

Degree Theory & Some Applications

Qilin Ye

December 1, 2021

What does Degree Address?

Main question: Given f a continuous map from $\Omega \subset \mathbb{R}^n$ to \mathbb{R}^n and $y \in \mathbb{R}^n$, does $f(x) = y$ have solutions?

More questions: If there are solutions, how many? What structure do they have? How do they change when a parameter changes?

What does Degree Address?

Main question: Given f a continuous map from $\Omega \subset \mathbb{R}^n$ to \mathbb{R}^n and $y \in \mathbb{R}^n$, does $f(x) = y$ have solutions?

More questions: If there are solutions, how many? What structure do they have? How do they change when a parameter changes?

Requirements on f , Ω , and y

In this presentation, we shall impose three restrictions so our arguments become “nice” enough:

Requirements on f , Ω , and y

In this presentation, we shall impose three restrictions so our arguments become “nice” enough:

- (1) $f : \overline{\Omega} \rightarrow \mathbb{R}^n$ is continuous;
- (2) $\Omega \subset \mathbb{R}^n$ is open and bounded; and
- (3) $y \in \mathbb{R}^n \setminus f(\partial\Omega)$.

Requirements on f , Ω , and y

In this presentation, we shall impose three restrictions so our arguments become “nice” enough:

- (1) $f : \overline{\Omega} \rightarrow \mathbb{R}^n$ is continuous;
- (2) $\Omega \subset \mathbb{R}^n$ is open and bounded; and
- (3) $y \in \mathbb{R}^n \setminus f(\partial\Omega)$.

Requirements on f , Ω , and y

In this presentation, we shall impose three restrictions so our arguments become “nice” enough:

- (1) $f : \overline{\Omega} \rightarrow \mathbb{R}^n$ is continuous;
- (2) $\Omega \subset \mathbb{R}^n$ is open and bounded; and
- (3) $y \in \mathbb{R}^n \setminus f(\partial\Omega)$.

Three Axioms of a Degree

Defined formally, we want a function

$$d : \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ open and bounded, } f : \overline{\Omega} \rightarrow \mathbb{R}^n \text{ continuous, } y \in \mathbb{R}^n \setminus f(\partial\Omega)\} \rightarrow \mathbb{Z}$$

satisfying the following three intuitive definitions:

Three Axioms of a Degree

Defined formally, we want a function

$$d : \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ open and bounded, } f : \overline{\Omega} \rightarrow \mathbb{R}^n \text{ continuous, } y \in \mathbb{R}^n \setminus f(\partial\Omega)\} \rightarrow \mathbb{Z}$$

satisfying the following three intuitive definitions:

(d1) Normalization: *For identity, $\text{id}(x) = y \Leftrightarrow x = y$, so*

$$d(\text{id}, \Omega, y) = 1 \quad \text{for all } y \in \Omega.$$

(d2) Additivity: *If Ω_1, Ω_2 partition Ω , then the number of solutions in Ω_1, Ω_2 should add up to that in Ω :*

$$d(f, \Omega_1, y) + d(f, \Omega_2, y) = d(f, \Omega, y)$$

if Ω_1, Ω_2 are open, $\Omega_1 \cap \Omega_2 = \emptyset$, and $y \notin f(\partial\Omega \setminus (\Omega_1 \cup \Omega_2))$.

Three Axioms of a Degree

Defined formally, we want a function

$$d : \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ open and bounded, } f : \overline{\Omega} \rightarrow \mathbb{R}^n \text{ continuous, } y \in \mathbb{R}^n \setminus f(\partial\Omega)\} \rightarrow \mathbb{Z}$$

satisfying the following three intuitive definitions:

(d1) Normalization: *For identity, $\text{id}(x) = y \Leftrightarrow x = y$, so*

$$d(\text{id}, \Omega, y) = 1 \quad \text{for all } y \in \Omega.$$

(d2) Additivity: *If Ω_1, Ω_2 partition Ω , then the number of solutions in Ω_1, Ω_2 should add up to that in Ω :*

$$d(f, \Omega_1, y) + d(f, \Omega_2, y) = d(f, \Omega, y)$$

if Ω_1, Ω_2 are open, $\Omega_1 \cap \Omega_2 = \emptyset$, and $y \notin f(\partial\Omega \setminus (\Omega_1 \cup \Omega_2))$.

