Ω.

We are led to study the following Dirichlet problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u = f in Ω

u = 0 on ∂Ω.
(*)

Functional analytic techniques will let us prove the existence of weak solutions to (*), and we will be able to show

that any function f ∈ L2(Ω) will produce a unique (weak) solution u ∈ H1
0(Ω) of (*) (that is, the Paplacian has an

inverse in suitable spaces). We will also show, assuming some extra theorems, that the operator f ↦ u from L2(Ω)
to L2(Ω) is compact and therefore we will obtain the spectrum of the Laplacian. That is, we will see the existence

of a discrete set of λ solving the eigenvalue problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆u + λu = 0 in Ω

u = 0 on ∂Ω.

Beginning of Oct.29, 2021

Weak Solutions

Define C∞0 (Ω) to be {f ∈ C∞(Ω) ∶ suppf ⊂ Ω compact}.

We define two different inner products:

⟨u, v⟩0 ∶= ∫
Ω
u ⋅ v dx
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⟨u, v⟩1 ∶= ∫
Ω
∇u ⋅ ∇v dx

We can check that C∞0 (Ω) is an inner product space under ⟨⋅, ⋅⟩0 or under ⟨⋅, ⋅⟩1. Define ∥u∥20 ∶= ⟨u,u⟩0 and ∥u∥21 ∶=
⟨u,u⟩1.

Lemma: Poincaré’s Inequality

For all u ∈ C∞0 (Ω), ∥u∥0 ⩽ d∥u∥1 where d is the diameter of Ω.

Proof. Since u∣
∂Ω
= 0, at any point x ∈ Ω, we have by FTC

u(x) = ∫
x

xb
∂x1u dx1

where xb ∈ ∂Ω and all but the first component of xb agrees with that of x. Then, by Hölder’s inequality,

u2(x) = (∫
x

xb
1 ⋅ ∂x1u dx̃1)

2

⩽ d ⋅ (∫
x

xb
∣∂x1u∣2 dx̃1) .

Integrating over Ω gives

∫
Ω
u2 dx ⩽ d∫

Ω
(∫

x1

xb
∣∂x1u∣2 dx̃) dx1⋯dxn ⩽ d2 ∫

Ω
∣∇u∣2 dx.

Definition 5.4.1: H1
0(Ω)

We define H1
0(Ω) to be the completion of C∞0 (Ω) with respect to ∥ ⋅ ∥1. This is a Hilbert space.

Lemma

Each u ∈H1
0(Ω) belongs to L2(Ω) and has partial derivatives uj ∈ L2(Ω). Furthermore,

⟨v, uj⟩0 = − ⟨∂v/∂xj , u⟩0 for all v ∈ C∞0 (Ω).

Moreover,

⟨u, v⟩1 = ∫
Ω

n

∑
j=1

ujvj dx for all v, u ∈H1
0(Ω).

Proof. Let {un} be a sequence in C∞0 (Ω) converging to u in ∥ ⋅ ∥1. Then, ∂un/∂xj converges in ∥ ⋅ ∥0 to a limit

which we call uj . By Poincaré’s inequality, ∂un/∂xj converges in L2 as well, which we identify with the limit

u ∈H1
0 . For a fixed n,

⟨v, ∂un/∂xj⟩0 = ∫
Ω
v
∂un
∂xj

dx

[IBP] = −∫
Ω

∂v

∂xj
un dx = ⟨∂v/∂xj , un⟩0 .

Taking n→∞, we see that

⟨v, uj⟩0 = − ⟨∂v/∂xj , u⟩0 .
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Remark. uj is called a weak partial derivative of u. It is in some sense a partial derivative, but sometimes

it is not as nice as a usual partial derivative is. It just needs to satisfy the equalities in the previous lemma.

Definition 5.4.2: Weak solution

We call u ∈H1
0(Ω) a weak solution to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u = f in Ω

u = 0 on ∂Ω
(*)

if

⟨u, v⟩1 = ∫
Ω
fv dx for all v ∈H1

0(Ω).

Theorem 5.4.3

Given f ∈ L2(Ω), there exists a unique weak solution u ∈H1
0(Ω) of (*). The weak solution satisfies

∥u∥21 = ∫
Ω
∣∇u∣2 dx ⩽ d2 ∫

Ω
f2 dx.

Proof. For any f ∈ L2(Ω), define a linear function

φ ∶ v ↦ ∫
Ω
fv dx on H1

0(Ω).

In other words, φ(v) ∶= ⟨f, v⟩0. Then Hölder’s inequality and Poincaré’s inequality give

∣φ(v)∣ ⩽ ∥f∥0∥v∥0 ⩽ d∥f∥0∥v∥1.

That is, φ is a bounded linear functional on H1
0(Ω). Therefore, by the Riesz RT, the functional φ(v) = ⟨f, v⟩0 can

be represented as an inner product on H1
0(Ω). That is, there exists a unique element u ∈H1

0(Ω) such that

⟨f, v⟩0 = ⟨u, v⟩1 for all v ∈H1
0(Ω).

Now we choose v = u so that (again by Hölder and Poincaré)

∥u∥21 =
n

∑
j=1
∫
Ω
∣uj ∣2 dx = ∫

Ω
fu dx ⩽ ∥f∥0∥u∥0 ⩽ d∥f∥0∥u∥1.

This shows

∥u∥1 ⩽ d∥f∥0.

Now we have shown that under suitable situations, we have obtained a (linear) map Φ ∶ L2(Ω) → H1
0(Ω) defined

by f ↦ u, where u is informally (−∆)−1f . We write u = Φ(f).

Notice that H1
0(Ω) ⊂ L2(Ω), so there exists an embedding map i: H1

0(Ω)
i↪ L2(Ω) so we end up getting Φ ∶ L2(Ω)→

H1
0(Ω)↪ L2(Ω).
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Proposition 5.4.4

Φ ∶ L2(Ω)→ L2(Ω) defined above is a compact, symmetric, positive operator.

Beginning of Nov.1, 2021

Proof. Note Φ is symmetric. If we let Φf = u and Φg = v then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u = f in Ω

u = 0 on ∂Ω
and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆v = g in Ω

v = 0 on Ω.

It follows that

⟨Φf, g⟩0 = ⟨u, g⟩0 = ∫ ug dx = ∫ ∇u∇v dx = ⟨u, v⟩1

and

⟨f,Φg⟩0 = ⟨f, v⟩0 = ∫ fv dx = ∫ ∇u∇v dx = ⟨u, v⟩1 .

