

MATH 407 Homework 12

Qilin Ye

April 23, 2021

Ex.6.18 Since X_1, X_2 are independent, their joint probability is the product of marginals:

(1) $X_1 X_2 = 0$ if and only if $X_1 = 0$ or $X_2 = 0$. This gives

$$\begin{aligned} P(X_1 X_2 = 0) &= P(X_1 = 0) + P(X_2 = 0) - P(X_1 = X_2 = 0) \\ &= (1 - p_1)^{n_1} + (1 - p_2)^{n_2} - P(X_1 = 0)P(X_2 = 0) \\ &= (1 - p_1)^{n_1} + (1 - p_2)^{n_2} - (1 - p_1)^{n_1}(1 - p_2)^{n_2}. \end{aligned}$$

(2) If $X_1 + X_2 = 1$ then either $(X_1, X_2) = (0, 1)$ or the other way around:

$$\begin{aligned} P(X_1 + X_2 = 1) &= P(X_1 = 0, X_2 = 1) + P(X_1 = 1, X_2 = 0) \\ &= P(X_1 = 0)P(X_2 = 1) + P(X_1 = 1)P(X_2 = 0) \\ &= (1 - p_1)^{n_1} \cdot n_2 p_2 (1 - p_2)^{n_2-1} + n_1 p_1 (1 - p_1)^{n_1-1} (1 - p_2)^{n_2} \\ &= (1 - p_1)^{n_1-1} (1 - p_2)^{n_2-1} [(1 - p_1)n_2 p_2 + (1 - p_2)n_1 p_1]. \end{aligned}$$

(3) We can have $(X_1 X_2) = (0, 2), (1, 1)$, or $(2, 0)$. Thus

$$\begin{aligned} P(X_1 + X_2 = 2) &= P(X_1 = 0)P(X_2 = 2) + P(X_1 = 1)P(X_2 = 1) + P(X_1 = 2)P(X_2 = 0) \\ &= (1 - p_1)^{n_1} \cdot \frac{n_2(n_2 - 1)}{2} p_2^2 (1 - p_2)^{n_2-2} + n_1 p_1 (1 - p_1)^{n_1-1} n_2 p_2 (1 - p_2)^{n_2-1} \\ &\quad + \frac{n_1(n_1 - 1)}{2} p_1^2 (1 - p_1)^{n_1-2} \cdot (1 - p_2)^{n_2} \\ &= (1 - p_1)^{n_1-2} (1 - p_2)^{n_2-2} k \end{aligned}$$

where

$$k = \frac{n_2(n_2 - 1)}{2} (1 - p_1)^2 p_2^2 + n_1 p_1 (1 - p_1) n_2 p_2 (1 - p_2) + \frac{n_1(n_1 - 1)}{2} p_1^2 (1 - p_2)^2.$$

Ex.6.27

$$\begin{aligned} P(X_1/X_2 < a) &= P(X_1 < a X_2) = \int_0^\infty \int_0^{ay} f_{X_1, X_2}(x, y) dx dy \\ [\text{independence}] &= \int_0^\infty \int_0^{ay} \lambda_1 \lambda_2 e^{-\lambda_1 x} e^{-\lambda_2 y} dx dy \\ &= \int_0^\infty \lambda_1 \lambda_2 e^{-\lambda_2 y} \int_0^{ay} e^{-\lambda_1 x} dx dy \\ &= \int_0^\infty \lambda_1 \lambda_2 e^{\lambda_2 y} (1 - e^{-\lambda_1 ay}) dy \\ &= \lambda_2 \int_0^\infty \lambda_1 e^{-\lambda_2 y} - e^{-y(\lambda_1 + \lambda_2 a)} dy \\ &= \frac{\lambda_1 a}{\lambda_2 + \lambda_1 a}. \end{aligned}$$

Therefore

$$f_Z(a) = \frac{d}{da} \frac{\lambda_1 a}{\lambda_2 + \lambda_1 a} = \frac{\lambda_1 \lambda_2}{(\lambda_1 a + \lambda_2)^2}.$$

It follows immediately that

$$P(X_1/X_2 < 1) = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

Ex.6.32 (1) The probability to have a sale > 100 in a month is precisely 1/2. Thus the total probability is

$$\binom{6}{3} \cdot (1/2)^3 \cdot * (1/2)^{6-3} = \frac{5}{16}.$$

(2) If $X_1, \dots, X_4 \sim N(100, 25)$ and are i.i.d., then $Y := \sum X \sim N(400, 100)$. Therefore the standard distribution of such a sum variable is 10 and 420 is 2 standard deviations away. The probability is therefore

$$P(Y > 440) = P(Z > 2) = 0.02275.$$

Th.6.5 This is somewhat similar to the second problem in this problem set.

$$\begin{aligned} P(X/Y < a) &= P(X < aY) = \int_{-\infty}^{\infty} P(X < ay) dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{ay} f_{X,Y}(x,y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{ay} f_X(ay) f_Y(y) dx dy \\ &= \int_{-\infty}^{\infty} F_X(x) f_Y(y) dy \end{aligned}$$

and (assuming $y \neq 0$)

$$P(XY < a) = P(X < a/Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{a/y} f_X(ay) f_Y(y) dx dy = \int_{-\infty}^{\infty} f_X(a/y) f_Y(y) dy.$$

It follows that they respectively have PDF

$$\int_{-\infty}^{\infty} f_X(ay) y f_Y(y) dy \text{ and } \int_{-\infty}^{\infty} \frac{f_X(a/y) f_Y(y)}{y} dy.$$

If X, Y are exponential random variables then the first one (by the previous problem) has PDF

$$f_{X/Y}(a) = \frac{\lambda_1 \lambda_2}{(\lambda_1 a + \lambda_2)^2}$$

and the second one is

$$\int_0^{\infty} \frac{\lambda_1 e^{-\lambda_1 a/y} \lambda_2 e^{-\lambda_2 y}}{y} dy.$$

Th.6.7 If $X \sim \text{Gamma}(t, \lambda)$ then

$$F_X(x) = \frac{\lambda}{\Gamma(t)} \int_0^{\infty} e^{-\lambda x} (\lambda x)^{t-1} dx.$$

Thus,

$$F_{cX}(x) = F_X(x/c) = \frac{\lambda}{\Gamma(t)} \int_0^{\infty} e^{-\lambda x/c} (\lambda x/c)^{t-1} dx$$

and differentiating this gives

$$f_{cX}(x) = \frac{\lambda}{\Gamma(t)} e^{-(\lambda/c)x} ((\lambda/c)x)^{t-1}.$$

Therefore cX is simply a Gamma random variable with parameters $(t, \lambda/c)$.