Three Axioms of a Degree (Cont.)

Defined formally, we want a function

$$d : \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ open and bounded, } f : \overline{\Omega} \rightarrow \mathbb{R}^n \text{ continuous, } y \in \mathbb{R}^n \setminus f(\partial\Omega)\} \rightarrow \mathbb{Z}$$

satisfying the following three intuitive definitions:

(d3) Homotopy: *$d(\cdot, \Omega, \cdot)$ should remain fixed under continuous transformations (homotopy):*

$$d(h(t, \cdot), \Omega, y(t)) \quad \text{is independent of } t \in [0, 1]$$

if $h : [0, 1] \times \Omega \rightarrow \mathbb{R}^n$ and $y : [0, 1] \rightarrow \mathbb{R}^n$ are continuous and $y(t) \notin h(t, \partial\Omega)$ for all t . In particular, the following is useful:

$$d(h(0, \cdot), \Omega, y(0)) = d(h(1, \cdot), \Omega, y(1)).$$

A Remark

Claim. If $0 \notin h(\overline{\Omega})$ then $d(h, \Omega, 0) = 0$.

Proof. Since $d(h, \emptyset, 0) + d(h, \emptyset, 0) = 2d(h, \emptyset, 0) = d(h, \emptyset, 0)$ by additivity, $d(h, \emptyset, 0) = 0$. Since any open $\Omega_1 \subset \Omega$ satisfies $0 \notin h(\overline{\Omega} \setminus \Omega_1)$, by (d2) we have $d(h, \Omega_1, 0) = d(h, \Omega, 0) - d(h, \emptyset, 0) = d(h, \Omega, 0)$. In particular let $\Omega_1 := \emptyset$ so $d(h, \Omega, 0) = 0$ as well. \square

This implication is one-way only, as we shall see in the next example.

A Remark

Claim. If $0 \notin h(\overline{\Omega})$ then $d(h, \Omega, 0) = 0$.

Proof. Since $d(h, \emptyset, 0) + d(h, \emptyset, 0) = 2d(h, \emptyset, 0) = d(h, \emptyset, 0)$ by additivity, $d(h, \emptyset, 0) = 0$. Since any open $\Omega_1 \subset \Omega$ satisfies $0 \notin h(\overline{\Omega} \setminus \Omega_1)$, by (d2) we have $d(h, \Omega_1, 0) = d(h, \Omega, 0) - d(h, \emptyset, 0) = d(h, \Omega, 0)$. In particular let $\Omega_1 := \emptyset$ so $d(h, \Omega, 0) = 0$ as well. \square

This implication is one-way only, as we shall see in the next example.

Claim. If $0 \notin h(\overline{\Omega})$ then $d(h, \Omega, 0) = 0$.

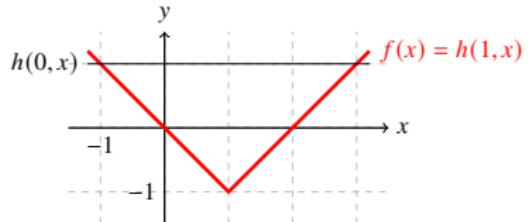
Proof. Since $d(h, \emptyset, 0) + d(h, \emptyset, 0) = 2d(h, \emptyset, 0) = d(h, \emptyset, 0)$ by additivity, $d(h, \emptyset, 0) = 0$. Since any open $\Omega_1 \subset \Omega$ satisfies $0 \notin h(\overline{\Omega} \setminus \Omega_1)$, by (d2) we have $d(h, \Omega_1, 0) = d(h, \Omega, 0) - d(h, \emptyset, 0) = d(h, \Omega, 0)$. In particular let $\Omega_1 := \emptyset$ so $d(h, \Omega, 0) = 0$ as well. \square

This implication is one-way only, as we shall see in the next example.