Also, Φ is positive because ⟨Φf, f⟩0 = ⟨u, f⟩0 = ⟨u,u⟩1 ⩾ 0.

Finally, to show Φ ∶ L2(Ω) → L2(Ω) compact, it suffices to show that the embedding i ∶ H1
0(Ω) ↪ L2(Ω) is

compact. Rellich’s compactness theorem states that if a sequence {un} in H1
0(Ω) is satisfies ∥un∥H1

0 (Ω) ⩽ c then there

exists a subsequence {unj} converging strongly in L2(Ω).

Remark. The existence theory and the compactness of Φ can be extended to all second order elliptic

operators with Dirichlet boundary conditions.

Remark. By the spectral theorem, Φ has an orthonormal basis of eigenfunctions ek with positive eigenval-

ues αk:

Φ(ek) = αkek.

Furthermore, since αk ↓ 0, we have

−∆(Φ(ek)) = −∆αkek Ô⇒
1

α
ek = (−∆)(ek).

In some sense, the ek ’s are the eigenfunctions of −∆ and the corresponding eigenvalues are 1/αk ’s.

Furthermore, as αk ↓ 0, λk ∶= 1/αk → ∞, so there exists a corresponding orthonormal basis {ek} of L2(Ω)
such that

−∆ek =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λkek in Ω

ek = 0 on ∂Ω.
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More on the Eigenvalues

(1) Weyl’s law; in Rn, for eigenvalues λk of −∆ with zero boundary condition,

lim
k→∞

λ
n/2
k /k =

(2π)n

vol(Ω)α(n)

where α(n) is the column of the unit ball in Rn.

(2) λ1 > 0, called the principle value, is defined by

λ1 =min{⟨u,u⟩1}

subject to u ∈H1
0(Ω) and ∥u∥L2(Ω) = 1.The minimum is attained for e1 > 0 in Ω solving

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆e1 = λ1e1 in Ω

e1 = 0 on ∂Ω.

Moreover, if u ∈H1
0(Ω) is any weak solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∆u = λ1u in Ω

u = 0 on ∂Ω

then u must be a multiple of e1. Also,

λ1 =min
⟨u,u⟩1
⟨u,u⟩0

subject to u ∈H1
0(Ω) and u ≠ 0.
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Chapter 6

Semigroups of Linear Operators

6.1 ODEs in a Banach Space

Let X be Banach and let F ∶X →X be Lipschitz, i.e., for some L ∈ R and all x, y ∈X,

∥F (x) − F (y)∥ ⩽ L∥x − y∥.

Consider the Cauchy problem
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) ∶= dx/dt = F (x(t))

x(0) = x0 ∈X.
(*)

Theorem 6.1.1: Existence and Uniqueness of (*)

Let F be defined as above. Then for every x0 ∈ X, the Cauchy problem admits a unique solution t ↦ x(t)
defined for all t.

Beginning of Nov.3 2021

Proof. Fix any T > 0. Consider the Banach space C([O,T ];X) defined by the collection of w ∶ [0, T ] → X

continuous. Define the norm on this space by

∥w∥ ∶= max
0⩽t⩽T

e−2Lt∥w(t)∥X . (1)

Notice that a function x ∶ [0, T ]→X will be a solution to (*) if and only if x is a fixed point of the Picard operator

x(t) − x(0) = ∫
t

0
F (w(s)) ds

or

[Φ(w)](t) ∶= x0 + ∫
t

0
F (w(s)) ds ≡ w(t).

By the contraction mapping theorem, it suffices to show that Φ is a strong contraction with respect to the norm

defined in (1). To this end, let u, v ∈ C([0, T ];X) and δ = ∥u − v∥. That is,

e−Ls∥u(s) − v(s)∥X ⩽ ∥u − v∥ = δ for all s ∈ [0, T ],
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so

∥u(s) − v(s)∥X ⩽ e2Lsδ.

For each fixed t ∈ [0, T ],

e−2Lt∥[Φ(u)](t) − [Φ(v)](t)∥ = e−2Lt∥∫
t

0
F (u(s)) − F (v(s)) ds∥

⩽ e−2Lt ∫
t

0
∥F (u(s)) − F (v(s))∥ ds

[Lipschitz] ⩽ e−2Lt ∫
t

0
L∥u(s) − v(s)∥X ds

⩽ e−2Lt ∫
t

0
Le2Lsδ ds

= e−2Lt ⋅ δ
2
e2Ls = δ

2
.

This shows that Φ is a strong contraction with contraction constant ⩽ 1/2, i.e.,

∥[Φ(u)](x) − [Φ(v)](x)∥ ⩽ ∥u(x) − v(x)∥
2

.

The claim then follows from the contraction mapping theorem. By revering time, one can construct a unique

solution on any time interval [−T,0] as well.

Two Methods for Constructing Approximate Solutions to (*)

We fix a time step h > 0 and discretize time by defining tj ∶= jh for j ∈ N.

The forward Euler approximation is given by

x(tj+1) = x(tj) + hF (x(tj)),

and the backward Euler approximation is given by

x(tj+1) = x(tj) + hF (x(tj+1)).

In both cases, once the values x(tj) have been computed on the discrete set {tj}, one can extend the approximate

solution to all real values of t ⩾ 0 by letting t↦ x(t) be a linear/affine function.

To construct the forward approximation: we let ẋ(t) to be constant on [tj , tj+1] taking value of F (x(tj)),

ẋ(t) = F (x(tj)), t ∈ [tj , tj+1]

To construct the backward approximation: given x(tj), to find x(tj+1), one needs to solve the implicit equation

x(tj+1) = x(tj) + hF (x(tj+1)).

This clearly involves more computational effort, but often times it has a much better outcome in terms of accuracy,

stability, and convergence properties.

Linear Homogeneous ODEs

Let A ∶ Rn → Rn be linear. Then by the theorem above,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = Ax

x(0) = x0
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admits a solution map t↦ etAx0 where

etA ∶=
∞
∑
k=0

tkAk

k!
.

(Note that this series is absolutely convergent whenever A is bounded so it’s well-defined.) Moreover, the exponen-

tial map satisfies

(1) e0A = I,

(2) esAetA = e(s+t)A (semigroup property), and

(3) for each x0 ∈X, themap t↦ etAx0 is continuous.