Example: Degree \neq Number of Roots

Consider $f(x) = \begin{cases} -x & x \in [-1, 1] \\ x - 2 & x \in [1, 3] \end{cases}$
and the homotopy

$$h(t, x) := 1 - t(2 - |x - 1|)$$



so $h(1, x) = f(x)$ and $h(0, x)$ is the constant function 1. Also, $\partial(-1, 3) = \{-1, 3\}$ whereas $h(t, -1) = h(t, 3) = 1 - t(2 - 2) = 1$ for all t . Hence setting $y(t) \equiv 1$ on $[0, 1]$, we have

$$d(h(0, \cdot), (-1, 3), y(0)) = d(h(1, \cdot), (-1, 3), y(1)),$$

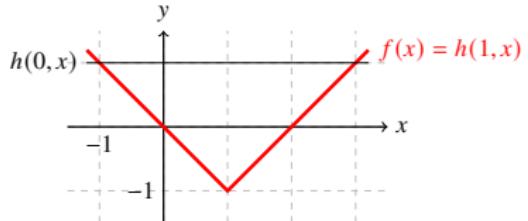
i.e.,

$$d(f, (-1, 3), 0) = \underbrace{d(\text{constant } 1, (-1, 3), 0)}_{=0} = 0.$$

Example: Degree \neq Number of Roots

Consider $f(x) = \begin{cases} -x & x \in [-1, 1] \\ x - 2 & x \in [1, 3] \end{cases}$
and the homotopy

$$h(t, x) := 1 - t(2 - |x - 1|)$$



so $h(1, x) = f(x)$ and $h(0, x)$ is the constant function 1. Also, $\partial(-1, 3) = \{-1, 3\}$ whereas $h(t, -1) = h(t, 3) = 1 - t(2 - 2) = 1$ for all t . Hence setting $y(t) \equiv 1$ on $[0, 1]$, we have

$$d(h(0, \cdot), (-1, 3), y(0)) = d(h(1, \cdot), (-1, 3), y(1)),$$

i.e.,

$$d(f, (-1, 3), 0) = \underbrace{d(\text{constant } 1, (-1, 3), 0)}_{=0} = 0.$$

Example: Degree Can Be Negative

A continuation: now consider $-\text{id}$ on $(-1, 1)$ and a homotopy

$$h(t, x) := x - 2t \implies \begin{cases} h(0, \cdot) = \text{id} \\ h(1, \cdot) = \text{id} - 2 \end{cases} \quad \text{on } [-1, 3].$$

Let $y(t) \equiv 0$ so $d(\text{id} - 2, (-1, 3), 0) = d(\text{id}, (-1, 3), 0) = 1$.

By the Remark above, $d(-\text{id}, (1, 3), 0) = 0$ so

$$d(-\text{id}, (-1, 1), 0) = d(-\text{id}, (-1, 3), 0).$$

By the Remark again, $d(\text{id} - 2, (-1, 1), 0) = 0$ so by additivity

$$d(\text{id} - 2, (1, 3), 0) = 1.$$

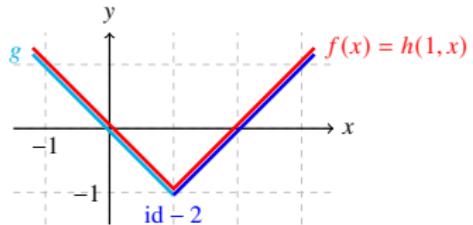
Example: Degree Can Be Negative (Cont.)

Therefore,

$$0 = d(f, (-1, 3), 0)$$

$$= d(f|_{(-1,1)}, (-1, 1), 0) + d(f|_{(1,3)}, (1, 3), 0)$$

$$= \underbrace{d(-\text{id}, (-1, 1), 0) + d(\text{id} - 2, (1, 3), 0)}_{=1}$$



so

$$d(-\text{id}, (-1, 1), 0) = -1.$$

Theorem: Existence and Uniqueness of Degree

There exists exactly one function $d(f, \Omega, y)$ satisfying the properties above. Furthermore, for linear functions represented by multiplication by matrix A , the degree satisfies $d(A, \Omega, 0) = \text{sgn } \det(A)$, whenever $\det(A) \neq 0$.

Proof is long and technical and therefore omitted.

In particular, the previous example $d(f, (-1, 3), 0) = 0$ does not violate this property as f is not linear.

Theorem: Existence and Uniqueness of Degree

There exists exactly one function $d(f, \Omega, y)$ satisfying the properties above. Furthermore, for linear functions represented by multiplication by matrix A , the degree satisfies $d(A, \Omega, 0) = \text{sgn } \det(A)$, whenever $\det(A) \neq 0$.