By (1) and (2), the family {etA ∶ t ⩾ 0} is a “group” of linear operators. In general, the theory of linear semigroups

give the correspondence between A and {etA ∶ t ⩾ 0}:

(1) When A is a bounded linear operator, its exponential map is computed by the series above.

(2) Conversely, given a family of etA, we can recover A as the limit

A = lim
t→0+

etA − I
t

.

Question. Why do we care about {etA}?

Ans. Sometimes etA is bounded for all t ⩾ 0 whereas A might be unbounded. In these cases, semigroup theory is

useful.

Example 6.1.2.

(1) If A ∶ Rn → Rn is diagonal with diagonal entries λ1, ..., λn, then etA = diag(etλ1 , ..., etλn). Then

∥A∥ =max∣λk ∣ and ∥etA∥ =max∣etλk ∣.

(2) Consider X = ℓ1 with ∥x∥1 = ∑∣xk ∣. Given any sequence of complex numbers {λk}, consider the linear

operator

Ax ∶= {λjxj}j⩾1.

Then

etAx = {etλjxj}j⩾1.

The norms are given by ∥A∥ = sup∣λk ∣ (may be infinite) whereas

∥etA∥ = sup∣etλk ∣

which is bounded!

Beginning of Nov.5, 2021
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6.2 Semigroups of Linear Operators

Again, consider
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
u(t) = Au(t)

u(0) = u0 ∈X

where we want to express the solution as u(t) = etAu0 for some family of linear operators {etA ∶ t ⩾ 0}.

Example 6.2.1. Consider ut −ux = 0. We write
du

dt
= Au where A can be thought as a differential operator.

Take X ∶= Lp(R) for some p ∈ [1,∞). Clearly A is unbounded. Its domain is the set of absolutely continuous

functions u ∈ Lp(R) with derivative ux ∈ Lp(R).
On the other hand, for all u0 ∈ Lp(R), the solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut − ux = 0

u(0, x) = u0(x)

can be explicitly computed: u(t, x) = (etAu0)(x) ∶= u0(x + t), t ∈ R. This implies that although A is un-

bounded, the corresponding exponential operator etA (the solution operator) is uniformly bounded.

We are interested in two types of questions:

(1) Given a semigroup of linear operators {St ∶ t ⩾ 0}, find the generator, an operator A such that St = etA.

(2) Given a linear operator A, examine whether it generates a semigroup {etA ∶ t ⩾ 0} and establish the properties

of this semigroup.

Definition 6.2.2: Semigroup

Let X be Banach. A controngly continuous semigroup of linear operators on X is a family of linear maps

{St ∶ t ⩾ 0} with the following properties:

(1) each St ∶X →X is a bounded linear operator;

(2) for all t, s ⩾ 0, the composition satisfies St ○ Ss = St+s and in particular S0 = I (identity operator);

(3) for all u ∈X, the map t↦ Stu is continuous from [0,∞)→X.

We say that {St ∶ t ⩾ 0} is a semigroup of type ω if it in addition satisfies

∥St∥ ⩽ etω for all t ⩾ 0.

In particular, when ω = 0, a semigroup of type 0 is also called a contractive semigroup (∥St∥ ⩽ 1 uniformly):

∥Stu − Stv∥ ⩽ ∥u − v∥ for all u, v ∈X, t ⩾ 0.
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Definition 6.2.3: Generator

The linear operator (it is an operator)

Au ∶= lim
t↓0

Stu − u
t

is called the generator of the semigroup {St ∶ t ⩾ 0}. The domain of A is

{u ∈X ∶ the limit above exists}.

For a given u0 ∈X, we regard the map t↦ Stu0 as the solution to the linear differential equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du

dt
(t) = Au(t)

u(0) = u0 ∈X.
(1)

In this way, we are approaching the problem “backwards”, i.e., given the solution u(t) = Stu0, we reconstruct the

evolution equation, finding the operator A.

Theorem 6.2.4

Let {St ∶ t ⩾ 0} be a strongly continuous semigroup with generator A. Assume u0 ∈D(A). Then,

(1) for all t ⩾ 0, Stu0 ∈D(A) and AStu0 = StAu0;

(2) the map t↦ u(t) ∶= Stu0 is continuous differentiable and it gives a solution to (1) above.

Proof.

(1) Since u0 ∈D(A), the limit of (Stu − u)/t as t ↓ 0 exists (and equals Au0). Then,

lim
s↓0

SsStu0 − Stu0
s

= lim
s↓0

St+su0 − Stu0
s

= lim
s↓0

StSsu0 − Stu0
s

= lim
s↓0

St[Ssu0 − u0]
s

= St lim
s↓0

Ssu0 − u0
s

= StAu0.

Therefore, Stu0 ∈D(A) and AStu0 = StAu0.

(2) Let Stu0 ∈D(A) and t > 0. By semigroup property,

lim
h↓0
[Stu0 − St−hu0

h
− StAu0] = lim

h↓0
[St−h (

Shu0 − u0
h

) − StAu0]

= lim
h↓0
[St−h (

Shu0 − u0
h

−Au0) + St−hAu0 − StAu0] .

Since u0 ∈D(A), the parenthesized term → 0. The other two terms also → 0 by continuity. Hence t↦ Stu0

has a left continuity. Furthermore,

lim
h↓0

Stu0 − St−hu0
h

= StAu0.

Right derivative is easy to compute:

lim
h↓0

St+hu0 − Stu0
h

= St lim
h↓0

Sh(u0) − u0
h

= StAu0.

Therefore, for all t > 0, the map t↦ Stu0 is differentiable with derivative

d

dt
Stu0 = StAu0 = AStu0.
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Since Au0 ∈X, by definition the map t↦ StAu0 is continuous.

Recall that a linear operator A ∶X →X is closed if its graph

Graph(A) ∶= {(x, y) ∈X ×X ∶ x ∈D(A), y = Ax}

is closed in X ×X.

Theorem 6.2.5: Properties of Generators

Let {St ∶ t ⩾ 0} be a strongly continuous semigroup on X and let A be its generator. Then

(1) D(A) is dense in X,

(2) A is closed.

Beginning of Nov.8,2021

Proof.

(1) Fix u ∈X. Consider the approximation

uϵ ∶=
1

ϵ
∫

ϵ

0
Sϵu ds.

This converges to S0u = u as ϵ ↓ 0 since the map t ↦ Stu is continuous by assumption. It suffices to show

that uϵ ∈D(A) for all ϵ > 0. Since D(A) is a subspace, it further suffices to show that ϵuϵ (i.e., the integral)

is in D(A). For 0 < h < ϵ,
Shuϵ − uϵ

h
= 1

h
[Sh (∫

ϵ

0
Ssu ds) − ∫

ϵ

0
Ssu ds]

= 1

h
∫

ϵ

0
(Sh+su − Ssu) ds

[s̃ ∶= s + h] = 1

h
[∫

h+ϵ

h
Ss̃u ds̃ − ∫

ϵ

0
Ssu ds]

= 1

h
[∫

h+ϵ

ϵ
Ssu ds − ∫

h

0
Ssu ds] .

As h→ 0, the above converges to Sϵu − S0u = Sϵu − u. Therefore, uϵ ∈D(A) for all ϵ > 0.

(2) Let (uk, vk) ∈ Graph(A) be such that (uk, vk) → (u, v) ∈ X × X. In other words, uk ∈ D(A), uk → u,

vk = Auk, and vk → v.

Recall that t↦ Stuk is continuously differentiable. Therefore, for each k ⩾ 1,

Shuk − uk = ∫
h

0

d

dt
(Stuk) dt = ∫

h

0
AStuk dt = ∫

h

0
StAuk dt.

Letting k →∞,

Sh − u = ∫
h

0
Stv dt.

Therefore,

lim
h↓0

Shu − u
h

= lim
h↓0

1

h
∫

h

0
Stv dt = v.

Therefore u ∈D(A), with v = Au.
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6.3 Resolvents

Suppose we want to approximate a solution to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du(t)
dt

= Au(t)

u(0) = u0 ∈X

by backward Euler approximation. That is, we fix a time step h > 0 and iteratively solve

u(t + h) = u(t) + hAu(t + h).

At each step, given a value u(t) ∈X, we need to compute

u(t + h) = (I − hA)−1u(t).

Define the backward Euler approximation operator Eh ∶= (I − hA)−1.

For a fixed time τ > 0, consider the times step h ∶= τ/n. After n steps, the backward approximation

u(τ) ≈ (Eτ/n)n(u0) = (I − τA/n)−n(u0)

For a fixed τ , letting n→∞, we have

u(τ) = Sτ(u0) ∶= lim
n→∞
(I − τA/n)nu0 = eτA(u0).

This gives one way to implement the backward Euler approximation.

More abstractly, for a fixed time step h > 0, define λ = 1/n. Define Aλ ∶ X → X as Aλu = AE−1h u = A(I − hA)−1u. It

turns out Aλ = A1/n is a well-defined bounded linear operator for sufficiently small h. Then we can consider

etAλ = ∑
k⩾0

(tAλ)k

k!

and then define

u(t) ∶= Stu = lim
λ→∞

etAλu0.

Example 6.3.1. Consider the scalar ODE

ẋ = ax x(0) = x0

which clearly has the solution etax0. In this case aλ = a1/n = a/(1 − ha), and indeed

lim
h→0

eta1/nx0 = lim
h→0

eta/(1−ha)x0 = eatx0.

Note that for 0 < h < 1/a, ∫
∞

0

e−t/h

h
dt = 1 and (1 − ha)−1x0 = ∫

∞

0

e−t/h

h
⋅ etax0 dt. The latter suggests that

the backward approximation operator can be obtained by taking some kind of weighted average.
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Definition 6.3.2: Resolvent Operator

Let A be a linear operator on a Banach space X. Recall that the resolvent set of A is the set ρ(A) of all real

numbers λ such that λI − A ∶ D(A) → X is bijective. If λ ∈ ρ(A), the resolvent operator Rλ ∶ X → X is

defined by

Rλu = (λI −A)−1u.

Beginning of Nov.10, 2021

Remark. This implies λRλ = E1/λ. In particular, if A is a closed operator, then the CGT implies Rλ is

continuous. Moreover, ARλu = RλAu for u ∈D(A):

v = Rλu = (λI −A)−1u Ô⇒ (λI −A)v = u

Ô⇒ RλAu = RλA(λI −A)v = Rλ(λA −A2)v = Av = ARλu.

Theorem 6.3.3

Let A be a closed linear operator. If λ,µ ∈ ρ(A), then

Rλ −Rµ = (µ − λ)RλRµ.

Furthermore, Rλ commutes with Ru.

Proof. Let u ∈X be given. Let v ∶= (Rλ −Rµ)u = (λI −A)−1u − (µI −A)−1u. Then,

(λI −A)v = u − (λI − µI + µI −A)(µI −A)−1u

= u − u + (µ − λ)(µI −A)−1u.

Therefore,

v = (µ − λ)(λI −A)(µI −A)−1u = (µ − λ)RλRµu.

On the other hand,

RλRµ =
Rλ −Rµ
µ − λ

=
Rµ −Rλ
λ − µ

= RµRλ.

Theorem 6.3.4: Integral Formula for the Resolvent Operator

Let {St ∶ t ⩾ 0} be a semigroup of type ω and let A be its generator. Then for every λ > ω, we have λ ∈ ρ(A).
Moreover,

Rλu = ∫
∞

0
e−tλStu dt

and ∥Rλ∥ ⩽ 1/(λ − ω).
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Proof. Define another operator R̃λu ∶= ∫
∞

0
e−tλStu dt. Recall ∥St∥ ⩽ etw. Therefore R̃λu is absolutely convergent:

∥R̃λu∥ ⩽ ∫
∞

0
e−tλ∥Stu∥ dt ⩽ ∫

∞

0
e−tλ∥St∥∥u∥ dt ⩽ ∫

∞

0
e−t(λ−w)∥u∥ dt = ∥u∥

λ − ω

so ∥R̃λ∥ ⩽ 1/(λ − ω). It remains to show verify that R̃λ = Rλ.

Claim 1: (λI −A)R̃λ = u for all u ∈X.

To compute Au, we use the definition and consider the difference quotient:

ShR̃λu − R̃λu
h

= 1

h
∫
∞

0
e−λt(St+hu − Stu) dt

[t̃ ∶= t + h] = 1

h
[∫

∞

h
e−λ(t−h)Stu dt − ∫

∞

0
e−λrStu dt]

= ∫
∞

0
(e−λ(t−h) − e−λt)Stu dt − 1

h
∫

h

0
e−λ(t−h)Stu dt

= e
λh − 1
h

[∫
∞

0
e−λtStu dt] − e

λh

h
∫

h

0
e−λtStu dt.

Take h ↓ 0,

lim
h↓0

ShR̃λu − R̃λu
h

= λR̃λu − 1 ⋅ S0u = λR̃λu − u.