Proof is long and technical and therefore omitted.

In particular, the previous example $d(f, (-1, 3), 0) = 0$ does not violate this property as f is not linear.

Theorem: Brouwer Fixed-Point Theorem (1911)

Let $f : \overline{B}_r(0) \rightarrow \overline{B}_r(0)$ be continuous where $B_r(0) \subset \mathbb{R}^n$.

Then f admits a fixed point. More generally, $\overline{B}_r(0)$ can be replaced by any nonempty compact convex set in \mathbb{R}^n .

Proof of the BFPT

Proof. Consider the mapping $\mathbf{id} - f$. If f admits a fixed point on $\partial B_r(0)$ then we are done. Otherwise, let

$$h(t, x) := x - tf(x).$$

Then $h(1, \cdot) = \mathbf{id} - f$ and $h(0, \cdot) = \mathbf{id}$. By triangle inequality, for all $(t, x) \in [0, 1] \times \partial B_r(0)$,

$$|h(t, x)| = |x - tf(x)| \geq |x| - t|f(x)| = r - t|f(x)| \geq (1 - t)r \neq 0$$

and $f(x) \neq x$ on $\partial B_r(0) \Rightarrow |h(1, x)| \neq 0$ on $\partial B_r(0)$.

Let $y(t) \equiv 0$ on $[0, 1]$. Hence g and f are homotopic and

$$d(\mathbf{id} - f, B_r(0), 0) = d(\mathbf{id}, B_r(0), 0) = 1,$$

so $(\mathbf{id} - f)(x) = 0$, i.e., $f(x) = x$, for some $x \in B_r(0)$. \square

Proof of the BFPT

Proof. Consider the mapping $\mathbf{id} - f$. If f admits a fixed point on $\partial B_r(0)$ then we are done. Otherwise, let

$$h(t, x) := x - tf(x).$$

Then $h(1, \cdot) = \mathbf{id} - f$ and $h(0, \cdot) = \mathbf{id}$. By triangle inequality, for all $(t, x) \in [0, 1] \times \partial B_r(0)$,

$$|h(t, x)| = |x - tf(x)| \geq |x| - t|f(x)| = r - t|f(x)| \geq (1 - t)r \neq 0$$

and $f(x) \neq x$ on $\partial B_r(0) \Rightarrow |h(1, x)| \neq 0$ on $\partial B_r(0)$.

Let $y(t) \equiv 0$ on $[0, 1]$. Hence g and f are homotopic and

$$d(\mathbf{id} - f, B_r(0), 0) = d(\mathbf{id}, B_r(0), 0) = 1,$$

so $(\mathbf{id} - f)(x) = 0$, i.e., $f(x) = x$, for some $x \in B_r(0)$. \square

Proof of the BFPT

Proof. Consider the mapping $\mathbf{id} - f$. If f admits a fixed point on $\partial B_r(0)$ then we are done. Otherwise, let

$$h(t, x) := x - tf(x).$$

Then $h(1, \cdot) = \mathbf{id} - f$ and $h(0, \cdot) = \mathbf{id}$. By triangle inequality, for all $(t, x) \in [0, 1] \times \partial B_r(0)$,

$$|h(t, x)| = |x - tf(x)| \geq |x| - t|f(x)| = r - t|f(x)| \geq (1 - t)r \neq 0$$

and $f(x) \neq x$ on $\partial B_r(0) \Rightarrow |h(1, x)| \neq 0$ on $\partial B_r(0)$.

Let $y(t) \equiv 0$ on $[0, 1]$. Hence g and f are homotopic and

$$d(\mathbf{id} - f, B_r(0), 0) = d(\mathbf{id}, B_r(0), 0) = 1,$$

so $(\mathbf{id} - f)(x) = 0$, i.e., $f(x) = x$, for some $x \in B_r(0)$. □

Proof of the BFPT, General Case (skipped)

Proof of general case. Let D be compact convex and $f : D \rightarrow D$ continuous. There exists a continuous extension $\tilde{f} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as the following:

- (1) Let $\{a_i\}$ be countable and dense in D .
- (2) For each i and $x \notin D$, define $\varphi_i(x) = \max \left\{ 2 - \frac{|x - a_i|}{\text{dist}(x, D)}, 0 \right\}$, where $\text{dist}(x, D) := \inf\{|x - a| : a \in D\}$ is the distance.
- (3) Define

$$\tilde{f}(x) := \begin{cases} f(x) & \text{if } x \in D \\ \sum_{i=1}^{\infty} \frac{2^{-i} \varphi_i(x)}{\sum_{j=1}^{\infty} 2^{-j} \varphi_j(x)} f(a_i) & \text{if } x \notin D. \end{cases}$$

(Take it for granted that this works!)