Therefore, R̃λu ∈D(A) and AR̃λu = λR̃λu − u. Rearranging the terms gives the claim.

Now, by claim 1, u↦ (λI −A)u from D(A)→X is surjective. It remains to show that it’s injective. Note that

AR̃λu = A∫
∞

−
e−λtStu du = ∫

∞

0
e−λtAS − tu dt

= ∫
∞

0
e−λtSt(Au) dt = R̃λAu.

Then,

R̃λ(λI −A)u = (λI −A)R̃λu for all u ∈D(A).

If (λI −A)u = (λI −A)v, then

u = R̃λ(λI −A)u = R̃λ(λI −A)v = v.

This finishes the proof, as λ ∈ ρ(A) and

R̃λ = (λI −A)−1 = Rλ.

Remark. Integral representation implies that the resolvent operators Rλ provide the Laplace transform[!]

of the semigroup St. Taking 0 < h < 1/λ, the same formula shows that the backward Euler approximation

can be obtained as

Ehu = (I − hA)−1u = ∫
∞

0
e−t/hh−1Stu dt,

which is convergent for sufficiently (< 1/ω) h. We will show that the converse is also true in next section.
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6.4 Generation of a Semigroup

Theorem 6.4.1: Existence of the Semigroup Generated by a Linear Operator

Let A be a linear operator on X. TFAE:

(1) A is the generator of a semigroup of linear operators {St ∶ t ⩾ 0} of type ω;

(2) A is a closed, densely defined defined operator. Moreover, every real number λ > ω is in the resolvent

set ρ(A). Moreover, ∥(λI −A)−1∥ ⩽ 1/(λ − ω) for all λ > ω.

((1)⇒ (2) has been proven already; it remains to show the converse.)

Beginning of Nov.12, 2021

Proof. Since Rλ ∶= (λI −A)−1 is well-defined for λ > ω, we can consider the bounded linear operator

Aλ ∶ = −λI + λ2Rλ

= λ(−I + λRλ)

= λ(−(λI −A)Rλ + λIRλ)

= λ(−λI +A + λI)Rλ = λARλ.

Setting h = 1/λ, we have

Aλu = A(I − hA)−1 = A(E−1n u)

Since Aλ is bounded, we can consider the exponential operator

etAλ ∶=
∞
∑
k=0

(tAλ)k

k!
= e−λteλ

2tRλ = e−λt
∞
∑
k=0

(λ2t)kRkλ
k!

.

If A is unbounded then ∥Aλ∥→∞ as λ→∞ but ∥etAλ∥ remain uniformly bounded for t > 0:

∥etAλ∥ ⩽ e−λt
∞
∑
k=0

(λ2t)k∥Rλ∥k

k!
⩽ e−λteλ

2t/(λ−ω).

In particular, for λ ⩾ 2ω, ∥etA−λ∥ ⩽ e2ωt.

Now, we claim that lim
λ→∞

Aλv = Av for all v ∈D(A) so that Aλ “tends to” A.

Note that λRλu − u = ARλu = RλAu for all u ∈D(A). This implies

∥λRλu − u∥ = ∥RλAu∥ ⩽ ∥Rλ∥∥Au

⩽ 1

λ − ω
∥Au∥→ 0

for u fixed and as λ → ∞. Since A is densely defined, for each u ∈ X and ϵ > 0, there exists v ∈ D(A) with

∥u − v∥ < ϵ. Then

lim sup
λ→∞

∥λRλu − u∥ = lim sup
λ→∞

∥λRλu − λRλv∥ + lim sup
λ→∞

∥λRλv − v∥ + ∥v − u∥

< lim sup
λ→∞

∥λRλu − λRλu∥ + 0 + ϵ

⩽ ∥λRλ∥∥u − v∥ + ϵ ⩽ lim sup
λ→∞

λ

λ − ω
ϵ + ϵ = 2ϵ.
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Hence lim
h↓0

Ehu = u for all u ∈X. If v ∈D(A), then we can take u ∶= Av and

lim
λ→∞

Aλv = lim
λ→∞

λARλv = lim
λ→∞

λRλAv = lim
λ→∞

λRλu = u = Av.

Finally, we verify that etAλ is our candidate for the generator, i.e., etAλ converges to some linear operator as

λ→∞. Since RλRµ = RµRλ, we have AλAµ = AµAλ. Then,

Aµe
tAλ = Aµ

∞
∑
k=0

(tAλ)k

k!
= e−AλAµ.

For each u ∈X, we have

etAλu − etAuu = ∫
t

0

d

ds
[e(t−s)AµesAλu] ds

= ∫
t

0
e(t−s)Aµ(Aλ −Aµ)esAλu ds

= ∫
t

0
e(t−s)AµesAλ(Aλu −Aµu) ds.

Then, in particular for λ,µ > 2ω, by the uniform bound ∥etA−λ∥; e2ωt shown above,

∥etAλu − etAµu − ∥ ⩽ ∫
t

0
e2(t−s)ωe2sω∥Aλu −Aµu∥ ds

= te2ωt∥Aλu −Aµu∥.

For u ∈D(A), by the previous step, Aλ,Aµ both converge to A, so the norm converges to 0. Therefore

lim sup
λ,µ→∞

∥etAλu − etAµu∥ ⩽ te2ωt lim sup
λ,µ→∞

∥Aλu −Aµu∥ = 0.

More generally, for u ∈X, we can approximate it by u ∈D(A) and go over another triangle inequality argument.

Once this is done, we have shown that {etAλ} is convergent.

Finally, for all t ⩾ 0 and u ∈X, we claim that the limit lim
λ→∞

etAλu is well-defined:

Stu ∶= lim
λ→∞

etAλu

and {St ∶ t ⩾ 0} is a strongly continuous semigroup of type ω.

StSsu = lim
λ→∞

etAλesAλu

= lim
λ→∞

e(t+s)Aλu = St+su.

For a fixed u ∈ x, the map t ↦ Stu is continuous (it is the uniform limit of t ↦ etAλu). For each t ⩾ 0 and u ∈ X
with ∥u∥ ⩽ 1, we have

∥Stu∥ = lim
λ→∞
∥etAλu∥ ⩽ lim

λ→∞
∥etA−λ∥∥u∥

⩽ lim
λ→∞
∥etAλ∥ ⩽ lim

λ→∞
etλω/(λ−ω) = etω.

Therefore ∥St∥ ⩽ etω, which shows {St ∶ t ⩾ 0} is indeed of type ω.

Last step: we verify that A is indeed the generator of the semigroup. To this end, let B be the generator of

{St ∶ t ⩾ 0}. By previous result, we know B is a linear, closed operator densely defined in X.
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Since Aλ is the generator of the semigroup {etAλ ∶ t ⩾ 0}, for every λ > ω we have

etAλu − u = ∫
t

0
esAλAλu ds. (1)

For u ∈D(A),
∥esAλAλu − SsAu∥ ⩽ ∥esAλ∥∥Aλu −Au∥ + ∥esAλAu − SsAu∥→ 0

uniformly as λ→∞ for s in bounded intervals. Taking λ→∞ in (1), we have

Stu − u = ∫
t

0
SsAu ds

for all t ⩾ 0 and u ∈D(A). Hence D(B) ⊃D(A):

Bu = lim
h↓0

Stu − u
t

= lim
t↓0

1

t
∫

t

0
SsAu ds = Au for all u ∈D(A).

It remains to show D(B) ⊂D(A). Let λ > ω. We know λI −A ∶D(A)→X,λI −B ∶D(B)→X are both bijective.

In particular, the restriction of λI −B to D(A) is exactly λI −A and thus surjective. By injectivity of λI −B on

D(B) we see that λI −B cannot be extended outside D(A)! Hence, D(B) =D(A).

Beginning of Nov.15, 2021

Theorem: Uniqueness of the Semigroup

Let {St},{S̃t} be two strongly continuous semigroups of linear operators having the same generator A. Then

St = S̃t for all t ⩾ 0.

Proof. Let u ∈D(A). Then S̃su ∈D(A) and St−sS̃su ∈D(A) for all 0 ⩽ s ⩽ t. By FTC,

S̃tu − Stu = ∫
t

s

d

ds
[St−sS̃su] ds.

Note that

d

ds
[St−sS̃su] = lim

h↓0

St−s−h(S̃s+hu) − St−sS̃su
h

= lim
h↓0

St−s−h(S̃s+hu − S̃su)
h

+ lim
h↓0

St−s−hS̃su − St−sS̃su
h

= limSt−s−h lim
S̃s+hu − S̃su

h
+ ...

= St−s(AS̃su) −ASt−s(S̃su) = 0

where the last step is by commutativity. By density S̃tu − Stu = 0.

6.5 Parabolic Equations

Let Ω ⊂ Rn be bounded. Recall the elliptic operator

Lu ∶= −
n

∑
i,j=1
(ai,j(x)uxi)xj +

n

∑
i=1
(bi(x)u)xi + c(x)u
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where ai,j , bi, c ∈ L∞(Ω) are functions of x and

n

∑
i,j=1

ai,j(x)ξiξj ⩾ θ∣ξ∣2

for all x ∈ Ω, ξ ∈ Rn and some θ > 0. (Trivial example: let (ai,j) be the identity matrix.)

Now consider
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut +Lu = 0 (t, x) ∈ (0,∞) ×Ω

u(t, x) = 0 (t, x) ∈ (0,∞) × ∂Ω

u(0, x) = g(x) x ∈ Ω.

We can reformulate the initial boundary value problem as a Cauchy problem (IVP) in a Hilbert space X ∈ L2(Ω):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du

dt
= Au

u(0) = g

for a suitable (unbounded) linear operator A ∶ L2(Ω)→ L2(Ω). (Of course A = −L.) Define

D(A) ∶= {u ∈H1
0(Ω) ∶ Lu ∈ L2(Ω)}.

Namely, u ∈D(A) if u is a solution to the elliptic boundary value problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lu = f in Ω

u = 0 on ∂Ω

for some f ∈ L2(Ω).
The goal is to construct a solution to the Cauchy equaition using semigroup theory.

Assume there exists β > 0 such that

B ∶H1
0(Ω) ×H1

0(Ω)→ R

where the bilinear form

B[u, v] ∶= ∫
Ω

n

∑
i,j=1

ai,juxiuxj −
n

∑
j=1

biuvxi + cuv dx

is strictly positive definite:

B[u,u] ⩾ β∥u∥H1 for all u ∈H1
0(Ω).

Theorem 6.5.1: Semigroup of Solutions of a Parabolic Equation

Assume L is uniformly elliptic and assume ai,j ∈ W 1,∞(Ω) (i.e., smooth derivative), bi, c ∈ L∞(Ω). Assume

that the corresponding bilinear form defined above is strictly PD. Then the operator A = −L generate a

contractive semigroup {St ∶ t ⩾ 0} of linear operators on L2(Ω).

Proof. To prove A generates a semigroup on X = L2(Ω), by the previous existence theorem, we want to show

D(A) is show that

(1) D(A) is dense in L2(Ω),

(2) graph(A) is closed, and

79



YQL - MATH 580 Notes 6.5 - Parabolic Equations Current file: 11-17.tex

(3) every λ > 0 = ω is in ρ(A), i.e., λI −A is bijective, with ∥(λI −A)−1∥ ⩽ 1/λ.

Beginning of Nov.17, 2021

Proof.

(1) If φ ∈ C2
c (Ω) (compactly supported), then Lφ = f ∈ L2(Ω). This means that C2

c (Ω) ⊂ D(A). But C2
c (Ω) is

dense in L2(Ω), so we are done.

(2) We now show that graph of A is closed. To this end, by Lax-Milgram, for f ∈ L2(Ω), there exists a unique

u ∈H1
0(Ω) such that

B[u, v] = ⟨f, v⟩L2 for all u ∈H1
0(Ω).

Then, the map f ↦ u = L−1f is a bounded linear operator from L2(Ω) to L2(Ω). Note that (u, f) ∈
Graph(A) is equivalent to (−f, u) ∈ Graph(L−1). Since L−1 is continuous, its graph is closed.

(3) We want to show that for all λ > 0, the operator λI −A has a bounded inverse ∥(λI −A)−1∥ ⩽ 1/λ. That is,

it suffices to show that for each f ∈ L2(Ω), the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λu +Lu = f x ∈ Ω

u = 0 x ∈ ∂Ω

has a unique solution satisfying

(∥(λI −A)′f∥L2 =) ∥u∥L2 ⩽ ∥f∥L
2

λ

By Lax-Milgram, there exists a unique u ∈H1
0(Ω) such that

⟨λu,u⟩L2 +B[u, v] = ⟨f, v⟩L2 for all v ∈H1
0(Ω).