Proof (continued). For all x , $\tilde{f}(x)$ is the limit of convex combinations of $f(a_i) \in D$ (\sum coefficients = 1 and the claim follows by an ϵ argument on finite sums), so $\tilde{f}(\mathbb{R}^n) \subset \overline{\text{conv } f(D)} \subset D$.

Let r be such that $\overline{B}_r(0) \supset D$. Then $\tilde{f}(\overline{B}_r(0)) \subset D \subset \overline{B}_r(0)$. By the first case, $\tilde{f}(x) = x$ for some $x \in \overline{B}_r(0)$. But then $\tilde{f}(x) \subset D$ so $\tilde{f}(x) = f(x) = x$ for some $x \in D$. □

Theorem: Perron-Frobenius Theorem

An $n \times n$ matrix A with $A_{i,j} \geq 0$ for all i, j has an eigenvalue $\lambda \geq 0$ corresponding to a *Perron-Frobenius eigenvector* $x \in \mathbb{R}^n$ whose components are all nonnegative.

Perron-Frobenius: Proof (if time permits)

Proof. Define $D := \{x \in \mathbb{R}^n : x_i \geq 0 \text{ and } \sum_{i=1}^n x_i = 1\}$. Note D is nonempty, compact, and convex.

If $Ax = 0$ for some $x \in D$ then the claim holds with $\lambda = 0$.

Otherwise, by compactness $\inf_{x \in D} \sum_{i=1}^n (Ax)_i \geq \alpha > 0$ for some α .

Then $x \mapsto Ax / \sum_{i=1}^n (Ax)_i$ defines a continuous map $f : D \rightarrow D$.

Brouwer's FPT guarantees a fixed point x , i.e.,

$$Ax = (\sum_{i=1}^n (Ax)_i)x =: \lambda x.$$

□

Perron-Frobenius: Proof (if time permits)

Proof. Define $D := \{x \in \mathbb{R}^n : x_i \geq 0 \text{ and } \sum_{i=1}^n x_i = 1\}$. Note D is nonempty, compact, and convex.

If $Ax = 0$ for some $x \in D$ then the claim holds with $\lambda = 0$.

Otherwise, by compactness $\inf_{x \in D} \sum_{i=1}^n (Ax)_i \geq \alpha > 0$ for some α .

Then $x \mapsto Ax / \sum_{i=1}^n (Ax)_i$ defines a continuous map $f : D \rightarrow D$.

Brouwer's FPT guarantees a fixed point x , i.e.,

$$Ax = (\sum_{i=1}^n (Ax)_i)x =: \lambda x.$$

□

Perron-Frobenius: Proof (if time permits)

Proof. Define $D := \{x \in \mathbb{R}^n : x_i \geq 0 \text{ and } \sum_{i=1}^n x_i = 1\}$. Note D is nonempty, compact, and convex.

If $Ax = 0$ for some $x \in D$ then the claim holds with $\lambda = 0$.

Otherwise, by compactness $\inf_{x \in D} \sum_{i=1}^n (Ax)_i \geq \alpha > 0$ for some α .

Then $x \mapsto Ax / \sum_{i=1}^n (Ax)_i$ defines a continuous map $f : D \rightarrow D$.

Brouwer's FPT guarantees a fixed point x , i.e.,

$$Ax = (\sum_{i=1}^n (Ax)_i)x =: \lambda x.$$

□

The Borsuk-Ulam Theorem (1933)

Theorem: Borsuk-Ulam

Let $\Omega \subset \mathbb{R}^n$ be symmetric with $0 \in \Omega$. If $f : \partial\Omega \rightarrow \mathbb{R}^m$ is continuous and $m < n$, then $f(x) = f(-x)$ for some $x \in \partial\Omega$.