Taking v = u gives

λ∥u∥L2 +B[u,u] = ⟨f, u⟩L2 ⩽ ∥f∥L2∥u∥L2

Therefore λ∥u∥L2 ⩽ ∥f∥L2 , and this proves the claim ∥(λI −A)−1∥ ⩽ 1/λ.

Therefore, by the semigrouop theory, we deduce that the linear operator A generates a contractive semigroup.

General Operators

Example 6.5.2. Let A be an m × n matrix. Consider the linear ODE on Rn

dx(t)
dt

= −Ax(t).

If A is PD, then −A generates a contractive semigroup. In particular,

d

dt
∣x(t)∣2 = 2 ⟨dx(t)

dt
, x(t)⟩ = 2 ⟨−Ax(t), x(t)⟩ ⩽ 0.
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Hence ∣x(t)∣2 ⩽ ∣x(0)∣2 for all t ⩾ 0, giving a contractive bound.

Now let A be any matrix. Then we can let γ be sufficiently large such that A+γI is PD. Then the claim above

holds analogously, as −(A + γI) generates a contractive semigroup. If x(t) = e−tAx(0) is a solution, then

∣x(t)∣ = ∣e−tAx(0)∣ = ∣e(γI−(A+γI))tx(0)∣

= eγt∣e−(A+γI)x(0)∣ ⩽ eγt∣x(0)∣.

Hence −A generates a semigroup of type γ.

Example 6.5.3. Consider a general elliptic operator where the corresponding bilinear form B[u, v] is not

necessarily PD. In this case, one can also find a sufficiently large γ > 0 such that

Bγ[u, v] ∶= B[u, v] + γ ⟨u, v⟩L2

is strictly PD on H1
0(Ω). Define Lγu ∶= Lu + γI. Then ut = −Lu can be written as u − t = −Lγu + γu. By the

previous theorem, Aγ ∶= −(L + γI) generates a contractive semigroup of linear oeprators {S(γ)t ∶ t ⩾ 0}. Now

A = −L = γI −Lγ with D(A) = {u ∈H1
0(Ω);Lu ∈ L2(Ω)} generates a semigroup of type γ with

{St ∶ t ⩾ 0} where St = eγtS(γ)t , t ⩾ 0.

What about the solution map t↦ u(t) = Stg?

(1) For all initial data g ∈ L2(Ω), t↦ u(t) = Stg is C1 on D(A) and satisfies

d

dt
u(t) = Lu(t) for all t > 0.

(2) The map t↦ u(t) = Stg is continuous from [0,∞) into L2(Ω) and satisfies u(0) = g. Thus, the initial condition

is satisfied as an identity in L2 (because S0 is).

(3) If g ∈D(A), then u(t) = Stg ∈D(A) for all t ⩾ 0. Then the map t↦ u(t) is continuously differentiable and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
u = Au

u(0) = g
for all t > 0.

Since D(A) ⊂H1
0(Ω), this implies u(t) satisfies the correct boundary condition for all t ⩾ 0.

(4) If g ∈ L2(Ω), then there exists a sequence gn ∈D(A) such that ∥g − gn∥L2 → 0 as n→∞. If the semigroup is of

type γ, we have

∥Stgn − Stg∥L2 ⩽ eγt∥gn − g∥L2 → 0

for fixed g. Hence u↦ u(t) = Stf is the limit of of a sequence of C1 solutions t↦ unt = Stgn.

Claim. u = u(t, x) provides a solution to the parabolic equation

ut =
n

∑
i,j=1
(ai,juxi)xj −

n

∑
i=1
biuxi − cu
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in the sense of distribution: for all φ ∈ C∞c (Ω × (0,∞)),

∬
Ω
uφt +

n

∑
i,j=1

u(ai,jφxj)xi +
n

∑
i=1
u(biφ)xi − cuφ dxdt = 0.

Consider um ∶= Stgm where ∥g − gm∥L2 → 0. t ↦ um(t) converges to the continuous trajectory t ↦ u(t) = Stg in

C0([0, t];L2(Ω)). We deduce that u is a solution in the sense of distribution.
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Chapter 7

Detour: Quantum Mechanics & Functional

Analysis

Beginning of Nov.19, 2021

Consider the system at an arbitrary fixed instant by regarding the time as a parameter which we keep fixed.

In classical mechanics, the state is described by specifying position and velocity by a pair of numbers (x, v),
whereas in quantum mechanics, the state of system is described by a function, often times ψ ∶ Rn → C.

If we let ψ ∈ L2(R) with ∥ψ∥L2 = 1, then ψ is related to the probability that will be found in a given subset J ⊂ R
where the probability is

∫
J
∣ψ(q)∣2 dq. (*)

(Indeed, we want the particle to always be somewhere on the real line so ∫
R
∣ψ(q)∣2 dq = 1.)

Note that (*) is invariant under multiplication by complex numbers with modulus 1, i.e.,

∫
J
∣ψ(q)∣2 dq = ∫

J
∣αψ(q)∣2 dq for all ∣α∣ = 1, J ⊂ R.

Thus, the deterministic description of a state in classical mechanics is replaced by a probabilistic description of a

state in quantum mechanics.

To this end, we define a state of our physical system at some instant to be an element ψ ∈ L2(R) with ∥ψ∥L2 = 1,

defined uniquely up to multiplication by α ∈ C with ∣α∣ = 1. As said before, ∣ψ(q)∣2 plays a role of a probability

density function on R. It follows that we can define the expected value, variance, and standard deviation by

µψ ∶= ∫
R
q∣ψ(q)∣2 dq, varψ ∶= ∫

R
(q − µψ)2∣ψ(q)∣2 dq, and sdψ ∶=

√
varψ.

(Intuitively, the mean gives the “central location” and the other two show dispersion, just like in probability.)

Note that µψ can be expressed as an inner product:

µψ = ∫
R
q∣ψ(q)∣2 dq = ∫

R
qψ(q)ψ(q) dq = ⟨qψ(q), ψ(q)⟩L2 .

We can therefore define a position operator Q by

µψ(Q) = ⟨Qψ,ψ⟩ = ∫
R
Q(ψ)ψ(q) dq
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where Q ∶ D(Q) → L2(R) is defined by Qψ(q) = qψ(q). (Note that Q is unbounded, self-adjoint and linear, whose

domain for sure includes C∞c (R) and is therefore dense in L2(R).)

We can also express the variance as an inner product:

varψ(Q) = ⟨(Q − µψI)2ψ,ψ⟩ = ∫
R
(Q − µψI)2ψ(q)ψ(q) dq.

Question. From ψ, how do we obtain some information about quantities that can be observed experimentally? Any

such quantity is called an observable (e.g., position, momentum, energy).

We have seen that, for “position”, we have an available self-adjoint operator Q. This motivates us to define an

“observable” of our physical system at some instant to be a general self-adjoint linear operator

T ∶D(T )→ L2(R) with D(T ) dense in L2(R).

For example, we can define the mean value µψ(T ) by

µψ(T ) = ⟨Tψ,ψ⟩ = ∫
R
Tψ(q)ψ(q) dq,

varψ(T ) = ⟨(T − µψI)2ψ,ψ⟩ = ∫
R
(T − µψI)2ψ(q)ψ(q) dq.

Following this path, we get another important observable, the momentum, denoted p:

D ∶D(D)→ L2(R) defined by ψ ↦ h

2πi

dψ

dq
(∆)

where h is the Planck’s constant and the domain D(D) ⊂ L2(R).
A bit of heuristic derivation of (∆) using E =mc2: suppose a photon has speed c and energy E = hν (h Plank constant

and ν frequency). Then its momentum is by definition p = mc = (E/c2)c = hν/c = h/Λ = kh/2π where k = 2π/Λ and Λ

is the wavelength 1/ν.

Then, by (inverse) Fourier transform,

ψ(q) = 1√
h
∫
∞

−∞
φ(p) exp(pq ⋅ 2πi/h) dp

where φ is the Fourier transform

φ(p) = 1√
h
∫
∞

−∞
ψ(q) exp(pq ⋅ (−2πi)/h) dq.

Physically, this can be interpreted as a representation of ψ in terms of functions of constant momentum p given by

ψp(q) = φ(p)eikq = φ(p) exp(pq ⋅ 2πi/h) where k = 2πi/h and φ(p) is the amplitude. By definition,

∣ψp(q)∣2 = ψp(q)ψp(q) = φ(p)φ(p) = ∣φ(p)∣2.

Since ∥ψ∥L2 = 1, we have ∥φ∥L2 = 1. We finally define the mean value of the momentum by

µ̃ψ = ∫
∞

−∞
p∣φ(p)∣2 dp = ∫

∞

−∞
pφ(p)φ(p) dq

= ∫
∞

−∞
pφ(p) 1√

h
∫
∞

−∞
φ(q) exp(pq ⋅ 2πi/h) dq dp

= ∫
∞

−∞
ψ(q)∫

∞

−∞
φ(p) 1√

h
p exp(pq2πi/h) dp dq

[...] = ∫
∞

−∞

h

2πi

dψ(q)
dq

dq = ∫
∞

−∞
ψ(q)Dψ dq.

Beginning of Nov.22, 2021
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7.1 The Commutator Operator & the Heisenberg Uncertainty Principle

Let S,T be self-adjoint linear operators with domains in the same complex Hilbert space. Then the operator

S ∶= ST − TS

is called the commutator operator defined on D(C) ∶=D(ST ) ∩D(TS).

For example, consider

DQψ(g) =D(qψ(g)) = h

2πi
[ψ(q) + qψ′(q)] + h

2πi
QDψ(q)

so that the commutator DQ − QD = h

2πi
I defined on its own domain. It is called the Heisenberg commutator

between position and momentum.

Claim. This domain D(DQ −QD) is dense in L2(R).

Proposition: Lower bound on the commutator

Let S,T be self-adjoint linear operators with domain and range in L2(R). Then the commutator

C ∶= ST − TS

satisfies

∣µψ(C)∣ ⩽ 2sdψ(T )sdψ(T ) for all ψ ∈D(C).

Proof. Write µ1 = µψ(S) and µ2 = µψ(T ). Define A ∶= S −µ1I and β ∶= T −µ2I on their respective domains. Then

C = ST − TS = AB −BA where A,B are both self-adjoint. Then

µψ(C) = ⟨(AB −BA)ψ,ψ⟩

= ⟨ABψ,ψ⟩ − ⟨BAψ,ψ⟩

[self-adjoint] = ⟨Bψ,Aψ⟩ − ⟨Aψ,Bψ⟩ .

Therefore,

∣µψ(C)∣ ⩽ ∣⟨Bψ,Aψ⟩∣ + ∣⟨Aψ,Bψ⟩∣ ⩽ 2∥Bψ∥∥Aψ∥.

Note that

∥Bψ∥ =
√
⟨(T − µ2I)2ψ,ψ⟩ =

√
varψ(T ) = sdψ(T )

and likewise for ∥Aψ∥. This completes the proof.

Theorem: Heisenberg Uncertainty Principle

For the position operator Q and the momentum operator D, sdψ(D)sdψ(Q) ⩾
h

4π
.

Physically, this means that we cannot make a simultaneous measurement of position and momentum of a particle

with arbitrary accuracy. More generally, any two observables S and T with nontrivial commutator cannot be

simultaneously measured with unlimited precision.
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Proof. Recall that DQ −QD = h

2πi
I, so ∣µψ(C)∣ =

h

2π
, and the previous proposition gives

2sdψ(D)sdψ(Q) ⩾
h

2π
.

7.2 Time-Independent Schrödinger Equation

Consider the three-dimensional wave equation

ψtt = γ2∆ψ

for γ2 > 0 constant and ∆ψ ∶=
3

∑
i=1

∂2ψ

∂q2i
. For a simple, time periodic case (stationary waves), we may assume

ψ(q1, q2, q3; t) = ψ(q1, q2, q3)e−iωt.

Then the wave equation reduces to the Helmholtz equation

∆ψ + k2ψ = 0

where k = ω/γ = 2πν/γ = 2π/Λ where ν is the frequency and Λ the wavelength. We choose Λ = h/mv where v is any

velocity, the Helmholtz equation can be re-written as

0 =∆ψ + k2ψ =∆ψ + 8π2m

h2
mv2

2
ψ.

Let E =mv2/2 + V (kinetic and potential) so mv2/2 = E − V . We then obtain the following form of Helmholtz:

∆ψ + 8π2m

h2
(E − V )ψ = 0

or equivalently

(− h2

8π2m
∆ + V )ψ = Eψ. (*)

Both forms are called the time-independent Schrödinger equation. From a mathematical viewpoint, possible

energy levels of the system will depend on the spectrum of the operator defined by the LHS of (*).
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