Famous results. Let $(m, n) = (2, 3)$. At any moment, there exists a pair of antipodal points with exactly the same temperature and pressure (assuming the parameters vary continuously in space).

Similarly, if $(m, n) = (1, 2)$, we see that, at any moment, there exists a pair of anti-equatorial points with the same temperature.

The Borsuk-Ulam Theorem (1933)

Theorem: Borsuk-Ulam

Let $\Omega \subset \mathbb{R}^n$ be symmetric with $0 \in \Omega$. If $f : \partial\Omega \rightarrow \mathbb{R}^m$ is continuous and $m < n$, then $f(x) = f(-x)$ for some $x \in \partial\Omega$.

Famous results. Let $(m, n) = (2, 3)$. At any moment, there exists a pair of antipodal points with exactly the same temperature and pressure (assuming the parameters vary continuously in space).

Similarly, if $(m, n) = (1, 2)$, we see that, at any moment, there exists a pair of anti-equatorial points with the same temperature.

The Borsuk-Ulam Theorem (1933)

Theorem: Borsuk-Ulam

Let $\Omega \subset \mathbb{R}^n$ be symmetric with $0 \in \Omega$. If $f : \partial\Omega \rightarrow \mathbb{R}^m$ is continuous and $m < n$, then $f(x) = f(-x)$ for some $x \in \partial\Omega$.

Famous results. Let $(m, n) = (2, 3)$. At any moment, there exists a pair of antipodal points with exactly the same temperature and pressure (assuming the parameters vary continuously in space).

Similarly, if $(m, n) = (1, 2)$, we see that, at any moment, there exists a pair of anti-equatorial points with the same temperature.

Borsuk-Ulam: Proof

Proof. (*Red* = “black box” because of limited time.) Suppose not, then $g(x) := f(x) - f(-x) \neq 0$ on $\partial\Omega$.

We extend g on $\overline{\Omega}$ and embed its range to be $g(\overline{\Omega}) \times \{0\}^{n-m} \subset \mathbb{R}^n$. Call this function \tilde{g} . Then $0 \neq d(\tilde{g}, \Omega, 0) = d(\tilde{g}, \Omega, y)$ for all y sufficiently close to 0, say $y \in B_r(0)$.

But then for all $y \in B_r(0)$, $d(\tilde{g}, \Omega, 0) \neq 0$ so $y \in \tilde{g}(\overline{\Omega})$. Thus $B_r(0) \subset \tilde{g}(\overline{\Omega})$, but this is impossible due to the embedded $\{0\}^{n-m}$.

□

Proof. (Red = “black box” because of limited time.) Suppose not, then $g(x) := f(x) - f(-x) \neq 0$ on $\partial\Omega$.

We extend g on $\overline{\Omega}$ and embed its range to be $g(\overline{\Omega}) \times \{0\}^{n-m} \subset \mathbb{R}^n$. Call this function \tilde{g} . Then $0 \neq d(\tilde{g}, \Omega, 0) = d(\tilde{g}, \Omega, y)$ for all y sufficiently close to 0, say $y \in B_r(0)$.

But then for all $y \in B_r(0)$, $d(\tilde{g}, \Omega, 0) \neq 0$ so $y \in \tilde{g}(\overline{\Omega})$. Thus $B_r(0) \subset \tilde{g}(\overline{\Omega})$, but this is impossible due to the embedded $\{0\}^{n-m}$.

□

Proof. (*Red* = “black box” because of limited time.) Suppose not, then $g(x) := f(x) - f(-x) \neq 0$ on $\partial\Omega$.

We extend g on $\overline{\Omega}$ and embed its range to be $g(\overline{\Omega}) \times \{0\}^{n-m} \subset \mathbb{R}^n$. Call this function \tilde{g} . Then $0 \neq d(\tilde{g}, \Omega, 0) = d(\tilde{g}, \Omega, y)$ for all y sufficiently close to 0, say $y \in B_r(0)$.

But then for all $y \in B_r(0)$, $d(\tilde{g}, \Omega, 0) \neq 0$ so $y \in \tilde{g}(\overline{\Omega})$. Thus $B_r(0) \subset \tilde{g}(\overline{\Omega})$, but this is impossible due to the embedded $\{0\}^{n-m}$.

□

Concluding Remarks

Claim. I will never reach this slide in this presentation.

| *Proof.* Trivial.

